

# GSM STK BIP Application Note

#### **GSM/GPRS Module Series**

Rev. GSM\_STK\_BIP\_Application\_Note\_V3.2

Date: 2015-05-11



Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

#### **Quectel Wireless Solutions Co., Ltd.**

Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233

Tel: +86 21 5108 6236 Mail: info@quectel.com

#### Or our local office, for more information, please visit:

http://www.quectel.com/support/salesupport.aspx

#### For technical support, to report documentation errors, please visit:

http://www.quectel.com/support/techsupport.aspx

Or Email: Support@quectel.com

#### **GENERAL NOTES**

QUECTEL OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

#### **COPYRIGHT**

THIS INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTABLE, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THIS CONTENTS ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2015. All rights reserved.



## **About the document**

## **History**

| Revision | Date       | Author     | Description                                     |
|----------|------------|------------|-------------------------------------------------|
| 3.0      | 2013-02-03 | Vicent GAO | Initial                                         |
| 3.1      | 2013-11-13 | Vicent GAO | Added new chapter: Example of STK BIP Functions |
| 3.2      | 2015-05-11 | Vicent GAO | Added applicable modules                        |



## **Contents**

| Ab  | out the docu | ument                                     | 2  |
|-----|--------------|-------------------------------------------|----|
| Со  | ntents       |                                           | 3  |
| Tal | ble Index    |                                           | 5  |
| 1   | Introduction | on                                        | 6  |
| 2   | STK BIP F    | unctions                                  | 7  |
| _   |              | EN CHANNEL Related To GPRS                |    |
|     | 2.1.1.       | Command Structure                         |    |
|     | 2.1.2.       | Example And Analysis                      |    |
|     |              | OSE CHANNEL                               |    |
|     | 2.2.1.       | Command Structure                         |    |
|     | 2.2.2.       | Example And Analysis                      |    |
|     | 2.3. REC     | CEIVE DATA                                |    |
|     | 2.3.1.       | Command Structure                         |    |
|     | 2.3.2.       | Example And Analysis                      |    |
|     | 2.4. SEN     | ID DATA                                   |    |
|     | 2.4.1.       | Command Structure                         |    |
|     | 2.4.2.       | Example And Analysis                      | 13 |
| 3   | STK BIP F    | unctions Procedure                        | 14 |
|     | 3.1. OPE     | EN CHANNEL Related To GPRS                |    |
|     | 3.1.1.       | Common Procedure                          | 14 |
|     | 3.1.2.       | Detailed Procedure                        | 15 |
|     | 3.1.3.       | TERMINAL RESPONSE                         | 16 |
|     | 3.2. CLO     | SE CHANNEL                                | 17 |
|     | 3.2.1.       | Common Procedure                          | 17 |
|     | 3.2.2.       | Detailed Procedure                        | 17 |
|     | 3.2.3.       | TERMINAL RESPONSE                         | 18 |
|     | 3.3. REC     | CEIVE DATA                                | 19 |
|     | 3.3.1.       | Common Procedure                          | 19 |
|     | 3.3.2.       | Detailed Procedure                        | 19 |
|     | 3.3.3.       | TERMINAL RESPONSE                         | 20 |
|     | 3.4. SEN     | ID DATA                                   | 22 |
|     | 3.4.1.       | Common Procedure                          | 22 |
|     | 3.4.2.       | Detailed Procedure                        | 22 |
|     | 3.4.3.       | TERMINAL RESPONSE                         | 23 |
| 4   | Example o    | of STK BIP Functions                      | 25 |
| 5   | SIMPLE-TL    | LV Data Objects                           | 27 |
|     | 5.1. Bear    | rer Description                           | 27 |
|     | 5.1.1.       | Bearer Parameters For GPRS/Packet Service |    |
|     | 5.2. Buffe   | er Size                                   | 28 |



| 7 | Appe  | endix A Reference                          | 34 |
|---|-------|--------------------------------------------|----|
|   | 6.2.  | Type Of Command And Next Action Indication | 33 |
|   |       | SIMPLE-TLV Tags In Both Directions         |    |
| 6 | Tag \ | Values                                     | 32 |
|   | 5.7.  | Channel Data                               | 31 |
|   | 5.6.  | Channel Data Length                        | 30 |
|   | 5.5.  | Other Address                              | 29 |
|   | 5.4.  | SIM/ME Interface Transport Level           | 29 |
|   | 5.3.  | Network Access Name                        | 28 |



## **Table Index**

| TABLE 1: COMMAND STRUCTURE OF OPEN CHANNEL RELATED TO GPRS           | 7  |
|----------------------------------------------------------------------|----|
| TABLE 2: COMMAND STRUCTURE OF CLOSE CHANNEL                          | g  |
| TABLE 3: COMMAND STRUCTURE OF RECEIVE DATA                           | 11 |
| TABLE 4: COMMAND STRUCTURE OF SEND DATA                              | 12 |
| TABLE 5: TERMINAL RESPONSE STRUCTURE OF OPEN CHANNEL RELATED TO GPRS | 16 |
| TABLE 6: TERMINAL RESPONSE STRUCTURE OF CLOSE CHANNEL                | 18 |
| TABLE 7: TERMINAL RESPONSE STRUCTURE OF RECEIVE DATA                 | 20 |
| TABLE 8: TERMINAL RESPONSE STRUCTURE OF SEND DATA                    | 23 |
| TABLE 9: STRUCTURE OF BEARER DESCRIPTION                             | 27 |
| TABLE 10: STRUCTURE OF BUFFER SIZE                                   | 28 |
| TABLE 11: STRUCTURE OF NETWORK ACCESS NAME                           | 28 |
| TABLE 12: STRUCTURE OF SIM/ME INTERFACE TRANSPORT LEVEL              | 29 |
| TABLE 13: STRUCTURE OF OTHER ADDRESS                                 |    |
| TABLE 14: STRUCTURE OF CHANNEL DATA LENGTH                           | 30 |
| TABLE 15: STRUCTURE OF CHANNEL DATA                                  | 31 |
| TABLE 16: STRUCTURE OF CR                                            | 32 |
| TABLE 17: VALUE OF CR                                                |    |
| TABLE 18: LIST OF TAG VALUE                                          |    |
| TABLE 19: TYPE OF COMMAND                                            |    |
| TABLE 20: RELATED DOCUMENTS                                          | 34 |
| TARLE 21: TERMS AND ABBREVIATIONS                                    | 3/ |



# 1 Introduction

This document mainly introduces how to develop functions about STK BIP for AP. Note that the GSM module which the AP uses shall support class "e".

This document is applicable to all Quectel GSM modules except for GCxx modules.



# 2 STK BIP Functions

STK BIP contains four functions for **OPEN CHANNEL**, **CLOSE CHANNEL**, **RECEIVE DATA**, and **SEND DATA**. The SIM uses STK BIP functions to indicate that the ME has been interacted with the network.

This chapter introduces the structure of STK BIP function and gives corresponding example.

#### 2.1. OPEN CHANNEL Related to GPRS

This command is used for SIM to tell AP to activate a PDP context and establish a network connection.

#### 2.1.1. Command Structure

Table 1: Command Structure of OPEN CHANNEL Related to GPRS

| Section | M/O                                                                            | Min                                                                              | Length                                                                                                                                                                                                                                                                                      |
|---------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13.2    | M                                                                              | Υ                                                                                | 1                                                                                                                                                                                                                                                                                           |
| -       | M                                                                              | Υ                                                                                | 1 or 2                                                                                                                                                                                                                                                                                      |
| 12.6    | M                                                                              | Υ                                                                                | А                                                                                                                                                                                                                                                                                           |
| 12.7    | M                                                                              | Υ                                                                                | В                                                                                                                                                                                                                                                                                           |
| 12.2    | 0                                                                              | N                                                                                | С                                                                                                                                                                                                                                                                                           |
| 12.31   | 0                                                                              | N                                                                                | D                                                                                                                                                                                                                                                                                           |
| 12.52   | M                                                                              | Υ                                                                                | Е                                                                                                                                                                                                                                                                                           |
| 12.55   | M                                                                              | Υ                                                                                | F                                                                                                                                                                                                                                                                                           |
| 12.61   | 0                                                                              | N                                                                                | G                                                                                                                                                                                                                                                                                           |
| 12.58   | 0                                                                              | N                                                                                | Н                                                                                                                                                                                                                                                                                           |
| 12.59   | 0                                                                              | N                                                                                | I                                                                                                                                                                                                                                                                                           |
|         | 13.2<br>-<br>12.6<br>12.7<br>12.2<br>12.31<br>12.52<br>12.55<br>12.61<br>12.58 | 13.2 M  - M  12.6 M  12.7 M  12.2 O  12.31 O  12.52 M  12.55 M  12.61 O  12.58 O | 13.2       M       Y         -       M       Y         12.6       M       Y         12.7       M       Y         12.2       O       N         12.31       O       N         12.52       M       Y         12.55       M       Y         12.61       O       N         12.58       O       N |



| Data destination address 15.58 | 0 | Ν | J |  |
|--------------------------------|---|---|---|--|

#### 2.1.2. Example and Analysis

#### Original octets:

**D0**34**81**03014001**82**028182**05**00**B5**0702010403041F02**39**020200**C7**0E046D326D63087765627472696 16C**BC**03012EE1**BE**0521D47B0A1B

#### Analysis result:

D0: SIM proactive command tag

34: Length is 52

8103014001: Command detail

81: Command detail tag

03: Length is 3

01: Command number

40: Command type, represent for OPEN CHANNEL

01: Command qualifier

82028182: Device identities

82: Device identities tag

02: Length is 2

81: Source device identity, represent for SIM

82: Destination device identity, represent for ME

0500: Alpha identifier

05: Alpha identifier tag

00: Length is 00

B50702010403041F02: Bearer description

B5: Bearer description tag

07: Length is 7

02: Bearer type, reserved for GSM/3GPP

01: Precedence class,

04: Delay class,

<delay> of +CGQREQ

03: Reliability class,

<reliability> of +CGQREQ

04: Peak throughput class,

<peak> of +CGQREQ

1F: Mean throughput class,

<mean> of +CGQREQ

02: Packet data protocol type, represent for IP,

<PDP\_type> of +CGQREQ

39020200: Buffer size

39: Buffer size tag



02: Length is 2

0200: Buffer size is 512 bytes

C70E046D326D6308776562747269616C: Network access name

C7: Network access name tag

0E: Length is 14

04: Length of APN network identifier

6D326D63: APN network identifier, represent for m2mc

08: Length of APN operator identifier

776562747269616C: APN operator identifier, represent for webtrial

BC03012EE1: SIM/ME interface transport level

BC: SIM/ME interface transport level tag

03: Length is 3 01: **UDP** 

2EE1: Port number, represent for 12001

BE0521D47B0A1B: Data destination

BE: Data destination tag

05: Length is 5

21: Type of address, represent for IPv4

D47B0A1B: Address, represent for 212.123.10.27 (IP Address)

#### **NOTE**

About how to OPEN CHANNEL with module, please refer to the document "GSM\_TCPIP\_Application\_Note\_V1.1.pdf".

#### 2.2. CLOSE CHANNEL

This command is used for SIM to tell AP to close previous opened network connection.

#### 2.2.1. Command Structure

**Table 2: Command Structure of CLOSE CHANNEL** 

| Description               | Section | M/O | Min | Length |
|---------------------------|---------|-----|-----|--------|
| Proactive SIM command tag | 13.2    | M   | Υ   | 1      |
| Length (A+B+C+D)          | -       | M   | Υ   | 1 or 2 |



| Command details   | 12.6  | M | Υ | А |  |
|-------------------|-------|---|---|---|--|
| Device identities | 12.7  | M | Υ | В |  |
| Alpha identifier  | 12.2  | 0 | N | С |  |
| Icon identifier   | 12.31 | 0 | N | D |  |

#### 2.2.2. Example And Analysis

#### Original octets:

#### **D0**0B**81**03014100**82**028121**05**00

#### Analysis result:

D0: SIM proactive command tag

0B: Length is 11

8103014100: Command detail

81: Command detail tag

03: Length is 3

01: Command number

41: Command type, represent for CLOSE CHANNEL

00: Command qualifier

82028121: Device identities

82: Device identities tag

02: Length is 2

81: Source device identity, represent for SIM

21: Destination device identity, represent for CHANNEL 1

0500: Alpha identifier

05: Alpha identifier tag

00: Length is 00

#### **NOTE**

About how to CLOSE CHANNEL with module, please refer to the document "GSM\_TCPIP\_Application\_Note\_V1.1.pdf".



#### 2.3. RECEIVE DATA

This command is used for SIM to tell AP to receive data from previous established network connection.

#### 2.3.1. Command Structure

**Table 3: Command Structure of RECEIVE DATA** 

| Description               | Section | M/O | Min | Length |
|---------------------------|---------|-----|-----|--------|
| Proactive SIM command tag | 13.2    | М   | Υ   | 1      |
| Length (A+B+C+D+E)        | -       | М   | Υ   | 1 or 2 |
| Command details           | 12.6    | M   | Υ   | A      |
| Device identities         | 12.7    | M   | Υ   | В      |
| Alpha identifier          | 12.2    | 0   | N   | С      |
| Icon identifier           | 12.31   | 0   | N   | D      |
| Channel data length       | 12.54   | M   | Υ   | E      |

#### 2.3.2. Example and Analysis

Original octets:

**D0**0E**81**03014200**82**028121**05**00**37**0120

Analysis result:

D0: SIM proactive command tag

0E: Length is 14

8103014200: Command detail

81: Command detail tag

03: Length is 3

01: Command number

42: Command type, represent for **RECEIVE DATA** 

00: Command qualifier

82028121: Device identities

82: Device identities tag



02: Length is 2

81: Source device identity, represent for SIM

21: Destination device identity, represent for CHANNEL 1

0500: Alpha identifier

05: Alpha identifier tag00: Length is 00

370120: Channel data length

37: Channel data length tag

01: Length is 00

20: Channel data length is 32

#### **NOTE**

About how to RECEIVE DATA with module, please refer to the document "GSM\_TCPIP\_Application\_Note\_V1.1.pdf".

#### 2.4. SEND DATA

This command is used for SIM to tell AP to send data to previously established network connection.

#### 2.4.1. Command Structure

**Table 4: Command Structure of SEND DATA** 

| Description               | Section | M/O | Min | Length |
|---------------------------|---------|-----|-----|--------|
| Proactive SIM command tag | 13.2    | M   | Υ   | 1      |
| Length (A+B+C+D+E)        | -       | M   | Υ   | 1 or 2 |
| Command details           | 12.6    | M   | Υ   | А      |
| Device identities         | 12.7    | M   | Υ   | В      |
| Alpha identifier          | 12.2    | 0   | N   | С      |
| Icon identifier           | 12.31   | 0   | N   | D      |
| Channel data              | 12.53   | M   | Υ   | E      |



#### 2.4.2. Example and Analysis

#### Original octets:

**D0**3D**81**03014301**82**028121**05**00**36**30415234202B330829408080005529995A0102340302F4803514FF FFFFF7F1F00DFFF00001F4308110600000003E0100

#### Analysis result:

D0: SIM proactive command tag

3D: Length is 61

8103014301: Command detail

81: Command detail tag

03: Length is 3

01: Command number

43: Command type, represent for SEND DATA

01: Command qualifier

82028121: Device identities

82: Device identities tag

02: Length is 2

81: Source device identity, represent for SIM

21: Destination device identity, represent for CHANNEL 1

0500: Alpha identifier

05: Alpha identifier tag

00: Length is 00

3630415234202B330829408080005529995A0102340302F4803514FFFFFFFFFFFF00001 F4308110600000003E0100: Channel data

36: Channel data tag

30: Length is 48

415234202B330829408080005529995A0102340302F4803514FFFFFFFFFFFF00DFFF00001F430

8110600000003E0100: **SDU** (Needed send data)

#### **NOTE**

About how to SEND DATA with module, please refer to the document "GSM\_TCPIP\_Application\_Note\_V1.1.pdf".



# 3 STK BIP Functions Procedures

This chapter introduces the procedures for STK BIP functions and corresponding syntax of **TERMINAL RESPONSE**.

#### 3.1. OPEN CHANNEL Related to GPRS

This command is used for SIM to tell AP to activate a PDP context and establish a network connection.

#### 3.1.1. Common Procedure

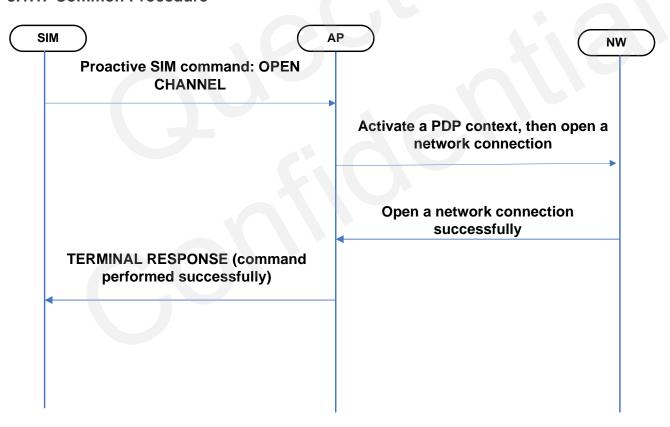



Figure 1: OPEN CHANNEL Related to GPRS



#### 3.1.2. Detailed Procedure

Upon receiving this command, the ME shall decide if it is able to execute the command. Examples are given below, but the list is not exhaustive:

- If immediate PDP context activation is requested and the ME is unable to set-up a channel using the
  exact parameters provided by the SIM, the ME sets up the channel using the best parameters it can
  support and informs the SIM of the channel identifier and the modified parameters using TERMINAL
  RESPONSE (Command performed with modification);
- If immediate PDP context activation is requested and the ME is unable to activate the PDP context
  with the network using the exact parameters provided by the SIM, the ME informs the SIM using
  TERMINAL RESPONSE (Network currently unable to process command). The operation is aborted;
- If on demand link establishment is requested and the ME is unable to set-up a channel using the
  exact parameters provided by the SIM, the ME sets up the channel using the best parameters it can
  support and informs the SIM of the channel identifier and the modified parameters using TERMINAL
  RESPONSE (Command performed with modification);
- If the command is rejected because the ME has no channel left with the requested bearer capabilities, the ME informs the SIM using TERMINAL RESPONSE (Bearer independent protocol error). The operation is aborted;
- If the user does not accept the channel set-up, the ME informs the SIM using TERMINAL RESPONSE (User did not accept the proactive command). The operation is aborted;
- If the user has indicated the need to end the proactive SIM session, the ME informs the SIM using TERMINAL RESPONSE (Proactive SIM session terminated by the user). The operation is aborted;
- If the command is rejected because the class B ME is busy on a call, the ME informs the SIM using TERMINAL RESPONSE (ME unable to process command - currently busy on call). The operation is aborted:
- If the command is rejected because the class B ME is busy on a SS transaction, the ME informs the SIM using TERMINAL RESPONSE (ME unable to process command - currently busy on SS transaction). The operation is aborted;

The ME shall inform the SIM that the command has been successfully executed using TERMINAL RESPONSE:

 If immediate PDP context activation is requested, the ME allocates buffers, activates the PDP context and informs the SIM and reports the channel identifier using TERMINAL RESPONSE (Command performed successfully);



 If on demand PDP context activation is requested, the ME allocates buffers, informs the SIM and reports the channel identifier using TERMINAL RESPONSE (Command performed successfully);

#### 3.1.3. TERMINAL RESPONSE

#### 3.1.3.1. TERMINAL RESPONSE (Command Performed Successfully)

Table 5: TERMINAL RESPONSE Structure of OPEN CHANNEL Related to GPRS

| Description       | Section | M/O | Length (byte) |
|-------------------|---------|-----|---------------|
| Command details   | 12.6    | М   | А             |
| Device identities | 12.7    | M   | В             |
| Result            | 12.12   | M   | С             |
| Channel status    | 12.56   | M   | D             |

#### Example and analysis

#### Original octets:

#### **81**03014001**82**028281**83**0100**38**028100

#### Analysis result:

8103014001: Command details

81: Command details tag

03: Length is 3

01: Command number

40: Command type, represent for **OPEN CHANNEL** 

82028281: Device identities

82: Device identities tag

02: Length is 2

82: Source device identity, represent for ME

81: Destination device identity, represent for SIM

830100: Result

83: Result tag

01: Length is 1

00: Command performed successfully

38028100: Channel status



38: Channel status tag

02: Length is 2

8100: Channel status, represent for channel identifier is 1 and link established or PDP context

#### 3.2. CLOSE CHANNEL

This command is used for SIM to tell AP to close previously established network connection.

#### 3.2.1. Common Procedure

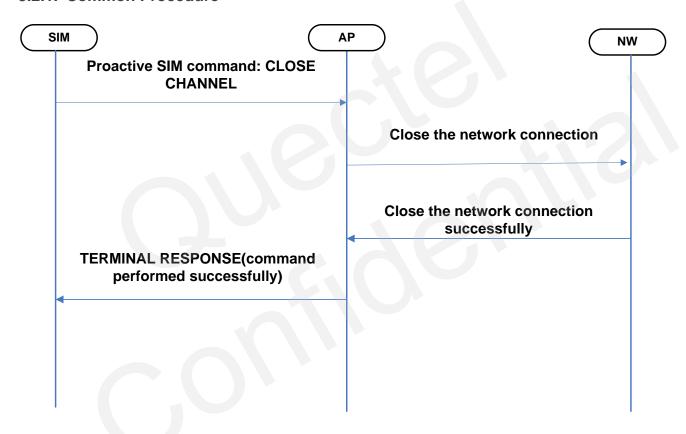



Figure 2: CLOSE CHANNEL

#### 3.2.2. Detailed Procedure

Upon receiving this command, the ME shall decide if it is able to execute the command:

• If the command is rejected because the channel identifier is not valid, the ME informs the SIM using TERMINAL RESPONSE (Bearer independent protocol error);



- If the command is rejected because the requested channel is in error, the ME informs the SIM using TERMINAL RESPONSE (Bearer independent protocol error);
- If the ME is able to process the command:
- ME shall release the data transfer, discard the remaining data and inform the SIM that the command has been successfully executed, using TERMINAL RESPONSE;

#### 3.2.3. TERMINAL RESPONSE

#### 3.2.3.1. TERMINAL RESPONSE (Command Performed Successfully)

**Table 6: TERMINAL RESPONSE Structure of CLOSE CHANNEL** 

| Description       | Section | M/O | Length (byte) |
|-------------------|---------|-----|---------------|
| Command details   | 12.6    | M   | A             |
| Device identities | 12.7    | M   | В             |
| Result            | 12.12   | M   | С             |

#### Example and analysis

#### Original octets:

#### **81**03014101**82**028281**83**0100**38**028100

#### Analysis result:

8103014101: Command details

81: Command details tag

03: Length is 3

01: Command number

41: Command type, represent for CLOSE CHANNEL

82028281: Device identities

82: Device identities tag

02: Length is 2

82: Source device identity, represent for ME

81: Destination device identity, represent for SIM

830100: Result

83: Result tag

01: Length is 1



#### 00: Command performed successfully

#### 3.3. RECEIVE DATA

This command is used for SIM to tell AP to receive data from previously established network connection.

#### 3.3.1. Common Procedure

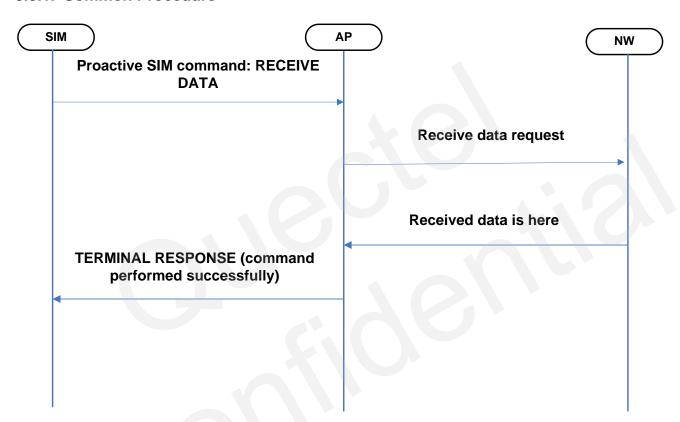



Figure 3: RECEIVE DATA

#### 3.3.2. Detailed Procedure

Upon receiving this command, the ME shall return the data available in the Rx buffer corresponding to the Channel identifier. Examples are given below, but the list is not exhaustive:

If the ME is unable to process the command:

 If the command is rejected because the requested channel is already closed the ME informs the SIM using TERMINAL RESPONSE (Bearer independent protocol error);



• If the user has indicated the need to end the proactive SIM session, the ME informs the SIM using TERMINAL RESPONSE (Proactive SIM session terminated by the user).

If the ME is able to process the command:

- If the requested number of bytes is available in the buffer, the ME shall inform the SIM that the
  command has been successfully executed, using TERMINAL RESPONSE and return the requested
  data and the number of bytes remaining in the channel buffer (or FF if more than the maximum bytes
  remains).
- If the requested number of bytes is available in the buffer but the whole requested data cannot be included in the TERMINAL RESPONSE because of APDU size limits, the ME shall return the maximum number of bytes possible according to the length of other TLVs. The ME shall inform the SIM that the command has been successfully executed, using TERMINAL RESPONSE and shall indicate the number of bytes remaining in the channel buffer (or FF if more than the maximum bytes remains).
- If the requested number of bytes is not yet available in the buffer, the ME shall NOT wait for the
  requested number of bytes to arrive. The ME shall inform the SIM, using TERMINAL RESPONSE
  (Command performed with missing information) and returns the data currently available in the
  channel buffer.
- In the case of packet/datagram transmission, the ME shall put in the Rx buffer a complete packet SDU and only one at one time. For example, if UDP datagrams are received by the ME, the latter shall insert only the SDU of each UDP packet received in the Rx buffer. After one SDU has been downloaded by the SIM (using one or several RECEIVE DATA commands), the ME shall insert the next SDU of UDP datagram, and so on.
- If the alpha identifier is provided by the SIM, the ME shall use it to inform the user. The ME may also use it to inform the user during data transfer. If an icon is provided by the SIM, the icon indicated in the command may be used by the ME to inform the user, in addition to, or instead of the alpha identifier, as indicated with the icon qualifier (see sub-clause 6.5.4).

#### 3.3.3. TERMINAL RESPONSE

#### 3.3.3.1. TERMINAL RESPONSE (Command Performed Successfully)

**Table 7: TERMINAL RESPONSE Structure of RECEIVE DATA** 

| Description     | Section | M/O | Length (byte) |
|-----------------|---------|-----|---------------|
| Command details | 12.6    | M   | A             |



| Device identities   | 12.7  | M | В |
|---------------------|-------|---|---|
| Result              | 12.12 | М | С |
| Channel data        | 12.53 | М | D |
| Channel data length | 12.54 | М | E |

#### Example and analysis

#### Original octets:

#### **81**03014201**82**028281**83**0100**36**06313233343536**37**0100

#### Analysis result:

8103014201: Command details

81: Command details tag

03: Length is 3

01: Command number

42: Command type, represent for RECEIVE DATA

82028281: Device identities

82: Device identities tag

02: Length is 2

82: Source device identity, represent for ME

81: Destination device identity, represent for SIM

830100: Result

83: Result tag 01: Length is 1

00: Command performed successfully

3606313233343536: Channel data

36: Channel data tag

06: Length is 6

313233343536: Channel data

370100: Channel data length

37: Channel data length tag

01: Length is 1

00: Channel data length is 0, represent for remain byte in received channel data buffer is 0



#### 3.4. SEND DATA

This command is used for SIM to tell AP to send data to previously established network connection.

#### 3.4.1. Common Procedure

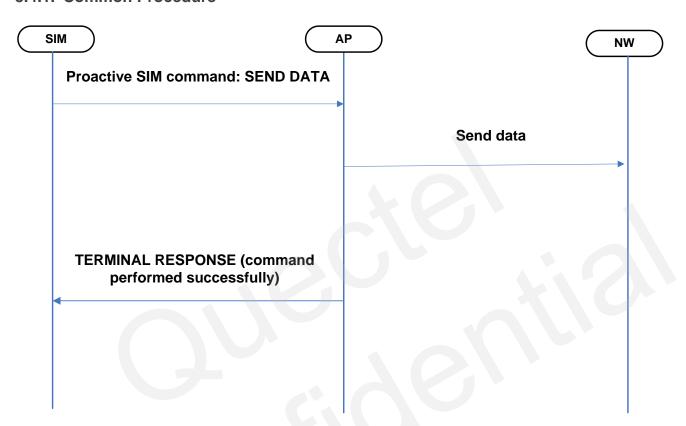



Figure 4: SEND DATA

#### 3.4.2. Detailed Procedure

Upon receiving this command, the ME shall either immediately send data or store provided data into the Tx buffer corresponding to the Channel identifier. Examples as given below, but the list is not exhaustive:

If the ME is unable to process the command:

- If the command is rejected because the requested channel is already closed the ME informs the SIM using TERMINAL RESPONSE (Bearer Independent Protocol error channel identifier not valid);
- If the command is rejected because the ME could not establish the link (after OPEN CHANNEL (on demand)) or the link was dropped, the ME informs the SIM using TERMINAL RESPONSE (Bearer Independent Protocol error – channel closed);



- If the command is rejected because the channel is temporarily unavailable the ME informs the SIM using TERMINAL RESPONSE (ME currently unable to process command);
- If the requested number of bytes of empty space is not yet available in the buffer the ME informs the SIM using TERMINAL RESPONSE (Bearer Independent Protocol error);
- If the user has indicated the need to end the proactive SIM session, the ME informs the SIM using TERMINAL RESPONSE (Proactive SIM session terminated by the user).

If the ME is able to process the command:

- if the requested number of bytes of empty space is available in the buffer the ME shall inform the SIM that the command has been successfully executed, using TERMINAL RESPONSE and return the number of bytes of empty space available in the Tx buffer (or FF if more then 255 bytes are available):
- In the case of packet/datagram transmission, the structure of the SDU sent by the SIM to the ME shall be fully respected while sending to the ME external interface. The size of the SDU is therefore limited by the size of the packet PDU sent over the ME external interface. In order to send one complete SDU, the SAT application may fill the Tx buffer with several SEND DATA commands, if necessary. Then the ME shall send the complete SDU in one packet PDU;
- If the alpha identifier is provided by the SIM, the ME shall use it to inform the user. The ME may also use it to inform the user during data transfer. If an icon is provided by the SIM, the icon indicated in the command may be used by the ME to inform the user, in addition to, or instead of the alpha identifier, as indicated with the icon qualifier (see sub-clause 6.5.4).

#### 3.4.3. TERMINAL RESPONSE

#### 3.4.3.1. TERMINAL RESPONSE (Command Performed Successfully)

Table 8: TERMINAL RESPONSE Structure of SEND DATA

| Description         | Section | M/O | Length (byte) |
|---------------------|---------|-----|---------------|
| Command details     | 12.6    | M   | A             |
| Device identities   | 12.7    | M   | В             |
| Result              | 12.12   | M   | С             |
| Channel data length | 12.54   | M   | E             |



#### Example and analysis

#### Original octets:

#### 8103014301820282818301003701FF

#### Analysis result:

8103014301: Command details

81: Command details tag

03: Length is 3

01: Command number

43: Command type, represent for SEND DATA

82028281: Device identities

82: Device identities tag

02: Length is 2

82: Source device identity, represent for ME

81: Destination device identity, represent for SIM

830100: Result

83: Result tag

01: Length is 1

00: Command performed successfully

3701FF: Channel data length

37: Channel data length tag

01: Length is 1

00: Channel data length is 255, represent for bytes of empty send channel data buffer is more than 255



# 4 Example of STK BIP Functions

This clause only gives a simple example for using STK BIP functions. It may be different from the actual way.

```
// After selecting STK BIP menu item, STK BIP functions begin to run.
+STKPCI:
0,"D0348103014001820281820500B50702010403041F0239020200C70E046D326D630877656274726
9616CBC03012EE1BE0521D47B0A1B"
                                          // OPEN CHANNEL of STK BIP functions
AT+QIOPEN="UDP","212.123.10.27",12001
                                          // Visit the remote UDP server specified in OPEN
                                            CHANNEL
OK
CONNECT OK
AT+QINDI=1
                                          // Set the mode to handle the received data
OK
AT+STKTR="81030140018202828183010038028100"
                                          // OPEN CHANNEL is ready
OK
+STKPCI: 1,"D03D8103014301820281210500360431323334"
                                          // SEND DATA of STK BIP functions
AT+QISEND=4
                                          // Send 4 bytes data specified in SEND DATA to the
                                            remote server
>1234
SEND OK
AT+STKTR="8103014301820282818301003701FF"
                                          // SEND DATA is ready
OK
+STKPCI: 1,"D00E8103014200820281210500370120"
                                          // RECEIVE DATA of STK BIP functions
+QIRDI: 0,1,0
AT+QIRD=0,1,0,1500
                                          // Received data in the buffer of the connection
+QIRD: 212.123.10.27:12001,UDP,4
1234
OK
AT+STKTR="8103014201820282818301003606313233343536370100"
```



// RECEIVE DATA is ready

OK

+STKPCI: 1," D00B8103014100820281210500 "

// CLOSE CHANNEL of STK BIP functions

AT+QICLOSE

// Close the session with the remote server

CLOSE OK

AT+STKTR="81030141018202828183010038028100"

// CLOSE CHANNEL is ready

OK

// Example of STK BIP functions end

#### NOTE

About how to OPEN CHANNEL, CLOSE CHANNEL, RECEIVE DATA, SEND DATA, please refer to the document "GSM\_TCPIP\_Application\_Note\_V1.1.pdf".



# **5** SIMPLE-TLV Data Objects

This chapter only lists data objects related to STK BIP functions.

#### 5.1. Bearer Description

This sub-clause applies only if class "e" is supported.

**Table 9: Structure of Bearer Description** 

| Byte(s)    | Description            | Length |
|------------|------------------------|--------|
| 1          | Bearer description tag | 1      |
| 2          | Length (X+1)           | 1      |
| 3          | Bearer type            | 1      |
| 4 to (3+X) | Bearer parameters      | X      |

#### Coding:

00 = User Termination.

01 = Error Termination.

#### 5.1.1. Bearer Parameters For GPRS/Packet Service

Contents: parameters describing the Quality of Service (QoS) and the type of PDP. This is an element of the PDP context.

The default values of the sub-parameters are manufacturer specific since they depend on the purpose of the device and data services provided by it. Not all combinations and values of these sub-parameters are supported by GSM (refer TS 22.002 [30]).

X (length of parameters) = 6.



Coding: The following values are as defined in TS 27.007 [27], for the quality of Service profile requested "+CGQREQ" extended command. They are coded in hexadecimal.

- Coding of Byte 4 Precedence class: same as the "precedence" subparameter, defined in TS 27.007
   [27].
- Coding of Byte 5 Delay class: same as the "delay" subparameter, defined in TS 27.007 [27].
- Coding of Byte 6 Reliability class: same as the "reliability" subparameter, defined in TS 27.007 [27].
- Coding of Byte 7 Peak throughput class: same as the "peak" subparameter, defined in TS 27.007
   [27].
- Coding of Byte 8 Mean throughput class: same as the "mean" subparameter, defined in TS 27.007
   [27].
- Coding of Byte 9 Packet data protocol type: '02' = IP (Internet Protocol, IETF STD 5);
   All other values are reserved.

#### 5.2. Buffer Size

This sub-clause applies only if class "e" is supported.

**Table 10: Structure of Buffer Size** 

| Byte(s) | Description     | Length |
|---------|-----------------|--------|
| 1       | Buffer size tag | 1      |
| 2       | Length (2)      | 1      |
| 3 to 4  | Buffer size     | 2      |

The Buffer size codes the number of bytes requested by the SIM in an OPEN CHANNEL command or what the ME can offer the SIM (placed in TERMINAL RESPONSE).

#### 5.3. Network Access Name

**Table 11: Structure of Network Access Name** 

| Byte(s) | Description             | Length |
|---------|-------------------------|--------|
| 1       | Network Access Name tag | 1      |



| 2          | Length (X)          | 1 |
|------------|---------------------|---|
| 3 to 3+X-1 | Network Access Name | X |

Content: The Network Access Name is used to identify the Gateway entity, which provides interworking with an external packet data network. For GPRS, the Network Access Name is an APN.

Coding: As defined in TS 23.003 [36].

### 5.4. SIM/ME Interface Transport Level

This sub-clause applies only if class "e" is supported.

Table 12: Structure of SIM/ME Interface Transport Level

| Byte(s) | Description                          | Length |
|---------|--------------------------------------|--------|
| 1       | SIM/ME interface transport level tag | 1      |
| 2       | Length (X)                           | 1      |
| 3       | Transport protocol type              | 1      |
| 4 to 5  | Port number                          | 2      |

Transport protocol type coding:

01': UDP (as defined in RFC 768 [33])02': TCP (as defined in RFC 793 [34])

All other value are reserved

Port number coding: integer

#### 5.5. Other Address

**Table 13: Structure of Other Address** 

| Byte(s) | Description       | Length |
|---------|-------------------|--------|
| 1       | Other address tag | 1      |



| 2          | Length (X)      | 1   |
|------------|-----------------|-----|
| 3          | Type of address | 1   |
| 4 to (X+2) | Address         | X-1 |

A null Local address shall be coded with Length = '00', and no Value part. In that case, the ME shall request a dynamic address.

Coding of Type of address: according to packet data protocol address in TS 04.08 [8].

'21' = IPv4 address

'57' = IPv6 address

'others' = reserved

Coding of address: according to packet data protocol address in TS 04.08 [8].

If type of address indicates IPv4, the Address information in octet 4 to octet 7 contains the IPv4 address. Bit 8 of octet 4 represents the most significant bit of the IP address and bit 1 of octet 7 the least significant bit .

If type of address indicates IPv6, the Address information in octet 4 to octet 19 contains the IPv6 address. Bit 8 of octet 4 represents the most significant bit of the IP address and bit 1 of octet 19 the least significant bit.

## 5.6. Channel Data Length

This sub-clause applies only if class "e" is supported.

**Table 14: Structure of Channel Data Length** 

| Byte(s) | Description             | Length |
|---------|-------------------------|--------|
| 1       | Channel data length tag | 1      |
| 2       | Length (1)              | 1      |
| 3       | Channel data length     | 1      |

The Channel data length codes:

Either the number of bytes that are available in a channel buffer (Tx or Rx buffers negotiated during



OPEN CHANNEL) using TERMINAL RESPONSE. Since the Tx or Rx buffer size can be larger than 255 bytes, 'FF' means "more than 255 bytes are available".

Or the number of bytes that are requested in a RECEIVE DATA command.

#### 5.7. Channel Data

This sub-clause applies only if class "e" is supported.

**Table 15: Structure of Channel Data** 

| Byte(s)          | Description         | Length |
|------------------|---------------------|--------|
| 1                | Channel data tag    | 1      |
| 2 to Y+1         | Length (X)          | Υ      |
| (Y+2) to (Y+X+1) | Channel data string | X      |

#### Contents:

The Channel data object contains application data read from or written to a specific channel buffer in the ME.

#### Coding:

The Channel data string shall be considered by the ME as binary coded on 8 bits.



# **6** Tag Values

This chapter only lists data objects related to STK BIP functions.

## 6.1. SIMPLE-TLV Tags In Both Directions

Table 16: Structure of CR

| 8  | 7         | 6 | 5 | 4 | 3 | 2 | 1 |
|----|-----------|---|---|---|---|---|---|
| CR | Tag Value |   |   |   |   |   |   |

CR: Comprehension required for this object.

Unless otherwise stated, for SIMPLE-TLV data objects it is the responsibility of the SIM application and the ME to decide the value of the CR flag for each data object in a given command.

Handling of the CR flag at the receiving entity is described in sub-clause 6.10.

Table 17: Value of CR

| CR                         | Value |
|----------------------------|-------|
| Comprehension required     | 1     |
| Comprehension not required | 0     |

Table 18: List of Tag Value

| Description            | Length of tag | Tag value, bits 1-7<br>(Range: '01' - '7E') | Tag<br>(CR and Tag value) |
|------------------------|---------------|---------------------------------------------|---------------------------|
| Bearer description tag | 1             | '35'                                        | '35' or 'B5'              |
| Channel data tag       | 1             | '36'                                        | '36' or 'B6'              |



| Channel data length tag                  | 1 | '37'             | '37' or 'B7' |
|------------------------------------------|---|------------------|--------------|
| Buffer size tag                          | 1 | '39'             | '39' or 'B9' |
| SIM/ME interface transport level         | 1 | '3C'             | '3C' or 'BC' |
| Other address (data destination address) | 1 | '3E'             | '3E' or 'BE' |
| Network Access Name                      | 1 | ·47 <sup>'</sup> | '47' or 'C7' |

## 6.2. Type of Command and Next Action Indication

The table below shows the values which shall be used for Type of Command coding (see sub-clause 12.6) and Next Action Indicator coding (see sub-clause 12.24).

**Table 19: Type of Command** 

| Value | Name          | Used for Type of Command coding | Used for Next Action Indicator coding |
|-------|---------------|---------------------------------|---------------------------------------|
| '40'  | OPEN CHANNEL  | X                               | X                                     |
| '41'  | CLOSE CHANNEL | X                               | X                                     |
| '42'  | RECEIVE DATA  | Х                               | X                                     |
| '43'  | SEND DATA     | X                               | Х                                     |



# 7 Appendix A Reference

**Table 20: Related Documents** 

| SN  | Document name                    | Remark                                                                                                                                                                                                                  |
|-----|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [1] | ETSI TS 101 267 V8.9.0 (2001-12) | Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile Equipment (SIM-ME) interface (3GPP TS 11.14 version 8.9.0 Release 1999) |
| [2] | 3GPP TS 27.007 V9.5.0 (2010-09)  | 3 <sup>rd</sup> Generation Partnership Project; Technical Specification Group Core Network and Terminals; AT command set for User Equipment (UE) (Release 9)                                                            |

**Table 21: Terms and Abbreviations** 

| Abbreviation | Description                 |
|--------------|-----------------------------|
| ME           | Mobile Equipment            |
| SIM          | Subscriber Identity Module  |
| BIP          | Bearer Independent Protocol |
| AP           | Application                 |
| NW           | Network                     |
| TLV          | Tag Length Value            |