Freescale Semiconductor AN2616
Application Note Rev. 1, 03/2005

Getting Started with HCS08 and
CodeWarrior Using C

by: Stephen Pickering
East Kilbride, Scotland

Overview

The purpose of this application note is to demonstrate how easy it is to develop C code for an HCS08,
using Metrowerks CodeWarrior . A simple application is used in order to explain the techniques in
developing an HCSO08 application with CodeWarrior.

An important difference between the HC08 and the HCS08 is the inclusion of a suite of on-board hardware
debugging facilities, designed to be used via the BDC (background debug controller). Code is debugged
using the HCS08 BDM (background debug mode) pod, along with one of the demonstration/evaluation
boards with an MC9S08GB60 device. The BDM pod used in the application is a P&E USB ML 12 (except
where stated). Since BDM is an in-circuit debug methodology, the hardware could be the real application
rather than a demo/evaluation board.

During the MC9S08GB60 launch, two boards (manufactured by Axiom) were made available: a low-cost
demo board, and a more comprehensive evaluation board with LCD.

Although the document refers to the MC9S08GB60, the concepts apply to all the HCS08 devices, with
the appropriate substitutions (for device name, header file names, etc.).

If CodeWarrior version 3 (or higher) is not installed, refer to Metrowerks HCS08 CodeWarrior
Development Tools.

If you are using Metrowerks CodeWarrior and/or HCS08 for the first time, and you are unsure about
writing C code in this environment, refer to CodeWarrior C and HCS08, for a quick introduction to how the
device specific features are used in the Metrowerks C programming language.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

freescale"

semiconductor

Contents

Contents
OVBIVIBW .« o ottt e e e e 1
CONtENES . . oo e 2
HCSO08 Demonstration and Evaluation Boards it 3
INtrodUCHION . . . o e 3
Whatis an HCS08 7 4
Background debug mode 5
HCS08 serial monitor. e 6
BDM or monitor MOAE?ot 6
Developing an Application with CodeWarrior 6
Description of hardware used. i e e 7
Creating a new project CodeWarrior i e 8
Connectingthe hardware 15
Adding filesto the project. e 22
llluminate LED2 if SW2 is pressed.t e 25
Use PWMto flash LED.o e 28
Add interrupt on SW . . L 29
Setclock freqUENCY 31
Metrowerks HCS08 CodeWarrior Development Tools i, 34
Metrowerks CodeWarrior e 34
Additional HC(S)08 help included with CodeWarrior 34
MeetrOWEIKS . . . o o e e 34
Metrowerks CodeWarrior for HC(S)08. i e 35
CodeWarrior C and HCSO08.ottt e e e e 37
Data tyPES . .ot e 38
What a project consists of e 38
Using CodeWarrior device definitions i 39
Device file (MCIS08GBB0.C)o it e 40
Header file (MCOS08GBB60.h) e 40
Register and bit definitions. 40
How device registers and bitsareused 41
How device registers are definedandused. 42
How device register bit(s) are defined /used. 43
Register names used with multiple peripherals 45
Frequently Asked QUESHIONS ot e 46
Where can | get the most up to date documentation 46
Device and/or target isn't supported by Metrowerks 46
USB BDM doesn't work with Metrowerks HC08 Codewarriorv3.0 46
Tips on using a parallel BDM pod? e 46
P&E parallel Multilink BDM & laptop e 47
Monitor mode is Not Working? 47
How do | reprogram the HCS08 monitor? 47
How can | program small batches of HCS08 devices without tyingupa PC?.......... 47
Code in FLASH only works when BDM is powered?, 47
Debugger not showing the source code of main.c?............... 48
How do | set a breakpoint in the debugger?. 49
Debugging does not seem to use the hardware/select in-circuit debug. 50
How can | see the assembler code generated for C statements? 50
What are all the interrupt vector numbers for the MC9S08GB60?. 51
Where are header files located? 51
Should | use bit fields or masks for bit manipulation? 51
How does the compileruse page 07t 51
How can | force a variable to reside inpage 07 52
How do | disable the watchdog? i 52
Problems with variable, structure, or type definition?. 52
How do | add interrupt handlers? 53
How can luse the assembler within C? i 54
How are interrupt vectors redirected? 54
How do luse Masks?o 54
How do | set the compiler options? e 55
Big Endian or Little Endian?. 56
Is Linux/Unix support available?. 57
References 58
Trademarkso e e 61
Getting Started with HCS08 and CodeWarrior Using C, Rev. 1
2 Freescale Semiconductor

HCS08 Demonstration and Evaluation Boards

HCSO08 Demonstration and Evaluation Boards

At the time of writing of this application note, the two Freescale HCS08 boards shown below are available
for the HCS08. Both use the MC9S08GB60.

CAUTION
The version of Codewarrior supplied may not support your chosen device or connection method;
check Metrowerks website for relevant service packs (see FAQs).

Using BDM cables: see FAQ for advice on using and how to update driver.

M68EVB908GB60
M68DEMO908GB60 .
Demonstration Board MC9SOBGBG(2EE\;/§;uatlon Board

DB9 Serial Cable
Documentation (CD)

Metrowerks CodeWarrior for
HC08 and HCS08

Manual

Batteries

DB9 Serial Cable
Support CD

Metrowerks CodeWarrior for
HCO08 and HCSO08

Manuals
Power supply

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor

Introduction

Introduction

The aim of this application note is to help the first time user of HCS08 and Metrowerks CodeWarrior C to
be able to:

* understand the major differences between BDM and monitor mode

* create a project using CodeWarrior

e understand how to create and add files to a project

e connect the hardware (demo or evaluation board) via monitor mode or BDM

* run the code in the hardware

e add code to illuminate LED according to a switch and step through code observing its operation

* add interrupt handlers to a program

* initialize and use the PWM to flash an LED with 25:75 duty cycle and inverse depending upon a
switch

e configure the FLL and on-board crystal for maximum performance.

In addition, the reader is provided with:

* an explanation of how Metrowerks defines HCS08 devices and how the device registers are used

with C

* answers to commonly asked questions

e pointers and references to further information

* exercises in creating code.
As the exercises are not intended to be a lesson in typing, the appropriate files are included within the zip
file AN2616SW.zip. The files main.c and M6BDEMO908GB60.h are contained in the relevant sub
directory within the zip file, and can simply be dragged from the zip file into the Sources directory of the
CodeWarrior project at the appropriate point. For example, the directory 2.4 within the zip file contains the

correct files for section 2.4. Alternatively, the code can be copied from an electronic copy (pdf) of the
application note, and pasted into the relevant file using the CodeWarrior editor.

What is an HCS08?

The HCSO08 is Freescale’s latest range of 8-bit low-power, high-performance microcontrollers based on
the HCO8 core. The major differences from the HC08 are as follows.
e Core bus speed increased from 8 MHz to 20 MHz

* Hardware Background Debug Controller (BDC) and On-chip Debug Module (DBG), providing an
additional two breakpoints in addition to the single breakpoint capability of the HCO08, for improved
debug and FLASH programming support

* Additional addressing modes for improved stack usage resulting in improved code density and
performance

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

4 Freescale Semiconductor

NOTE

Introduction

Instruction cycle timings have changed on some instructions/addressing modes due to design
requirements to enable higher frequency operation and care should be exercised with time critical code
that was used on an HCO08.

The following block diagram shows the major elements of the MC9S08GB60.

INTERNAL BUS

DEBUG
MODULE (DBG)

8-BIT KEYBOARD
INTERRUPT MODULE (KBI)

1IC MODULE (IIC)

SERIAL COMMUNICATIONS
INTERFACE MODULE (SCI1)

SERIAL COMMUNICATIONS
INTERFACE MODULE (SCI2)

3-CHANNEL TIMER/PWM
MODULE (TPM1)

5-CHANNEL TIMER/PWM
MODULE (TPM2)

HCS08 CORE
[oru J[
N
N—v]
BDC
HCS08 SYSTEM CONTROL
RESET <>
RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT
IRQ/VE2™
(Note 2) [an][cor |
[ma || wo |
USER FLASH
(GB60 = 61,268 BYTES)
(GB32 = 32,768 BYTES)
USER RAM
(GB60 = 4096 BYTES) N
(GBA2 = 2048 BYTES) NV
Vooro — 10BIT
Vssao — ANALOG-TO-DIGITAL —N
VRerH —3 CONVERTER (ATD) TV
VRerL —3|
INTERNAL CLOCK KR—/1
GENERATOR (ICG)
LOW-POWER OSCILLATOR
Voo VOLTAGE
Vss | REGULATOR

Background debug mode

SERIAL PERIPHERAL
INTERFACE MODULE (SPI)

T A A A 1 A

{

PORTC

g

g

PORT D

PORT E

{

| [PORTF | |

PORT G

PORTB | [PORTA |

8
/- PTA7/KBIP7-

PTAO/KBIPO

8
|/ PTB7/AD7-

PTBO/ADO

[|~ PTC7

[PTC6
[PTC5
[PTC4
[PTC3/SCL
<& PTC2/SDA
[<&» PTC1/RxD2

| <& PTCOTXD2
[|~ PTD7/TPM2CH4

<€ PTD6/TPM2CH3
<€ PTD5/TPM2CH2
< PTD4/TPM2CH1
€ PTD3/TPM2CHO
< PTD2/TPM1CH2
< PTD1/TPM1CH1
< PTDO/TPM1CHO

<€ PTE7
|~ PTEG
|- PTES/SPSCK
<€ PTE4/MOS!
<> PTE3MISO
<> PTE2/SS
|3 PTE1/RXDT
|~ PTEOTxD1

8
<&/ PTF7-PTFO

<€ PTG7
- PTC6
< PTG5
€ PTG4
- PTG3
<€ PTG2/EXTAL
< PTG1/XTAL

||~ PTGO/BKGD/MS

Background debug mode (BDM) is a term used to refer to a mode of operation of the HCS08 where an
in-circuit debugging technique is used. To use BDM, an interface typically referred to as a “BDM pod” is
used to connect an external debugger, such as Metrowerks HCS08 True-Time Simulator and Real-Time
Debugger, running on a PC, to the device being debugged.

A major advantage of Freescale’s BDM is its single pin operation, which allows all other pins to be used
for the application (unlike, for example, JTAG, which requires four pins to operate).

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor

Developing an Application with CodeWarrior

The functional components of an HCS08 that provide this debugging capability are the BDC and DBG
sections of the core.
* Background Debug Controller (BDC) — the module that controls access to the HCS08 core

e DeBuG module (DBG) — essentially a dual breakpoint controller and 8-word (16-bit) FIFO trace
buffer

HCSO08 serial monitor

As the HCS08 does not have a ROM-resident monitor like the HC08, Freescale has written a monitor; this
is programmed into the HCSO08 device and occupies about 1K of FLASH memory. The monitor enables
debugging of an HCS08 through one of the on-board serial modules (SCI1) and provides a seamless

integration with the CodeWarrior tools, providing almost all the functionality of BDM, albeit slightly slower.

NOTE
The HCS08 monitor is not the same as or compatible with the HCO8 monitor commonly referred to as
MONQOS.

BDM or monitor mode?

This application note was written with the use of a BDM pod (USB version), and verified using the HCS08
serial monitor mode and parallel BDM. Differences in operation between BDM and monitor mode are
discussed, where appropriate.

The major advantages of using BDM over HCS08 serial monitor mode are as follows.

* Only one pin of the target device is used

* BDM does not use any peripherals

e BDM does not use any RAM or FLASH

¢ BDM cannot be locked out due to interrupts being disabled
e BDM can operate at any processor speed

* BDM can re-sync if processor speed changes during debug
* Device programming times are faster

Developing an Application with CodeWarrior

This section develops a simple application which illustrates the development process involved in using
CodeWarrior.

The application uses the M6BDEMO908GB60 board, and its five LEDs and four switches. When the
complete application is built, the code will:

* initialize peripherals
* set up interrupt handler
* configure a PWM waveform

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

6 Freescale Semiconductor

Developing an Application with CodeWarrior

e turn off all LEDs
* pulse LED5 with 75% duty cycle off; set LED3 on
e set the processor speed with the FLL

and will then loop indefinitely around code which will:

e cause an interrupt if SW1 is pressed:
— The Interrupt handler will set LED1 (and latch it) according to state of switch SW4: i.e. ON if
switch is pressed; otherwise it will be switched OFF
* setor clear LED2 according to the state of switch SW2:
— Pressing switch SW2 will set LED2, releasing SW2 will clear LED2
* check the state of switch SW4 when switch SW3 is pressed, and set/clear LED3 and LED4
accordingly:
— If SW4 is pressed
— set LED4, clear LEDS and Pulse LED5 with 75% duty cycle on
— Otherwise
— set LED3, clear LED4 and Pulse LED5 with 75% duty cycle off

This application will be developed incrementally, showing the steps involved in creating the application
and explaining the steps taken.

NOTE
Because of the differences between the demo board and the evaluation board, the buzzer on the
evaluation board is used as an audible alternative to LED5 output on the demo board.

Description of hardware used

The MC9S08GB60 evaluation board (M68EVB908GB60) or the low-cost demo board
(M68DEMO908GB60) may be used. The application chosen for the demonstration will work on either
board; however, setting up the boards to enable the switches, LEDs, and monitor mode will be different.

Setting up the demo board

To use the demo board with this application note, the LEDs and switches must be suitably configured as
follows.

* The five jumpers on LED_EN must be installed to enable the LEDs

e To enable HCSO08 serial monitor mode, the serial port SCI transmit and receive must be connected
to the DB9 header, and power applied to the RS232 driver; this is accomplished by installing
jumpers 1, 2 and 3 on COM_EN

Setting up the evaluation board

To use the evaluation board with this application note, the LEDs and switches must be suitably configured
as follows.

* The USER-ENABLES dip switch 2 should be set ON; this connects the switches SW[1:4] on the
evaluation board to PORTA[4:7]

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 7

Developing an Application with CodeWarrior

* The USER-ENABLES dip switches 5,6,7 and 8 should be set ON; this connects the LEDs on the

evaluation board to PORTF[0:3]
* The COM_SW dip switch 8 should be set to ON; this enables the on-board buzzer

¢ To enable HCSO08 serial monitor mode, the serial port SCI receive must be connected to the DB9

header via the RS232 driver; this is accomplished by setting switch 1 of COM_EN ON

Creating a new project CodeWarrior
This section discusses the project types that can be created within CodeWarrior.

CodeWarrior has a project wizard that guides you through the process of creating a project.

1. Create a new project by selecting “New...” from the File menu:

i Metrowerks CodeWarrior L Metrowerks Cd
|Ei|E Edt Wiew Search Project Debuc Or by pressing File Edit Wiew ¢

Ctrl+Shift-+M the New button: -
Open. . i+0 L =1L

Eind and Cpen File,., Ckrl+D

Cose] -

either of which will invoke the project creation dialog box shown below.

Pioiect | Fie | Object]

HE Empty Project Froject name:
8 HC[5)0% Board Support Stationery [
ﬁ'H C[5)08 Mew Project iizard,

8 HCOS3 Stationery Location

D:5HCS08_Codet Set...

Add to Praject
Project:
j'

Cancel

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor

Developing an Application with CodeWarrior

When creating a new project, the project wizard presents four main options:

Empty Project

HC(S)08 Board
Support
Stationary

HC(S)08 New
Project Wizard

HCO08 Stationary

Creates the very minimum of files required, essentially

just creating the project file.

Provided as a quick start to use one of the demo boards,
provides some skeleton code (or demo), and can be
used to get accustomed quickly to CodeWarrior and a

board.

Used to choose the appropriate device on which to base
the project, and is the most commonly used wizard.

Provides the HCO8 board support of the previous
CodeWarrior for the HC08 and is not used for HCS08

devices or board.

2. Select “HC(S)08 New Project Wizard”.

rew x|
Proiect | Fie | Object |

8 Empty Project Project name:
@B HC(SI08 Board Support Stationery I
TEHCIS)E il
@B HC0E Stationery Locatian:

D4 Set...

™| Addito Projest
’7Pruiecl
K Cancel

3. Select set.| button to set the “Location”. This allows you to select the parent directory for the

project:

Create New Project... i 2lx]
Savein: | < Local Disk (D] =« E ok E-

i Drive_D

)W Temp

File name: |F'|niect Directary Save I
Save as type: IPrmect Files [*.mcp) ;I Cancel I
¥ Create Folder 9

2

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor

Developing an Application with CodeWarrior

4. Once the root directory for the project has been located, enter the directory to be created (for

example, “Project Directory”, as shown in the diagram above).

5. Select _ sav= | and the new project directory / file name will be displayed.

In the “Project name:” field, you may enter the name of the project file to be created (by default it
will be the same as the directory name):

rew]
Praject | File | Obiect|

o5 Empty Project Project name:
@ HC[S]08 Board Suppart Stationery
@ HC[S]08 Mew Project ‘Wizard

o HCO8 Stationeny

IPro\eCt Directary

Location:

D:“Project Directory iz A

Additn Praject
Project.

oK Cancel

7. Select ok |. A popup will appear which lists the possible devices:

New Project Wizard - Page 1 E x|

Select the derivative you would like to use.

I Derivatives -~

il
MCIS08GT3Z
MCIS0BGETED
MCIS08RCLE
MC9508RD16
MCIS0GRELE
MCEEHCS08AB16A
MCEBHCI08ABSZ
MCEEHC203AP16
MCEEHCO08AP3Z
MCEBHCI03APES
MCEBHCI0BASEZ
MCEEHCI03ASIZA
MCHEHCE08ASE0
MCEBHCI03ASE0A LI

< Bagk Mext » Cancel |

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

10 Freescale Semiconductor

Developing an Application with CodeWarrior

8. Select your desired device (MC9S08GB60 in this example), and press [_E=t> | which will bring
up the language dialog box:

New Project Wizard - Page 2 J |

Pleaze choose the set of languages to be
supported initially. You can make multiple
selections

[&ssembl,
38
[CIC++

Thiz will set up your application with & ANSI—E;I
compliant startup code (doing initialization of
lobal variables)

[N

metrowerks

Sonware starte Hers < =

< Back I Nest » I Cancel |

9. Select C and press|[_tet> |. This will bring up the processor expert dialog box:

New Project Wizard - Page 3 { x|

‘Would you like to use Processor Expert?

C Hed
@ No

Ho device initislisation code is geneiated. |
Only generates startup code.

=

[N\

metrowerks

Sonware starts Here <

< Back I Mest > I Cancel

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 11

Developing an Application with CodeWarrior

As this application note is about using C with the HCS08 and CodeWarrior, “Processor Expert” is not
selected. If you wish to use “Processor Expert”, refer to the online help (and examples) before proceeding;
otherwise:

10. Select[_H=t> | and the PC-lint option will appear:
&

Do you want to create a project set up for PC-int?

fot
* No

‘ou need the PC-lint software from Gimpel
installed in order to use the CodeM/arrior

PC-int iz a product from Gimpel Software. ;I
plugin =l

[N\

metrowerks

software sterts Here 4

< Back I Mext » I Cancel

11. Unless you have purchased PC-lint and wish to use it, select “No” and press [_Eet> |, and the
floating point support dialog box will appear:

New Project Wizard - Page 5 x|

Select the floating point format supported.
Select Mone' for best code density.
g
" floatis IEEE 32, double is IEEE32
 floatis IEEE32, double is IEEEGS

Don't use Hoating point support =]

El

metrowerks

Sonware starts Here <4

< Back. I Nest > I Cancel

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

12 Freescale Semiconductor

Developing an Application with CodeWarrior

12. As the application will not use floating point support, select “None” and press [__t=t> |. The
memory model selection will appear:

New Project Wizard - Page 6 |

‘Which memory madel shall be used?

1
£ Small

By default all variables are outside the zero ;l
page [extended memary access). Yaniables in
the zero page can be used with pragmas or

the near keyword. LI

[N\

metrowerks

Boftware Sterts Hore 4

< Back I Mext > I Cancel

13. Select “Small” and press [__t=>_|. The connection dialog will appear:

New Project Wizard - Page 7 x|

Please choose the connections you want. You can
select multiple connections.

PEE Hard: ebugging
(wlMotorola Serial Monitor
[1BDM HCS08
[_Hitex
[“ILauterbach

P&E Full Chip Simulation with simulation of all ;l
or-chip peripherals. Later on in the debuagger
ou can switch to hardware debugging,

metrowerks

Ak lon =]

< Back I FEinish I Cancel |

By selecting “P&E Full Chip Simulation”, “P&E Hardware Debugging” and “Freescale Serial Monitor”, it

will be possible to use either simulation, the serial monitor within the HCS08 FLASH, or BDM to debug
code.

NOTE
There is no code overhead as a result of choosing multiple connection methods.

Enabling all the likely connection methods makes switching between the different targets easier. For

example, initially the development could use the simulator and swap to the HCS08 serial monitor or BDM
method as required.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 13

Developing an Application with CodeWarrior

The supported target devices are listed in the following table.

Serial Monitor

Target Comment
P&E Full Chip P&E FCS This option allows the on-chip peripherals to be emulated
Simulation and software simulation of the peripherals.
P&E Hardware | P&E ICD This option enables connection to the device via P&E
Debugging hardware for HC08 and other P&E hardware such as USB
HCSO08/HCS12 Multilink.
Freescale Monitor This option connects to the HCS08 device through the

monitor ROM within the HCS08 device.

BDM HCS08 BDM

Legacy support only — not recommended for use
(supports parallel BDM Multilink only).

Superseded by P&E Hardware Debugging. Will be
removed in future versions of CodeWarrior.

Hitex

Refer to manufacturer’s detail.

Refer to manufacturer’s detail.

Lauterbauch

Project creation is now complete!

CodeWarrior generated project

Once the project wizard has finished, a project, including a skeleton application, has been created. The

project window will look something like:

| % PIEICD

Filez | Lirk. Drderl Targetsl

By &5 »

¥ | Fil | Code | Data |9 |-

B readme.tst néa n'a =~
@ SR Sources 0 0 =
& -l main.c 0 0« =
@ =423 Startup Code i 0« =
& R Start0B.c 0 0 =
& EHERAPm 0 o=
@ R bumerbbl n'a nfa =
f PEE_ICD.map nda nda =l
¥ -l PEE_ICD_linker prm nda nda =l
w E3 Libs 0 0. =
g MCIS08GEE0.h] 1} =l
¢ -f MC9509GRE0.C 0 0« =
W ll ansiis lib a0 o o=
[=4=3 Debugger Project File a0 o =
-l PSE_ICDini nda nda =l
=<3 Debugger Cmd Files 0 o =
EEAPEE_ICD 0 o=
- PE_ICD_Startup.cmd nda nda =l
- PE_ICD_Reset.cmd nda nfa =l
@ PE_ICD_Preload.cmd nda nda =l

o PRE_ICD_Postload.crd néa nda ;Iﬂ

14 files 0 0 >

Details of the files and directories are discussed in section “4. CodeWarrior C and HCS08”.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

14

Freescale Semiconductor

Developing an Application with CodeWarrior

Initial code

The new project wizard creates enough code to actually load into a board and run/debug, the main
program (main.c) being:

#include <hidef.h> /* for Enablelnterrupts macro */
#include <MC9S08GB60.h> /* include peripheral declarations */

void main(void) {
EnableInterrupts; /* enable interrupts */
/* include your code here */
for (;;)
__RESET_WATCHDOG () ; /* kicks the dog */
} /* loop forever */

}

Connecting the hardware

The preferred method of connecting the target device is via a BDM pod, but a standard RS232 serial
connection to the monitor of the HCS08 can also be used.

The following sections discuss the BDM and HCS08 serial monitor connection.

Background debug mode (BDM)

To set up: connect the BDM pod to the PC with the appropriate cable supplied with the pod (for example,
parallel cable, USB cable), connect the BDM pod to the target board, paying particular attention to ensure
correct alignment of pin 1 of the BDM cable with the BDM connector on the board. Refer to the appropriate
BDM and board for additional help.

Selecting a BDM
The BDM on the HCS08 evolved from the BDM used on the HCS12 (BDM Version 4).

The preferred method of connecting to an S08 device for code development or debugging is using one of
the following BDM interfaces:

e M68MULTILINK12 (P&E BDM Multilink)
e M68MULTILINKSO08 (NOT the similarly named M68MULTILINKO8)
e P&E USB ML12/P&E USB HCS08/HCS12 MULTILINK
e P&E Cyclone Pro
NOTE
M68MULTILINKO8 and M6BMULTILINKSO08 are NOT the same. The M68MULTILINKO8 is a MONO8

interface for use with HC08 devices; the M6BMULTILINKSO08 is a BDM pod for HCSO08 that is also
compatible with HC12 and HCS12.

HCSO08 serial monitor mode
To set up: connect the serial cable to the PC, and connect the other end to SCI1 on the target board. Refer

to the appropriate board manual for additional help.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 15

Developing an Application with CodeWarrior

The HCSO08 devices supplied with the demo and evaluation boards are pre-programmed with the HCS08
serial monitor. Refer to Freescale application note “AN2140/D — Serial Monitor for MC9S08GB/GT” for

a full description of its capability.

Running the code

The next two sub-sections discuss the use of HCS08 serial monitor mode or BDM as the method of
connecting to the target device on either the evaluation or demo board. There are several differences in
the dialog boxes and in the progression through the target connection; these differences are detailed in
the following sections.

Using monitor

If you are using BDM, skip this section; go directly to Using BDM.

1. From the target connection pull-down, ensure that “Monitor” is selected:

MESDEMOI0EGEE0_Demol _mcp

¥ Monitor j

F&E FCS
F&E ICD

2. Enable monitor mode on the target. (For the demo and evaluation boards, press switch 4, whilst
applying power, or whilst pressing the reset switch on the evaluation board).

3. Select Debug (E). This compiles and links the code, and invokes the True-Time simulator and
Real-Time debugger (the HCS08 debugger). The debugger will then proceed to try to establish
connection with the target device, by trying all the baud rates:

Target in progress... il

Tring baud rate: 5485
B2%

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

16 Freescale Semiconductor

Developing an Application with CodeWarrior

If the debugger fails to communicate with the device after going through all possible baud rates, a window
suggesting possible causes will pop up:

x|
Communication cannot be established because the target does not respond to communication requests!
! N Thismay hiave several sasone:
- The target is not powered
- The serial cathe Is nck connected praperly
- The communication parameters are nat set correcthy (baud rate)
- The target application:
e hrave b started inmistely after raset
- is running with interrupts disabled
oL of cantrol (2.9, stack owerflow)
- changed the settings of the communication part
‘¥ou need to reset the target to activate the monitar again!
Please press the reset button of your board or cycle power!
el |

Power the board off and then on again (holding down switch SW4), and press the
Communication should now be established.

Once communications have been established between the debugger and the device, the debugger will
pop up a few dialog windows as it prepares the device, ready for debugging; the first dialog box is the

monitor preload:

Executing Command File x|

executing monitar_preload. cmd
1002

This will be followed by the FLASH erase/programming and the monitor post load commands.

Skip the next section; go directly to Debugging — communications established.

Using BDM
1. From the target connection pull-down, ensure that “P&E ICD” is selected:
il
tezth_mcp I
% PLEFCS By By » B
PEE FCS
Manitar | Code | Data |ﬂ-|‘ |=|
B readme.txt nda nfa =

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 17

Developing an Application with CodeWarrior

2. Select Debug (E). This compiles and links the code, and invokes the True-Time simulator and
Real-Time debugger (the HCS08 debugger). As this is the first time the code has been run, the
debugger does not know which BDM device is to be used to connect to the target, so it pops up a
dialog box for configuration (defaulting to use LPT1):

You have selected to display this dialog on startup. Specify communications
parameters and click OK.

[~ Connection port on PC

Al -l sl Rehiash List
Cable Detected Cable Flash Version 4dd LPT Port

(-CPU Type

[HC308 Pracessor - Autodstect =l
MU Voltage: MU reset fine

Reset Dela
IVI— Drelay after Reset and befors communicating to target far 0 miliseconds (decimal). ‘

¥ Show this dialog before attempting ta contact target (Dtherviss only display on Ear)

Ok Abort

CodeWarrior knows the CPU Type is an HCS08, because that is the project type we created.

The debugger will list the pods it can see on the pull-down list. If the pod being used is not shown, ensure
it is connected correctly, then press the “Refresh List” button. The pod should now appear on the list.

Ensure the relevant pod is highlighted; in this example, P&E USB ML 12 is being used:

Ml Connection Assistant =10 x|

You have selected to display this dialog on startup. Specify communications
parameters and click OK.

~Cornection port on PC

LPT1 - Parallel Part T fAddiess $0378) =] RefeshList |
Add LPT Port
~CPU Type
[HCS08 Processor - Autndetect =
MCL Voltage MCU reset fine:

[~ Heset Dela
[~ Delay after Rissat and befors communicating to target for 0 miliseconds (decimal) ‘

¥ Show this dislog before attempling to contact farget (Diherwise only display on Enr)

Ok Abort

3. Select

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

18 Freescale Semiconductor

Developing an Application with CodeWarrior
The BDM firmware version will be checked, and, if the pod has old firmware, a dialog box will appear,
allowing it to be upgraded:

Il Update firmware of P&E Interface?

=1l

Interface hardware detected with old firmware. Update?

Current Firmware: 4.04
Update Firmware: 4.09

| o res

Select
pod:

=1olx|

Interface hardware detected with old firmware. Update?

Current Firmware: 4.04
Update Firmware: 4.09

Programming MCU flash bytes at Address $A080 : Success.

Select 0Ok .

NOTE: This will occur only with BDM pods that have old firmware. Once upgraded,

the prompt will not recur for a pod that has been updated (unless
CodeWarrior is updated and new code is available).

Next, a dialog pops up asking to erase and program FLASH:

%‘ Load image contains flash memory data. Erase and Program flash?

‘5 / Tes

] ®un |
[~ Always Erase and Progiam Aash without asking

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1
Freescale Semiconductor

19

Developing an Application with CodeWarrior

4. Select
the FLASH:

to proceed. Another window pops up showing the erasure and programming of

X abort | hllp:”ww.pemicro.eom|

Copyright 1999 2002 PS&E Microcomputer Systems,Inc.

CMD -RE
Initializing. Target has been RESET and is active.

CMD>CM C:\Program Files\Metrowerks\CodeWarrior CWO08 V3.0\prog\P&E\9S08GB60.S8P
Initializing. (Recommended Trim = S7F) {Bus Freq = 15533KHz) Initialized.
;Programming file for the 68HCS908GB60 processor FLASH block.

Version 1.03

;Copyright 2002 by P&E Microcomputer Systems, Inc. (www.pemicro.com)

e |

At this point, the code has been programmed in the device, and the debugger shows the following
windows.
Debugging — communications established

Once communication (BDM or Monitor) has been established with the device, the debugger will show its
debug window:

D@ &8 2% +|x[z|s|s(] 2]
e REE R

[C:AHCS08_CodetBEDEMO308GBED_Demol \SouwceshStatD8.c [Line: 287 Startup
3) rcall main: ;I ﬂ
called from: _PRE3TART-code generated by the Linker 1843 LDA& 0x1GEE _I
L7 1BAE BIT #0x02
#ifdef ELF DBJECT FILE FORMAT 1BAD ENE 46 ;abs = L8B3
[DisableInterrupts; /% in HIVARE format, this is done in the prestart cod 16AF LDHX #0x0150
#endif 1BBZ TXS
for (;:;) {® /% forewer: initialize the program; call the root-procedure 18B3 ERR *-121 ;abs = 1834
if (!{_startupData.flags«3TARTUP_FLAGS NOT_INIT SP)) [E 18ES LDHX Ox1BEC
/% initialize the stack pointer %/ 18B3 ISR oz LI
INIT_$F_FROM_STARTUP DESC(): =
@) = i
Tririte
4| [|| [HCS08 [&uto
— Fs 1]
AT | [P
3R |68 Status |VAINZC
_Startup () PC | 1847

10 x| E (o]

Start0B.c futo | Symb Global Auto
_startupData <9x _tagitartup 0080 00 8&4 FF BE 00 00 7F 25 E ;I
_ SEG_END_SSTACK array[0] of unsigned char 0038 00 01 7F &7 &B 89 F& AE =
0030 08 SE ES 03 48 24 02 A8H5..

0038 07 S5A 26 F§ SE E7 03 88 .Z&.....

0DAD Gi 65 FF FF AF 01 26 E4 .e....&. LI
= REE
_Startup Auto | Symb Local |
I'savebp off
ine _I
=
K] 4
For Help, press F1 Automatic (triggers, breakpaints, watchpoints, and trace possible) 9508GE6E0 | 5

NOTE
If the debugger does not erase the FLASH, it is almost certainly operating in simulation mode. Refer to
the Frequently Asked Questions section for information on how to select the relevant in-circuit debug
mode.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

20 Freescale Semiconductor

Developing an Application with CodeWarrior

Apart from a few exceptions, debugging will be the same whether the monitor or BDM is used. The
notable difference is that, when debugging using the HCS08 serial monitor, loss of communication
between the debugger and the device is possible due to the fact that the monitor is code within the
FLASH, interrupt driven and susceptible to errors in the user code, for example, disabling interrupts or
user code runaway.

The monitor is in protected FLASH but, if it is erased, it will have to be reprogrammed. Refer to Frequently
Asked Questions for more information on reprogramming the monitor.

Buttons of interest from the debugger window are:

RUN Run code from current pc location until either
halted or reset

STEP INTO Execute one C statement; enter into functions
STEP OVER Execute one C statement or complete function
STEP OUT Execute remaining C statements in function

Assembly Step Step one assembly language instruction

HALT Stop the executing program

RESET Hardware reset

& L gl

At this point, running the application will appear to have no effect, as there is no code that actually does
anything. The following sections add code that can be run, and that performs real functions.

NOTE
For a detailed discussion of the HCS08 on-chip debug features using the CodeWarrior interface, refer to
application note, “AN2596 — Using the HCS08 family On-Chip Debug System.”

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 21

Developing an Application with CodeWarrior

Adding files to the project

Multiple files can be added to a project to allow a program to be split into logical sections for easier
development. As an example, a header file defining the switches and LEDs for the demo and evaluation
boards will be added to the project to demonstrate the process.

Header file for demo board

A small header file is created to give more meaningful names to the LEDs and switches on the demo
board for use in the application. Another benefit of using an application specific header file is that code
will be easier to modify for different devices or applications, if meaningful names are used rather than the
port or pin names; for example, in a real application, LED2 may be the STOP LED.

NOTE
The header will work with the demo board and the evaluation board, as only a subset of the evaluation
board is used.

Add a file to a project
In order to add a new file to a project, the file must exist; therefore, a new file must be created. To do this:

1. From the File menu, select “New...”:

i Metrowerks CodeYfarrior LifMetrowerks Co

|Fle Edit ‘Wiew Search Project Debug or press the New File Edit ‘iew =

Cbrl+Shift -+ button: | = | = |
CpEM. .. Chrl+0
Find and Open File,.. Ckrl+D
Close Chr i

The new dialog window will appear:

rew x
Project | File | Elb|ecl|

Project name:
(48 HC[S108 Board Support Stationery |
8 HCIS 108 New Project Wizard
5 HCOS Stationery Location:

D:\Drive_DVHCS08_Codel Set.

Addto Project:
Project

f Cancel

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

22 Freescale Semiconductor

Developing an Application with CodeWarrior

2. Select the “File” tab. There will be one option — create a file:

e B
Project File |Elb|ecl|
mm File name;

Location:

IE & Set.
™| &dd to Projest
Project
Targets:

3. Adialog box will appear. Select set..| button, navigate to the Sources directory within the project
directory, and enter the name of the file to create (for example, M6BDEMO908GB60.h):

ren]

Project File |Dbiecl|

[Text File Fils riame;
IMBSDEMUSUBGBBU h

Location:
_DWHCS0H_CodetCopy of MES Set..

o AddtoPigest
Project

—|

Targets:

Cancel

4. Select . This will create an empty text file in the appropriate directory and bring up a text
editor window for the file:

IMospeMososGes0]
b-O-m-F-d- Fam:\D\Drive_D\HESUB_Code\MssDEMUSU AMEBDEMO90BGEED.h
=

| I
Line 4 Coll ||| | AP

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 23

Developing an Application with CodeWarrior

5. Enter the following text into the file:

#define

#define

#define
#define
#define
#define
#define

#define
#define
#define
#define

ON 0

UpP 1

LED1
LED2
LED3
LED4
LEDS5

SW1
SW2
SW3
SW4

/* File: M68DEMO908GB60.h*/

/* include peripheral declarations */
#include <MC9S08GB60.h>

/*define value for led's when on and off*/
#define OFF 1
/*define value for switches when up (not pressed) and down (pressed)*/
#define DOWN 0

/*define led's*/

PTFD_PTFDO
PTFD_PTFD1
PTFD_PTFD2
PTFD_PTFD3
PTFD_PTFD4

/*define switches*/

PTAD_PTAD4
PTAD_PTADS
PTAD PTAD6
PTAD_PTAD7

6. After entering the text, select the close window (). This will bring up the save dialog:

7. Press

Add file to project
1. To add the header file to the project, select the desired directory (for example, “Sources”) in the
project manager and press the right mouse button. The following dialog will appear:

Metrowerks CodeWarrior i ﬂ

"MESDEMOB0SGEED h" nat saved.

! Changes made to the file "WMESDEMOS0SGEED H" will be
dizcarded if this file iz not saved. Do you want to save
changes to this file before closing t?

Don't Save I

Cancel |

i to save the changes made to the file.

|__Fils [t

B readme.tt

-D W Check Syntax

Preprocess
Campile
Compile IF Dirky
Disassanmble

Add Files. ..
Create Group, ..
Rermone

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

24

Freescale Semiconductor

Developing an Application with CodeWarrior
2. Select “Add Files...”. This will pop up the file dialog window, which is used to locate the file:

Select files to add...

21 x|
Loak jn: ID Sources j = ok B

Object name: - [MESDEMOS0BGEE0.h Open I

Obiests of [l Files [7] =1 e

Select to add the file to the project and associate it with the “Sources” folder:

: @MBBDEMO908GER0_Demol.mcp 4

-1of x|
[% Pueic By &5 »
Files | Lirik. Dlderl Targetsl
% | Fie | Code | Data |4 |-
B readme. b=t nda nfa =~
EE3 Sources 140 0« =
. NEEDEMOA0BGEED h o 0o =
B main.c 140 0+ =

A popup will appear showing a list of available targets that the file can be added to. Select all:

x|
Add filez to targets:
T amgetz
v PLE FC5 =
¥ PLE ICD
W Moaritor
(] I Cancel |

llluminate LED2 if SW2 is pressed

Let’'s add some code to light up LED2 if SW2 is pressed. Double-click on “main.c” in the project manager
to invoke the editor.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1
Freescale Semiconductor

25

Developing an Application with CodeWarrior

First, add an include statement to use our header file for the demo board:

#include

"M68DEMO908GB60 . h" ‘

Next, configure PORTF for output (LEDs) and PORTD for input (switches):

PTADD =
PTAPE =

/*initi
PTFDD =
LED1
LED2
LED3
LED4
LEDS

0; //initialize as input (Data Direction Register)
0xf0; //Pullups on upper 4 bits

alize bits 0-3 of Port F as outputs (connected to led's)*/
0x0f;

OFF;

OFF;

OFF ;

OFF ;

OFF;

Code to turn on LED2 depending upon the state of SW2 would be:

LED2 = SW2;

To edit the main.c file, simply double-click on the file name within the project window; this will invoke the
file editor. By adding this code within the main program, as illustrated below, LED2 will be turned on for
as long as SW2 is pressed. The resulting program is:

#include
#include

#include

PTADD

void main(void) {
EnableInterrupts; /* enable interrupts */
/* include your code here */

PTAPE = 0xf0; //Pullups on upper 4 bits

/*initialize bits 0-3 of Port F as outputs (connected to led's)*/
PTFDD = 0x0f;

LED1 = OFF;

LED2 = OFF;

LED3 = OFF;

LED4 = OFF;

LED5 = OFF;

for(;;) {
__RESET_WATCHDOG () ; /* kicks the dog */
LED2 = SW2;

} /* loop forever */

<hidef.h> /* for Enablelnterrupts macro */
<MC9S08GB60.h> /* include peripheral declarations */

"M68DEMO908GB60 . h"

0; //initialize as input (Data Direction Register)

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

26

Freescale Semiconductor

Developing an Application with CodeWarrior

Run the code

e In CodeWarrior, press the Debug button (E). This compiles the program and produces an
executable file, which invokes the debugger. The debugger erases the FLASH and downloads the
code to the device.

* Inthe debugger, press the RUN button (|); the application will run.
* The running application can be confirmed by pressing SW2 and seeing LED2 light.

* Press the STOP button (il); LED2 will maintain its state prior to the stop being pressed.

* Press the STEP OVER button (E) to advance the code; the debugger will advance one C
instruction with each press.

* With the debugger pointing to the statement LED=SW2, press SW2 and press the STEP OVER
button (E) once; LED2 will be turned on.

* Press the RUN button (|) to restart the program; this will cause LED2 to be on when SW2 is
pressed

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 27

Developing an Application with CodeWarrior

Use PWM to flash LED

Adding the following code to the program will configure the PWM and will flash LED5 (or buzzer on
evaluation board), using LED3 and LED4 to indicate the duty cycle selected by switch SW4, when

changed by the operation of switch SW3.

#include <hidef.h> /* for Enablelnterrupts macro */
#include <MC9S08GB60.h> /* include peripheral declarations */
#include "M68DEMO908GB60.h"

#define PRESCALAR 7

#define MODULUS 32768

#define DUTY75 (MODULUS- (MODULUS/4))
#define DUTY25 (MODULUS/4)

void main(void) {
EnableInterrupts; /* enable interrupts */
/* include your code here */

PTADD = O; //initialize as input (Data Direction Register)
PTAPE = 0xf0; //Pullups on upper 4 bits

/*initialize bits 0-3 of Port F as outputs (connected to led's)*/
PTFDD = 0x0f;

LED1 = OFF;
LED2 = OFF;
LED3 = OFF;
LED4 = OFF;
LED5 = OFF;

/*Initialize timer TPM1 channel, assumes not touched since reset!*/
TPM1SC CLKSA = 1;/*Select BUS clock*/

TPM1SC_CLKSB = 0;

TPM1SC_PS = PRESCALAR;/*clock source divided by prescalar*/

TPM1MOD = MODULUS;/*set Counter modulus*/

/*configure PWM mode and pulse*/

TPM1COSC MSOB = 1; /*MSOB=1, MSOA=0; << Edge align PWM*/
TPM1COSC_ELSOA = 1; /*Select low as true*/

TPM1COV = DUTY25;/*select final divider (duty cycle)*/
LED4 = ON;

for(;;) {
__RESET_WATCHDOG(); /* kicks the dog */
LED2 = SW2;

if (SW3==DOWN) {
/*Switch pressed*/
if (SW4==DOWN) {/**/
TPM1COV = DUTY75;/**/

LED3 = ON;/**/
LED4 = OFF;/**/
telse(
TPM1COV = DUTY25;/**/
LED3 = OFF;/**/

LED4 = ON;/**/

} /* loop forever */

}

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

28

Freescale Semiconductor

Developing an Application with CodeWarrior

Invoke the debugger

In CodeWarrior, press the Debug button (E). This compiles the program and produces an
executable file, which invokes the debugger. The debugger erases the FLASH and downloads the
code to the device.

In the debugger, press the RUN button (|); the application will run.

LED3 will be illuminated and LEDS5 (or buzzer on evaluation board) will be pulsed.

Pressing SW3 whilst holding down SW4 will turn off LED3, light LED4, and change the duty cycle
of LED5 (buzzer).

Pressing SW3 will revert to LEDS illuminated, and the duty cycle of LED5 (buzzer) will revert back
to the original duty cycle.

LED2 will still function according to the state of SW2.

Add interrupt on SW1

CodeWarrior supports several ways of incorporating interrupts. Refer to the Frequently Asked Questions
section for a discussion of other methods.

As the vector for the keyboard interrupt is 22, add a macro to define Vkeyboard in the header file
M68DEMO908GB60.h:

#define Vkeyboard 22

The method chosen is the interrupt keyword with vector number. This method has the advantage that the
interrupt routine is self-declaring, and only one file is involved in its declaration:

interrupt Vkeyboard void intSWi () {
LED1 = SW4;
KBISC_KBACK = 1;/*acknowledge interrupt*/

The code to initialize the interrupts is:

KBIPE_KBIPE4 = 1;
KBISC _KBIE = 1;

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 29

Developing an Application with CodeWarrior

Add this code to the main program:

#include <hidef.h> /* for Enablelnterrupts macro */
#include <MC9S08GB60.h> /* include peripheral declarations */
#include "M68DEMO908GB60.h"

#define PRESCALAR 7

#define MODULUS 32768

#define DUTY75 (MODULUS- (MODULUS/4))
#define DUTY25 (MODULUS/4)

interrupt Vkeyboard void intSwi () {
LED1 = SW4;
KBISC_KBACK = 1;/*acknowledge interrupt*/

void main(void) {
EnablelInterrupts; /* enable interrupts */
/* include your code here */

PTADD = O; //initialize as input (Data Direction Register)
PTAPE = 0xf0; //Pullups on upper 4 bits

/*initialize bits 0-3 of Port F as outputs (connected to led's)*/
PTFDD = 0xO0f;

LED1 = OFF;
LED2 = OFF;
LED3 = OFF;
LED4 = OFF;
LED5 = OFF;

/*Initialize timer TPM1 channel, assumes not touched since reset!*/
TPM1SC_CLKSA = 1;/*Select BUS clock*/

TPM1SC_CLKSB = 0;

TPM1SC_PS = PRESCALAR;/*clock source divided by prescalar*/

TPM1MOD = MODULUS;/*set Counter modulus*/

/*configure PWM mode and pulsex/

TPM1COSC_MSOB = 1; /*MSOB=1, MSOA=0; << Edge align PWM*/
TPM1COSC_ELSOA = 1; /*Select low as true*/

TPM1COV = DUTY25;/*select final divider (duty cycle)*/
LED4 = ON;

KBIPE KBIPE4

= 1;
KBISC_KBIE = 1;

for (;;)
__RESET_WATCHDOG () ; /* kicks the dog */
LED2 = SW2;

if (SW3==DOWN) {
/*Switch pressed*/
if (SW4==DOWN) {/**/
TPM1COV = DUTY75;/**/
LED3 = ON;/**/
LED4 = OFF;/**/
}else{
TPM1COV = DUTY25;/**/
LED3 = OFF;/**/
} LED4 = ON;/**/
}

} /* loop forever */

}

NOTE

Do not forget to add the #define statement to the header file M6BDEMO908GB60.h.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

30

Freescale Semiconductor

Developing an Application with CodeWarrior

Invoke the debugger

e In CodeWarrior, press the Debug button (E). This compiles the program and produces an
executable file, which invokes the debugger. The debugger erases the FLASH and downloads the
code to the device.

* Inthe debugger, press RUN (|); the application will run.

* Pressing SW1 will cause an interrupt, which will read SW4 and set LED1 accordingly.

e LED2, LEDS3, LED4 and LED5 (buzzer) will still function as before.

Set clock frequency

CAUTION
An important consideration in setting the FLL is that, if the HCS08 serial monitor is being used for
debugging, then changing the processor speed from that set by the monitor will cause CodeWarrior to
lose control of the device, unless the SCI speed is also adjusted to take account of the change in
processing speed. BDM operation is unaffected by changes in processor speed, as it either has a
separate fixed frequency clock (as MC9S08GB60), or the BDM pod has the ability to re synchronize in
the event of the device changing frequency.

The Internal Clock Generator (ICG) used within the MC9S08GB60 has an FLL that allows a frequency
higher than the reference source (for example, crystal or internal oscillator) to be generated. This enables
the processor frequency to be optimized in terms of power consumption and performance.

The demo board includes a 32.768 kHz crystal, while the evaluation board has a 4 MHz crystal on board.
The crystals allow the device to operate at a maximum frequency of 18.87 MHz for the demo board
(32.768 kHz) and 20 MHz for the evaluation board (4 MHz).

The formula for calculating the bus frequency is:
Bus frequency = ((frg + 7) x Px N+ R) + 2
Where

* P =1 or64 (high or low frequency range)
* N[0:7]={4,6, 8, 10, 12, 14, 16, or 18}
e R[0:7]=1,2,4,8, 16, 32,64, or 128

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 31

Developing an Application with CodeWarrior

Code to configure the clock in C would be:

/*configure Internal Clock Generator [ICG]*/
/*MFD[]={4,6,8,10,12,14,16,18}*/
ICGC2_MFD = 7; /*32KHz crystal, demo board.
For 4MHz crystal (eval board) :
ICGC2_MFD = 3

7/
ICGC2_RFD = 0; /* RFD[]1={1,2,4,8,16,32,64,128}*/
ICGCl1 = 0b00111000; /*32KHz crystal, demo board.

For 4MHz crystal (eval board) :
ICGCl1 = 0b01111000;

“f
while ((ICGS1_LOCK==0) | | (ICGS1_ERCS==0)) {
/*Ensure COP doesn't reset device whilst waiting for clock lock*/
__RESET WATCHDOG () ; /* kicks the dog */

ICGC2_LOCRE = 1; /*enable reset if clock fails*/

The “while” loop ensures that the external clock has been selected (ICGS1_ERCS) and that the FLL has
locked to the desired frequency (ICGS1_LOCK).

The final program is:

#include <hidef.h> /* for Enablelnterrupts macro */
#include <MC9S08GB60.h> /* include peripheral declarations */
#include "M68DEMO908GB60.h"

#define PRESCALAR 7

#define MODULUS 32768

#define DUTY75 (MODULUS- (MODULUS/4))
#define DUTY25 (MODULUS/4)

interrupt Vkeyboard void intSwi () {
LED1 = SW4;
KBISC_KBACK = 1;/*acknowledge interrupt*/

}

void main(void) {
EnableInterrupts; /* enable interrupts */
/* include your code here */

PTADD = 0; //initialize as input (Data Direction Register)
PTAPE = 0xf0; //Pullups on upper 4 bits

/*initialize bits 0-3 of Port F as outputs (connected to led's)*/
PTFDD = 0xO0f;

LED1 = OFF;
LED2 = OFF;
LED3 = OFF;
LED4 = OFF;
LED5 = OFF;

/*Initialize timer TPM1 channel, assumes not touched since reset!*/
TPM1SC_CLKSA = 1;/*Select BUS clock*/

TPM1SC_CLKSB = 0;

TPM1SC_PS = PRESCALAR;/*clock source divided by prescalar*/

TPM1MOD = MODULUS;/*set Counter modulus*/

/*configure PWM mode and pulse*/

TPM1COSC_MSOB = 1; /*MSOB=1, MSOA=0; << Edge align PWM*/
TPM1COSC_ELSOA = 1; /*Select low as true*/

TPM1COV = DUTY25;/*select final divider (duty cycle)*/
LED4 = ON;

KBIPE KBIPE4 = 1;
KBISC KBIE = 1;

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

32 Freescale Semiconductor

Developing an Application with CodeWarrior

/*configure Internal Clock Generator [ICG]*/
/*MFD[]={4,6,8,10,12,14,16,18}*/
ICGC2_MFD = 7; /*32KHz crystal, demo board.
For 4MHz crystal (eval board) :
ICGC2_MFD = 3

&
ICGC2_RFD = 0; /* RFD[1={1,2,4,8,16,32,64,128}*/
ICGC1 = 0b00111000; /*32KHz crystal, demo board.

For 4MHz crystal (eval board) :
ICGC1 = 0b01111000;

4
while ((ICGS1_LOCK==0) | | (ICGS1_ERCS==0)) {
/*Ensure COP doesn't reset device whilst waiting for clock lock*/
__RESET_WATCHDOG () ; /* kicks the dog */

ICGC2 _LOCRE = 1; /*enable reset if clock fails*/

for(;;)
__ RESET WATCHDOG(); /* kicks the dog */
LED2 = SW2;

if (SW3==DOWN) {
/*Switch pressed*/
if (SW4==DOWN) {/**/
TPM1COV = DUTY75;/**/
LED3 = ON;/**/
LED4 = OFF;/**/

telse{

TPM1COV = DUTY25;/**/
LED3 = OFF;/**/
LED4 = ON;/**/

} /* loop forever */

NOTE

It is important to set the RANGE, REFS and CLKS in the ICGCT1 register together as a single byte store

(for example, STA or MOV instruction), and not by read-modify-write instructions (BSET or BCLR), as

attempting to set these bits individually may result in the clock mode being locked after the first write to

the ICGCT1 register.

For more information on setting system clock, refer to the relevant data sheet and to Application Note
“AN2494 — Configuring the System and Peripheral Clocks in the MC9S08GB/GT *.

Application complete

The program will operate in exactly the same manner as in the previous section. The only noticeable
difference will be the frequency of LED5 (buzzer in the case of the evaluation board), as the bus speed
of the device has been set to the maximum using the on-board crystals.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor

33

Metrowerks HCS08 CodeWarrior Development Tools

Metrowerks HCS08 CodeWarrior Development Tools

Metrowerks CodeWarrior

Additional HC(S)08 help included with CodeWarrior

After CodeWarrior has been installed, assuming a “typical” or a “full” installation was performed), there
will be some HC(S)08 specific documentation that will assist in fine-tuning your application.

The default location of Metrowerks CodeWarrior is:
* C:\Program Files\Metrowerks\CodeWarrior CW08_V3.0

Directories and files of interest:

* Release_Notes\HCO8\CW_Tools\HC08
— This directory contains release notes for various sections of CodeWarrior, for example, linker,
compiler, etc.

* CodeWarrior Help
— This directory contains the generic CodeWarrior and is target independent.

e CodeWarrior Manuals
— Inthis directory, the documentation is available as either on-screen help or standalone pdfs and

are held within the relevant sub-directories.
— hc08_manuals.pdf
— HCO08_Processor_Expert_User_Guide.pdf
— Manual_Assembler_HCO08.pdf
— Manual_Compiler_HCO08.pdf
— Manual_Engine_HCO08.pdf
— Manual_ICD_HCS08.pdf
— Manual_Mon08.pdf
— Manual_True-Time_Simulator_HCO08.pdf

Metrowerks

Metrowerks produces an integrated development environment (IDE) for the HC08 and HCS08. To obtain
the best from the HCS08, the latest version should be used. The HC08 version will generate code that
will work on an HCO8, but it will not use any of the additional addressing modes on a couple of instructions;
this can have a significant impact on both code size and performance.

Metrowerks offers a free version of the Metrowerks HCSO08 IDE, which is initially limited to 1K of code
generated from C. Upon registering the compiler, a license will be provided which will allow the compiler
to generate up to 4K of code.

Metrowerks have other licenses which will allow 32K or 64K of code, upon payment of the relevant license
fee.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

34 Freescale Semiconductor

Metrowerks HCS08 CodeWarrior Development Tools

More information about the Metrowerks HC(S)08 CodeWarrior development Studio is available from the
following website.

http://www.metrowerks.com/MW/Develop/Embedded/HC08/Default.htm

Metrowerks CodeWarrior for HC(S)08

CodeWarrior is an integrated development environment that provides a graphical user interface (GUI) to
code development. Code is developed as a project where all the files, configuration information, and
debugging information (for example, hardware) required to generate/debug a program are stored.

CodeWarrior includes a project manager (Project window) which lists all the files required to compile the
code and invoke the various development activities such as editing, compiling, or running and debugging
the application using the simulator or actual hardware.

What's on the CD

Opening the CD in Windows Explorer will result in something like the following:

File Edit Wiew Favorites Tools Help | ﬂ'
¢ .I [i X -
eBack v igd T ? | /- Search {f— Folders | = x q |
Address Ii E!l j Go
Folders x
l 030519 1927 (E1) ﬂ Add_Docu /J ADDOMS
=) Add_Docu
) PP :
) EC-PP Browser ,/J Sekup
[) FLEXIm L
[#) ProcessarExpert
=) ADDONS 1
= i Tutorials Wkras
) ACROREAD
|3 FLEXIm
23 winzk . autorun.inf PDF contact. pdf
= Wk T4. 0 Setup Information | &dobe Acrobat Document
= 1KB adoba] 105 kB
|2} Browser
B 12 Setup install.exe
=1 1) Tutorials Macromedia Projector .
= |5) ProcessorExpert Macramedia, Inc, Py
B B Exemples (BN e iy R,
) Fullt wersions,pdf = welcome_CwOS_W3_0.kxt
’ #dobe Acrobat Documer = | TextDocument
5 LeD HZKB. sl =1 ske
| prajRT1
[projRTZ o
Bl [proiRT3
[#) visualization Toaol
|2 #tras -
4 | B

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 35

Metrowerks HCS08 CodeWarrior Development Tools

System requirements for CodeWarrior

Metrowerks CodeWarrior is compatible with the following Microsoft products.

e Windows 98 (including SE)
e Windows ME

e Windows XP

e Windows NT 4

* Windows 2000

NOTE
Some versions of Windows may require installation of appropriate patches or service packs.

NOTE
There may be additional restrictions on supported operating systems, due to debugging support; for
example, USB Muiltilink requires Windows 2000 or XP, and is not supported with other versions of
Windows.

Installing CodeWarrior

On inserting the CD into a Windows PC, the CodeWarrior installer will normally start automatically. (If this
is not the case, locate the install.exe file on the CD and invoke it). Follow the on-screen instructions and
refer to the booklet supplied with the CD for more help. (For the web download version, a “quick start”
document is available on the web.)

CodeWarrior license

By default, Metrowerks installs a code size limited version of CodeWarrior, which is limited to generating
runable code of up to 1K byte in size. By registering, you can obtain a license file from CodeWarrior
Metrowerks by E-mail that will remove the code size limit on the assembler and linker; the C compiler code
generator limit will be increased from 1K to 4K. (Registration is free; a valid E-mail address is required in
order to send the license details.)

A 30-day evaluation license to the Standard or Professional Edition with an unlimited code size can be
requested during the registration process; refer to the welcome text file included on the CD for details of
how to request this.

NOTE
A registered version of CodeWarrior will have a 4K code size limit for C and an unlimited code size
assembler.

CodeWarrior updates

The boards and devices supported by Metrowerks CodeWarrior will be those available when released.
There may be patches available for CodeWarrior to support newer boards and/or devices; check
Metrowerks web support if the board or device is not supported by your version of CodeWarrior:

http://www.metrowerks.com/MW/download/default.asp

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

36 Freescale Semiconductor

CodeWarrior C and HCS08

CodeWatrrior “projects”

A “project” is simply a file (for example, M6BDEMO908GB60_Demo1.mcp) that contains all the
information required to compile and debug an application. Information in the project file typically includes:
e Directory location for sources, binaries, and other files
e Compiler settings for each source file
* Debugging details

CodeWarrior normally places the files within the directory of the project file or subdirectories; for example:

8 D:'Drive_D'HC508_Code',M68DEMO908GEED_Demol =1of x|
File Edit ‘Miew Favorites Tools Help | lﬂ}
Q Back -) - 1‘ | R) Search || Folders | = | I x n | El'
Address | 5) Di\Drive_DIHCS08_Code|MEBDEMOS0RGEE0_Demal = &0
Folders x :
|2 MEBDEMOI08GEE0_Demol = J o] -) J
I3 bin i bin cmd MEEDEMCS, . prm Sources
=3 cmd

= |2} MESDEMO90SGESD_Demal _Data — = | =k | =i
B 3 PsE_ICD o |xa o (= =

T I __,t :__
g) ObjectCode C_Lavouthwl Default.mem FEEDEMOSO8! PRE_ICD.ni readme.bxt
I prm GES0_Dema
] Sources -
I i

CodeWarrior C and HCS08

This section explains how the HCS08 devices are defined within CodeWarrior C, and how they are used.

In order to be able to write C code, for HCS08 devices, that utilizes the hardware, it is necessary to define
the registers of the modules and their absolute addresses. Metrowerks provides the register definitions
and address space mapping for each device within two files: the device header file and the device
definition file.

The device header file (MC9S08GB60.h) contains data declarations and definitions used to reference the
device registers. Registers are allocated and mapped into the device’s address space in the device
definition file (MC9S08GB60.c), using the definitions from the header file.

A program normally consists of the device definition/mapping file (MC9S08GB60.c), the user code (for
example, main.c), and a startup file (startup.c), which initializes the runtime environment. The startup
code, device and header files are normally included automatically within the project by the “CodeWarrior
project wizard”, along with a default main program (main.c).

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 37

CodeWarrior C and HCS08

To access peripherals in a device, ensure that the device declaration file (MC9S08GB60.h) is included

within the source file; for example:

#include <MC9S08GB60.h>
int mycode () {

}

Data types

CodeWarrior C for the HCS08 supports all the normal C types. Also, the types byte (1 byte), word (2

bytes), dword (4 bytes), and dlong (8 bytes) are defined unsigned as follows:

/* Types definition */

typedef unsigned char byte;
typedef unsigned int word;
typedef unsigned long dword;
typedef unsigned long dlongl[2];

What a project consists of

A newly created project looks like:

| % FLEICD

Files I Link Order | Targets |

MECRE R N

% | File | Code | Data |4 =

B readme. bt n'a néa =~
@ 55 Sources 0 o« =
! “-Hl main.c 0 0« =
% == Startup Code 0 0« =l
w -l StartDB.c n ns =
% =3 Pim 0 T |
o - bumerbbl n'a nfa =l
[l PEE_ICD . map n'a nfa =l
w -l PEE_ICD_linker. prm n'a néa =l
¥ 253 Libs 0 0« =i
- MCIS08GEED.h 1] N =l
W @l MCI508GEE0.C 1 0« =
w Ll ansizlib n n =l
[=4=3 Debugger Project File 0 o =
“-Hl PEE_ICD.ini n'a nfa =l
=HE3 Debugger Crd Files n n =l
E<aPEE_ICD 1] 1 =l
[l PE_ICD_Startup.cmd n'a nfa =l
i@l PEE_ICD_Reszet.cmd n'a néa =l
«fl PLE_ICD_Preload.cmd n'a néa =l

- P&E_ICD_Postload.crnd nta héa ;Iﬂ

14 filez] 0 A

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

38

Freescale Semiconductor

CodeWarrior C and HCS08

with the following files and directories created automatically:

e readme.txt
— Initially contains a brief overview of the project structure, details of on-line help, and how to
contact Metrowerks

e Sources/
— Contains the users source code, sample main.c provided by wizard with project creation

e Startup Code/
— Start.c - C/C++ startup code which initializes the C library and invokes the user code (main
function)

e Prm/
— burner.bbl - details of how to generate the required S-Record for the debugger
— *.prm - details of how to link code/data segments
— *.map - generated by the linker

e Libs/
— Required library files (ANSI library)
— Device header and device file

* Debugger Project File/
— Contains an *.ini file for the debugger — essentially a project file for the debugger

* Debugger Cmd Files/
— Contains sub-folders for each target connection method, along with command files

Using CodeWarrior device definitions

This section describes the method used by Metrowerks CodeWarrior in defining device registers, the
mapping of these registers to memory, and how to use this information within a program.

All examples within this section refer to the MC9S08GB60. Substitute the appropriate device as required.

The names given to the device registers and bit names within the registers are defined by the device
definition files. The two files associated with the MC9S08GB60 are:

* MC9S08GB60.c <- device file
e MC9S08GB60.h <- device definition/mapping file

To fully understand programming a particular device, it is essential to have the correct data sheet for the
device, for example, the MC9S08GB60 Data Sheet (MC9S08GB60/D).

Device file (MC9S08GB60.c)

This file defines ALL registers within the device. All registers are named as per the register names in the
relevant data sheet:

volatile <register>STR _<registers>;

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 39

CodeWarrior C and HCS08

Where <register> is the name (in capital letters) of the register, as defined in the relevant data book (for
example, MC9S08GB/D). All registers are defined as structure types, where the structure name is the
same as the register name with STR appended. For example:

volatile KBIPESTR _KBIPE;

_KBIPE is the actual register. The structures are defined in the header file.

NOTE
For simplicity, the following examples will use the macro definitions of the registers.

Header file (MC9S08GB60.h)

This file makes available the register definitions for any file that requires access to the registers. It also
maps the registers into the device’s memory map.

The header file contains macros that allow the register to be referenced without the underscore. For
example:

#define KBIPE _KBIPE

All registers can be referred to by their real definition, in this case “_KBIPE” or via a macro, in this case
“KBIPE”.

Register and bit definitions

The header files supplied with CodeWarrior facilitate access to register bits through structures and do not
include mask-based access to the register bits.

The following example shows the definition of the DBGC register utilizing a structure.

/*** DBGC - Debug Control Register ***/
typedef union {
byte Byte;
struct {
byte RWBEN :1; /* Enable R/W for Comparator B */
byte RWB :1; /* R/W Comparison Value for Comparator B */
byte RWAEN :1; /* Enable R/W for Comparator A */
byte RWA :1; /* R/W Comparison Value for Comparator A */
byte BRKEN :1; /* Break Enable */
byte TAG :1; /* Tag/Force Select */
byte ARM :1; /* Arm Control */
byte DBGEN :1; /* Debug Module Enable */
} Bits;
} DBGCSTR;
extern volatile DBGCSTR _DBGC @0x00001816;

The “:1” is used to indicate that a single bit is required and CodeWarrior C compiler will pack together into
a single byte.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

40 Freescale Semiconductor

CodeWarrior C and HCS08

To access RWB would require the following code.

DBGC.Bits.RWB
DBGC.Bits.RWB

/*Set RWB bit of DBGC */
0; /*Clear RWB bit of DBGC */

mnn
[

To access RWB using the Metrowerks predefined macros would require the following code.

DBGC_RWB

. 1; /*Set RWB bit of DBGC */
DBGC_RWB

0; /*Clear RWB bit of DBGC */

The Metrowerks CodeWarrior C Compiler will generate bit set/clear instructions for page 0 registers and
memory; otherwise, it will generate bit mask operations (| =, & =) for other addresses. Using bit structures

with HCSO08 for I/O registers residing in page 0 is very efficient, requiring a single instruction for set, clear
and test/branch.

How device registers and bits are used
To use a register, simply use its name as defined within the data sheet; for example:

e TPM2COSC

To reference a bit within a register, concatenate the register name and the bit name with an underscore
between. For example:

e TPM2COSC_MSO0B

NOTE
Register and bit names MUST be in capital letters.

How device registers are defined and used

In order to be able to program a device, it is necessary to understand the relationship between the device
definition/mapping file and the device header file, and the register definitions contained within these files.

For example, the register TPM2CO0SC:

-Iofx]
b - {} » M- [~ 48 - Pati | D:\Drive_D\HCS08_Code\MEBDEMOS0BGEED_Demnl\Saurcesimain.c &
2

TPMZCOSC = 2 =

| =
Line 35 Coll OwR|[4] | Dy

As a letter “O” was typed instead of a zero, the variable is undefined and so appears in black lettering.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 41

A
CodeWarrior C and HCS08

After correcting, the register name appears in light blue:

fwmane - TP

b - {} » M.+ [~ &8 - Path| D:ADrive_DAHCS08_Code‘MBEDEMOI08GEEN_Demal \Sourcestmain.c

ITPM2CDSC =i

Lire 35 Call 4] |

Sk Eio &

To determine the definition of the variable TPM2CO0SC, place the cursor over the variable name and right-
click the mouse. A popup will appear, which will include an option to go to the variable declaration “Go to
macro declaration of TPM2CO0SC”:

- (0] x|
Nl M v &b - Path: |D:\Drive_D\HI:SDB_'I:DI:IE\MEEDEMDSDBGBED_DemD'I\Sourc.es\main.c Q’
o
TPHzCP':'H =T ;I
Unda Typing ==
Find and Open File. ..
Line 34 = : v oz

Campile
Preprocess
Disassemble

Set Breakpoint

This will bring up a window showing the section of code that defines the variable:

{ BMCIS08GBE0.h o [

b} - M- - d - F'ath:lC:'\'F'rc-gram FilesMetrawerks\Codew armior Cw08_Y3.04BYHCO.. \AMCIS08GEEDh >

extern wolatile TPHZCOSCSTR _ TEM2COSC @0x00000065:; EI
#define NERESIER TFHMZCOSC . Evte ;|
#define TPH2CO0SC_ELS04 _TEFM2COSC Bits ELS0A

#¥define TEM2COSC_ELSOE _TPM2COSC . Bits. ELSOB
#define TPM2C0SC_MS0A _TPM2ZCOSC Bits. MSO0A
tdefine TPM2COSC _MSOE _TPM2C0OSC . Bits. MSOB e
#define TEM2COSC CHOIE TEM2COSC . Bits CHOIE
#define TEM2COSC _CHOF _TPM2COSC Bits.CHOF

Line 2542 Col17 || 4] | Pl

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

42 Freescale Semiconductor

CodeWarrior C and HCS08

As can be seen in the example above, the variable is actually a macro definition to a structure element
“Byte” of the variable _TPM2CO0SC. The variable _TPM2CO0SC is, in fact, defined as being a structure of
type TPMCOSCSTR and at absolute address $0065, as shown in the figure above. The definition of
structure TPMCOSCSTR is:

bh-{} - - - Palh'lE'\Prngram FilestMetrowerk 5 Codelwfarior CWOB_ W3 0LIBYHCOBCUNCLUDE M CIS08GEEDh <
sxxx TPM2C0SC — TPH 2 Timer Channel 0 Status and Control Register xxxs %
typedef union { ﬁ
byte Byte;
struct {
byte 3
byte i
bvte ELS0A ki <% Edge<Level Select Bit A =~
byte ELSOB w1 % EdgesLevel Select Bit B =~
byte MS04 =ik <% Mode Select & for TPM Channel 0 %~ =
byte MSO0B L <% Mode Select B for TPM Chamnel 0 %~
byte CHOIE L1 #% Channel 0 Interrupt Enable %~
byte CHOF (kg <% Channel 0 Flag =~
i Bits:
} [CEHZCOSCETH: =
Line 2540 Col14 | 4] vz
Summary:

From the example of TPM2CO0SC, it can be seen that the way registers are defined within CodeWarrior is:

A register, as defined in a data sheet (for example, TPM2C0SC), is a macro that refers to a byte within a
structure, and is mapped to the relevant address for the device in question.

Metrowerks CodeWarrior header files for HCS08 use bit structures as opposed to masks. All code will
utilize the CodeWarrior structures.

How device register bit(s) are defined / used

The method used for defining register bits follows a similar method as used for the actual registers, except
that, in the case of register bits, it is necessary to specify both the register name and the bit name as
defined in the data sheet, for example, MSOB and TPM2CO0SC both need to be specified. The way in
which the bit name and register name are used is to concatenate their names together with an underscore
between; for example:

e TPM2COSC_MSO0B

The definition of the bit can be found by right-clicking on the appropriate variables. For example:

-loix]
b - {} - M- [- o - Path | CAProgram Files\MetrowerkshCod. AMCIS08GBE0h 87
]

! R
#define TPM2COSC_HWSOE _TPM2C0SC. Bits MSOB =
I

Line 2547 Col1 [[4] | M

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 43

CodeWarrior C and HCS08

The definition of _"TPM2CO0SC:
Jii[=]

X

b -} - M- B+ d - Path | C\Proaram Files\Metrawerks\CodeW/arior Cw/0B_Y3, DNIBAHCDBC\SRC\ME35 08GBE0.c &
volatile TPM2COSCSTR _TPM2COSC: <% TPH 2 Timer Channel 0 Status and Control Register =~ ;Ii
=i
Line156 Col1 [[4] | .!d
Definition of type TPM2COSCSTR is a structure:
o]
b {l e @ - Path:|C:\Prog|am FileshMetrowerk s Codew arrior CW 08 V3 0MBYHCOScAINCLUDENMC IS 08GEE0. h <
<x%x TPM2C0SC — TPM 2 Timer Channel 0 Status and Control Register = .
typedef union { ;I
byte Eyte;
struct {
byte 1%
byte Gl
byte ELS0A ks <% FEdgerLevel Select Bit A =/
byte ELSOB ol #* EdgesLewvel Select Bit B -
bvte HSOA ol | +% Mode Select A for TPM Channel 0 =~ i
byte MSO0B ikt ~% Mode Select B for TPM Channel 0 *-
byte CHOIE alie #% Channel 0 Interrupt Enable =~
byte CHOF g <% Channel 0 Flag =~
} Bits;
} TPMZCOSCSTR;

Line2535 Col3d [[4] | L‘

Now MSOB is one bit of a byte in the structure Bits of the structure TPM2C0OSCTR, so we can use:
e _TPM2CO0SC.Bits.MS0B

or
e TPM2COSC.Bits.MS0B

To reference it, alternatively, we can use one of the predefined macros:
e TPM2C0SC_MSO0B
Both examples refer to the Mode select B of TPM channel 0.

Summary: A register bit is defined by a macro as being its register and bit name concatenated together
with an underscore between the register and bit names.

Register names used with multiple peripherals

Some devices have multiple peripherals; for example, the MC9S08GB60 has two SCls. It may be
necessary to check the naming of the peripherals in the device and header files but, in general, they
should be defined as per the data sheet.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

44 Freescale Semiconductor

Frequently Asked Questions

For example, the MC9S08GB60 has multiple timers (timer 1 and timer 2), which have multiple channels
(three on timer 1 and five on timer 2). As an example, the status channel for a channel is defined as:

TPMxCnSC

— CHnF - flag

— CHnIE - interrupt enable

— MSnB - mode select B

— MSnA - mode select A

— ELSNnB:ELSNA - Edge/Level select bits
Where

— Xx=the timer

— n =the channel

Therefore, to reference the flag bit of channel 2 on timer 1, the macro defined in the header file is:

TPM1C2SC_CH2F

Frequently Asked Questions

This section identifies the main issues that a newcomer to CodeWarrior may experience, and explains
how to proceed.

Where can | get the most up to date documentation

The most up to date documentation for Codewarrior is available on Metrowerks web site. For the HCO08 it
can be found at:

http://www.metrowerks.com/MW/Support/dev_resources/HC08.htm

Device and/or target isn't supported by Metrowerks
Check Metrowerks for availability of patches to support device and/or target.
http://www.metrowerks.com/MW/download/default.asp

In the “Updates and Patches” section, select “Codewarrior for Freescale HC08”, press “select”, and a list
of available patches will appear. Download the appropriate patch and install (a reboot of the PC will be
required).

USB BDM doesn't work with Metrowerks HC08 Codewarrior v3.0

Codewarrior version 3.0 was shipped before P&E USB BDM was available. To add USB BDM
functionality it is necessary to install a service pack. The service pack is available from Metrowerks site at:

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 45

Frequently Asked Questions

ftp://ftp.metrowerks.com/pub/updates/
CWHCO08/HC08V3_0_USB_MULTILINK_SP.exe

Tips on using a parallel BDM pod?

General suggestions for successfully using a Multilink BDM connector.

e Upgrade to the latest version of CodeWarrior
* Ensure that the BDM pod is using the latest firmware (http://www.pemicro.com)

e Ensure that the parallel port BDM hardware is at the latest revision. With the exception of Rev.A,
all Multilinks can be upgraded to latest spec (currently Rev.D) (http://www.pemicro.com)

* Ensure that the parallel port is configured as a standard port in computer’s BIOS. The BIOS
settings for the Parallel port should be SPP, Normal, Standard, Output Only, Unidirectional or AT.
Try to avoid ECP, EPP or PS/2 Bidirectional

¢ Limit the BDM cable length between MultiLink and target
* Do not protect the FLASH during code development and debugging

P&E parallel Multilink BDM & laptop

Some laptops ship with a 3v parallel port and may not work reliably with the P&E parallel Multilink BDM.
To overcome this the Multilink should be powered by an external 5v supply. Connect an external 5v center
negative power supply to the optional power jack of the P&E Multilink BDM.

Monitor mode is not working?

There are several ways this can occur:

* Monitor erased
— reprogram
e Clock speed is incorrectly assumed within monitor
— reprogram device with different clock setup
— change crystal to 32.768 kHz or 4 MHz, according to version of monitor in device

Other than changing the crystal, a BDM will be required to reprogram the monitor code or alter the
device’s clock frequency used by the monitor.

How do | reprogram the HCS08 monitor?

If the HCS08 monitor is erased or corrupted, it will be necessary to download the HCS08 monitor code to
the device utilizing a BDM; there is no other way.

Refer to application note “AN2140/D — Serial Monitor for MC9S08GB/GT” for a description of the monitor
and the Metrowerks project files required for re-programming the monitor.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

46 Freescale Semiconductor

Frequently Asked Questions

How can | program small batches of HCS08 devices without tying up a PC?

An HCSO08 can be programmed only using the serial monitor mode or BDM. P&E make a BDM pod that
can be connected to the PC via usb, parallel or ethernet, which can also be used as a standalone
programmer. Refer to P&E's web site for product details and ordering information on the CY CLONE PRO

http://www.pemicro.com/products/68hc08/mon08/cyclone_pro/cyclone_pro.html

Code in FLASH only works when BDM is powered?

Disconnect the BDM pod, as it is interfering with the devices normal operation.

Debugger not showing the source code of main.c?

To show the source code for main.c in the debugger, simply right-click over the source code window:

CES—— =1
|D:\Drive_DYHCS08_Code’\MESDEMOS0SGEED_Demal‘SoucesStanls.c [Line: 1
J,-’ﬁﬁ'ﬁtﬁwﬁtﬁwﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁtﬁﬁﬁtﬁwﬁﬁﬁw Set Breakpoint tﬁtﬁﬁﬁtﬁwﬁﬁﬁwﬁﬁﬁﬁﬁﬂ
FILE i startlf.c Run To Cursar
PURPOSE : ABHCOS standard Show Breakpoints. ..
LANGUAGE : AN3I-C / INLINE :
______________________________ Show Location .
HISTORY Set Markpoink
e -agE. 93 Created. Shaw Markpeints. ..
04,1797 Also CH c

EEF AR E R TR TR T AT AR FAFAAGAATTANN Qpen Source File

#include <start08.h> Copy, Chl+E .
4 | I Go ToLine... Ctrl+G KL
Find... Chrl+F
E. Rroceduic . Find Procedure.., Chrl+1 Aglﬁl
——
Folding 3
_startup ()
Marks
ToolTips 3

and select “Open Source File”. A dialog box will pop up, allowing selection of the correct source file (for
example, main.c):

Source Files

:SEHDHC oK

Cancel

Help

¢ B

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 47

Frequently Asked Questions

After selecting the correct file, the source window will appear:

D:ADrive DYHCS08 Code\MESDEMOI08GEE0_Demol\Sourcesimain. o [Lire: 1

#include <hidef.h> /% for EnableInterrupts macro %/

-

#include <MCS9308GE60.h /% include peripheral declarations */

#include "MEEDEMOS0SGEAO.h"

void main(void) [E
EnableInterrupts; /% enable interrupts */
/% include your code here ¥/

4]

How do | set a breakpoint in the debugger?

To set a break point whilst in the debugger, select some text where the break point is required, or hold
the mouse over the relevant code and press the right mouse button. A popup dialog box will appear; the

first option is to set a break point:

e _leix
[:4Drive DYHCS08_ CodeMESDE MOQ0BGEED._Demol LS ourceshmain.c Line: 13
T — | o
PTAT Set Breakpoint i B
PTAT, Run To Cursor = hit
Show Breakpaints. ..
Show Location
£ el
et Markpoint
Shows Markpoaints. .. _I
Open Source File...
PTAL Copy Chrl+C port A as input (Data Direction Rregister)
PTAF on upper 4 bits
Go ToLine... Chrl+G
AAn Eind, Chl+F F as outputs (connected to led's)
FTFL Find Procedure. .. Chrl+I
for| Folding »
0s &
pT Marks
i ToolTips > i
The break point will be shown in the source window with a red arrow:

[(Boowce 1o |
|D:\Dive_DVHCS08_Code‘\MEEDEMO908GEED_D emal 5 ources\main ¢ [Lire: 13
TR - oxee: =
PTADD = PTADD & ~0x&0; //clear ms bit
FTADD = PTADD | 0OxG0; J/set ms bit

To remove a breakpoint, simply select (or place the mouse over) the break point you wish to remove and

right click the mouse.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

48

Freescale Semiconductor

Frequently Asked Questions

A popup dialog will appear, the first option being to delete the break point:

- Ty

P elete Breakpoint
P Disable Breakpoint
Run To Cursar
Show Breakpoints. .,
4 Show Location

Set Markpoint
Show Markpaints. . .

p CpenSource File...

Copy Chrl+C

I Go ToLine... Ctri4+G

P Eind... Chrl+F

. Find Procedure,,. Chrl4D
Folding 2
Marks
ToolTips 3

D:ADrive DAHCS08 Code\MESDEMOS08GEED_Demal \Sourcesimain. o

ear ms hit
T m3 bit

=10 x|

|Line: 13
=
[

ize port & as input (Data Direction Rregister)

ups on upper 4 hits

rt F as outputs (comnected to led's)

ts 0 & 2

Debugging does not seem to use the hardware/select in-circuit debug

The most likely reason for this is that the debugger is using the simulator or the wrong hardware. A may

be caused by the debugger not finding a BDM pod when it started and it defaulted to the software

simulator.

Ensure the correct target is set.

To set in-circuit debug/programming whilst in “Full Chip Simulation” mode, select “In-Circuit

Debug/Programming” via the PEDebug pull-down menu:

|EEDebug Component Memory Wwindow Help

Load...
Resct

Chrl+L J 2 | ‘
Ctrl+R.

! Command Files

-

Device : 9505GEAD
Mode : In-Circuit Debug/Programming

]

P&E Micro
Programming Options

‘iew Register Files ...

Trigger Module Settings. ..
Eus Trace

Full Chip Simulatio
In-Circuit DebugfPragramming

|Line: 54

The debugger will revert to the stage after it was invoked from the project manager and should erase and

reprogram the device.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor

49

Frequently Asked Questions

How can | see the assembler code generated for C statements?

When reviewing C code in order to optimize, it is helpful to see exactly what code is generated by the
compiler for a C statement. The easiest way to do this is to highlight the relevant C code:

Boowee -0l
|D:\Drive_DAHCS08 Code\MESDEMO308GEE0_D emal 45 owces\main [Line: 12
=
PTADD = Oxff; _|
PTADD = PTADD & ~0x80; //clear ms bit
PTADD = PTADD | 0Ox80; //set ms bit
=
Ll B

Next, drag the C code to the assembler window (hold the mouse down over the selected text, move the
cursor over the assembler window, and release) and the assembly language statements for the C code
will be highlighted:

=
|_Startup
18CD MOV #0xFF, 0x03 .A_I
158D0 BCLR 7,0x03 _I
18D2 B3ET 7,0x03
158D4 CLR 0x03
1506 MOV #0xFO,0x01
1509 MOV #0x0F, 043
18DC MOV #0x05, 040
15DF MOV #0044, 040
185EZ BSET 0,0x40 ;I
NOTE

Due to the optimization performed by the compiler, some code may not be highlighted.

What are all the interrupt vector numbers for the MC9S08GB60?

The following define statements include ALL the interrupt vectors of the MC9S08GB60.

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

Vreset
Vswi
Virg
V1vd
Viecg
VtpmlchO
Vtpmlchl
Vtpmlch2
VtpmlovE
Vtpm2chO
Vtpm2chl
Vtpm2ch2
Vtpm2ch3
Vtpm2ch4
Vtpm2ovE
Vspi
Vscilerr
Vscilrx
Vsciltx
Vscizerr
Vsci2rx
Vsci2tx
Vkeyboard
Vatd
Viic
vrti

WoOJoaUlbkWNEO

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

50

Freescale Semiconductor

Frequently Asked Questions

Where are header files located?

Basically, there are two types of header files used within C:

* System - placed within angled brackets (< and >)
e User - placed within double quotes (")

System header files are located within the Metrowerks CodeWarrior directories; for the HCS08, they are
located in the directory “CodeWarrior CWO08_V3.0\lib\HCO08c\include”.

User header files are normally located within a sub-directory of the project directory (for example, Sources
or headers). User headers are made available to the user by adding them to the project.

Should | use bit fields or masks for bit manipulation?

Metrowerks CodeWarrior will use bit field instructions (bit set, clear, test/branch) for bit field data or simple
mask operations on data within page 0.

For memory other than page 0, the compiler translates bit field operations to bit mask operations.

How does the compiler use page 0?

Most registers are defined within page 0, and the compiler will utilize direct addressing wherever possible
when using the peripheral registers. The linker files generated for a device do not use page 0 by default
(unless the device only has RAM in page 0). The default will allocate variables in extended memory.

How can | force a variable to reside in page 0?

To instruct the linker to allocate storage for variables in page 0, enclose the declarations within the
following #pragma statements in the file where the variable is declared (for example, main.c):

#pragma DATA SEG _ SHORT SEG MY ZEROPAGE
/*Page 0 data declarations go here*/
#pragma DATA SEG DEFAULT

For example:

#pragma DATA_SEG _ SHORT SEG MY_ZEROPAGE
byte p0i, pO0j;
#pragma DATA SEG DEFAULT

The first #pragma statement instructs the compiler to allocate data from this point on in the short segment
(page 0), MY_ZEROPAGE is the default data segment used within the linker file.

The second #pragma statement instructs the compiler to return to the default data section for allocation
of subsequent variables.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 51

Frequently Asked Questions

NOTE
Segment names assume default project and linker configuration used.

How do | disable the watchdog?
It may be necessary to disable the watchdog whilst debugging code, or an application may not require it.

To disable the watchdog, simply clear the COPE bit in the SOPT register as follows:

SOPT_COPE = 0;

Problems with variable, structure, or type definition?

Occasionally, CodeWarrior will not have the correct definition for a variable, a structure type or a macro
definition, for example. This may be due to CodeWarrior’s cached definition; it can normally be rectified
by clearing all object code from a project and rebuilding:

Project Debug Processor Expert Window Help

add|maim, ¢ bo Brojeck, ..
add Eiles..,

Creake Group,, .

| Create Target.,.

Create Seqment/Cvetlay, .
Create Mesign...

Check Syntayx Chrl+;
Preprocess

Precompile

Compile Ctrl+F7
Disassemble Chrl+-Shifk+F7
Bring Up To Date Cerl+

Make F7

Stbop Build Chr[+-Ereak.

Ctrl-

Re-search for Files
Reset Project Entry Paths
Synchronize Modification Dates

Debug F

Canit Bun Cttl+FS

Set Default Project 3
Set Default Target 3

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

52 Freescale Semiconductor

Frequently Asked Questions

How do | add interrupt handlers?

CodeWarrior supports a number of ways of incorporating interrupts, the most common methods being

e Use a #pragma TRAP_PROC prior to the interrupt routine and add to the vector table in the
linker.prm file. For example:

#pragma TRAP_PROC
void intSWil (void)

}

or

* Use the keyword “interrupt” and add to the vector table in the linker.prm file. For example:

interrupt void intSWi (void) {

}

and:

e Add the vector table entry to the linker.prm file. For example:

VECTOR ADDRESS OxFFD2 intSwWl

* Use the keyword “interrupt” and specify the interrupt vector number in the definition of the interrupt
routine. This does not require any modification to the linker.prm file. For example:

interrupt 22 void intSWi (void) {

}

This method has the advantage of defining an interrupt handler and its vector in a single file, removing
the need to maintain two files.

How can | use the assembler within C?

Refer to section “High Level Online Assembler for Freescale HC08” in the document
“Manual_Compiler_HCO08.pdf” included with CodeWarrior.

How are interrupt vectors redirected?

The serial monitor implements a redirection of the vector table in an unprotected area of FLASH,; this is
discussed in the HCSO08 serial monitor documentation.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 53

Frequently Asked Questions

How do | use masks?

A mask-based definition for a register would look something like:

#define
#define
#define
#define
#define
#define
#define
#define

RWBEN
RWB
RWAEN
RWA
BRKEN
TAG
ARM
DBGEN

0x01;
0x02;
0x04;
0x08;
0x10;
0%20;
0x40;
0x80;

/*** DBGC - Debug Control Register %/
extern volatile byte _DBGC @0x00001816;

/*

Enable R/W for Comparator B */

R/W Comparison Value for Comparator B */
Enable R/W for Comparator A */

R/W Comparison Value for Comparator A */
Break Enable */

Tag/Force Select */

Arm Control */

Debug Module Enable */

To access RWB would require the following code:

DBGC
DBGC

DBGC
DBGC &

RWB;
~RWB;

/*Set RWB bit of DBGC */
/*Clear RWB bit of DBGC */

NOTE

CodeWarrior header files implement structures, NOT bit masks. If you wish to use bit masks, thet must

be defined manually.

How do | set the compiler options?

In order to set compiler options, select “Settings” from the Edit menu:

Edit ¥iew Search Project Debug Processor £

Canit Unda bz i
Cant Redo ChrlHEhifE+E
Or press the
Cut Chr .
Gy i Settings button: PE ICD Settings. ..
Paste CEH Y.
Delete Delete
Select all A
Eislance: ChH+E
Shift Lefit ChlH]
Shift Right CErl+]
Get Previous Completion AlE+Shift+
Get Mext Completion Alt]
Complete Code Alt+,

Commands and Key Bindings...

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

54

Freescale Semiconductor

Frequently Asked Questions

A dialog box will appear, allowing access to the compiler options, either by simply entering them as
command line arguments:

e 11

T oot St Pareis [T r—
Varget | Correnses) Lrw Augprreits

[Cee s

Mezages | Ogtions | Tyoe Sizes Smert Skt |

" ™ Dy grnesbed commandines n mnssage o
HLH
Brres his HOTE ™ Uise Dscoct o penacate Disassembly Listing

Imperte for HETH

Linker lor HCO2
& Edeor

[——
= Dabugger

Other Decutables

Diatadger Sattngs bt Help
=
Factouy Srer: | | impart Paret. | EspotPanct |

oK Cancel

or by using one of the sub-option windows; for example, “Smart sliders”:

Compiler Smart Control E x|
Code Execution Debug Compilation Information
Diensity Speed Complexity Time Lewel
high
o AR o [e [| I e
-

-0z -0u -0f -OnCstvar -OnPMMC -Or

Ok I Defaults | Cancel | Help |

This provides a graphical front end to the selection of the compiler switches.

Big Endian or Little Endian?

The Endianness of a processor refers to the order in which it stores multiple byte values in memory. Big
Endian processors store the most significant byte at the lowest address, whereas Little Endian processors
store the least significant byte at the lowest address. This can cause issues if it is not taken into account.

For a more thorough discussion of Endianness refer to:
http://www.wikipedia.org/wiki/Endianness
The HCSO8 (like all 68HCxx) is a Big Endian processor.

Endianness is also used to express the order of bits within a byte, and is typically used within serial
communications. Serial communications may expect data least significant bit (Little Endian) or most
significant bit (Big Endian) first. RS232 expects bits to be sent in Little Endian format. The SCI on an
HCSO08 transmits data in Little Endian format; the SPI on an HCSO08 is selectable as Big Endian or Little

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 55

Frequently Asked Questions

Endian. An example of a Big Endian serial protocol is MIL-STD-1553B, where data transmissions are
most significant bit first.

NOTE
If connecting external peripherals, check the Endianness to ensure compatibility.

Check core and compiler for Big Endianness
The following piece of code checks the processor and compiler for Big Endianness.

First, create a union/structure to allow word or byte access to a union/structure for a 16-bit integer:

// Declare union to access word as word or two bytes
typedef union {
word w;
struct {
byte h;
byte 1;
} bytes;
} TEMP;

Next, define required variables, one using the union/structure, an error counter, and a byte pointer:

TEMP t; //declare temporary variable using union
byte err; //error count
byte *p; //pointer to access bytes within word

Clear the error count, and set the word so that the upper and lower bytes are unique:

//clear error count
//set word so high byte and low byte are different

err=0;
t.w = 0x55aa;

Check using pointers to access the individual bytes of the word in the correct order:

p=(byte *)&t.w;

if (t.bytes.h!=*p)err|=1;
D++;

if (t.bytes.l!=%*p)err|=2;

//set pointer to address of
//should be pointing to the
//increment pointer to next
//should be pointing to the

word
high byte
byte

low byte

Check that, using union/structure, access to the individual bytes of the word is correct:

if (t.bytes.h!=0x55)err

=4;
if(t.bytes.ll:Oxaa)err‘:

8;

//check high byte accessed as structure

//check low byte accessed

as structure

The results should be 0.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

56

Freescale Semiconductor

Frequently Asked Questions
Is Linux/Unix support available?

Cosmic supports Linux, Solaris and HP/UX as well as supporting Windows:

Platform Part No Description

Linux CLXHO08 C Cross Compiler, Assembler, Linker and IDEA
package targeting Freescale’s 68HC08
microcontroller

SUN Solaris | CSSHO08 C Cross Compiler, Assembler, Linker and IDEA
package targeting Freescale’'s 68HC08
microcontroller

SUN Solaris | ZSSH08SIM | ZAP Debugger Simulator for 68HC08

HP-UX CHPHO08 C Cross Compiler, Assembler, Linker and IDEA
package targeting Freescale’s 68HC08
microcontroller

HP-UX ZHPHO08SIM | ZAP Debugger Simulator for 68HC08

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor

57

References

References

The following publications may be of interest. They are available on Freescale’s web site at:

http://www.freescale.com/

AN1752/D
AN1837/D
AN2093/D
AN2111/D
AN2140/D
AN2342/D

AN2438/D
AN2493/D
AN2494/D

AN2496/D

AN2497/D

M68EVB908GB60
M68DEMO908GB60
MC9S08GB60/D

HCS08RMv1/D

Data Structures for 8-Bit Microcontrollers
Non-Volatile Memory Technology Overview
Creating Efficient C Code for the MC68HC08

A Coding Standard for HCS08 Assembly Language
Serial Monitor for MC9S08GB/GT

Opto Isolation Circuits For In Circuit Debugging of
68HC9(S)12 and 68HC908 Microcontrollers

ADC Definitions and Specifications
AN2493/D: MC9S08GB/GT Low Power Modes

Configuring the System and Peripheral Clocks in the
MC9S08GB/GT

Calibrating the MC9S08GB/GT Internal Clock
Generator (ICG)

HCS08 Background Debug Mode versus HC08
Monitor Mode

Development board for Freescale MC9S08GB60
Demonstration Board for Freescale MC9S08GB60

MC9S08GB60, MC9S08GT60, MC9S08GB32,
MC9S08GT32 Data Sheet

HCS08 Family Reference Manual

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

58

Freescale Semiconductor

References

FREESCALE SOFTWARE LICENSE AGREEMENT

This is a legal agreement between you (either as an individual or as an authorized representative of your
employer) and Freescale, Inc. (“Freescale”). It concerns your rights to use this file and any accompanying
written materials (the “Software”). In consideration for Freescale allowing you to access the Software, you
are agreeing to be bound by the terms of this Agreement. If you do not agree to all of the terms of this
Agreement, do not download the Software. If you change your mind later, stop using the Software and
delete all copies of the Software in your possession or control. Any copies of the Software that you have
already distributed, where permitted, and do not destroy will continue to be governed by this Agreement.
Your prior use will also continue to be governed by this Agreement.

LICENSE GRANT. Freescale grants to you, free of charge, the non-exclusive, non-transferable right (1)
to use the Software, (2) to reproduce the Software, (3) to prepare derivative works of the Software, (4) to
distribute the Software and derivative works thereof in source (human-readable) form and object
(machine-readable) form, and (5) to sublicense to others the right to use the distributed Software. If you
violate any of the terms or restrictions of this Agreement, Freescale may immediately terminate this
Agreement, and require that you stop using and delete all copies of the Software in your possession or
control.

COPYRIGHT. The Software is licensed to you, not sold. Freescale owns the Software, and United States
copyright laws and international treaty provisions protect the Software. Therefore, you must treat the
Software like any other copyrighted material (for example, a book or musical recording). You may not use
or copy the Software for any other purpose than what is described in this Agreement. Except as expressly
provided herein, Freescale does not grant to you any express or implied rights under any Freescale or
third party patents, copyrights, trademarks, or trade secrets. Additionally, you must reproduce and apply
any copyright or other proprietary rights notices included on or embedded in the Software to any copies
or derivative works made thereof, in whole or in part, if any.

SUPPORT. Freescale is NOT obligated to provide any support, upgrades or new releases of the
Software. If you wish, you may contact Freescale and report problems and provide suggestions regarding
the Software. Freescale has no obligation whatsoever to respond in any way to such a problem report or
suggestion. Freescale may make changes to the Software at any time, without any obligation to notify or
provide updated versions of the Software to you.

NO WARRANTY. TO THE MAXIMUM EXTENT PERMITTED BY LAW, FREESCALE EXPRESSLY
DISCLAIMS ANY WARRANTY FOR THE SOFTWARE. THE SOFTWARE IS PROVIDED “AS IS”,
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. YOU ASSUME THE ENTIRE RISK ARISING OUT OF THE USE
OR PERFORMANCE OF THE SOFTWARE, OR ANY SYSTEMS YOU DESIGN USING THE
SOFTWARE (IF ANY). NOTHING IN THIS AGREEMENT MAY BE CONSTRUED AS A WARRANTY OR
REPRESENTATION BY FREESCALE THAT THE SOFTWARE OR ANY DERIVATIVE WORK
DEVELOPED WITH OR INCORPORATING THE SOFTWARE WILL BE FREE FROM INFRINGEMENT
OF THE INTELLECTUAL PROPERTY RIGHTS OF THIRD PARTIES.

INDEMNITY. You agree to fully defend and indemnify Freescale from any and all claims, liabilities, and
costs (including reasonable attorney’s fees) related to (1) your use (including your sublicensee’s use, if
permitted) of the Software or (2) your violation of the terms and conditions of this Agreement.

LIMITATION OF LIABILITY. IN NO EVENT WILL FREESCALE BE LIABLE, WHETHER IN CONTRACT,
TORT, OR OTHERWISE, FOR ANY INCIDENTAL, SPECIAL, INDIRECT, CONSEQUENTIAL OR

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 59

References

PUNITIVE DAMAGES, INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR ANY LOSS OF USE,
LOSS OF TIME, INCONVENIENCE, COMMERCIAL LOSS, OR LOST PROFITS, SAVINGS, OR
REVENUES TO THE FULL EXTENT SUCH MAY BE DISCLAIMED BY LAW.

COMPLIANCE WITH LAWS; EXPORT RESTRICTIONS. You must use the Software in accordance with
all applicable U.S. laws, regulations and statutes. You agree that neither you nor your licensees (if any)
intend to or will, directly or indirectly, export or transmit the Software to any country in violation of U.S.
export restrictions.

GOVERNMENT USE. Use of the Software and any corresponding documentation, if any, is provided with
RESTRICTED RIGHTS. Use, duplication or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(lI) and (2) of the Commercial Computer Software--Restricted Rights
at 48 CFR 52.227-19, as applicable. Manufacturer is Freescale, Inc., 6501 William Cannon Drive West,
Austin, TX, 78735.

HIGH RISK ACTIVITIES. You acknowledge that the Software is not fault tolerant and is not designed,
manufactured or intended by Freescale for incorporation into products intended for use or resale in on-
line control equipment in hazardous, dangerous to life or potentially life-threatening environments
requiring fail-safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines or weapons systems, in which the
failure of products could lead directly to death, personal injury or severe physical or environmental
damage (“High Risk Activities”). You specifically represent and warrant that you will not use the Software
or any derivative work of the Software for High Risk Activities.

CHOICE OF LAW; VENUE; LIMITATIONS. You agree that the statutes and laws of the United States and
the State of Texas, USA, without regard to conflicts of laws principles, will apply to all matters relating to
this Agreement or the Software, and you agree that any litigation will be subject to the exclusive
jurisdiction of the state or federal courts in Texas, USA. You agree that regardless of any statute or law
to the contrary, any claim or cause of action arising out of or related to this Agreement or the Software
must be filed within one (1) year after such claim or cause of action arose or be forever barred.

PRODUCT LABELING. You are not authorized to use any Freescale trademarks, brand names, or logos.

ENTIRE AGREEMENT. This Agreement constitutes the entire agreement between you and Freescale

regarding the subject matter of this Agreement, and supersedes all prior communications, negotiations,
understandings, agreements or representations, either written or oral, if any. This Agreement may only
be amended in written form, executed by you and Freescale.

SEVERABILITY. If any provision of this Agreement is held for any reason to be invalid or unenforceable,
then the remaining provisions of this Agreement will be unimpaired and, unless a modification or
replacement of the invalid or unenforceable provision is further held to deprive you or Freescale of a
material benefit, in which case the Agreement will immediately terminate, the invalid or unenforceable
provision will be replaced with a provision that is valid and enforceable and that comes closest to the
intention underlying the invalid or unenforceable provision.

NO WAIVER. The waiver by Freescale of any breach of any provision of this Agreement will not operate
or be construed as a waiver of any other or a subsequent breach of the same or a different provision.

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

60 Freescale Semiconductor

Trademarks

Trademarks

* Freescale and the Freescale logo are registered trademarks
of Freescale, Inc.

* Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the
U.S. and other countries.

* UNIXis a registered trademark of Open Group in the US and other countries.

* P&E is a trademark of P&E Microcomputer Systems, Inc.

e CodeWarrior®

Inc.

is a registered trademark of MetroWerks, a wholly owned subsidiary of Freescale,

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 61

Trademarks

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

62 Freescale Semiconductor

Trademarks

Getting Started with HCS08 and CodeWarrior Using C, Rev. 1

Freescale Semiconductor 63

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

AN2616
Rev. 1, 03/2005

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004. All rights reserved.

freescale"

semiconductor

	Overview
	Contents
	HCS08 Demonstration and Evaluation Boards
	Introduction
	What is an HCS08?
	Background debug mode
	HCS08 serial monitor
	BDM or monitor mode?

	Developing an Application with CodeWarrior
	Description of hardware used
	Setting up the demo board
	Setting up the evaluation board

	Creating a new project CodeWarrior
	CodeWarrior generated project
	Initial code

	Connecting the hardware
	Background debug mode (BDM)
	Selecting a BDM
	HCS08 serial monitor mode
	Running the code
	Using monitor
	Using BDM
	Debugging - communications established

	Adding files to the project
	Header file for demo board
	Add a file to a project
	Add file to project

	Illuminate LED2 if SW2 is pressed
	Run the code

	Use PWM to flash LED
	Invoke the debugger

	Add interrupt on SW1
	Invoke the debugger

	Set clock frequency
	Application complete

	Metrowerks HCS08 CodeWarrior Development Tools
	Metrowerks CodeWarrior
	Additional HC(S)08 help included with CodeWarrior
	Metrowerks
	Metrowerks CodeWarrior for HC(S)08
	What’s on the CD
	System requirements for CodeWarrior
	Installing CodeWarrior
	CodeWarrior license
	CodeWarrior updates
	CodeWarrior “projects”

	CodeWarrior C and HCS08
	Data types
	What a project consists of
	Using CodeWarrior device definitions
	Device file (MC9S08GB60.c)
	Header file (MC9S08GB60.h)
	Register and bit definitions
	How device registers and bits are used
	How device registers are defined and used
	Summary:

	How device register bit(s) are defined / used
	Register names used with multiple peripherals

	Frequently Asked Questions
	Where can I get the most up to date documentation
	Device and/or target isn't supported by Metrowerks
	USB BDM doesn't work with Metrowerks HC08 Codewarrior v3.0
	Tips on using a parallel BDM pod?
	P&E parallel Multilink BDM & laptop
	Monitor mode is not working?
	How do I reprogram the HCS08 monitor?
	How can I program small batches of HCS08 devices without tying up a PC?
	Code in FLASH only works when BDM is powered?
	Debugger not showing the source code of main.c?
	How do I set a breakpoint in the debugger?
	Debugging does not seem to use the hardware/select in-circuit debug
	How can I see the assembler code generated for C statements?
	What are all the interrupt vector numbers for the MC9S08GB60?
	Where are header files located?
	Should I use bit fields or masks for bit manipulation?
	How does the compiler use page 0?
	How can I force a variable to reside in page 0?
	How do I disable the watchdog?
	Problems with variable, structure, or type definition?
	How do I add interrupt handlers?
	How can I use the assembler within C?
	How are interrupt vectors redirected?
	How do I use masks?
	How do I set the compiler options?
	Big Endian or Little Endian?
	Check core and compiler for Big Endianness

	Is Linux/Unix support available?

	References
	Trademarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (U.S. Prepress Defaults)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

