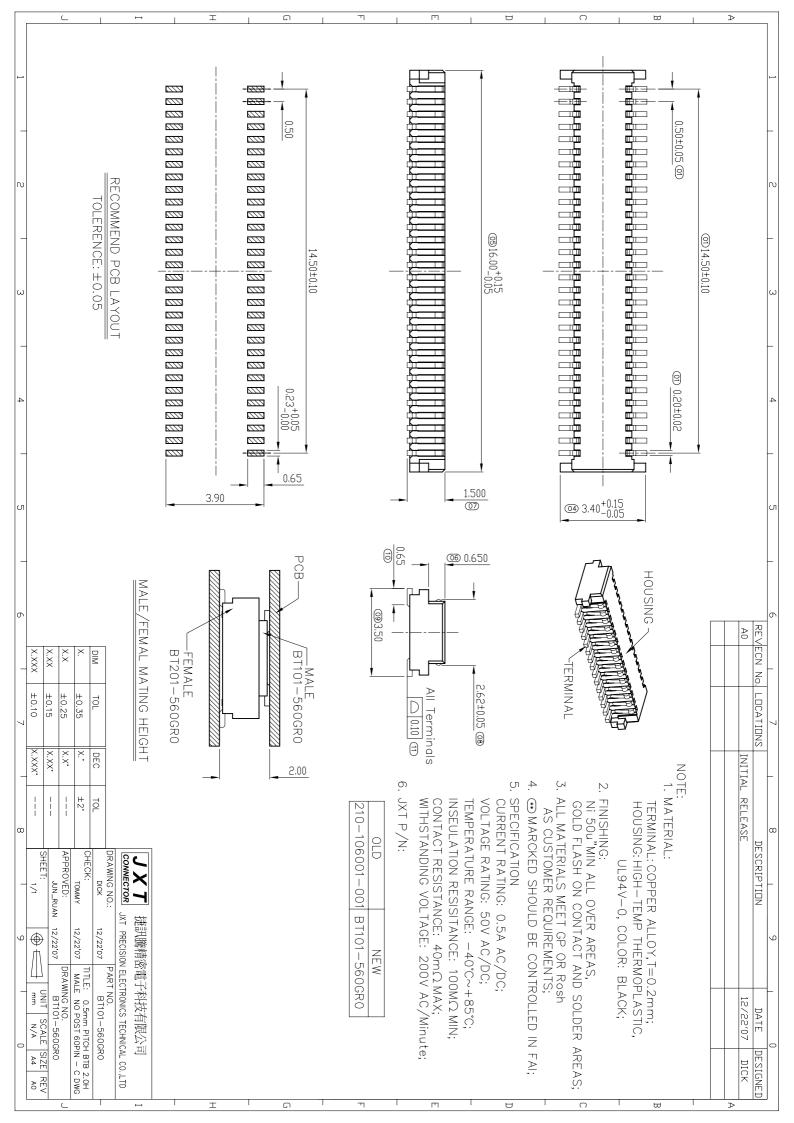
	样品质	成认书				
	APPROVAL SHEET					
FO: 香港全:	纬科技有限	公司				
SPECIFIC	ATION	FOR AI	PPROVA			
DESCRIPTION: 0.5mm	n BTB MALE					
CUSTOMER PROD.NO	BT101-560GR0					
iQiang PROD.NO:	2(008-10-24				
customer approvel Signature:						
			FI AINF			
APPROVAD KEN	CHECKED	R&D 庄伟	ELAINE			

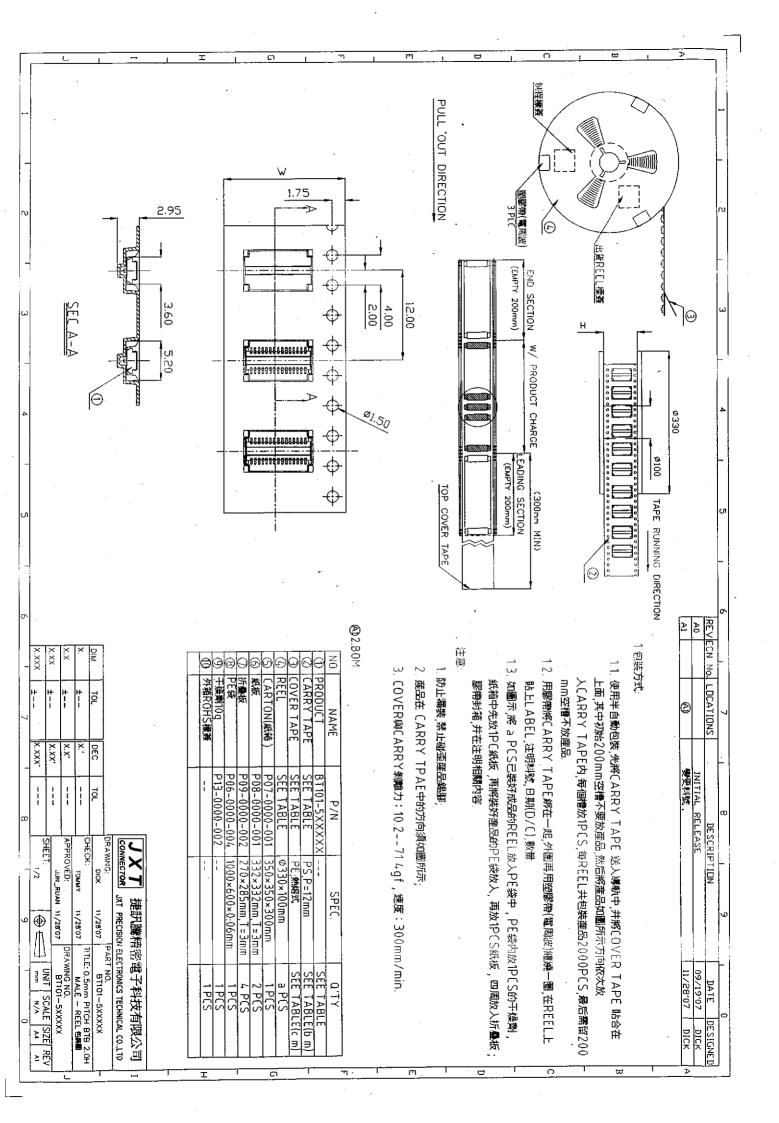
ITEM CHECKLIST

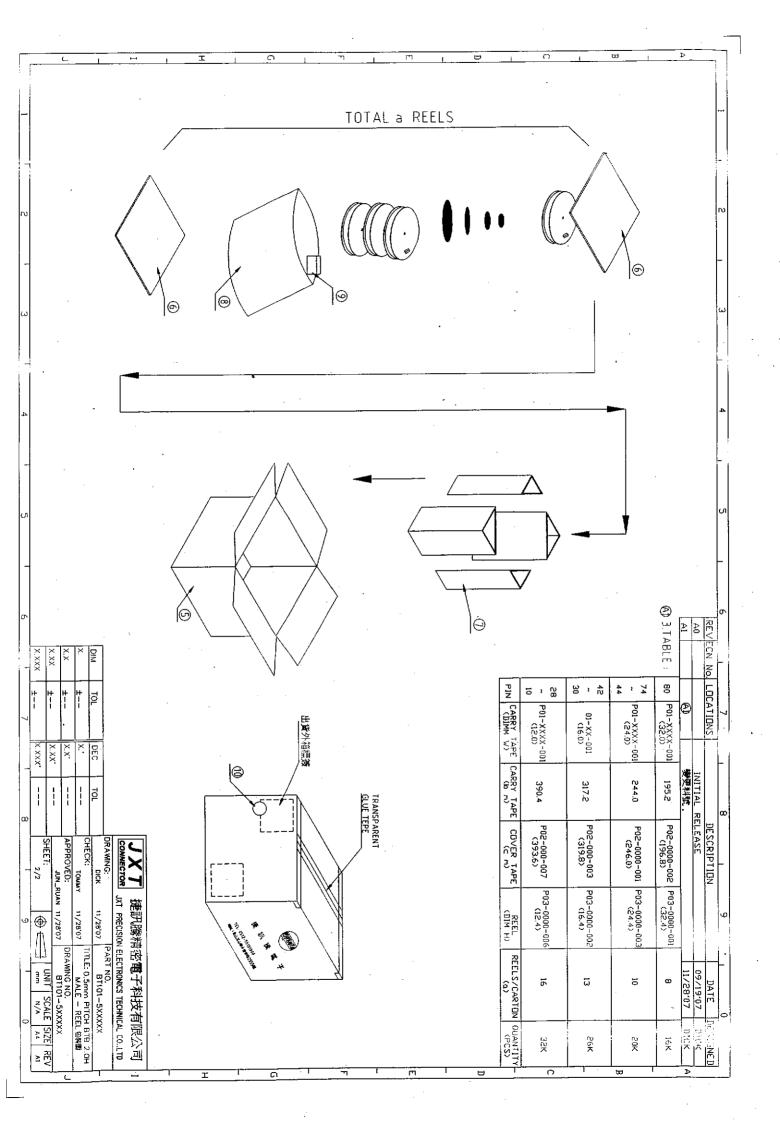
Part Number: BT101-560GR0

Description: 0.5mm PITCH 2.0H BTB 60PIN MALE V/A SMT TYPE NO POST

This "Package" is a checklist covering items required。 產品承認須提供所列的文件資料。


PHASE 1: DESIGN REVIEW ITEM DESCRIPTION Check/Remark 檔案格式 項次 說明 検査/註記 客戶圖 1 PDE ν Customer drawing 包裝圖 2 PDF ν Packing drawing 產品規範 3 PDF ν Product Specification 原材料材質性能/規格試驗/驗證報告 4 PDF ν Material spec. Certification: Resin & Metal 原材料RoHS/MSDS or 第三公託單位證明文件: 塑膠和金屬 5 PDF ν Material RoHS certification report. 成品UL證明(特別指定再提供) 6 PDF Finished Product UL Certification (where applicable) χ PHASE 2: FA REVIEW FAI報告,必須包含客戶產品圖上所有標註的尺寸檢驗(最少每一模穴各一個檢驗樣品) 7 Inspection data of ALL dimensions & requirements indicated in Customer Drawing (At least one hsg cavity one sample which PDF χ must be sa 電鍍檢驗圖面/規範and量測點圖面 8 PDF ν Plating inspection dwg/specifica 電鏡膜厚量測報告(每一電鏡層最少5點) 9 PDF $\boldsymbol{\nu}$ Plating Measurement Data Report(5 measuring data min. per plating layer) 製程品質管制圖 10 PDF χ Process and Quality Flow Chart 品質檢驗計畫(需記載檢驗點,檢驗設備,批號以及接受/判退...等; RoHS有毒物質需列人定期檢驗項目) 11 PDF χ Quality Inspection Plan (specifying inspection points, equipment used, lot number, accept/reject...etc) 製程能力分析(最少量測30個數値) 12 PDF χ Process Capability Study (minimum 30 pcs measurement data) 檢驗治貝圖面 13 PDF χ Gauge Design 包裝測試報告 14 Packaging Test Report PDF χ


PS: 1. New Part No. should not be released until all the documents are in hands of Engineering Dept.


1. 新產品承認資料未送達工程部前不得發行

2. New Part No. should not be keyed into the system until all phase 2 documents are in hands of Eng. Dep. And approval.

2. 第二階段文件未送達工程部,且未完成產品承認前,系統不得運行產品料號.

Product Specification Document No.

Rev.

0.5mm Pitch BTB 2.0H SMT Type Connector

1. SCOPE

1.1. CONTENTS

This specification covers the performance, tests and quality requirements for the **0.5mm Pitch BTB 2.0H SMT Type Connector**.

1.2. QUALIFICATION

When tests are performed on the subject product line, the procedures specified in JXT BTX01-5XXXXX series specifications shall be used. All inspections shall be performed using the applicable inspection plan and product drawings.

2. APPLICABLE DOCUMENT

The following JXT documents form a part of this specification to the extent specified herein. Unless otherwise specified, the latest edition of the document applies. In the event of conflict between the requirements of this specification and the product drawings, the product drawing shall take precedence. In the event of conflict between the requirements of this specification and the requirements of this specification and the requirements, this specification shall take precedence.

3. REQUIREMENTS

3.1. DESIGN AND CONSTRUCTION

Product shall be of the design, construction and physical dimensions specified on the applicable product drawings.

3.2. MATERIALS

- A. Housing : Thermoplastic, UL94V-0
- B. Contact : Copper Alloy, Gold plating on contact and solder areas over Nickel underplating overall.

3.3. RATINGS

- A. Voltage: 50 VAC(rms)/DC.
- B. Current: 0.5 A Max
- C. Temperature: 40 to 85

PE	DATE	APVD	DATE
Dick-Li	12-13-2007	ТОММҮ	12-13-2007

3.4. PERFORMANCE REQUEIREMENT AND TEST DESCRIPTION

The product shall be designed to meet the electrical, mechanical and environmental performance requirements specified in Figure 1. All tests shall be performed at ambient environmental conditions TEST REQUIREMENTS AND PROCEDURES SUMMARY.

	TEST ITEM	REQUIREMENT	PROCEDURE
1	Examination of Product	Meets requirements of product drawing. No physical damage.	Visual inspection.
		ELECTRICAL REQUIR	EMENT
2	Contact Resistance	[20] m Max(Initial) R=[20] m Max(Final)	Subject mated contacts assembled in housing to 100mV Max open circuit at 50mA Max. Refer to Fig.3
3	Dielectric withstanding Voltage	No creeping discharge or flashover shall occur. Current leakage: 0.5 mA MAX	[50]VAC/DC for 1minute Test between adjacent circuits of unmated connector.
4	Insulation Resistance	[100] M Ohm Min.(Initial) [100] M Ohm Min.(Final)	Impressed voltage 500 VDC. Test between adjacent circuits of unmated connector.
		MECHANICAL REQUIR	EMENT
5	Mating Force	<u>90 g</u> f/Pin Max .	Operation Speed : [25]±3 mm/min. Measure the force required to male mate fenale connector.
6	Unmating Force	<u>10 g</u> f/Pin Min	Operation Speed : [25]±3 mm/min. Measure the force required to male unmate fenale connector.
7	Durability	Visual inspection.	Operation Speed : [25] cycle/min. Durability Cycles : 50m Cycles
8	Vibration	No electrical discontinuity greater than 0.1 sec shall occur. See Note.	Subject mated connectors to 10-55-10 Hz traversed in 1minutes at 1.52mm amplitude 2 Hours each of 3 mutually perpendicular planes. 10 m Ohm MAX(change from initial).
9	Mechanical Shock	No electrical discontinuity greater than 0.1 sec shall occur. See Note.	Accelerate Velocity : 490m/s ² (50G) Waveform : Half-sine shock plus Duration : 11msec No. of Drops : 3 drops each to normal and reversed directions of X,Y and Z axes, totally 18 drops, passing DC 10 mA max(change from initial). current during the test.

3.5. TEST REQUIREMENTS AND PROCEDURES SUMMARY

Figure 1 (Cont.)

	MECHANICAL REQUIREMENT							
	TEST ITEM	PROCEDURE						
10	0 Solder ability The inspected area of each lead must have 95% solder coverage minimum.		Steam Aging Preconditioning: Intended for tin and tin-alloy leadfinishes for 93+3/-5 、8hrs. Solder pot temperature: 235±5 ,3sec					
	ENVIRONMENTAL REQUIREMENTS							
12	Resistance to Reflow Soldering Heat	No physical damage shall occur. (Lead-Free)	Pre Heat : 150~180 , 90±30sec. Heat : 230 Min., 30±10sec. Peak Temp. : <u>260+0/-5</u> , 10 sec MIN. Duration : 3 cycles					
13	Thermal Shock	Visual inspection.	Mated Connector -55+/-3 (30 min.), +85+/-2 (30 min.) Perform this a cycle, repeat 5 cycles EIA-364-32C, Condition					
14	Humidity-Temperature Cycle	Remove surface moisture and air dry for 1hour prior to measurements.	Mated Connector 25~65 ,90~95% RH, 96 hours.					
15	Temperature Life (Heat Aging)	Visual inspection.	Mated Connector 85 , 250 hours, EIA-364-17B.					
16	Salt Spray	No detrimental corrosion allowed in contact area and base metal exposed.	Subject mated connectors to 35+/-2 and 5+/-1% salt condition for 8hours . After test, rinse the sample with water and recondition the room temperature for 1 hour.					

Figure 1 (End)

NOTE : Shall meet visual requirements, show no physical damage, and meet requirement of additional tests as specified in the test sequence in Figures 2

3.6. PRODUCT QUALIFICATION AND REQUALIFICATION TEST										
		<u> </u>	-		Test C	-	1		i	
Test or Examination	Α	В	С	D	Ε	F	G	Н		J
			1	Test	Sequ	ence	(a)		1	
Examination of Product	1, 7	1, 9	1, 6	1, 5	1, 5	1, 5	1, 5	1, 3	1, 3	1, 3
Contact Resistance		2, 8	2, 5	2, 4	2, 4	2, 4	2, 4			
Dielectric withstanding Voltage	3, 6									
Insulation Resistance	2, 5									
Temperature Rising								2		
Mating Force		3, 7								
Unmating Force		4, 6								
Durability		5								
Vibration			3							
Mechanical Shock			4							
Solderability										2
Resistance to Soldering Heat									2	
Thermal Shock				3						
Humidity Temperature Cycling	4				3					
Temperature Life						3				
Salt Spray							3			

3.6. PRODUCT QUALIFICATION AND REQUALIFICATION TEST

Figure 2

NOTE : (a) Numbers indicate sequence in which tests are performed.

(b) Discontinuities shall not take place in this test group, during tests.

Figure 3. Contact Resistance & Resistance to flow solder heat

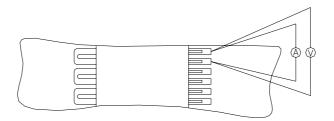


Fig.3-1 Termination Resistance Measuring Points.

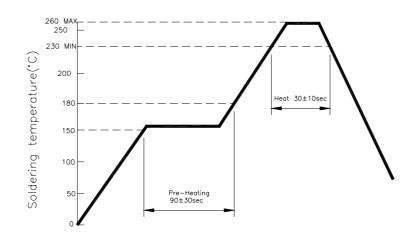


Fig.4-1 Temperature Profile of Reflow Soldering

昆山捷訊騰精密電子科技有限公司

耐久測試報告

试件编号:071024001

试件名称:0.5mm BTB 2.0H SMT 60PIN

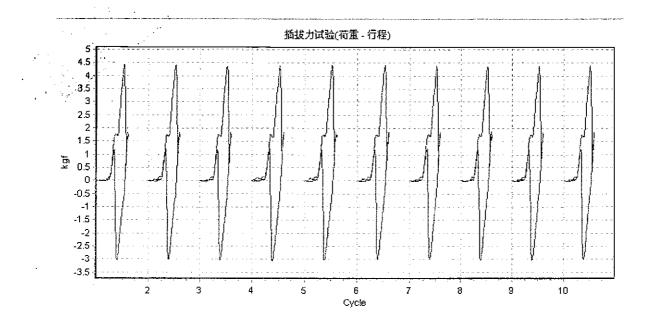
測試方式:

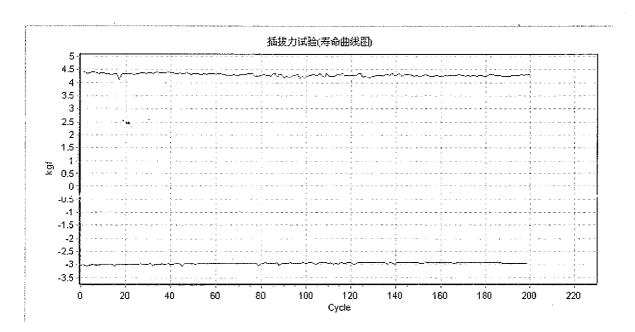
一、導通測試

序號	規格	測試數據	判定
1	<50 m ohm	18 m ohm	pass
2	<50 m ohm	19 m ohm	pass
. 3	<50 m ohm	22 m ohm	pass
4	<50 m ohm	17 m ohm	pass
5	<50 m ohm	19.5 m ohm	pass
. 6	<50 m ohm	22 m ohm	pass
7	<50 m ohm	18 m ohm	pass
8	<50 m ohm	21.4 m ohm	pass

一、耐久測試

Cycle	往程最大力量(Kgf)	往程最大力量之位移(mm)	返程最大力量(Kgf)	返程最大力量之位移 (mm)
1	4.403	1.068	-3.017	0.796
2	4.405	1.068	-2.995	0.804
3	4.352	1.076	-3.010	0.792
4	4.372	1.068	-3.035	0.796
5	4.409	1.068	-3.030	0.796
6	4.394	1.068	-2.986	0.804
7	4.376	1.068	-2.984	0.804
8	4.353	1.068	-3.010	0.796
9	4.362	1.068	-3.020	0.804
10	4.366	1.068	-2.985	0.808
1 1	4.346	1.064	-2.992	0.808
12	4.333	1.064	-2.987	0.808
13	4.321	1.064	-2.993	0.808
14	4.326	1.064	-2.998	0.808


15	4.333	1.064	-2.986	0.808
16	4.335	1.052	-3.045	0.792
17	4.100	1.036	-2.997	0.800
18	4.305	1.056	-2.979	0.812
19	4.346	1.064	-2.974	0.812
20	4.330	1.064	-2.982	0.812
20	4.349	1.064	-2.977	0.812
22	4.350	1.056	-2.982	0.804
23	4.325	1.056	-2.981	0.804
23	4.323	1.064	-2.977	0.812
25	4.333	1.076	-2.978	0.804
25	4.333	1.064	-2.978	0.804
20	4.378			0.804
		1.000	-2.977	0.804
28	4.377	1.068	-2.968	
29	4.339	1:060	-2.973	0.812
30	4.375	1:068	-2.971	0.804
31	4.390	1.068	-2.971	0.804
32	4.336	1.068	-2.964	. 0.804
33	4.370	1.068	-3.051	0.796
34	4.403	1.068	-2.975	0.804
35	4.364	1.068	-2.974	0.804
36	4.372	1.068	-2.973	0.804
37	4.365	1.056	-2.964	0.804
38	4.374	1.060	-2.971	0.804
39	4.394	1.060	-2.971	0.796
40	4.362	1.068	-2.961	0.800
41	4.375	1.072	-2.976	0.792
42	4.347	1.076	-2.991	0.792
43	4.353	1.064	-2.962	0.804
44	4.374	1.076	-2.960	0.816
45	4.352	1.068	-2.961	0.808
46	4 336	1 072	-3 037	0.792
47	4.409	1.072	-2.952	0.812
48	4.359	1.064	-2.951	0.804
49	4.309	1.072	-2.958	0.812
50	4.330	1.064	-2.959	0.804
51	4.343	1.064	-2.955	0.804
52	4.336	1.064	-2.980	0.804
53	4.315	1.064	-2.955	0.812
54	4.298	1.064	-2.956	0.812
55	4.343	1.072	-2.956	0.804
56	4.320	1.064	-2.962	0.804
57	4.337	1.064	-2.951	0.804
58	4.331	1.072	-2.956	0.804
59	4.329	1.072	-2.950	0.800
60	4.320	1.072	-2.951	0.800
61	4.351	1.072	-2.946	0.812
62	4.348	1.076	-2.952	0.812
63	4.316	1.076	-2.953	0.800
64	4.327	1.064	-2.951	0.812
65	4.277	1.064	-2.953	0.812


;

66	4.293	1.064	-2.950	0.812
67	4.271	1.064	-2.954	0.812
68	4.299	1.064	-2.957	0.812
69	4.290	1.064	-2.954	0.820
70	4.281	1.064	-2.954	0.812
71	4.299	1.064	-2.954	0.812
72	4.326	1.064	-2.952	0.808
73	4.305	1.068	-2.946	0,816
74	4.335	1.068	-2.942	0.812
75	4.330	1.068	-2.946	0.812
76	4.332	1.064	-2.950	0.808
77	4.251	1.052	-2.956	0.808
78	4.251	1.048	-2.939	0.812
79	4.248	1.060	-2.968	0.804
80	4.282	1.056	-3.010	0.796
81	4.316	1.064	-2.950	0.804
82	4.272	1.056	-2.956	0.804
83	4.264	1.056	-2.936	0.804
1 84	4.241	1.048	-2.945	0.804
85	4.319	1.056	-2.946	0.804
86	4.343	1.064	-2.939	0.804
87	4.206	1.056	-2.945	0.804
88	4.313	1.056	-2.932	0.804
89	4.303	1.056	-3.024	0.796
90	4.196	1.056	-2.939	0.804
91	4.233	1.056	-2.937	0.804
92	4.223	1.056	-2.940	0.804
93	4.199	1.060	-2.956	0.804
94	4.283	1.060	-2.934	0.804
95	4.268	1.060	-2.940	0.804
96	4.322	1.060	-2.937	0.812
97	4 145	1 048	-2,948	0.804
98	4.235	1.056	-2.952	0.812
99	4.168	1.056	-2.933	0.812
100	4.217	1.056	-2.928	0.812
101	4.270	1.056	-2.937	0.812
102	4.267	1.060	-2.932	0.812
103	4.301	1.068	-2.935	0.804
104	4.265	1.068	-2.924	0.804
105	4.270	1.068	-2.971	0.796
106	4.334	1.068	-2.939	0.808
107	4.262	1.072	-2.929	0.812
108	4.223	1.064	-2.930	0.804
109	4.329	1.064	-2.927	0.816
110	4,236	1.060	-2.927	0.808
111	4.251	1.060	-2.938	0.812
112	4.261	1.056	-2.928	0.812
113	4.278	1.056	-2.994	0.804
114	4.318	1.056	-2.927	0.812
115	4.278	1.056	-2.987	0.804
116	4.357	1.056	-2.927	0.812

117	4.276	1.056	-2.927	0.812
	· · · · · · · · · · · · · · · · · · ·	1.056	-2.927	0.812
118 119	4.280	1.056	-2.942	0.820
120		1.056	-2.932	0.812
	4.270	1.056	-2.934	0.812
121	4.264	1.056	-2.934	0.804
122	4.274		-2.975	0.804
123	4.339	1.064	· · · · · · · · · · · · · · · · · · ·	
124	4.336	1.064	-2.920	0.812
125	4.185	1.056	-2.925	0.812
126	4.261	1.056	-2.922	0.812
127	4.226	1.056	-2.919	0.812
128	4.195	1.056	-2.920	0.820
129	4.235	1.056	-2.923	0.820
130	4.262	1.056	-2.924	0.812
131	4.284	1.056	-2.922	0.812
132	4.281	1.056	-2.924	0.812
133	4.272	1.056	-2.921	0.812
134	4.254	1.056	-2.931	0.812
135	4.307	1.056	-2.928	0.812
136	4.306	1.056	-2.935	0.804
137	4.287	1.056	-2.991	0.792
138	4.328	1.068	-2.923	0.812
139	4.271	1.068	-2.923	0.812
140	4.270	1.068	-2.973	0.804
141	4.334	1.068	-2.920	0.812
142	4.245	1.068	-2.925	0.812
143	4.289	1.064	-2.919	0.812
144	4.321	1.064	-2.924	0.812
145	4.298	1.056	-2.920	0.812
146	4.296	1.064	-2.922	0.812
147	4.270	1.064	-2.918	0.812
148	4 259	1.064	-2.918	0.820
149	4.287	1.064	-2.917	0.820
150	4.261	1.056	-2.915	0.804
151	4.247	1.056	-2.912	0.812
152	4.274	1.064	-2.956	0.804
153	4.296	1.072	-2.944	0.804
154	4.281	1.064	-2.903	0.812
155	4.258	1.064	-2.917	0.812
156	4.257	1.068	-2.920	0.812
157	4.258	1.068	-2.921	0.812
158	4.272	1.068	-2.920	0.812
159	4.233	1.068	-2.915	0.820
160	4.231	1.068	-2.918	0.820
161	4.259	1.068	-2.913	0.820
162	4.271	1.068	-2.918	0.820
163	4.253	1.056	-2.916	0.820
164	4.279	1.068	-2.923	0.812
165	4.281	1.056	-2.921	0.812
166	4.288	1.068	-2.913	0.816
167	4.289	1.068	-2.947	0.808

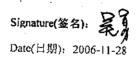
160 4.220 1.064 -2.909 0.812 170 4.274 1.064 -2.910 0.820 171 4.241 1.064 -2.917 0.820 172 4.276 1.064 -2.917 0.820 173 4.288 1.064 -2.917 0.820 174 4.271 1.064 -2.913 0.820 175 4.273 1.064 -2.913 0.820 176 4.262 1.064 -2.913 0.820 177 4.263 1.064 -2.924 0.820 177 4.263 1.064 -2.920 0.832 177 4.263 1.064 -2.920 0.832 176 4.274 1.108 -2.920 0.832 180 4.262 1.108 -2.910 0.832 181 4.266 1.100 -2.908 0.840 182 4.296 1.100 -2.907 0.840 184 4.281 1.108 -2.916 0.840 185 4.265 1.112 </th <th>168</th> <th>4.323</th> <th>1.064</th> <th>-2.910</th> <th>0.812</th>	168	4.323	1.064	-2.910	0.812
1714.2411.064 -2.913 0.8201724.2761.064 -2.917 0.8201734.2581.064 -2.913 0.8201744.2711.064 -2.913 0.8201754.2731.064 -2.913 0.8201764.2621.064 -2.913 0.8201774.2631.064 -2.924 0.8201784.2741.108 -2.920 0.8321794.2581.108 -2.920 0.8321804.2621.108 -2.920 0.8321804.2621.108 -2.916 0.8241814.2871.108 -2.916 0.8321824.2961.100 -2.907 0.8401834.2961.100 -2.907 0.8401844.2811.108 -2.916 0.8401854.2651.112 -2.915 0.8401864.2721.112 -2.912 0.8431874.2431.112 -2.925 0.8401884.2651.112 -2.928 0.8401894.2441.112 -2.938 0.8401914.2531.112 -2.943 0.8401924.2841.112 -2.942 0.8431944.2771.112 -2.942 0.8431954.2841.112 -2.942 0.8401964.2991.112 -2.942 0.8401974.2851.1	169	4.290	1.064	-2.909	0.812
172 4.276 1.064 -2.917 0.820 173 4.258 1.064 -2.910 0.820 174 4.271 1.064 -2.913 0.820 175 4.273 1.064 -2.913 0.820 176 4.262 1.064 -2.917 0.824 176 4.262 1.064 -2.913 0.820 177 4.263 1.064 -2.924 0.820 177 4.263 1.064 -2.920 0.832 179 4.258 1.108 -2.920 0.832 180 4.262 1.108 -2.910 0.832 180 4.262 1.108 -2.910 0.832 182 4.296 1.100 -2.908 0.332 183 4.296 1.100 -2.907 0.840 184 4.281 1.108 -2.915 0.840 185 4.265 1.112 -2.915 0.840 186 4.272 1.112 -2.912 0.840 188 4.250 1.112 -2.928 0.840 194 4.272 1.112 -2.943 0.840 194 4.253 1.112 -2.943 0.840 194 4.250 1.112 -2.942 0.840 194 4.250 1.112 -2.943 0.840 194 4.253 1.112 -2.942 0.840 194 4.264 1.112 -2.942 0.840 194	170	4.274	1.064	-2.910	0.820
1734.2581.064 -2.910 0.8201744.2711.064 -2.913 0.8201754.2731.064 -2.917 0.8241764.2621.064 -2.913 0.8201774.2631.064 -2.924 0.8201784.2741.108 -2.920 0.8321794.2581.108 -2.920 0.8321804.2621.108 -2.916 0.8241814.2871.108 -2.910 0.8321824.2961.100 -2.908 0.8321834.2961.100 -2.907 0.8401844.2811.108 -2.916 0.8401854.2651.112 -2.915 0.8401864.2721.112 -2.915 0.8481874.2431.112 -2.925 0.8481884.2501.112 -2.925 0.8401894.2441.112 -2.933 0.8401904.2501.120 -2.943 0.8401914.2531.112 -2.949 0.8401924.2851.112 -2.945 0.8481944.2771.112 -2.939 0.8401954.2841.112 -2.942 0.8321964.2991.112 -2.942 0.8321954.2841.112 -2.942 0.8441974.2851.112 -2.942 0.8441984.3081.1	171	4.241	1.064	-2.913	0.820
474 4.271 1.064 -2.913 0.820 175 4.273 1.064 -2.917 0.824 176 4.262 1.064 -2.913 0.820 177 4.263 1.064 -2.923 0.820 177 4.263 1.064 -2.920 0.832 179 4.258 1.108 -2.920 0.832 179 4.258 1.108 -2.920 0.832 180 4.262 1.108 -2.916 0.824 181 4.267 1.108 -2.910 0.832 182 4.296 1.100 -2.907 0.840 184 4.287 1.108 -2.916 0.832 183 4.296 1.100 -2.907 0.840 184 4.281 1.108 -2.916 0.840 185 4.265 1.112 -2.915 0.840 186 4.272 1.112 -2.922 0.840 188 4.250 1.112 -2.928 0.840 188 4.250 1.112 -2.938 0.840 191 4.253 1.112 -2.943 0.840 192 4.285 1.112 -2.945 0.840 193 4.276 1.112 -2.942 0.842 194 4.277 1.112 -2.942 0.842 195 4.284 1.112 -2.942 0.842 194 4.277 1.112 -2.942 0.844 194	172	4.276	1.064	-2.917	0.820
175 4.273 1.064 -2.917 0.824 176 4.262 1.064 -2.913 0.820 177 4.263 1.064 -2.924 0.820 178 4.274 1.108 -2.920 0.832 179 4.268 1.108 -2.920 0.832 180 4.262 1.108 -2.916 0.824 181 4.267 1.108 -2.916 0.832 182 4.266 1.100 -2.908 0.832 183 4.296 1.100 -2.907 0.840 184 4.281 1.108 -2.916 0.840 185 4.265 1.112 -2.915 0.840 186 4.272 1.112 -2.915 0.840 186 4.272 1.112 -2.925 0.840 187 4.243 1.112 -2.928 0.840 189 4.244 1.112 -2.938 0.848 190 4.250 1.120 -2.943 0.840 191 4.253 1.112 -2.939 0.840 192 4.285 1.112 -2.939 0.840 193 4.276 1.112 -2.942 0.832 196 4.299 1.112 -2.942 0.843 197 4.285 1.112 -2.942 0.844 198 4.308 1.112 -2.942 0.844 199 4.296 1.108 -2.941 0.844 199 4.296 1.108 -2.941	173	4.258	1.064	-2.910	0.820
176 4.262 1.064 -2.913 0.820 177 4.263 1.064 -2.924 0.820 178 4.274 1.108 -2.920 0.832 179 4.258 1.108 -2.920 0.832 180 4.262 1.108 -2.910 0.832 181 4.267 1.108 -2.910 0.832 182 4.296 1.100 -2.908 0.832 183 4.296 1.100 -2.907 0.840 184 4.265 1.112 -2.916 0.840 185 4.265 1.112 -2.915 0.840 186 4.272 1.112 -2.925 0.840 186 4.272 1.112 -2.925 0.840 186 4.272 1.112 -2.925 0.840 188 4.250 1.112 -2.925 0.840 189 4.244 1.112 -2.938 0.840 191 4.253 1.112 -2.943 0.840 192 4.285 1.112 -2.945 0.840 193 4.276 1.112 -2.945 0.840 194 4.277 1.112 -2.942 0.832 196 4.299 1.112 -2.942 0.832 196 4.299 1.112 -2.942 0.844 197 4.285 1.112 -2.942 0.844 198 4.308 1.112 -2.940 0.844 198	.174	4.271	1.064	-2.913	0.820
176 4.262 1.064 -2.913 0.820 177 4.263 1.064 -2.924 0.820 178 4.274 1.108 -2.920 0.832 179 4.268 1.108 -2.920 0.832 180 4.262 1.108 -2.916 0.824 181 4.267 1.106 -2.916 0.824 181 4.267 1.106 -2.910 0.832 182 4.296 1.100 -2.908 0.832 183 4.296 1.100 -2.907 0.840 184 4.281 1.108 -2.916 0.840 185 4.265 1.112 -2.915 0.840 186 4.272 1.112 -2.925 0.840 186 4.272 1.112 -2.925 0.840 188 4.250 1.112 -2.925 0.840 189 4.244 1.112 -2.928 0.840 191 4.253 1.112 -2.943 0.840 192 4.285 1.112 -2.949 0.840 193 4.276 1.112 -2.942 0.832 196 4.299 1.112 -2.942 0.832 196 4.299 1.112 -2.942 0.842 194 4.277 1.112 -2.942 0.844 194 4.277 1.112 -2.942 0.842 196 4.299 1.112 -2.942 0.844 197	175	4.273	1.064	-2.917	0.824
177 4.263 1.064 -2.924 0.820 178 4.274 1.108 -2.920 0.832 179 4.258 1.108 -2.920 0.832 180 4.262 1.108 -2.916 0.824 181 4.287 1.108 -2.910 0.832 182 4.266 1.100 -2.908 0.832 183 4.296 1.100 -2.907 0.840 184 4.281 1.108 -2.916 0.840 184 4.281 1.108 -2.916 0.840 185 4.265 1.112 -2.915 0.840 186 4.272 1.112 -2.925 0.840 186 4.260 1.112 -2.925 0.840 186 4.250 1.112 -2.925 0.840 189 4.244 1.112 -2.926 0.840 190 4.250 1.120 -2.943 0.840 192 4.285 1.112 -2.945 0.840 192 4.285 1.112 -2.945 0.840 193 4.276 1.112 -2.942 0.832 196 4.299 1.112 -2.942 0.844 197 4.285 1.112 -2.942 0.844 198 4.308 1.112 -2.940 0.842 198 4.308 1.112 -2.942 0.844 197 4.285 1.112 -2.942 0.844 198				-2.913	0.820
178 4.274 1.108 -2.920 0.832 179 4.258 1.108 -2.920 0.832 180 4.262 1.108 -2.916 0.832 181 4.287 1.108 -2.916 0.824 181 4.287 1.108 -2.910 0.832 182 4.296 1.100 -2.908 0.832 183 4.296 1.100 -2.907 0.840 184 4.281 1.108 -2.916 0.840 185 4.265 1.112 -2.915 0.840 186 4.272 1.112 -2.912 0.848 187 4.243 1.112 -2.928 0.840 188 4.250 1.112 -2.928 0.840 189 4.244 1.112 -2.943 0.840 190 4.253 1.112 -2.943 0.840 191 4.253 1.112 -2.943 0.840 192 4.285 1.112 -2.945 0.840 193 4.276 1.112 -2.945 0.840 194 4.277 1.112 -2.945 0.840 195 4.284 1.112 -2.942 0.842 196 4.299 1.112 -2.942 0.844 197 4.285 1.112 -2.942 0.844 198 4.308 1.112 -2.942 0.844 199 4.296 1.108 -2.941 0.848 200 4.293 1.100 -2.940				-2.924	0.820
179 4.258 1.108 -2.920 0.832 180 4.262 1.108 -2.916 0.624 181 4.287 1.108 -2.916 0.832 182 4.296 1.100 -2.908 0.832 183 4.296 1.100 -2.907 0.840 184 4.281 1.108 -2.916 0.840 185 4.265 1.112 -2.915 0.840 186 4.272 1.112 -2.915 0.840 188 4.265 1.112 -2.925 0.840 188 4.250 1.112 -2.925 0.840 189 4.244 1.112 -2.938 0.840 190 4.250 1.112 -2.943 0.840 191 4.253 1.112 -2.943 0.840 192 4.285 1.112 -2.943 0.840 193 4.276 1.112 -2.945 0.840 194 4.277 1.112 -2.945 0.840 195 4.284 1.112 -2.945 0.840 196 4.299 1.112 -2.942 0.844 197 4.285 1.112 -2.942 0.844 198 4.308 1.112 -2.940 0.844 199 4.296 1.108 -2.941 0.848 200 4.293 1.100 -2.940 0.828 \mathbb{R}/\mathbbmid 4.096 1.168 -2.949 0.812 \mathbb{R}/\mathbbmid 4.039 0.148					0.832
180 4.262 1.108 -2.916 0.824 181 4.267 1.100 -2.910 0.832 182 4.296 1.100 -2.908 0.832 183 4.296 1.100 -2.907 0.840 184 4.281 1.108 -2.916 0.840 185 4.265 1.112 -2.915 0.840 186 4.272 1.112 -2.915 0.840 186 4.272 1.112 -2.925 0.840 188 4.250 1.112 -2.928 0.840 189 4.243 1.112 -2.938 0.848 190 4.250 1.120 -2.943 0.840 191 4.253 1.112 -2.949 0.840 192 4.285 1.112 -2.949 0.840 193 4.276 1.112 -2.942 0.840 194 4.277 1.112 -2.942 0.840 195 4.284 1.112 -2.942 0.840 196 4.299 1.112 -2.942 0.822 198 4.308 1.112 -2.942 0.844 199 4.265 1.112 -2.942 0.844 199 4.296 1.108 -2.941 0.848 200 4.293 1.100 -2.949 0.812 198 4.308 1.112 -2.949 0.812 199 4.297 1.068 -2.949 0.812 2940			······································		0.832
181 4.287 1.108 -2.910 0.832 182 4.296 1.100 -2.908 0.832 183 4.296 1.100 -2.907 0.840 184 4.281 1.108 -2.916 0.840 185 4.265 1.112 -2.915 0.840 186 4.272 1.112 -2.915 0.840 186 4.272 1.112 -2.925 0.840 186 4.272 1.112 -2.923 0.840 188 4.250 1.112 -2.928 0.840 189 4.244 1.112 -2.943 0.840 191 4.253 1.112 -2.949 0.840 192 4.285 1.112 -2.949 0.840 193 4.276 1.112 -2.945 0.840 194 4.277 1.112 -2.945 0.840 195 4.284 1.112 -2.945 0.840 196 4.299 1.112 -2.942 0.842 196 4.299 1.112 -2.942 0.842 198 4.308 1.112 -2.941 0.848 200 4.293 1.100 -2.941 0.848 200 4.293 1.100 -2.949 0.812 284 0.112 -2.903 0.848 204 0.309 0.084 0.148 0.056 374 0.182 -2.949 0.812 284 0.119 0.016 <					
182 4.296 1.100 -2.908 0.832 183 4.296 1.100 -2.907 0.840 184 4.281 1.108 -2.916 0.840 185 4.265 1.112 -2.915 0.840 186 4.272 1.112 -2.912 0.848 187 4.243 1.112 -2.925 0.840 188 4.250 1.112 -2.928 0.840 189 4.244 1.112 -2.938 0.840 190 4.250 1.120 -2.943 0.840 191 4.253 1.112 -2.945 0.840 192 4.265 1.112 -2.945 0.840 193 4.276 1.112 -2.945 0.840 194 4.277 1.112 -2.942 0.832 196 4.299 1.112 -2.955 0.824 197 4.285 1.112 -2.942 0.840 197 4.285 1.112 -2.942 0.844 199 4.296 1.108 -2.941 0.848 200 4.293 1.100 -2.940 0.828 8χ 1.100 -2.949 0.812 2% 6.344 1.12 -2.903 0.848 200 4.293 1.100 -2.942 0.848 200 4.293 1.100 -2.949 0.812 2% 1.12 -2.903 0.848 204 4.297 1.068			· · · · · · · · · · · · · · · · · · ·		
1834.2961.100 -2.907 0.840 1844.2811.108 -2.916 0.840 1854.2651.112 -2.915 0.840 1864.2721.112 -2.912 0.848 1874.2431.112 -2.925 0.840 1884.2501.112 -2.928 0.840 1894.2441.112 -2.938 0.848 1904.2501.120 -2.943 0.840 1914.2531.112 -2.949 0.840 1924.2851.112 -2.949 0.840 1934.2761.112 -2.945 0.840 1944.2771.112 -2.945 0.840 1954.2841.112 -2.942 0.832 1964.2991.112 -2.942 0.840 1974.2851.112 -2.942 0.844 1984.3081.112 -2.942 0.844 1994.2961.108 -2.941 0.848 2004.2931.100 -2.940 0.828 \mathbb{R}/\mathbb{R} 4.4091.12 -2.903 0.848 \mathbb{R}/\mathbb{R} 4.4091.12 -2.949 0.812 \mathbb{R}/\mathbb{R} 4.091.12 -2.940 0.828 \mathbb{R}/\mathbb{R} 0.309 0.084 0.148 0.056 \mathbb{R}/\mathbb{R} 0.119 0.016 0.055 0.014		······································			
1844.2811.108 -2.916 0.840 1854.2651.112 -2.915 0.840 1864.2721.112 -2.912 0.848 1874.2431.112 -2.925 0.840 1884.2501.112 -2.928 0.840 1894.2441.112 -2.938 0.848 1904.2501.120 -2.943 0.840 1914.2531.112 -2.943 0.840 1924.2851.112 -2.945 0.840 1934.2761.112 -2.945 0.848 1944.2771.112 -2.945 0.840 1954.2841.112 -2.942 0.832 1964.2991.112 -2.942 0.840 1974.2851.112 -2.942 0.844 1984.3081.112 -2.942 0.844 1994.2961.108 -2.941 0.848 2004.2931.100 -2.940 0.828 $8\chitai$ 4.4091.12 -2.903 0.848 2004.2931.100 -2.940 0.828 $8\chitai$ 4.3081.112 -2.949 0.812 2π 1.068 -2.949 0.812 2π 1.068 -2.949 0.812 2π 1.068 -2.949 0.812 2π 0.064 0.148 0.066 5π 0.1190.016 0.055 0.014	[<u></u>	
185 4.265 1.112 -2.915 0.840 186 4.272 1.112 -2.912 0.848 187 4.243 1.112 -2.925 0.840 188 4.250 1.112 -2.928 0.840 189 4.244 1.112 -2.938 0.840 189 4.244 1.112 -2.938 0.840 190 4.250 1.120 -2.943 0.840 191 4.253 1.112 -2.949 0.840 192 4.285 1.112 -2.945 0.840 193 4.276 1.112 -2.945 0.848 194 4.277 1.112 -2.939 0.840 195 4.284 1.112 -2.942 0.832 196 4.299 1.112 -2.942 0.844 197 4.285 1.112 -2.942 0.844 198 4.308 1.112 -2.942 0.844 199 4.296 1.108 -2.941 0.848 200 4.293 1.000<					
186 4.272 1.112 -2.912 0.848 187 4.243 1.112 -2.925 0.840 188 4.250 1.112 -2.928 0.840 189 4.244 1.112 -2.938 0.840 189 4.244 1.112 -2.943 0.840 190 4.250 1.120 -2.943 0.840 191 4.253 1.112 -2.949 0.840 192 4.285 1.112 -2.945 0.848 194 4.277 1.112 -2.945 0.848 194 4.277 1.112 -2.945 0.840 195 4.284 1.112 -2.942 0.832 196 4.299 1.112 -2.955 0.824 197 4.285 1.112 -2.942 0.844 198 4.308 1.112 -2.942 0.844 199 4.296 1.108 -2.941 0.848 200 4.293					
187 4.243 1.112 -2.925 0.840 188 4.250 1.112 -2.928 0.840 189 4.244 1.112 -2.938 0.848 190 4.250 1.120 -2.943 0.840 191 4.253 1.112 -2.943 0.840 192 4.285 1.112 -2.945 0.840 193 4.276 1.112 -2.945 0.840 193 4.276 1.112 -2.945 0.840 194 4.277 1.112 -2.945 0.840 195 4.284 1.112 -2.942 0.832 196 4.299 1.112 -2.955 0.824 197 4.285 1.112 -2.942 0.840 197 4.285 1.112 -2.942 0.844 198 4.308 1.112 -2.942 0.844 199 4.996 1.108 -2.941 0.848 200 4.293 1.100 -2.940 0.828 8χ / a 4.109 1.12 -2.903 0.848 8ψ / a 4.297 1.068 -2.949 0.812 $2h/a$ 0.309 0.084 0.148 0.056 8π 0.119 0.016 0.055 0.014					
1884.2501.112-2.9280.8401894.2441.112-2.9380.8481904.2501.120-2.9430.8401914.2531.112-2.9490.8401924.2851.112-2.9450.8401934.2761.112-2.9450.8401944.2771.112-2.9390.8401954.2841.112-2.9420.8321964.2991.112-2.9500.8401974.2851.112-2.9550.8241984.3081.112-2.9420.8441994.961.108-2.9410.8482004.2931.100-2.9400.828表/値4.11.036-3.0510.792平均値4.2971.068-2.9490.812差値0.3090.0840.1480.056标准差0.1190.0160.0550.014			· · · · · · · · · · · · · · · · · · ·		
189 4.244 1.112 -2.938 0.848 190 4.250 1.120 -2.943 0.840 191 4.253 1.112 -2.949 0.840 192 4.285 1.112 -2.951 0.840 193 4.276 1.112 -2.945 0.848 194 4.277 1.112 -2.939 0.840 195 4.284 1.112 -2.942 0.832 196 4.299 1.112 -2.955 0.840 197 4.285 1.112 -2.942 0.840 197 4.285 1.112 -2.942 0.844 198 4.308 1.112 -2.942 0.844 199 4.296 1.108 -2.941 0.848 200 4.293 1.100 -2.940 0.828 $8\sqrt{16}$ 4.409 1.12 -2.903 0.848 $8\sqrt{16}$ 4.1 1.036 -3.051 0.792 $F4/6$ 0.068 -2.949 0.812 $F4/6$ 0.068 -2.949 0.812 $F4/6$ 0.084 0.148 0.056 $F4/6$ 0.119 0.016 0.055 0.014					· · · · · · · · · · · · · · · · · · ·
190 4.250 1.120 -2.943 0.840 191 4.253 1.112 -2.949 0.840 192 4.285 1.112 -2.951 0.840 193 4.276 1.112 -2.945 0.848 194 4.277 1.112 -2.939 0.840 195 4.284 1.112 -2.942 0.832 196 4.299 1.112 -2.955 0.840 197 4.285 1.112 -2.955 0.844 198 4.308 1.112 -2.942 0.844 199 4.296 1.108 -2.941 0.848 200 4.293 1.100 -2.940 0.828 $8\chi/ie$ 4.109 1.12 -2.903 0.848 $8\sqrt{ie}$ 4.109 1.12 -2.903 0.848 $8\sqrt{ie}$ 4.297 1.068 -2.949 0.812 E/ie 0.309 0.084 0.148 0.056 ie 0.119 0.016 0.055 0.014					
191 4.253 1.112 -2.949 0.840 192 4.285 1.112 -2.951 0.840 193 4.276 1.112 -2.945 0.848 194 4.277 1.112 -2.939 0.840 195 4.284 1.112 -2.942 0.832 196 4.299 1.112 -2.955 0.840 197 4.285 1.112 -2.955 0.824 198 4.308 1.112 -2.942 0.844 199 4.296 1.108 -2.941 0.848 200 4.293 1.100 -2.940 0.828 $8\chita$ 4.10 1.026 -3.051 0.792 \pib/a 4.297 1.068 -2.949 0.812 E/a 0.309 0.084 0.148 0.056 $\%ta \dot{k}$ 0.119 0.016 0.055 0.014					
192 4.285 1.112 -2.951 0.840 193 4.276 1.112 -2.945 0.848 194 4.277 1.112 -2.939 0.840 195 4.284 1.112 -2.942 0.832 196 4.299 1.112 -2.950 0.840 197 4.285 1.112 -2.955 0.824 198 4.308 1.112 -2.942 0.844 199 4.296 1.108 -2.941 0.848 200 4.293 1.100 -2.940 0.828 $\overline{k}/\overline{m}$ 4.409 1.12 -2.903 0.848 $\overline{k}/\overline{m}$ 4.297 1.068 -2.949 0.812 $\overline{k}/\overline{m}$ 4.297 1.068 -2.949 0.812 $\overline{k}/\overline{m}$ 0.016 0.055 0.014					
1934.2761.112-2.9450.8481944.2771.112-2.9390.8401954.2841.112-2.9420.8321964.2991.112-2.9500.8401974.2851.112-2.9550.8241984.3081.112-2.9420.8441994.2961.108-2.9410.8482004.2931.100-2.9400.828最大値4.4091.12-2.9030.848最小値4.11.036-3.0510.792平均値4.2971.068-2.9490.812差値0.3090.0840.1480.056添准差0.1190.0160.0550.014					
1944.2771.112-2.9390.8401954.2841.112-2.9420.8321964.2991.112-2.9500.8401974.2851.112-2.9550.8241984.3081.112-2.9420.8441994.2961.108-2.9410.8482004.2931.100-2.9400.828最大値4.4091.12-2.9030.848最大値4.11.036-3.0510.792平均値4.2971.068-2.9490.812差値0.3090.0840.1480.056际准差0.1190.0160.0550.014					
1954.2841.112-2.9420.8321964.2991.112-2.9500.8401974.2851.112-2.9550.8241984.3081.112-2.9420.8441994.2961.108-2.9410.8482004.2931.100-2.9400.828最大値4.4091.12-2.9030.848最大値4.11.036-3.0510.792平均値4.2971.068-2.9490.812差値0.3090.0840.1480.056原水准差0.1190.0160.0550.014					
1964.2991.112-2.9500.8401974.2851.112-2.9550.8241984.3081.112-2.9420.8441994.2961.108-2.9410.8482004.2931.100-2.9400.8288大値4.4091.12-2.9030.848最小値4.11.036-3.0510.792平均値4.2971.068-2.9490.812差値0.3090.0840.1480.056际准差0.1190.0160.0550.014					
1974.2851.112-2.9550.8241984.3081.112-2.9420.8441994.2961.108-2.9410.8482004.2931.100-2.9400.8288大値4.4091.12-2.9030.848最大値4.11.036-3.0510.792平均値4.2971.068-2.9490.812差値0.3090.0840.1480.056际准差0.1190.0160.0550.014					
1984.3081.112-2.9420.8441994.2961.108-2.9410.8482004.2931.100-2.9400.828最大値4.4091.12-2.9030.848最小値4.11.036-3.0510.792平均値4.2971.068-2.9490.812差値0.3090.0840.1480.056际准差0.1190.0160.0550.014					
199 4 296 1.108 -2 941 0.848 200 4.293 1.100 -2.940 0.828 最大値 4.409 1.12 -2.903 0.848 最小値 4.1 1.036 -3.051 0.792 平均値 4.297 1.068 -2.949 0.812 差値 0.309 0.084 0.148 0.056 标准差 0.119 0.016 0.055 0.014					
2004.2931.100-2.9400.828最大値4.4091.12-2.9030.848最小値4.11.036-3.0510.792平均値4.2971.068-2.9490.812差値0.3090.0840.1480.056际准差0.1190.0160.0550.014					· · · · · · · · · · · · · · · · · · ·
最大値4.4091.12-2.9030.848最小値4.11.036-3.0510.792平均値4.2971.068-2.9490.812差値0.3090.0840.1480.056际准差0.1190.0160.0550.014					
最小値4.11.036-3.0510.792最小値4.2971.068-2.9490.812差値0.3090.0840.1480.056际准差0.1190.0160.0550.014					
平均值 4.297 1.068 -2.949 0.812 差值 0.309 0.084 0.148 0.056 标准差 0.119 0.016 0.055 0.014					
差値 0.309 0.084 0.148 0.056 标准差 0.119 0.016 0.055 0.014		······································			
标准差 0.119 0.016 0.055 0.014					
				······	
	际准差	0.119	0.016	0.055	0.014
		0.309	0.084	0.148	0.056 0.014

三、導通測試

序號	規格	測試數據	判定
1	<50 m ohm	24 m ohm	pass
2	<50 m ohm	28 m ohm	pass
3	<50 m ohm	30 m ohm	pass
4	<50 m ohm	32 m ohm	pass
5	<50 m ohm	28 m ohm	pass
6	<50 m ohm	27 m ohm	pass
7	<50 m ohm	31 m ohm	pass
8	<50 m ohm	34 m ohm	pass

核准: Allen Wang 審核: Dick Je 制作: Yang-Jui 1750-1 (730')

DSM Engineering Plastics Jiangsu Zhouzhuang,jianyin Jiangsu Province, China 214423 Telephone(510)624507, Telefax(510)6223507


Analysis Certificate

Grade(型号): Stanyl TS250F6D

Color(颜色): BLACK 9B0040

Batch(批号): BJ470505

Characteristics 住館	Test Method 测试方法	Unit 单位	Result 结果	Specifications 规格
Moisture 木份	JSO15512	%	0.028	<=0.075
VN 粘数	ISO307	ml/g	157.67	160+/-20
Reinforceing filler content 填充物含量	ISO3451	%	30.39	31.0+/-2.0
UL94(0.8) 阳 燃	UL94		V-0	V-0

The meterial covered by this delivery is produced in accordance with DSM Engineering Plastics jiangsu(DEPJ)s manufacturing specifications currently in force for this product grade, unless otherwise stated hereinafter DEPJ certifies that the material supplied contorms to the performance typicet for this grade and production description, and has been monitored in accordance with the internal quality control routines employed in our company. However, the buyer must check the suitability of this grade for the actual application.

当过明光材料将含必顾曼工程塑料(江茶)有限全司该产品型号硬行有处之生严疑特恪宗以下另有声明,必用是工程塑料(江苏)有限公司江明所供材料将含法型号性能特性和产品搞 道。且已接黑各会司内布质量短制规况进行器例、但是,若方应该对型号和实际用沿之间的适合性。

This certificate does not release the recipient from his obligation to carry out his usual incoming goods inspections. 本证书并未免体认觉人进行常处通觉检查分支任。

Additional Remarks:

4-il:

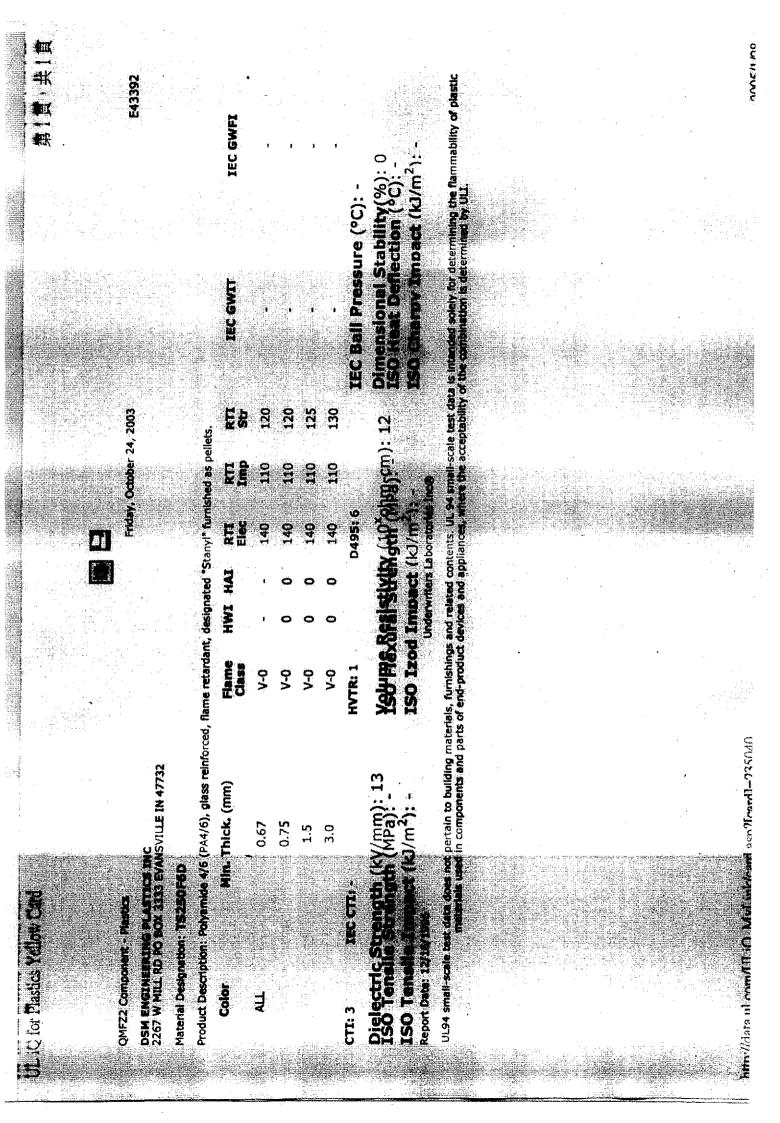
本村杆开合产品销售合用中间接送的标准。

絕緣阻抗測試報告

品名:0.5BTB60PIN(無柱) 數量:8Set 送測日期:2007/10/30 料號:2530-14600B-N1/2530-04600B-C1 送測單位:品保部(IPQC) 完成日期:2007/10/30

Sample	Specification -	Test Data			Indee
		Max.	Min.	Avg.	Judge
1	100 M Ω M in	>999	>999	>999	PASS
2	$100 M\Omega Min$	>999	>999	>999	PASS
3	100MΩMin	>999	>999	>999	PASS
4	100MΩMin	>999	>999	>999	PASS
5	100 M Ω M in	>999	>999	>999	PASS
6	$100 M\Omega Min$	>999	>999	>999	PASS
7	100MΩMin	>999	>999	>999	PASS
8	$100 M \Omega M in$	>999	>999	>999	PASS

接觸阻抗測試報告


品名:0.5BTB60PIN(無柱) 數量:8Set 送測日期:2007/10/30 料號:2530-14600B-N1/2530-04600B-C1 送測單位:品保部(IPQC) 完成日期:2007/10/30

Sample	Specification	Test Data			Tudaa
		Max.	Min.	Avg.	Judge
1	50mΩMax	32.5	16.7	17.2	PASS
2	50mΩMax	31.6	15.8	17.4	PASS
3	50mΩMax	28.9	14.2	16.8	PASS
4	50mΩMax	24.6	14.3	16.4	PASS
5	50mΩMax	24.8	15.8	17.0	PASS
6	50mΩMax	25.6	16.4	17.5	PASS
7	50mΩMax	24.3	17.0	18.2	PASS
8	50mΩMax	23.8	14.8	16.7	PASS

審核:

Allen 10/2007

制表: Sunt 2 + 200 - 7

