
SIM7070_SIM7080_SIM7090
Series_ThreadX API

SIMCom Wireless Solutions Limited
SIMCom Headquarters Building, Building 3, No. 289 Linhong

Road, Changning District, Shanghai P.R. China
Tel: 86-21-31575100

support@simcom.com
www.simcom.com

LPWAModule

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 2 / 105

Document Title: SIM7070_SIM7080_SIM7090 Series_ThreadX API

Version: 1.00

Date: 2021.09.18

Status: Released

GENERAL NOTES

SIMCOM OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS, TO SUPPORT
APPLICATION AND ENGINEERING EFFORTS THAT USE THE PRODUCTS DESIGNED BY SIMCOM.
THE INFORMATION PROVIDED IS BASED UPON REQUIREMENTS SPECIFICALLY PROVIDED TO
SIMCOM BY THE CUSTOMERS. SIMCOM HAS NOT UNDERTAKEN ANY INDEPENDENT SEARCH
FOR ADDITIONAL RELEVANT INFORMATION, INCLUDING ANY INFORMATION THAT MAY BE IN THE
CUSTOMER’S POSSESSION. FURTHERMORE, SYSTEM VALIDATION OF THIS PRODUCT
DESIGNED BY SIMCOM WITHIN A LARGER ELECTRONIC SYSTEM REMAINS THE RESPONSIBILITY
OF THE CUSTOMER OR THE CUSTOMER’S SYSTEM INTEGRATOR. ALL SPECIFICATIONS
SUPPLIED HEREIN ARE SUBJECT TO CHANGE.

COPYRIGHT

THIS DOCUMENT CONTAINS PROPRIETARY TECHNICAL INFORMATION WHICH IS THE PROPERTY
OF SIMCOM WIRELESS SOLUTIONS LIMITED COPYING, TO OTHERS AND USING THIS DOCUMENT,
ARE FORBIDDEN WITHOUT EXPRESS AUTHORITY BY SIMCOM. OFFENDERS ARE LIABLE TO THE
PAYMENT OF INDEMNIFICATIONS. ALL RIGHTS RESERVED BY SIMCOM IN THE PROPRIETARY
TECHNICAL INFORMATION, INCLUDING BUT NOT LIMITED TO REGISTRATION GRANTING OF A
PATENT , A UTILITY MODEL OR DESIGN. ALL SPECIFICATION SUPPLIED HEREIN ARE SUBJECT TO
CHANGE WITHOUT NOTICE AT ANY TIME.

SIMCom Wireless Solutions Limited
SIMCom Headquarters Building, Building 3, No. 289 Linhong Road, Changning District, Shanghai P.R.
China
Tel: +86 21 31575100
Email: simcom@simcom.com

For more information, please visit:
https://www.simcom.com/download/list-863-en.html

For technical support, or to report documentation errors, please visit:
https://www.simcom.com/ask/ or email to: support@simcom.com

Copyright © 2021 SIMCom Wireless Solutions Limited All Rights Reserved.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 3 / 105

About Document

Version History

Version Date Owner What is new
V1.00 2021.09.18 Wenjie.lai First Release

Scope

This document applies to the following products

Name Type Size(mm) Comments
SIM7080G CAT-M/NB 17.6*15.7*2.3 N/A
SIM7070G/SIM7070E CAT-M/NB/GPRS 24*24*2.4 N/A
SIM7070G-NG NB/GPRS 24*24*2.4 N/A
SIM7090G CAT-M/NB 14.8*12.8*2.0 N/A

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 4 / 105

Contents
About Document.. 3

Version History...3
Scope.. 3

Contents... 4

1 Introduction.. 7
1.1 Purpose of the document...7
1.2 Related documents...7
1.3 Conventions and abbreviations.. 7

2 ThreadX Data Types... 8
2.1 Alphabetic Listings..8
2.2 Listing by Value... 10

3 ThreadX Constants...12
3.1 TX_BLOCK_POOL...12
3.2 TX_BYTE_POOL..13
3.3 TX_EVENT_FLAGS_GROUP..14
3.4 TX_MUTEX..14
3.5 TX_QUEUE..15
3.6 TX_SEMAPHORE.. 16
3.7 TX_THREAD... 17
3.8 TX_TIMER... 19
3.9 TX_TIMER_INTERNAL... 20

4 ThreadX API Services..21
4.1 Block Memory Services... 21

4.1.1 tx_block_allocate()..21
4.1.2 tx_block_pool_create().. 23
4.1.3 tx_block_pool_delete ()..24
4.1.4 tx_block_pool_info_get()... 25
4.1.5 tx_block_pool_performance_info_get().. 26
4.1.6 tx_block_pool_performance_system_info_get()... 27
4.1.7 tx_block_pool_prioritize().. 28
4.1.8 tx_block_release().. 29

4.2 Byte Memory Services...29
4.2.1 tx_byte_allocate()... 30
4.2.2 tx_byte_pool_create().. 31
4.2.3 tx_byte_pool_delete()...32
4.2.4 tx_byte_pool_info_get()...33
4.2.5 tx_byte_pool_performance_info_get().. 34
4.2.6 tx_byte_pool_performance_system_info_get()... 35

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 5 / 105

4.2.7 tx_byte_pool_prioritize().. 36
4.2.8 tx_byte_release()..37

4.3 Event Flags Services... 38
4.3.1 tx_event_flags_create()...38
4.3.2 tx_event_flags_delete()... 39
4.3.3 tx_event_flags_get()...40
4.3.4 tx_event_flags_info_get()..41
4.3.5 tx_event_flags_performance info_get().. 42
4.3.6 tx_event_flags_performance_system_info_get()..44
4.3.7 tx_event_flags_set()...45
4.3.8 tx_event_flags_set_notify()...46

4.4 Interrupt Control.. 46
4.4.1 tx_interrupt_control()..46

4.5 Interrupt Control.. 47
4.5.1 tx_mutex_create()...48
4.5.2 tx_mutex_delete()...48
4.5.3 tx_mutex_get().. 49
4.5.4 tx_mutex_info_get()..50
4.5.5 tx_mutex_performance_info_get()...51
4.5.6 tx_mutex_performance_system_info_get()..53
4.5.7 tx_mutex_prioritize()...54
4.5.8 tx_mutex_put().. 55

4.6 Queue Services...55
4.6.1 tx_queue_create()...56
4.6.2 tx_queue_delete()...57
4.6.3 tx_queue_flush()... 57
4.6.4 tx_queue_front_send()...58
4.6.5 tx_queue_info_get()... 59
4.6.6 tx_queue_performance_info_get()...61
4.6.7 tx_queue_performance_system_info_get()... 62
4.6.8 tx_queue_prioritize()...63
4.6.9 tx_queue_receive()...64
4.6.10 tx_queue_send()...65
4.6.11 tx_queue_send_notify()...66

4.7 Semaphore Services..67
4.7.1 tx_semaphore_ceiling_put()..67
4.7.2 tx_semaphore_create()..68
4.7.3 tx_semaphore_delete()..69
4.7.4 tx_semaphore_get()... 70
4.7.5 tx_semaphore_info_get().. 71
4.7.6 tx_semaphore_performance_info_get()..72
4.7.7 tx_semaphore_performance_system_info_get()...73
4.7.8 tx_semaphore_prioritize()..74
4.7.9 tx_semaphore_put()... 75
4.7.10 tx_semaphore_put_notify()... 76

4.8 Thread Control Services..77

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 6 / 105

4.8.1 tx_thread_create().. 77
4.8.2 tx_thread_delete()...79
4.8.3 tx_thread_entry_exit_notify().. 80
4.8.4 tx_thread_identify()...81
4.8.5 tx_thread_info_get()... 81
4.8.6 tx_thread_performance_info_get().. 83
4.8.7 tx_thread_performance_system_info_get()... 85
4.8.8 tx_thread_preemption_change()..86
4.8.9 tx_thread_priority_change()..87
4.8.10 tx_thread_relinquish().. 88
4.8.11 tx_thread_reset()...90
4.8.12 tx_thread_resume()..90
4.8.13 tx_thread_sleep()..91
4.8.14 tx_thread_stack_error_notify()... 92
4.8.15 tx_thread_suspend().. 92
4.8.16 tx_thread_terminate()...93
4.8.17 tx_thread_time_slice_change...94
4.8.18 tx_thread_wait_abort()...95

4.9 Time Services..96
4.9.1 tx_time_get()..96
4.9.2 tx_time_set()..96

4.10 Timer Services...97
4.10.1 tx_timer_activate()..97
4.10.2 tx_timer_change()...98
4.10.3 tx_timer_create()...99
4.10.4 tx_timer_deactivate()... 100
4.10.5 tx_timer_delete()...100
4.10.6 tx_timer_info_get()... 101
4.10.7 tx_timer_performance_info_get()...102
4.10.8 tx_timer_performance_system_info_get()... 104

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 7 / 105

1 Introduction

1.1 Purpose of the document

ThreadX is a high-performance real-time kernel designed specifically for embedded applications. This
document contains details the application’s interface to ThreadX.

1.2 Related documents

[1] SIM7070_SIM7080_SIM7090 Series_AT Command Manual

1.3 Conventions and abbreviations

Abbreviation Description

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 8 / 105

2 ThreadX Data Types

2.1 Alphabetic Listings

TX_1_ULONG 1
TX_2_ULONG 2
TX_4_ULONG 4
TX_8_ULONG 8
TX_16_ULONG 16
TX_ACTIVATE_ERROR 0x17
TX_AND 2
TX_AND_CLEAR 3
TX_AUTO_ACTIVATE 1
TX_AUTO_START 1
TX_BLOCK_MEMORY 8
TX_BYTE_MEMORY 9
TX_CALLER_ERROR 0x13
TX_CEILING_EXCEEDED 0x21
TX_COMPLETED 1
TX_DELETE_ERROR 0x11
TX_DELETED 0x01
TX_DONT_START 0
TX_EVENT_FLAG 7
TX_FALSE 0
TX_FEATURE_NOT_ENABLED 0xFF
TX_FILE 11
TX_GROUP_ERROR 0x06
TX_INHERIT 1
TX_INHERIT_ERROR 0x1F
TX_INVALID_CEILING 0x22
TX_IO_DRIVER 10
TX_LOOP_FOREVER 1
TX_MUTEX_ERROR 0x1C
TX_MUTEX_SUSP 13
TX_NO_ACTIVATE 0
TX_NO_EVENTS 0x07
TX_NO_INHERIT 0
TX_NO_INSTANCE 0x0D

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 9 / 105

TX_NO_MEMORY 0x10
TX_NO_TIME_SLICE 0
TX_NO_WAIT 0
TX_NOT_AVAILABLE 0x1D
TX_NOT_DONE 0x20
TX_NOT_OWNED 0x1E
TX_NULL 0
TX_OPTION_ERROR 0x08
TX_OR 0
TX_OR_CLEAR 1
TX_POOL_ERROR 0x02
TX_PRIORITY_ERROR 0x0F
TX_PTR_ERROR 0x03
TX_QUEUE_EMPTY 0x0A
TX_QUEUE_ERROR 0x09
TX_QUEUE_FULL 0x0B
TX_QUEUE_SUSP 5
TX_READY 0
TX_RESUME_ERROR 0x12
TX_SEMAPHORE_ERROR 0x0C
TX_SEMAPHORE_SUSP 6
TX_SIZE_ERROR 0x05
TX_SLEEP 4
TX_STACK_FILL 0xEFEFEFEFUL
TX_START_ERROR 0x10
TX_SUCCESS 0x00
TX_SUSPEND_ERROR 0x14
TX_SUSPEND_LIFTED 0x19
TX_SUSPENDED 3
TX_TCP_IP 12
TX_TERMINATED 2
TX_THREAD_ENTRY 0
TX_THREAD_ERROR 0x0E
TX_THREAD_EXIT 1
TX_THRESH_ERROR 0x18
TX_TICK_ERROR 0x16
TX_TIMER_ERROR 0x15
TX_TRUE 1
TX_WAIT_ABORT_ERROR 0x1B
TX_WAIT_ABORTED 0x1A
TX_WAIT_ERROR 0x04
TX_WAIT_FOREVER 0xFFFFFFFFUL

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 10 / 105

2.2 Listing by Value

TX_DONT_START 0
TX_FALSE 0
TX_NO_ACTIVATE 0
TX_NO_INHERIT 0
TX_NO_TIME_SLICE 0
TX_NO_WAIT 0
TX_NULL 0
TX_OR 0
TX_READY 0
TX_SUCCESS 0x00
TX_THREAD_ENTRY 0
TX_1_ULONG 1
TX_AUTO_ACTIVATE 1
TX_AUTO_START 1
TX_COMPLETED 1
TX_INHERIT 1
TX_LOOP_FOREVER 1
TX_DELETED 0x01
TX_OR_CLEAR 1
TX_THREAD_EXIT 1
TX_TRUE 1
TX_2_ULONG 2
TX_AND 2
TX_POOL_ERROR 0x02
TX_TERMINATED 2
TX_AND_CLEAR 3
TX_PTR_ERROR 0x03
TX_SUSPENDED 3
TX_4_ULONG 4
TX_SLEEP 4
TX_WAIT_ERROR 0x04
TX_QUEUE_SUSP 5
TX_SIZE_ERROR 0x05
TX_GROUP_ERROR 0x06
TX_SEMAPHORE_SUSP 6
TX_EVENT_FLAG 7
TX_NO_EVENTS 0x07
TX_8_ULONG 8
TX_BLOCK_MEMORY 8
TX_OPTION_ERROR 0x08
TX_BYTE_MEMORY 9
TX_QUEUE_ERROR 0x09

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 11 / 105

TX_IO_DRIVER 10
TX_QUEUE_EMPTY 0x0A
TX_FILE 11
TX_QUEUE_FULL 0x0B
TX_TCP_IP 12
TX_SEMAPHORE_ERROR 0x0C
TX_MUTEX_SUSP 13
TX_NO_INSTANCE 0x0D
TX_THREAD_ERROR 0x0E
TX_PRIORITY_ERROR 0x0F
TX_16_ULONG 16
TX_NO_MEMORY 0x10
TX_START_ERROR 0x10
TX_DELETE_ERROR 0x11
TX_RESUME_ERROR 0x12
TX_CALLER_ERROR 0x13
TX_SUSPEND_ERROR 0x14
TX_TIMER_ERROR 0x15
TX_TICK_ERROR 0x16
TX_ACTIVATE_ERROR 0x17
TX_THRESH_ERROR 0x18
TX_SUSPEND_LIFTED 0x19
TX_WAIT_ABORTED 0x1A
TX_WAIT_ABORT_ERROR 0x1B
TX_MUTEX_ERROR 0x1C
TX_NOT_AVAILABLE 0x1D
TX_NOT_OWNED 0x1E
TX_INHERIT_ERROR 0x1F
TX_NOT_DONE 0x20
TX_CEILING_EXCEEDED 0x21
TX_INVALID_CEILING 0x22
TX_FEATURE_NOT_ENABLED 0xFF
TX_STACK_FILL 0xEFEFEFEFUL
TX_WAIT_FOREVER 0xFFFFFFFFUL

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 12 / 105

3 ThreadX Constants

3.1 TX_BLOCK_POOL

typedef struct TX_BLOCK_POOL_STRUCT

{

ULONG tx_block_pool_id;
CHAR *tx_block_pool_name;
ULONG tx_block_pool_available;
ULONG tx_block_pool_total;
UCHAR *tx_block_pool_available_list;
UCHAR *tx_block_pool_start;

ULONG tx_block_pool_size;

ULONG tx_block_pool_block_size;
struct TX_THREAD_STRUCT

*tx_block_pool_suspension_list;
ULONG tx_block_pool_suspended_count;
struct TX_BLOCK_POOL_STRUCT

*tx_block_pool_created_next,
*tx_block_pool_created_previous;

#ifdef TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO

ULONG tx_block_pool_performance_allocate_count;
ULONG tx_block_pool_performance_release_count;
ULONG tx_block_pool_performance_suspension_count;
ULONG tx_block_pool_performance_timeout_count;

#endif

TX_BLOCK_POOL_EXTENSION /* Port defined */

} TX_BLOCK_POOL;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 13 / 105

3.2 TX_BYTE_POOL

typedef struct TX_BYTE_POOL_STRUCT

{

ULONG tx_byte_pool_id;
CHAR *tx_byte_pool_name;
ULONG tx_byte_pool_available;
ULONG tx_byte_pool_fragments;
UCHAR *tx_byte_pool_list;
UCHAR *tx_byte_pool_search;
UCHAR *tx_byte_pool_start;
ULONG tx_byte_pool_size;
struct TX_THREAD_STRUCT

*tx_byte_pool_owner;
struct TX_THREAD_STRUCT

*tx_byte_pool_suspension_list;
ULONG tx_byte_pool_suspended_count
struct TX_BYTE_POOL_STRUCT

*tx_byte_pool_created_next,
*tx_byte_pool_created_previous;

#ifdef TX_BYTE_POOL_ENABLE_PERFORMANCE_INFO
ULONG tx_byte_pool_performance_allocate_count;
ULONG tx_byte_pool_performance_release_count;
ULONG tx_byte_pool_performance_merge_count;
ULONG tx_byte_pool_performance_split_count;
ULONG tx_byte_pool_performance_search_count;
ULONG tx_byte_pool_performance_suspension_count;
ULONG tx_byte_pool_performance_timeout_count;

#endif

TX_BYTE_POOL_EXTENSION /* Port defined */

} TX_BYTE_POOL;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 14 / 105

3.3 TX_EVENT_FLAGS_GROUP

typedef struct TX_EVENT_FLAGS_GROUP_STRUCT

{

ULONG tx_event_flags_group_id;
CHAR *tx_event_flags_group_name;
ULONG tx_event_flags_group_current;
UINT tx_event_flags_group_reset_search;
struct TX_THREAD_STRUCT

*tx_event_flags_group_suspension_list;
ULONG tx_event_flags_group_suspended_count;

struct TX_EVENT_FLAGS_GROUP_STRUCT
*tx_event_flags_group_created_next,
*tx_event_flags_group_created_previous;

ULONG tx_event_flags_group_delayed_clear;

#ifdef TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO

ULONG tx_event_flags_group_performance_set_count; ULONG
tx_event_flags_group_performance_get_count;
ULONG tx_event_flags_group_performance_suspension_count; ULONG
tx_event_flags_group_performance_timeout_count;

#endif

#ifndef TX_DISABLE_NOTIFY_CALLBACKS
VOID (*tx_event_flags_group_set_notify)

(struct TX_EVENT_FLAGS_GROUP_STRUCT);

#endif

TX_EVENT_FLAGS_GROUP_EXTENSION /* Port defined */
} TX_EVENT_FLAGS_GROUP;

3.4 TX_MUTEX

typedef struct TX_MUTEX_STRUCT

{

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 15 / 105

ULONG tx_mutex_id;
CHAR *tx_mutex_name;
ULONG tx_mutex_ownership_count;
TX_THREAD *tx_mutex_owner;
UINT tx_mutex_inherit;
UINT tx_mutex_original_priority;
UINT tx_mutex_original_threshold;
struct TX_THREAD_STRUCT

*tx_mutex_suspension_list;
ULONG tx_mutex_suspended_count;

struct TX_MUTEX_STRUCT
*tx_mutex_created_next,
*tx_mutex_created_previous;

ULONG tx_mutex_highest_priority_waiting;
struct TX_MUTEX_STRUCT

*tx_mutex_owned_next,
*tx_mutex_owned_previous;

#ifdef TX_ MUTEX_ENABLE_PERFORMANCE_INFO
ULONG tx_mutex_performance_put_count;
ULONG tx_mutex_performance_get_count;
ULONG tx_mutex_performance_suspension_count;
ULONG tx_mutex_performance_timeout_count;
ULONG tx_mutex_performance_priority_inversion_count;
ULONG tx_mutex_performance_priority_inheritance_count;

#endif

TX_MUTEX_EXTENSION /* Port defined */

} TX_MUTEX;

3.5 TX_QUEUE

typedef struct TX_QUEUE_STRUCT

{

ULONG tx_queue_id;
CHAR *tx_queue_name;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 16 / 105

UINT tx_queue_message_size;
ULONG tx_queue_capacity;
ULONG tx_queue_enqueued;

ULONG tx_queue_available_storage;
ULONG *tx_queue_start;

ULONG *tx_queue_end;
ULONG *tx_queue_read;
ULONG *tx_queue_write;
struct TX_THREAD_STRUCT

*tx_queue_suspension_list;
ULONG tx_queue_suspended_count;

struct TX_QUEUE_STRUCT
*tx_queue_created_next,
*tx_queue_created_previous;

#ifdef TX_QUEUE_ENABLE_PERFORMANCE_INFO

ULONG tx_queue_performance_messages_sent_count;
ULONG tx_queue_performance_messages_received_count;
ULONG tx_queue_performance_empty_suspension_count;
ULONG tx_queue_performance_full_suspension_count;
ULONG tx_queue_performance_full_error_count;

ULONG tx_queue_performance_timeout_count;
#endif

#ifndef TX_DISABLE_NOTIFY_CALLBACKS

VOID *tx_queue_send_notify)(struct TX_QUEUE_STRUCT *);
#endif

TX_QUEUE_EXTENSION /* Port defined */

} TX_QUEUE;

3.6 TX_SEMAPHORE

typedef struct TX_SEMAPHORE_STRUCT

{

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 17 / 105

ULONG tx_semaphore_id;
CHAR *tx_semaphore_name;
ULONG tx_semaphore_count;
struct TX_THREAD_STRUCT

*tx_semaphore_suspension_list;
ULONG tx_semaphore_suspended_count;

struct TX_SEMAPHORE_STRUCT
*tx_semaphore_created_next,
*tx_semaphore_created_previous;

#ifdef TX_ SEMAPHORE_ENABLE_PERFORMANCE_INFO
ULONG tx_semaphore_performance_put_count;
ULONG tx_semaphore_performance_get_count;
ULONG tx_semaphore_performance_suspension_count;
ULONG tx_semaphore_performance_timeout_count;

#endif

#ifndef TX_DISABLE_NOTIFY_CALLBACKS

VOID (*tx_semaphore_put_notify)(struct TX_SEMAPHORE_STRUCT *);
#endif

TX_SEMAPHORE_EXTENSION /* Port defined */

} TX_SEMAPHORE;

3.7 TX_THREAD

typedef struct TX_THREAD_STRUCT

{

ULONG tx_thread_id;

ULONG tx_thread_run_count;
VOID *tx_thread_stack_ptr;
VOID *tx_thread_stack_start;
VOID *tx_thread_stack_end;
ULONG tx_thread_stack_size;
ULONG tx_thread_time_slice;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 18 / 105

ULONG tx_thread_new_time_slice;
struct TX_THREAD_STRUCT

*tx_thread_ready_next,
*tx_thread_ready_previous;

TX_THREAD_EXTENSION_0 /* Port defined*/

CHAR *tx_thread_name;
UINT tx_thread_priority;
UINT tx_thread_state;
UINT tx_thread_delayed_suspend;
UINT tx_thread_suspending;
UINT tx_thread_preempt_threshold;
VOID *tx_thread_stack_highest_ptr;
VOID (*tx_thread_entry)(ULONG);
ULONG tx_thread_entry_parameter;
TX_TIMER_INTERNAL tx_thread_timer;
VOID (*tx_thread_suspend_cleanup)(struct TX_THREAD_STRUCT *);
VOID *tx_thread_suspend_control_block;
struct TX_THREAD_STRUCT

*tx_thread_suspended_next,
*tx_thread_suspended_previous;

ULONG tx_thread_suspend_info;
VOID *tx_thread_additional_suspend_info;
UINT tx_thread_suspend_option;
UINT tx_thread_suspend_status;

TX_THREAD_EXTENSION_1 /* Port defined */

struct TX_THREAD_STRUCT
*tx_thread_created_next,
*tx_thread_created_previous;

TX_THREAD_EXTENSION_2 /* Port defined */

VOID *tx_thread_filex_ptr;
UINT tx_thread_original_priority;
UINT tx_thread_original_preempt_threshold;
ULONG tx_thread_owned_mutex_count;

struct TX_MUTEX_STRUCT
*tx_thread_owned_mutex_list;

#ifdef TX_ THREAD_ENABLE_PERFORMANCE_INFO
ULONG tx_thread_performance_resume_count;
ULONG tx_thread_performance_suspend_count;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 19 / 105

ULONG tx_thread_performance_solicited_preemption_count;
ULONG tx_thread_performance_interrupt_preemption_count;
ULONG tx_thread_performance_priority_inversion_count;
struct TX_THREAD_STRUCT

*tx_thread_performance_last_preempting_thread;
ULONG tx_thread_performance_time_slice_count;

ULONG tx_thread_performance_relinquish_count; ULONG
tx_thread_performance_timeout_count;
ULONG tx_thread_performance_wait_abort_count;

#endif

#ifndef TX_DISABLE_NOTIFY_CALLBACKS
VOID (*tx_thread_entry_exit_notify)

(struct TX_THREAD_STRUCT *, UINT);

#endif

TX_THREAD_EXTENSION_3 /* Port defined */

TX_THREAD_USER_EXTENSION

} TX_THREAD;

3.8 TX_TIMER

typedef struct TX_TIMER_STRUCT

{

ULONG tx_timer_id;
CHAR *tx_timer_name;
TX_TIMER_INTERNAL tx_ timer_internal;
struct TX_TIMER_STRUCT

*tx_timer_created_next, *tx_timer_created_previous;

#ifdef TX_TIMER_ENABLE_PERFORMANCE_INFO

ULONG tx_timer_performance_activate_count;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 20 / 105

ULONG tx_timer_performance_reactivate_count;
ULONG tx_timer_performance_deactivate_count;
ULONG tx_timer_performance_expiration_count;

ULONG tx_timer_performance_expiration_adjust_count;
#endif

} TX_TIMER;

3.9 TX_TIMER_INTERNAL

typedef struct TX_TIMER_INTERNAL_STRUCT

{

ULONG tx_timer_internal_remaining_ticks;
ULONG tx_timer_internal_re_initialize_ticks;
VOID (*tx_timer_internal_timeout_function)(ULONG);
ULONG tx_timer_internal_timeout_param;
struct TX_TIMER_INTERNAL_STRUCT

*tx_timer_internal_active_next,

*tx_timer_internal_active_previous;
struct TX_TIMER_INTERNAL_STRUCT

*tx_timer_internal_list_head;

} TX_TIMER_INTERNAL;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 21 / 105

4 ThreadX API Services

This chapter contains a description of all ThreadX services in alphabetic order. Their names are designed
so all similar services are grouped together. In the “Return Values” section in the following descriptions,
values in BOLD are not affected by the TX_DISABLE_ERROR_CHECKNG define used to disable API
error checking; while values shown in nonbold are completely disabled. In addition, a “Yes” listed under the
“Preemption Possible” heading indicates that calling the service may resume a higher-priority thread, thus
preempting the calling thread.

4.1 Block Memory Services

4.1.1 tx_block_allocate()

Allocate fixed-size block of memory.

Prototype
UINT tx_block_allocate(TX_BLOCK_POOL *pool_ptr, VOID **block_ptr, ULONG wait_option)

Description
This service allocates a fixed- size memory block from the specified memory pool. The actual size of the
memory block is determined during memory pool creation.

Input Parameters

pool_ptr Pointer to a previously created memory block pool.

block_ptr
Pointer to a destination block pointer. On successful allocation, the address

of the allocated memory block is placed where this parameter points.

wait_option Defines how the service behaves if there are no memory blocks available.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 22 / 105

The wait options are defined as follows:

TX_NO_WAIT (0x00000000)

TX_WAIT_FOREVER (0xFFFFFFFF)

timeout value (0x00000001 through 0xFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate return from this service

regardless if it was successful or not. This is the only valid option if the

service is called from a non-thread; e.g., Initialization, timer, or ISR.

Selecting TX_ WAIT_FOREVER causes the calling thread to suspend

indefinitely until a memory block is available.

Selecting a numeric value (1-0xFFFFFFFE) specifies the maximum number

of timer-ticks to stay suspended while waiting for a memory block.

Returns
TX_SUCCESS (0x00)

Successful memory block allocation.

TX_DELETED (0x01)
Memory block pool was deleted while thread was

suspended.

TX_NO_MEMORY (0x10)
Service was unable to allocate a block of memory within the

specified time to wait.

TX_WAIT_ABORTED (0x1A)
Suspension was aborted by another thread, timer or ISR.

TX_POOL_ERROR (0x02)
Invalid memory block pool pointer.

TX_PTR_ERROR (0x03)
Invalid pointer to destination pointer.

TX_WAIT_ERROR (0x04)
A wait option other than TX_NO_WAIT was specified

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 23 / 105

on a call from a non-thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Example
TX_BLOCK_POOL my_pool;
unsigned char *memory_ptr;
UINT status;
/* Allocate a memory block from my_pool. Assume that the pool has already been

created with a call to tx_block_pool_create. */
status = tx_block_allocate(&my_pool, (VOID **) &memory_ptr, TX_NO_WAIT);
/* If status equals TX_SUCCESS, memory_ptr contains the address of the allocated

block of memory. */

4.1.2 tx_block_pool_create()

Create pool of fixed-size memory blocks.

Prototype
UINT tx_block_pool_create(TX_BLOCK_POOL *pool_ptr,

CHAR *name_ptr, ULONG block_size, VOID *pool_start,
ULONG pool_size)

Description
This service creates a pool of fixed-size memory blocks. The memory area specified is divided into
as many fixed-size memory blocks as possible using the formula:
total blocks = (total bytes) / (block size + sizeof(void *))
Note:Each emory block contains one pointer of overhead that is invisible to the user and is
represented by the “sizeof(void *)” in the preceding formula.

Input Parameters

pool_ptr Pointer to a memory block pool control block.
name_ptr Pointer to the name of the memory block pool.
block_size Number of bytes in each memory block.
pool_start Starting address of the memory block pool.
pool_size Total number of bytes available for the memory block pool.

Returns
TX_SUCCESS (0x00) Successful memory block pool creation.
TX_POOL_ERROR (0x02) Invalid memory block pool pointer.Either the pointer is

NULL or the pool is already created.
TX_PTR_ERROR (0x03) Invalid starting address of the pool.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 24 / 105

TX_SIZE_ERROR (0x05) Size of pool is invalid.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
No

Example
TX_BLOCK_POOLmy_pool;
UINT status;
/* Create a memory pool whose total size is 1000 bytes starting at address 0x100000.

Each block in this pool is defined to be 50 bytes long. */
status=tx_block_pool_create(&my_pool, "my_pool_name", 50, (VOID *) 0x100000,

1000);
/* If status equals TX_ SUCCESS, my_ pool contains 18 memory blocks of 50

bytes each. The reason there are not 20 blocks in the pool is because of the
one overhead pointer associated with each block. */

4.1.3 tx_block_pool_delete ()

Delete memory block pool.
Prototype

UINT tx_block_pool_delete(TX_BLOCK_POOL *pool_ptr)
Description

This service deletes the specified block-memory pool. All threads suspended waiting for a memory
block from this pool are resumed and
given a TX_DELETED return status.
Note:It is the application’s responsibility to manage the memory area associated with the pool,
which is available after this service completes.In addition, the application must prevent use of a
deleted pool or its former memory blocks.

Input Parameters

pool_ptr Pointer to a previously created memory block pool.

Returns
TX_SUCCESS (0x00) Successful memory block pool deletion.

TX_POOL_ERROR (0x02) Invalid memory block pool pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Threads
Preemption Possible

Yes

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 25 / 105

Example
TX_BLOCK_POOLmy_pool;
UINT status;
/* Delete entire memory block pool. Assume that the pool

has already been created with a call to

tx_block_pool_create. */

status = tx_block_pool_delete(&my_pool);
/* If status equals TX_SUCCESS, the memory block pool is deleted. */

4.1.4 tx_block_pool_info_get()

Retrieve information about block pool.
Prototype

UINT tx_block_pool_info_get(TX_BLOCK_POOL *pool_ptr, CHAR **name, ULONG
*available, ULONG *total_blocks, TX_THREAD **first_suspended,
ULONG *suspended_count, TX_BLOCK_POOL **next_pool)

Description
This service retrieves information about the specified block memory pool.

Input Parameters

pool_ptr Pointer to previously created memory block pool.
name Pointer to destination for the pointer to the block pool’s name.
available Pointer to destination for the number of available blocks in the block pool.
total_blocks Pointer to destination for the total number of blocks in the block pool.
first_suspended Pointer to destination for the pointer to the thread that is first on the

suspension list of this block pool.
suspended_count Pointer to destination for the number of threads currently suspended on this

block pool.
next_pool Pointer to destination for the pointer of the next created block pool.

Note:Supplying a TX_NULL for any parameter indicates the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful block pool information retrieve.

TX_POOL_ERROR (0x02) Invalid memory block pool pointer.
Allowed From

Initialization, threads, timers, and ISRs
Example

TX_BLOCK_POOLmy_pool;
CHAR *name;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 26 / 105

ULONG available;
ULONG total_blocks;
TX_THREAD *first_suspended;
ULONG suspended_count;
TX_BLOCK_POOL*next_pool;
UINT status;
/* Retrieve information about the previously created block pool "my_pool." */

status = tx_block_pool_info_get(&my_pool, &name, &available,&total_blocks,
&first_suspended, &suspended_count, &next_pool);

/* If status equals TX_SUCCESS, the information requested is valid. */

4.1.5 tx_block_pool_performance_info_get()

Get block pool performance information.
Prototype

UINT tx_block _pool_performance_info_get(TX_BLOCK_POOL *pool_ptr, ULONG
*allocates, ULONG *releases,ULONG *suspensions, ULONG *timeouts))

Note:The ThreadX library and application must be built with
TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO defined for this service to return
performance information.

Description
This service retrieves performance information about the specified memory block pool.

Input Parameters

pool_ptr Pointer to previously created memory block pool.
allocates Pointer to destination for the number of allocate requests performed on this pool.
releases Pointer to destination for the number of release requests performed on this pool.
suspensions Pointer to destination for the number of thread allocation suspensions on this pool.
timeouts Pointer to destination for the number of allocate suspension timeouts on this pool.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required

Returns
TX_SUCCESS (0x00) Successful block pool performance get.
TX_PTR_ERROR (0x03) Invalid block pool pointer.

TX_FEATURE_NOT_ENABLED (0xFF)
The system was not compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 27 / 105

TX_BLOCK_POOLmy_pool;
ULONG allocates;
ULONG releases;
ULONG suspensions;
ULONG timeouts;
/* Retrieve performance information on the previously created block pool. */

status = tx_block_pool_performance_info_get(&my_pool, &allocates, &releases,
&suspensions, &timeouts);

/* If status is TX_SUCCESS the performance information was successfully retrieved. */

4.1.6 tx_block_pool_performance_system_info_get()

Get block pool system performance information.
Prototype

UINT tx_block _pool_performance _system_info_get(ULONG *allocates, ULONG *releases,
ULONG *suspensions, ULONG *timeouts);

Description
This service retrieves performance information about all memory block pools in the application.
Note:The ThreadX library and application must be built with
TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO defined for this service to return
performance information.

Input Parameters

allocates Pointer to destination for the total number of allocate requests performed on all
block pools.

releases Pointer to destination for the total number of release requests performed on all
block pools

suspensions Pointer to destination for the total number of thread allocation suspensions on all
block pools.

timeouts Pointer to destination for the total number of allocate suspension timeouts on all
block pools

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required

Returns
TX_SUCCESS (0x00) Successful block pool system performance get.
TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled with performance

information enabled.
Allowed From

Initialization, threads, timers, and ISRs

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 28 / 105

Example
ULONG allocates;
ULONG releases;

ULONG suspensions;

ULONG timeouts;
/* Retrieve performance information on all the block pools in the system. */

status = tx_block_pool_performance_system_info_get(&allocates,
&releases,&suspensions, &timeouts);

/* If status is TX_SUCCESS the performance information was successfully retrieved. */

4.1.7 tx_block_pool_prioritize()

Prioritize block pool suspension list.
Prototype

UINT tx_block_pool_prioritize(TX_BLOCK_POOL *pool_ptr)
Description

This service places the highest priority thread suspended for a block of memory on this pool at the front
of the suspension list. All other threads remain in the same FIFO order they were suspended in.

Input Parameters

pool_ptr Pointer to a memory block pool control block.

Returns
TX_SUCCESS (0x00) Successful block pool prioritize.

TX_POOL_ERROR (0x02) Invalid memory block pool pointer.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

No
Example

TX_BLOCK_POOLmy_pool;
UINT status;

/* Ensure that the highest priority thread will receive the next free block in this pool. */
status = tx_block_pool_prioritize(&my_pool);
/* If status equals TX_SUCCESS, the highest priority suspended thread is at the

front of the list. The next tx_block_release call will wake up this thread. */

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 29 / 105

4.1.8 tx_block_release()

Release fixed-size block of memory.
Prototype

UINT tx_block_release(VOID *block_ptr)
Description

This service releases a previously allocated block back to its associated memory pool. If there are
one or more threads suspended waiting for memory blocks from this pool, the first thread
suspended is given this memory block and resumed.
Note:The application must prevent using a memory block area after it has been released back to
the pool.

Input Parameters

pool_ptr Pointer to the previously allocated memory block.

Returns
TX_SUCCESS (0x00) Successful memory block release.

TX_PTR_ERROR (0x03) Invalid pointer to memory block.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

Yes
Example

TX_BLOCK_POOL my_pool;

unsigned char *memory_ptr;

UINT status;
/* Release a memory block back to my_pool. Assume that the pool has been created and

the memory block has been allocated. */
status = tx_block_release((VOID *) memory_ptr);
/* If status equals TX_SUCCESS, the block of memory pointed to by memory_ptr has

been returned to the pool. */

4.2 Byte Memory Services

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 30 / 105

4.2.1 tx_byte_allocate()

Allocate bytes of memory.
Prototype

UINT tx_byte_allocate(TX_BYTE_POOL *pool_ptr,
VOID **memory_ptr,
ULONG memory_size,
ULONG wait_option)

Description
This service allocates the specified number of bytes from the specified memory byte pool.

Note:The performance of this service is a function of the block size and the amount of
fragmentation in the pool. Hence, this service should not be used during time-critical threads of
execution.

Input Parameters

pool_ptr Pointer to a previously created memory pool.

memory_ptr
Pointer to a destination memory pointer. On successful allocation, the address of
the allocated memory area is placed where this parameter points to.

memory_size Number of bytes requested.

wait_option

Defines how the service behaves if there is not enough memory available. The
wait options are defined as follows:
TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through 0xFFFFFFFE)
Selecting TX_NO_WAIT results in an immediate return from this service
regardless of whether or not it was successful. This is the only valid option if the
service is called from initialization.Selecting TX_ WAIT_FOREVER causes the
calling thread to suspend indefinitely until enough memory is available.Selecting
a numeric value (1-0xFFFFFFFE) specifies the maximum number of timer-ticks to
stay suspended while waiting for the memory.

Returns

TX_SUCCESS (0x00) Successful memory allocation.
TX_DELETED (0x01) Memory pool was deleted while thread was suspended.
TX_NO_MEMORY (0x10) Service was unable to allocate the memory within the

specified time to wait.
TX_WAIT_ABORTED (0x1A) Suspension was aborted by another thread, timer, or ISR.
TX_POOL_ERROR (0x02) Invalid memory pool pointer.

TX_PTR_ERROR (0x03) Invalid pointer to destination pointer.

TX_SIZE_ERROR (0X05) Requested size is zero or larger than the pool.
TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT was specified on a call

from a non-thread.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 31 / 105

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
Yes

Example
TX_BYTE_POOL my_pool;
unsigned char*memory_ptr;
UINT status;
/* Allocate a 112 byte memory area from my_pool. Assume that the pool has already been

created with a call to tx_byte_pool_create. */
status = tx_byte_allocate(&my_pool, (VOID **) &memory_ptr, 112, TX_NO_WAIT);
/* If status equals TX_SUCCESS, memory_ptr contains the address of the allocated

memory area. */

4.2.2 tx_byte_pool_create()

Create memory pool of bytes.
Prototype

UINT tx_byte_pool_create(TX_BYTE_POOL *pool_ptr,
CHAR *name_ptr, VOID *pool_start,
ULONG pool_size)

Description
This service creates a memory byte pool in the area specified. Initially the pool consists of basically
one very large free block. However, the pool is broken into smaller blocks as allocations are made.

Input Parameters

pool_ptr Pointer to a memory pool control block.
name _ptr Pointer to the name of the memory pool.
pool_start Starting address of the memory pool.
pool_size Total number of bytes available for the memory pool.

Returns
TX_SUCCESS (0x00) Successful memory pool creation.
TX_POOL_ERROR (0x02) Invalid memory pool pointer. Either the pointer is NULL or the pool

is already created.
TX_PTR_ERROR (0x03) Invalid starting address of the pool.

TX_SIZE_ERROR (0x05) Size of pool is invalid.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
No

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 32 / 105

Example
TX_BYTE_POOL my_pool;
UINT status;
/* Create a memory pool whose total size is 2000 bytes starting at address 0x500000.

*/
status = tx_byte_pool _create(&my_pool, "my_pool_name", (VOID *) 0x500000,

2000);
/* If status equals TX_SUCCESS, my_pool is available for allocating memory. */

4.2.3 tx_byte_pool_delete()

Delete memory byte pool.
Prototype

UINT tx_byte_pool_delete(TX_BYTE_POOL *pool_ptr)
Description

This service deletes the specified memory byte pool. All threads suspended waiting for memory
from this pool are resumed and given a TX_DELETED return status.
Note:It is the application’s responsibility to manage the memory area associated with the pool,
which is available after this service completes.In addition, the application must prevent use of a
deleted pool or memory previously allocated from it.

Input Parameters

pool_ptr Pointer to a previously created memory pool.

Returns
TX_SUCCESS (0x00) Successful memory pool deletion.
TX_POOL_ERROR (0x02) Invalid memory pool pointer.
TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Threads
Preemption Possible

Yes
Example

TX_BYTE_POOL my_pool;
UINT status;
/* Delete entire memory pool. Assume that the pool has already been created with a call to

tx_byte_pool_create. */
status = tx_byte_pool_delete(&my_pool);
/* If status equals TX_SUCCESS, memory pool is deleted. */

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 33 / 105

4.2.4 tx_byte_pool_info_get()

Retrieve information about byte pool.
Prototype

UINT tx_byte_pool_info_get(TX_BYTE_POOL *pool_ptr, CHAR **name, ULONG
*available, ULONG *fragments, TX_THREAD **first_suspended,
ULONG *suspended_count,
TX_BYTE_POOL **next_pool)

Description
This service retrieves information about the specified memory byte pool.

Input Parameters

pool_ptr Pointer to previously created memory pool.
name Pointer to destination for the pointer to the byte pool’s name.
available Pointer to destination for the number of available bytes in the pool.

fragments
Pointer to destination for the total number of memory fragments in the byte
pool.

first_suspended
Pointer to destination for the pointer to the thread that is first on the
suspension list of this byte pool.

suspended_count
Pointer to destination for the number of threads currently suspended on this
byte pool.

next_pool Pointer to destination for the pointer of the next created byte pool.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful pool information retrieve.
TX_POOL_ERROR (0x02) Invalid memory pool pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Example
TX_BYTE_POOL my_pool;
CHAR *name;
ULONG available;
ULONG fragments;

TX_THREAD *first_suspended;
ULONG suspended_count;

TX_BYTE_POOL *next_pool;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 34 / 105

UINT status;
/* Retrieve information about the previously created block pool "my_pool." */

status = tx_byte_pool_info_get(&my_pool, &name, &available, &fragments,
&first_suspended, &suspended_count, &next_pool);

/* If status equals TX_SUCCESS, the information requested is valid. */

4.2.5 tx_byte_pool_performance_info_get()

Get byte pool performance information.
Prototype

UINT tx_byte_ pool_performance_info_get(TX_ BYTE_POOL *pool_ptr, ULONG
*allocates, ULONG *releases,ULONG *fragments_searched , ULONG *merges,
ULONG *splits, ULONG *suspensions, ULONG *timeouts);

Description
This service retrieves performance information about the specified memory byte pool.
Note:The ThreadX library and application must be built with
TX_BYTE_POOL_ENABLE_PERFORMANCE_INFO defined for this service to return
performance information.

Input Parameters

pool_ptr Pointer to previously created memory byte pool.
allocates Pointer to destination for the number of allocate requests performed on this

pool.
releases Pointer to destination for the number of release requests performed on this

pool.
fragments_searched Pointer to destination for the number of internal memory fragments

searched during allocation requests on this pool.
merges Pointer to destination for the number of internal memory blocks merged

during allocation requests on this pool.
splits Pointer to destination for the number of internal memory blocks split

(fragments) created during allocation requests on this pool.
suspensions Pointer to destination for the number of thread allocation suspensions on

this pool.
timeouts Pointer to destination for the number of allocate suspension timeouts on

this pool.

Note:Supplying a TX_NULL for any parameter indicates the parameter is not required

Returns
TX_SUCCESS (0x00) Successful byte pool performance get.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 35 / 105

TX_PTR_ERROR (0x03) Invalid byte pool pointer.

TX_FEATURE_NOT_ENABLED (0xFF)
The system was not compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_BYTE_POOL my_pool;
ULONG fragments_searched;

ULONG merges;

ULONG splits;

ULONG allocates;

ULONG releases;

ULONG suspensions;

ULONG timeouts;
/* Retrieve performance information on the previously created byte pool. */

status = tx_byte_pool_performance_info_get(&my_pool,
&fragments_searched,&merges, &splits, &allocates,
&releases, &suspensions,&timeouts);

/* If status is TX_SUCCESS the performance information was successfully retrieved. */

4.2.6 tx_byte_pool_performance_system_info_get()

Get byte pool system performance information.
Prototype

UINT tx_byte_ pool_performance_ system_info_get(ULONG *allocates, ULONG
*releases, ULONG *fragments_searched, ULONG *merges, ULONG *splits, ULONG
*suspensions, ULONG *timeouts);

Description
This service retrieves performance information about all memory byte pools in the system.
Note:The ThreadX library and application must be built with
TX_BYTE_POOL_ENABLE_PERFORMANCE_INFO defined for this service to return
performance information.

Input Parameters

allocates
Pointer to destination for the number of allocate requests performed on this
pool.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 36 / 105

releases
Pointer to destination for the number of release requests performed on this
pool.

fragments_searched
Pointer to destination for the total number of internal memory fragments
searched during allocation requests on all byte pools.

merges
Pointer to destination for the total number of internal memory blocks merged
during allocation requests on all byte pools.

splits
Pointer to destination for the total number of internal memory blocks split
(fragments) created during allocation requests on all byte pools.

suspensions
Pointer to destination for the total number of thread allocation suspensions on
all byte pools.

timeouts
Pointer to destination for the total number of allocate suspension timeouts on
all byte pools.

Note:Supplying a TX_NULL for any parameter indicates the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful byte pool performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG fragments_searched;
ULONG merges;
ULONG splits;
ULONG allocates;
ULONG releases;
ULONG suspensions;
ULONG timeouts;
/* Retrieve performance information on all byte pools in the system. */

status = tx_byte_pool_performance_system_info_get(&fragments_searched,

&merges, &splits, &allocates, &releases, &suspensions, &timeouts);
/* If status is TX_SUCCESS the performance information was successfully retrieved. */

4.2.7 tx_byte_pool_prioritize()

Prioritize byte pool suspension list.
Prototype

UINT tx_byte_pool_prioritize(TX_BYTE_POOL *pool_ptr)

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 37 / 105

Description
This service places the highest priority thread suspended for memory on this pool at the front of the
suspension list. All other threads remain in the same FIFO order they were suspended in.

Input Parameters

pool_ptr Pointer to a memory pool control block.

Returns
TX_SUCCESS (0x00) Successful memory pool prioritize.

TX_POOL_ERROR (0x02) Invalid memory pool pointer.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

No
Example

TX_BYTE_POOL my_pool;
UINT status;
/* Ensure that the highest priority thread will receive the next free memory from this

pool. */
status = tx_byte_pool_prioritize(&my_pool);
/* If status equals TX_SUCCESS, the highest priority suspended thread is at the front

of the list. The next tx_byte_release call will wake up this thread, if there is enough
memory to satisfy its request. */

4.2.8 tx_byte_release()

Release bytes back to memory pool.
Prototype

UINT tx_byte_release(VOID *memory_ptr)
Description

This service releases a previously allocated memory area back to its associated pool. If there are one or
more threads suspended waiting for memory from this pool, each suspended thread is given memory
and resumed until the memory is exhausted or until there are no more suspended threads. This process
of allocating memory to suspended threads always begins with the first thread suspended.
Note:The application must prevent using the memory area after it is released.

Input Parameters

memory_ptr Pointer to the previously allocated memory area.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 38 / 105

Returns
TX_SUCCESS (0x00) Successful memory release.

TX_PTR_ERROR (0x03) Invalid memory area pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Initialization and threads
Preemption Possible

Yes
Example

unsigned char *memory_ptr;
UINT status;
/* Release a memory back to my_pool. Assume that the memory area was previously

allocated from my_pool. */

status = tx_byte_release((VOID *) memory_ptr);
/* If status equals TX_ SUCCESS, the memory pointed to by memory_ptr has been

returned to the pool. */

4.3 Event Flags Services

4.3.1 tx_event_flags_create()

Create event flags group.
Prototype

UINT tx_event_flags_create(TX_EVENT_FLAGS_GROUP *group_ptr, CHAR
*name_ptr)

Description
This service creates a group of 32 event flags. All 32 event flags in the group are initialized to zero.
Each event flag is represented by a single bit.

Input Parameters
group_ptr Pointer to an event flags group control block.

name_ptr Pointer to the name of the event flags group.

Returns
TX_SUCCESS (0x00) Successful event group creation.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 39 / 105

TX_GROUP_ERROR (0x06) Invalid event group pointer. Either the pointer is NULL or the
event group is already created.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Initialization and threads
Preemption Possible

No
Example

TX_EVENT_FLAGS_GROUP my_event_group;
UINT status;
/* Create an event flags group. */
status = tx_event_flags_create(&my_event_group,

"my_event_group_name");
/* If status equals TX_SUCCESS, my_event_group is ready for get and set services.

*/

4.3.2 tx_event_flags_delete()

Delete event flags group.
Prototype

UINT tx_event_flags_delete(TX_EVENT_FLAGS_GROUP *group_ptr)
Description

This service deletes the specified event flags group. All threads suspended waiting for events from
this group are resumed and given a TX_DELETED return status.
Note:The application must prevent use of a deleted event flags group.

Input Parameters

group_ptr Pointer to a previously created event flags group.

Returns
TX_SUCCESS (0x00) Successful event flags group deletion.

TX_GROUP_ERROR (0x06) Invalid event flags group pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Threads
Preemption Possible

Yes
Example

TX_EVENT_FLAGS_GROUP my_event_flags_group;
UINT status;
/* Delete event flags group. Assume that the group has

already been created with a call to

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 40 / 105

tx_event_flags_create. */
status = tx_event_flags_delete(&my_event_flags_group);

/* If status equals TX_SUCCESS, the event flags group is deleted. */

4.3.3 tx_event_flags_get()

Get event flags from event flags group.
Prototype

UINT tx_event_flags_get(TX_EVENT_FLAGS_GROUP *group_ptr,
ULONG requested_flags, UINT get_option,
ULONG *actual_flags_ptr, ULONG wait_option)

Description
This service retrieves event flags from the specified event flags group. Each event flags group
contains 32 event flags. Each flag is represented by a single bit. This service can retrieve a variety of
event flag combinations, as selected by the input parameters.

Input Parameters

group_ptr Pointer to a previously created event flags group.
requested_flags 32-bit unsigned variable that represents the requested event flags.
get_option Specifies whether all or any of the requested event flags are required. The

following are valid selections:
TX_AND (0x02)
TX_AND_CLEAR (0x03)
TX_OR (0x00)
TX_OR_CLEAR (0x01)
Selecting TX_AND or TX_AND_CLEAR specifies that all event flags must be
present in the group. Selecting TX_OR or TX_OR_CLEAR specifies that any
event flag is satisfactory. Event flags that satisfy the request are cleared (set to
zero) if TX_AND_CLEAR or TX_OR_CLEAR are specified.

actual_flags_ptr Pointer to destination of where the retrieved event flags are placed. Note that
the actual flags obtained may contain flags that were not requested.

wait_option Defines how the service behaves if the selected event flags are not set. The
wait options are defined as follows:
TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through 0xFFFFFFFE)
Selecting TX_NO_WAIT results in an immediate return from this service
regardless of whether or not it was successful. This is the only valid option if the
service is called from a non-thread; e.g.,Initialization, timer, or ISR.
Selecting TX_WAIT_FOREVER causes the calling thread to suspend
indefinitely until the event flags are available.
Selecting a numeric value (1-0xFFFFFFFE) specifies the maximum number of

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 41 / 105

timer-ticks to stay suspended while waiting for the event flags.

Returns
TX_SUCCESS (0x00) Successful event flags get.
TX_DELETED (0x01) Event flags group was deleted while thread was suspended.

TX_NO_EVENTS (0x07)
Service was unable to get the specified events within the
specified time to wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another thread, timer, or ISR.
TX_GROUP_ERROR (0x06) Invalid event flags group pointer.
TX_PTR_ERROR (0x03) Invalid pointer for actual event flags.

TX_WAIT_ERROR (0x04)
A wait option other than TX_NO_WAIT was specified on a call
from a non-thread.

TX_OPTION_ERROR (0x08) Invalid get-option was specified.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

Yes
Example

TX_EVENT_FLAGS_GROUP my_event_flags_group;
ULONG actual_events;
UINT status;
/* Request that event flags 0, 4, and 8 are all set. Also, if they are set they should be cleared.

If the event flags are not set, this service suspends for a maximum of 20 timer-ticks. */

status = tx_event_flags_get(&my_event_flags_group, 0x111, TX_AND_CLEAR,
&actual_events, 20);

/* If status equals TX_SUCCESS, actual_events contains the actual events obtained. */

4.3.4 tx_event_flags_info_get()

Retrieve information about event flags group.
Prototype

UINT tx_event_flags_info_get(TX _EVENT_FLAGS_GROUP *group_ptr, CHAR
**name, ULONG *current_flags, TX_THREAD
**first_suspended,
ULONG *suspended_count,
TX_EVENT_FLAGS_GROUP **next_group)

Description
This service retrieves information about the specified event flags group.

Input Parameters

group_ptr Pointer to an event flags group control block.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 42 / 105

name Pointer to destination for the pointer to the event flags group’s name.
current_flags Pointer to destination for the current set flags in the event flags group.
first_suspended Pointer to destination for the pointer to the thread that is first on the

suspension list of this event flags group.
suspended_count Pointer to destination for the number of threads currently suspended on this

event flags group.
next_group Pointer to destination for the pointer of the next created event flags group.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns

TX_SUCCESS (0x00) Successful event group information retrieval.

TX_GROUP_ERROR (0x06) Invalid event group pointer.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

No
Example

TX_EVENT_FLAGS_GROUP my_event_group;
CHAR *name;

ULONG current_flags;

TX_THREAD *first_suspended;

ULONG suspended_count;

TX_EVENT_FLAGS_GROUP *next_group;

UINT status;
/* Retrieve information about the previously created event flags group

"my_event_group." */

status = tx_event_flags_info_get(&my_event_group, &name, ¤t_flags,

&first_suspended, &suspended_count, &next_group);
/* If status equals TX_SUCCESS, the information requested is valid. */

4.3.5 tx_event_flags_performance info_get()

Get event flags group performance information
Prototype

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 43 / 105

UINT tx_event_flags_performance_info_ get(TX _EVENT_ FLAGS_GROUP *group_ptr,
ULONG *sets,
ULONG *gets, ULONG *suspensions,
ULONG *timeouts);

Note:ThreadX library and application must be built with
TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO defined for this service to return
performance information.

Description
This service retrieves performance information about the specified event flags group.

Input Parameters

group_ptr Pointer to previously created event flags group.

sets
Pointer to destination for the number of event flags set requests performed on this
group.

gets
Pointer to destination for the number of event flags get requests performed on
this group.

suspensions
Pointer to destination for the number of thread event flags get suspensions on
this group.

timeouts
Pointer to destination for the number of event flags get suspension timeouts on
this group.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful event flags group performance get.

TX_PTR_ERROR (0x03) Invalid event flags group pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_EVENT_FLAGS_GROUP my_event_flag_group;
ULONG sets;

ULONG gets;

ULONG suspensions;

ULONG timeouts;
/* Retrieve performance information on the previously created event flag group. */

status = tx_event_flags_performance_info_get(&my_event_flag_group, &sets, &gets,
&suspensions, &timeouts);

/* If status is TX_SUCCESS the performance information was successfully retrieved. */

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 44 / 105

4.3.6 tx_event_flags_performance_system_info_get()

Retrieve performance system information.
Prototype

UINT tx_event_flags_performance_system_info_get(ULONG *sets, ULONG
*gets,ULONG *suspensions, ULONG *timeouts);

Description
This service retrieves performance information about all event flags groups in the system.
Note:ThreadX library and application must be built with
TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO defined for this service to return
performance information.

Input Parameters

sets
Pointer to destination for the total number of event flags set requests performed on
all groups.

gets
Pointer to destination for the total number of event flags get requests performed on
all groups.

suspensions
Pointer to destination for the total number of thread event flags get suspensions on
all groups.

timeouts
Pointer to destination for the total number of event flags get suspension timeouts
on all groups.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful event flags system performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG sets;
ULONG gets;

ULONG suspensions;

ULONG timeouts;
/* Retrieve performance information on all previously created event flag groups. */

status = tx_event_flags_performance_system_info_get(&sets, &gets, &suspensions,
&timeouts);

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 45 / 105

/* If status is TX_SUCCESS the performance information was successfully retrieved. */

4.3.7 tx_event_flags_set()

Set event flags in an event flags group
Prototype

UINT tx_event_flags_set(TX_EVENT_FLAGS_GROUP *group_ptr,
ULONG flags_to_set,UINT set_option)

Description
This service sets or clears event flags in an event flags group, depending upon the specified set-option.
All suspended threads whose event flags request is now satisfied are resumed.

Input Parameters

group_ptr Pointer to the previously created event flags group control block.
flags_to_set Specifies the event flags to set or clear based upon the set option selected.

set_option

Specifies whether the event flags specified are ANDed or ORed into the
current event flags of the group. The following are valid selections:
TX_AND (0x02)
TX_OR (0x00)
Selecting TX_AND specifies that the specified event flags are ANDed into the
current event flags in the group. This option is often used to clear event flags in
a group. Otherwise, if TX_OR is specified, the specified event flags are ORed
with the current event in the group.

Returns
TX_SUCCESS (0x00) Successful event flags set.
TX_GROUP_ERROR (0x06) Invalid pointer to event flags group.

TX_OPTION_ERROR (0x08) Invalid set-option specified.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Example
TX_EVENT_FLAGS_GROUP my_event_flags_group;
UINT status;
/* Set event flags 0, 4, and 8. */
status = tx_event_flags_set(&my_event_flags_group,

0x111, TX_OR);
/* If status equals TX_SUCCESS, the event flags have been set and any suspended

thread whose request was satisfied has been resumed. */

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 46 / 105

4.3.8 tx_event_flags_set_notify()

Set event flags in an event flags group
Prototype

UINT tx_event_flags_set_notify(TX_EVENT_FLAGS_GROUP *group_ptr, VOID
(*events_set_notify)(TX_EVENT_FLAGS_GROUP *));

Description
This service registers a notification callback function that is called whenever one or more event flags are
set in the specified event flags group. The processing of the notification callback is defined by the
application.

Input Parameters

group_ptr Pointer to previously created event flags group.
events_set_notify Pointer to application’s event flags set notification function. If this value is

TX_NULL, notification is disabled.

Returns
TX_SUCCESS (0x00) Successful registration of event flags set notification.

TX_GROUP_ERROR (0x06) Invalid event flags group pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was compiled with notification capabilities
disabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_EVENT_FLAGS_GROUP my_group;
/* Register the "my _event_ flags_ set_notify" function for monitoring event flags set in the event

flags group "my_group." */

status=tx_event_flags_set_notify(&my_group, my_event_flags_set_notify);
/* If status is TX_SUCCESS the event flags set notification function was successfully registered. */
void my_event_flags_set_notify(TX_EVENT_FLAGS_GROUP *group_ptr)

/* One or more event flags was set in this group! */

4.4 Interrupt Control

4.4.1 tx_interrupt_control()

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 47 / 105

Enable and disable interrupts
Prototype

UINT tx_interrupt_control(UINT new_posture)
Description

This service enables or disables interrupts as specified by the input parameter new_posture.
Note:If this service is called from an application thread, the interrupt posture remains part of
that thread’s context. For example, if the thread calls this routine to disable interrupts and then
suspends, when it is resumed, interrupts are disabled again.
This service should not be used to enable interrupts during initialization! Doing so could cause
unpredictable results.

Input Parameters

new_posture

This parameter specifies whether interrupts are disabled or enabled. Legal values
include TX_INT_DISABLE and TX_INT_ENABLE. The actual values for these
parameters are port specific. In addition, some processing architectures might
support additional interrupt disable postures. Please see the readme_threadx.txt
information supplied on the distribution disk for more details.

Returns
previous posture This service returns the previous interrupt

posture to the caller. This allows users of the

service to restore the previous posture after

interrupts are disabled.
Allowed From

Threads, timers, and ISRs
Preemption Possible

No
Example

UINT my_old_posture;
/* Lockout interrupts */
my_old_posture=tx_interrupt_control(TX_INT_DISABLE);

/* Perform critical operations that need interrupts locked-out.... */
/* Restore previous interrupt lockout posture. */
tx_interrupt_control(my_old_posture);

4.5 Interrupt Control

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 48 / 105

4.5.1 tx_mutex_create()

Create mutual exclusion mutex
Prototype

UINT tx_mutex_create(TX_MUTEX *mutex_ptr,
CHAR *name_ptr, UINT priority_inherit)

Description
This service creates a mutex for inter-thread mutual exclusion for resource protection.

Input Parameters

mutex_ptr Pointer to a mutex control block.
name_ptr Pointer to the name of the mutex.

priority_inherit
Specifies whether or not this mutex supports priority inheritance. If this value is
TX_INHERIT,then priority inheritance is supported. However, if TX_NO_INHERIT
is specified, priority inheritance is not supported by this mutex.

Returns
TX_SUCCESS (0x00) Successful mutex creation.
TX_MUTEX_ERROR (0x1C) Invalid mutex pointer. Either the pointer is NULL or the mutex

is already created.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

TX_INHERIT_ERROR (0x1F) Invalid priority inherit parameter.

Allowed From
Initialization and threads

Preemption Possible
No

Example
TX_MUTEX my_mutex;
UINT status;
/* Create a mutex to provide protection over a

common resource. */

status = tx_mutex_create(&my_mutex,"my_mutex_name",

TX_NO_INHERIT);
/* If status equals TX_SUCCESS, my_mutex is ready for use. */

4.5.2 tx_mutex_delete()

Delete mutual exclusion mutex
Prototype

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 49 / 105

UINT tx_mutex_delete(TX_MUTEX *mutex_ptr)
Description

This service deletes the specified mutex. All threads suspended waiting for the mutex are resumed and
given a TX_DELETED return status.
Note:It is the application’s responsibility to prevent use of a deleted mutex.

Input Parameters

mutex_ptr Pointer to a previously created mutex.

Returns
TX_SUCCESS (0x00) Successful mutex deletion.
TX_MUTEX_ERROR (0x1C) Invalid mutex pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Threads
Preemption Possible

Yes
Example

TX_MUTEX my_mutex;
UINT status;
/* Delete a mutex. Assume that the mutex has already been created. */
status = tx_mutex_delete(&my_mutex);
/* If status equals TX_SUCCESS, the mutex is deleted. */

4.5.3 tx_mutex_get()

Obtain ownership of mutex
Prototype

UINT tx_mutex_get(TX_MUTEX *mutex_ptr, ULONG wait_option
Description

This service attempts to obtain exclusive ownership of the specified mutex. If the calling thread already
owns the mutex, an internal counter is incremented and a successful status is returned.
If the mutex is owned by another thread and this thread is higher priority and priority inheritance was
specified at mutex create, the lower priority thread’s priority will be temporarily raised to that of the
calling thread.
Note:The priority of the lower priority thread owning a mutex with priority-inheritance should
never be modified by an external thread during mutex ownership.

Input Parameters

mutex_ptr Pointer to a previously created mutex.

wait_option
Defines how the service behaves if the mutex is already owned by another
thread. The wait options are defined as follows:

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 50 / 105

TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through 0xFFFFFFFE)
Selecting TX_NO_WAIT results in an immediate return from this service
regardless of whether or not it was successful. This is the only valid option if the
service is called from Initialization.
Selecting TX_ WAIT_FOREVER causes the calling thread to suspend indefinitely
until the mutex is available.
Selecting a numeric value (1-0xFFFFFFFE) specifies the maximum number of
timer-ticks to stay suspended while waiting for the mutex.

Returns
TX_SUCCESS (0x00) Successful mutex get operation.
TX_DELETED (0x01) Mutex was deleted while thread was suspended.
TX_NOT_AVAILABLE (0x1D) Service was unable to get ownership of the mutex within the

specified time to wait.
TX_WAIT_ABORTED (0x1A) Suspension was aborted by another thread, timer, or ISR.

TX_MUTEX_ERROR (0x1C) Invalid mutex pointer.
TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT was specified on a call

from a non-thread.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads and timers

Preemption Possible
Yes

Example
TX_MUTEX my_mutex;
UINT status;
/* Obtain exclusive ownership of the mutex "my_mutex".

If the mutex "my_mutex" is not available, suspend until it
becomes available. */

status = tx_mutex_get(&my_mutex, TX_WAIT_FOREVER);

4.5.4 tx_mutex_info_get()

Retrieve information about mutex
Prototype

UINT tx_mutex_info_get(TX_MUTEX *mutex_ptr, CHAR **name, ULONG *count,
TX_THREAD **owner, TX_THREAD **first_suspended,
ULONG *suspended_count,
TX_MUTEX **next_mutex)

Description

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 51 / 105

This service retrieves information from the specified mutex.
Input Parameters

mutex_ptr Pointer to mutex control block.
name Pointer to destination for the pointer to the mutex’s name.
count Pointer to destination for the ownership count of the mutex.
owner Pointer to destination for the owning thread’s pointer.

first_suspended
Pointer to destination for the pointer to the thread that is first on the
suspension list of this mutex.

suspended_count
Pointer to destination for the number of threads currently suspended on this
mutex.

next_mutex Pointer to destination for the pointer of the next created mutex.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns

TX_SUCCESS (0x00) Successful mutex information retrieval.

TX_MUTEX_ERROR (0x1C) Invalid mutex pointer.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

No
Example

TX_MUTEX my_mutex;
CHAR *name;
ULONG count;
TX_THREAD *owner;
TX_THREAD *first_suspended;
ULONG suspended_count;
TX_MUTEX *next_mutex;
UINT status;
/* Retrieve information about the previously created mutex "my_mutex." */

status = tx_mutex_info_get(&my_mutex, &name, &count, &owner,

&first_suspended, &suspended_count, &next_mutex);
/* If status equals TX_SUCCESS, the information requested is valid. */

4.5.5 tx_mutex_performance_info_get()

Get mutex performance information
Prototype

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 52 / 105

UINT tx_mutex _performance_ info_get(TX_MUTEX *mutex_ptr, ULONG *puts, ULONG
*gets, ULONG *suspensions, ULONG *timeouts,
ULONG *inversions, ULONG *inheritances);

Description
This service retrieves performance information about the specified mutex.
Note:The ThreadX library and application must be built with
TX_MUTEX_ENABLE_PERFORMANCE_INFO defined for this service to return performance
information.

Input Parameters

mutex_ptr Pointer to previously created mutex.
puts Pointer to destination for the number of put requests performed on this mutex.
gets Pointer to destination for the number of get requests performed on this mutex.

suspensions
Pointer to destination for the number of thread mutex get suspensions on this
mutex.

timeouts
Pointer to destination for the number of mutex get suspension timeouts on this
mutex.

inversions Pointer to destination for the number of thread priority inversions on this mutex.

inheritances
Pointer to destination for the number of thread priority inheritance operations on
this mutex.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful mutex performance get.
TX_PTR_ERROR (0x03) Invalid mutex pointer.

TX_FEATURE_NOT_ENABLED (0xFF)
The system was not compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_MUTEX my_mutex;
ULONG puts;

ULONG gets;

ULONG suspensions;

ULONG timeouts;

ULONG inversions;

ULONG inheritances;
/* Retrieve performance information on the previously created mutex. */

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 53 / 105

status = tx_mutex_performance _info_get(&my_mutex_ptr, &puts, &gets, &suspensions,
&timeouts, &inversions, &inheritances);

/* If status is TX_SUCCESS the performance information was successfully retrieved. */

4.5.6 tx_mutex_performance_system_info_get()

Get mutex system performance information
Prototype

UINT tx_mutex _performance_system_ info_get(ULONG *puts, ULONG *gets, ULONG
*suspensions, ULONG *timeouts, ULONG *inversions,
ULONG *inheritances);

Description
This service retrieves performance information about all the mutexes in the system.
Note:The ThreadX library and application must be built with
TX_MUTEX_ENABLE_PERFORMANCE_INFO defined for this service to return performance
information.

Input Parameters

puts
Pointer to destination for the total number of put requests performed on all
mutexes.

gets
Pointer to destination for the total number of get requests performed on all
mutexes.

suspensions
Pointer to destination for the total number of thread mutex get suspensions on all
mutexes.

timeouts
Pointer to destination for the total number of mutex get suspension timeouts on all
mutexes.

inversions
Pointer to destination for the total number of thread priority inversions on all
mutexes.

inheritances
Pointer to destination for the total number of thread priority inheritance operations
on all mutexes.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful mutex system performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 54 / 105

ULONG puts;
ULONG gets;

ULONG suspensions;

ULONG timeouts;

ULONG inversions;

ULONG inheritances;
/* Retrieve performance information on all previously created mutexes. */
status = tx_mutex_performance _system_info_get(&puts, &gets, &suspensions,

&timeouts,

&inversions, &inheritances);
/* If status is TX_SUCCESS the performance information was successfully retrieved. */

4.5.7 tx_mutex_prioritize()

Prioritize mutex suspension list.
Prototype

UINT tx_mutex_prioritize(TX_MUTEX *mutex_ptr)
Description

This service places the highest priority thread suspended for ownership of the mutex at the front of the
suspension list. All other threads remain in the same FIFO order they were suspended in.

Input Parameters

mutex_ptr Pointer to the previously created mutex.

Returns
TX_SUCCESS (0x00) Successful mutex prioritize.
TX_MUTEX_ERROR (0x1C) Invalid mutex pointer.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

No
Example

TX_MUTEX my_mutex;
UINT status;
/* Ensure that the highest priority thread will receive ownership of the mutex when it

becomes available. */
status = tx_mutex_prioritize(&my_mutex);
/* If status equals TX_SUCCESS, the highest priority suspended thread is at the front

of the list. The next tx_mutex_put call that releases ownership of the mutex will give

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 55 / 105

ownership to this thread and wake it up. */

4.5.8 tx_mutex_put()

Release ownership of mutex
Prototype

UINT tx_mutex_put(TX_MUTEX *mutex_ptr)
Description

This service decrements the ownership count of the specified mutex. If the ownership count is zero, the
mutex is made available.
Note:If priority inheritance was selected during mutex creation, the priority of the releasing
thread will be restored to the priority it had when it originally obtained ownership of the mutex.
Any other priority changes made to the releasing thread during ownership of the mutex may be
undone.

Input Parameters

mutex_ptr Pointer to the previously created mutex.

Returns
TX_SUCCESS (0x00) Successful mutex release.
TX_NOT_OWNED (0x1E) Mutex is not owned by caller.

TX_MUTEX_ERROR (0x1C) Invalid pointer to mutex.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Initialization and threads
Preemption Possible

Yes
Example

TX_MUTEX my_mutex;
UINT status;
/* Release ownership of "my_mutex." */
status = tx_mutex_put(&my_mutex);
/* If status equals TX_SUCCESS, the mutex ownership count has been decremented

and if zero, released. */

4.6 Queue Services

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 56 / 105

4.6.1 tx_queue_create()

Create message queue
Prototype

UINT tx_queue_create(TX_QUEUE * queue_ptr, CHAR *name_ptr, UINT
message_size, VOID *queue_start, ULONG queue_size)

Description
This service creates a message queue that is typically used for inter-thread communication. The total
number of messages is calculated from the specified message size and the total number of bytes in the
queue.
Note:If the total number of bytes specified in the queue’s memory area is not evenly divisible by
the specified message size, the remaining bytes in the memory area are not used.

Input Parameters

queue_ptr Pointer to a message queue control block.
name_ptr Pointer to the name of the message queue.

message_size
Specifies the size of each message in the queue. Message sizes range from 1
32-bit word to 16 32-bit words. Valid message size options are numerical values
from 1 through 16, inclusive.

queue_start Starting address of the message queue.
queue_size Total number of bytes available for the message queue.

Returns
TX_SUCCESS (0x00) Successful message queue creation.

TX_QUEUE_ERROR (0x09)
Invalid message queue pointer. Either the pointer is NULL or
the queue is already created.

TX_PTR_ERROR (0x03) Invalid starting address of the message queue.

TX_SIZE_ERROR (0x05) Size of message queue is invalid.
TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Initialization and threads
Preemption Possible

No
Example

TX_QUEUE my_queue;
UINT status;
/* Create a message queue whose total size is 2000 bytes starting at address

0x300000. Each message in this queue is defined to be 4 32-bit words long. */
status = tx_queue_create(&my _queue, "my_queue_name", 4, (VOID *) 0x300000,

2000);
/* If status equals TX_SUCCESS, my_queue contains room for storing 125

messages (2000 bytes/ 16 bytes per message). */

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 57 / 105

4.6.2 tx_queue_delete()

Delete message queue
Prototype

UINT tx_queue_delete(TX_QUEUE *queue_ptr)
Description

This service deletes the specified message queue. All threads suspended waiting for a message from
this queue are resumed and given a TX_DELETED return status.
Note:It is the application’s responsibility to manage the memory area associated with the queue,
which is available after this service completes. In addition, the application must prevent use of a
deleted queue.

Input Parameters

queue_ptr Pointer to a previously created message queue.

Returns
TX_SUCCESS (0x00) Successful message queue deletion.
TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Threads
Preemption Possible

Yes
Example

TX_QUEUE my_queue;
UINT status;
/* Delete entire message queue. Assume that the queue has already been created

with a call to tx_queue_create. */
status = tx_queue_delete(&my_queue);
/* If status equals TX_SUCCESS, the message queue is deleted. */

4.6.3 tx_queue_flush()

Empty messages in message queue
Prototype

UINT tx_queue_flush(TX_QUEUE *queue_ptr)
Description

This service deletes all messages stored in the specified message queue. If the queue is full,
messages of all suspended threads are discarded. Each suspended thread is then resumed with a
return status that indicates the message send was successful. If the queue is empty, this service does
nothing.

Input Parameters

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 58 / 105

queue_ptr Pointer to a previously created message queue.

Returns
TX_SUCCESS (0x00) Successful message queue flush.
TX_QUEUE_ERROR (0x09) Invalid message queue pointer.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

Yes
Example

TX_QUEUE my_queue;
UINT status;
/* Flush out all pending messages in the specified message queue. Assume that the

queue has already been created with a call to tx_queue_create. */
status = tx_queue_flush(&my_queue);
/* If status equals TX_SUCCESS, the message queue is empty. */

4.6.4 tx_queue_front_send()

Send message to the front of queue
Prototype

UINT tx_queue_front_send(TX_QUEUE *queue_ptr, VOID *source_ptr, ULONG wait_option)
Description

This service sends a message to the front location of the specified message queue. The message is
copied to the front of the queue from the memory area specified by the source pointer.

Input Parameters

queue_ptr Pointer to a message queue control block.
source_ptr Pointer to the message.

wait_option

Defines how the service behaves if the message queue is full. The wait options are
defined as follows:
TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through 0xFFFFFFFE)
Selecting TX_NO_WAIT results in an immediate return from this service regardless
of whether or not it was successful. This is the only valid option if the service is
called from a non-thread; e.g., Initialization, timer, or ISR.
Selecting TX_WAIT_FOREVER causes the calling thread to suspend indefinitely
until there is room in the queue.
Selecting a numeric value (1-0xFFFFFFFE) specifies the maximum number of
timer-ticks to stay suspended while waiting for room in the queue.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 59 / 105

Returns
TX_SUCCESS (0x00) Successful sending of message.
TX_DELETED (0x01) Message queue was deleted while thread was suspended.

TX_QUEUE_FULL (0x0B) Service was unable to send message because the queue was
full for the duration of the specified time to wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another thread, timer, or ISR.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

TX_PTR_ERROR (0x03) Invalid source pointer for message.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT was specified on a call
from a non-thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Example
TX_QUEUE my_queue;
UINT status;

ULONG my_message[4];
/* Send a message to the front of "my_queue." Return immediately, regardless of

success. This wait
option is used for calls from initialization, timers, and ISRs. */

status = tx_queue_front_send(&my_queue, my_message, TX_NO_WAIT);
/* If status equals TX_SUCCESS, the message is at the front of the specified queue. */

4.6.5 tx_queue_info_get()

Retrieve information about queue
Prototype

UINT tx_queue_info_get(TX _QUEUE *queue_ptr, CHAR **name, ULONG
*enqueued, ULONG *available_storage
TX_THREAD **first_suspended, ULONG *suspended_count, TX_QUEUE
**next_queue)

Description
This service retrieves information about the specified message queue.

Input Parameters

queue_ptr Pointer to a previously created message queue.
name Pointer to destination for the pointer to the queue’s name.
enqueued Pointer to destination for the number of messages currently in the queue.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 60 / 105

available_storage
Pointer to destination for the number of messages the queue currently has
space for.

first_suspended
Pointer to destination for the pointer to the thread that is first on the
suspension list of this queue.

suspended_count
Pointer to destination for the number of threads currently suspended on this
queue.

next_queue Pointer to destination for the pointer of the next created queue.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful queue information get.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

No
Example

TX_QUEUE my_queue;
CHAR *name;

ULONG enqueued;

ULONG available_storage;

TX_THREAD *first_suspended;

ULONG suspended_count;

TX_QUEUE *next_queue;

UINT status;
/* Retrieve information about the previously created message queue "my_queue."

*/

status = tx_queue_info_get(&my_queue, &name,

&enqueued, &available_storage, &first_suspended,
&suspended_count, &next_queue);

/* If status equals TX_SUCCESS, the information requested is valid. */

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 61 / 105

4.6.6 tx_queue_performance_info_get()

Get queue performance information
Prototype

UINT tx_queue_performance_info_get(TX_QUEUE *queue_ptr, ULONG
*messages_sent, ULONG *messages_received,
ULONG *empty_suspensions, ULONG *full_suspensions,
ULONG *full_errors, ULONG *timeouts);

Description
This service retrieves performance information about the specified queue.
Note:The ThreadX library and application must be built with
TX_QUEUE_ENABLE_PERFORMANCE_INFO defined for this service to return performance
information.

Input Parameters

queue_ptr Pointer to previously created queue.

messages_sent
Pointer to destination for the number of send requests performed on this
queue.

messages_received
Pointer to destination for the number of receive requests performed on this
queue.

empty_suspensions
Pointer to destination for the number of queue empty suspensions on this
queue.

full_suspensions
Pointer to destination for the number of queue full suspensions on this
queue.

full_errors Pointer to destination for the number of queue full errors on this queue.

timeouts
Pointer to destination for the number of thread suspension timeouts on this
queue.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful queue performance get.
TX_PTR_ERROR (0x03) Invalid queue pointer.
TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled with performance information

enabled.
Allowed From

Initialization, threads, timers, and ISRs
Example

TX_QUEUE my_queue;
ULONG messages_sent;

ULONG messages_received;

ULONG empty_suspensions;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 62 / 105

ULONG full_suspensions;

ULONG full_errors;

ULONG timeouts;
/* Retrieve performance information on the previously created queue. */

status = tx_queue_performance_info_get(&my_queue, &messages_sent,
&messages_received, &empty_suspensions, &full_suspensions, &full_errors,
&timeouts);

/* If status is TX_SUCCESS the performance information was successfully retrieved. */

4.6.7 tx_queue_performance_system_info_get()

Get queue system performance information
Prototype

UINT tx_queue_performance_system_info_get(ULONG *messages_sent, ULONG
*messages_received, ULONG *empty_suspensions,
ULONG *full_suspensions, ULONG *full_errors, ULONG *timeouts);

Description
This service retrieves performance information about all the queues in the system.
Note:The ThreadX library and application must be built with
TX_QUEUE_ENABLE_PERFORMANCE_INFO defined for this service to return performance
information.

Input Parameters

messages_sent
Pointer to destination for the total number of send requests performed on all
queues.

messages_received
Pointer to destination for the total number of receive requests performed on
all queues.

empty_suspensions
Pointer to destination for the total number of queue empty suspensions on all
queues.

full_suspensions
Pointer to destination for the total number of queue full suspensions on all
queues.

full_errors Pointer to destination for the total number of queue full errors on all queues.

timeouts
Pointer to destination for the total number of thread suspension timeouts on
all queues.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 63 / 105

TX_SUCCESS (0x00) Successful queue system performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled with performance

information enabled.
Allowed From

Initialization, threads, timers, and ISRs
Example

ULONG messages_sent;
ULONG messages_received;

ULONG empty_suspensions;

ULONG full_suspensions;

ULONG full_errors;

ULONG timeouts;

/* Retrieve performance information on all previously created queues. */

status = tx_queue_performance_system_info_get(&messages _sent,
&messages_received, &empty_suspensions, &full_suspensions,
&full_errors, &timeouts);

/* If status is TX_SUCCESS the performance information was successfully retrieved. */

4.6.8 tx_queue_prioritize()

Prioritize queue suspension list
Prototype

UINT tx_queue_prioritize(TX_QUEUE *queue_ptr)
Description

This service places the highest priority thread suspended for a message (or to place a message) on this
queue at the front of the suspension list. All other threads remain in the same FIFO order they were
suspended in.

Input Parameters

queue_ptr Pointer to a previously created message queue.

Returns
TX_SUCCESS (0x00) Successful queue prioritize.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.
Allowed From

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 64 / 105

Initialization, threads, timers, and ISRs
Preemption Possible

No
Example

TX_QUEUE my_queue;
UINT status;
/* Ensure that the highest priority thread will receive the next message placed on this

queue. */
status = tx_queue_prioritize(&my_queue);
/* If status equals TX_SUCCESS, the highest priority suspended thread is at the front

of the list. The next tx_queue_send or tx_queue_front_send call made to this
queue will wake up this thread. */

4.6.9 tx_queue_receive()

Get message from message queue
Prototype

UINT tx_queue_receive(TX_QUEUE *queue_ptr,
VOID *destination_ptr, ULONG wait_option)

Description
This service retrieves a message from the specified message queue. The retrieved message is copied
from the queue into the memory area specified by the destination pointer. That message is then
removed from the queue.
Note:The specified destination memory area must be large enough to hold the message; i.e.,
the message destination pointed to by destination_ptr must be at least as large as the message
size for this queue. Otherwise,if the destination is not large enough, memory corruption occurs
in the following memory area.

Input Parameters

queue_ptr Pointer to a previously created message queue.
destination_ptr Location of where to copy the message.

wait_option

Defines how the service behaves if the message queue is empty. The wait
options are defined as follows:
TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through 0xFFFFFFFE)
Selecting TX_NO_WAIT results in an immediate return from this service
regardless of whether or not it was successful. This is the only valid option if
the service is called from a non-thread; e.g., Initialization, timer, or ISR.
Selecting TX_ WAIT_FOREVER causes the calling thread to suspend
indefinitely until a message is available.
Selecting a numeric value (1-0xFFFFFFFE) specifies the maximum number of
timer-ticks to stay suspended while waiting for a message.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 65 / 105

Returns
TX_SUCCESS (0x00) Successful retrieval of message.
TX_DELETED (0x01) Message queue was deleted while thread was

suspended.
TX_QUEUE_EMPTY (0x0A) Service was unable to retrieve a message because the

queue was empty for the duration of the specified time to
wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another thread, timer, or
ISR.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

TX_PTR_ERROR (0x03) Invalid destination pointer for message.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT was specified on
a call from a non-thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Example
TX_QUEUE my_queue;
UINT status;

ULONG my_message[4];
/* Retrieve a message from "my_queue." If the queue is empty, suspend until a message is

present. Note that this suspension is only possible from application threads. */

status = tx_queue_receive(&my_queue, my_message, TX_WAIT_FOREVER);
/* If status equals TX_SUCCESS, the message is in "my_message." */

4.6.10 tx_queue_send()

Send message to message queue
Prototype

UINT tx_queue_send(TX_QUEUE *queue_ptr,
VOID *source_ptr, ULONG wait_option)

Description
This service sends a message to the specified message queue. The sent message is copied to the
queue from the memory area specified by the source pointer.

Input Parameters

queue_ptr Pointer to a previously created message queue.
source_ptr Pointer to the message.
wait_option Defines how the service behaves if the message queue is full. The wait options are

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 66 / 105

defined as follows:
TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through 0xFFFFFFFE)
Selecting TX_NO_WAIT results in an immediate return from this service regardless
of whether or not it was successful. This is the only valid option if the service is
called from a non-thread; e.g., Initialization, timer, or ISR.
Selecting TX_WAIT_FOREVER causes the calling thread to suspend indefinitely
until there is room in the queue.
Selecting a numeric value (1-0xFFFFFFFE) specifies the maximum number of
timer-ticks to stay suspended while waiting for room in the queue.

Returns
TX_SUCCESS (0x00) Successful sending of message.
TX_DELETED (0x01) Message queue was deleted while thread was suspended.

TX_QUEUE_FULL (0x0B) Service was unable to send message because the queue
was full for the duration of the specified time to wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another thread, timer, or ISR.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

TX_PTR_ERROR (0x03) Invalid source pointer for message.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT was specified on a
call from a non-thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Example

TX_QUEUE my_queue;

UINT status;

ULONG my_message[4];
/* Send a message to "my_queue." Return immediately, regardless of success. This

wait option is used for calls from initialization, timers, and ISRs. */
status = tx_queue_send(&my_queue, my_message, TX_NO_WAIT);
/* If status equals TX_SUCCESS, the message is in the queue. */

4.6.11 tx_queue_send_notify()

Notify application when message is sent to queue
Prototype

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 67 / 105

UINT tx_queue_send_notify(TX_QUEUE *queue_ptr, VOID (*queue_send_notify)(TX_QUEUE
*));

Description
This service registers a notification callback function that is called whenever a message is sent to the
specified queue. The processing of the notification callback is defined by the application.

Input Parameters

queue_ptr Pointer to previously created queue.

queue_send_notify
Pointer to application’s queue send notification function. If this value is
TX_NULL, notification is disabled.

Returns
TX_SUCCESS (0x00) Successful registration of queue send notification.

TX_QUEUE_ERROR (0x09) Invalid queue pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was compiled with notification
capabilities disabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_QUEUE my_queue;
/* Register the "my_ queue_send _notify" function for monitoring messages sent to the queue

"my_queue." */

status = tx_queue_send_notify(&my_queue, my_queue_send_notify);
/* If status is TX_SUCCESS the queue send notification function was successfully registered. */

void my_queue_send_notify(TX_QUEUE *queue_ptr)
{

/* A message was just sent to this queue! */
}

4.7 Semaphore Services

4.7.1 tx_semaphore_ceiling_put()

Place an instance in counting semaphore with ceiling
Prototype

UINT tx_semaphore_ceiling_put(TX_SEMAPHORE *semaphore_ptr, ULONG
ceiling);

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 68 / 105

Description
This service puts an instance into the specified counting semaphore, which in reality increments the
counting semaphore by one. If the counting semaphore’s current value is greater than or equal to the
specified ceiling, the instance will not be put and a TX_CEILING_EXCEEDED error will be returned.

Input Parameters

semaphore_ptr Pointer to previously created semaphore.

ceiling
Maximum limit allowed for the semaphore (valid values range from 1 through
0xFFFFFFFF).

Returns
TX_SUCCESS (0x00) Successful semaphore ceiling put.
TX_CEILING_EXCEEDED (0x21) Put request exceeds ceiling.

TX_INVALID_CEILING (0x22) An invalid value of zero was supplied for ceiling.

TX_SEMAPHORE_ERROR (0x03) Invalid semaphore pointer.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_SEMAPHORE my_semaphore;
/* Increment the counting semaphore "my_ semaphore" but make sure that it never exceeds 7

as specified in the call. */

status = tx_semaphore_ceiling_put(&my_semaphore, 7);
/* If status is TX_SUCCESS the semaphore count has been incremented. */

4.7.2 tx_semaphore_create()

Create counting semaphore
Prototype

UINT tx_semaphore_create(TX_SEMAPHORE *semaphore_ptr,
CHAR *name_ptr, ULONG initial_count)

Description
This service creates a counting semaphore for inter-thread synchronization. The initial semaphore
count is specified as an input parameter.

Input Parameters

semaphore_ptr Pointer to a semaphore control block.
name_ptr Pointer to the name of the semaphore.

initial_count
Specifies the initial count for this semaphore.Legal values range from 0x00000000
through 0xFFFFFFFF.

Returns

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 69 / 105

TX_SUCCESS (0x00) Successful semaphore creation.

TX_SEMAPHORE_ERROR (0x0C) Invalid semaphore pointer. Either the pointer is NULL
or the semaphore is already created.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Initialization and threads
Preemption Possible

No
Example

TX_SEMAPHORE my_semaphore;
UINT status;
/* Create a counting semaphore whose initial value is 1. This is typically the technique

used to make a binary semaphore. Binary semaphores are used to provide
protection over a common resource. */

Status = tx_semaphore_create(&my_semaphore, "my_semaphore_name", 1);
/* If status equals TX_SUCCESS, my_semaphore is ready for use. */

4.7.3 tx_semaphore_delete()

Delete counting semaphore
Prototype

UINT tx_semaphore_delete(TX_SEMAPHORE *semaphore_ptr)
Description

This service deletes the specified counting semaphore. All threads suspended waiting for a
semaphore instance are resumed and given a TX_DELETED return status.
Note:It is the application’s responsibility to prevent use of a deleted semaphore.

Input Parameters

semaphore_ptr Pointer to a previously created semaphore.

Returns
TX_SUCCESS (0x00) Successful countingsemaphore deletion.
TX_SEMAPHORE_ERROR (0x0C) Invalid counting semaphore pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Threads
Preemption Possible

Yes
Example

TX_SEMAPHORE my_semaphore;
UINT status;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 70 / 105

/* Delete counting semaphore. Assume that the counting semaphore has already
been created. */

status = tx_semaphore_delete(&my_semaphore);
/* If status equals TX_SUCCESS, the counting semaphore is deleted. */

4.7.4 tx_semaphore_get()

Get instance from counting semaphore
Prototype

UINT tx_semaphore_get(TX_SEMAPHORE *semaphore_ptr,
ULONG wait_option)

Description
This service retrieves an instance (a single count) from the specified counting semaphore. As a result,
the specified semaphore’s count is decreased by one.

Input Parameters

semaphore_ptr Pointer to a previously created counting semaphore.

wait_option

Defines how the service behaves if there are no instances of the semaphore
available; i.e., the semaphore count is zero. The wait options are defined as
follows:
TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through 0xFFFFFFFE)
Selecting TX_NO_WAIT results in an immediate return from this service
regardless of whether or not it was successful. This is the only valid option if the
service is called from a non-thread; e.g., initialization, timer, or ISR.
Selecting TX_ WAIT_FOREVER causes the calling thread to suspend indefinitely
until a semaphore instance is available.
Selecting a numeric value (1-0xFFFFFFFE) specifies the maximum number of
timer-ticks to stay suspended while waiting for a semaphore instance.

Returns
TX_SUCCESS (0x00) Successful retrieval of a semaphore instance.

TX_DELETED (0x01) Counting semaphore was deleted while thread was
suspended.

TX_NO_INSTANCE (0x0D) Service was unable to retrieve an instance of the counting
semaphore (semaphore count is zero within the specified
time to wait).

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another thread, timer, or ISR.

TX_SEMAPHORE_ERROR (0x0C) Invalid counting semaphore pointer.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT was specified on a
call from a non-thread.

Allowed From

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 71 / 105

Initialization, threads, timers, and ISRs
Preemption Possible

Yes
Example

TX_SEMAPHORE my_semaphore;
UINT status;
/* Get a semaphore instance from the semaphore

"my_semaphore." If the semaphore count is zero,

suspend until an instance becomes available.

Note that this suspension is only possible from

application threads. */

status = tx_semaphore_get(&my_semaphore, TX_WAIT_FOREVER);
/* If status equals TX_SUCCESS, the thread has obtained an instance of the

semaphore. */

4.7.5 tx_semaphore_info_get()

Retrieve information about semaphore
Prototype

UINT tx_semaphore_info_get(TX_SEMAPHORE *semaphore_ptr,
CHAR **name, ULONG *current_value, TX_THREAD
**first_suspended,
ULONG *suspended_count,
TX_SEMAPHORE **next_semaphore)

Description
This service retrieves information about the specified semaphore.

Input Parameters

semaphore_ptr Pointer to semaphore control block.
name Pointer to destination for the pointer to the semaphore’s name.
current_value Pointer to destination for the current semaphore’s count.

first_suspended
Pointer to destination for the pointer to the thread that is first on the
suspension list of this semaphore.

suspended_count
Pointer to destination for the number of threads currently suspended on this
semaphore.

next_semaphore Pointer to destination for the pointer of the next created semaphore.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 72 / 105

Returns
TX_SUCCESS (0x00) Successful semaphore information retrieval.
TX_SEMAPHORE_ERROR (0x0C) Invalid semaphore pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Example
TX_SEMAPHORE my_semaphore;
CHAR *name;

ULONG current_value;

TX_THREAD *first_suspended;

ULONG suspended_count;

TX_SEMAPHORE *next_semaphore;

UINT status;
/* Retrieve information about the previously created semaphore "my_semaphore."

*/

status = tx_semaphore_info_get(&my_semaphore, &name, ¤t_value,

&first_suspended, &suspended_count, &next_semaphore);
/* If status equals TX_SUCCESS, the information requested is valid. */

4.7.6 tx_semaphore_performance_info_get()

Get semaphore performance information
Prototype

UINT tx_semaphore_performance_info_get(TX_SEMAPHORE *semaphore_ptr, ULONG
*puts, ULONG *gets, ULONG *suspensions, ULONG *timeouts);

Description
This service retrieves performance information about the specified semaphore.
Note: The ThreadX library and application must be built with
TX_SEMAPHORE_ENABLE_PERFORMANCE_INFO defined for this service to return
performance information.

Input Parameters

semaphore_ptr Pointer to previously created semaphore.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 73 / 105

puts Pointer to destination for the number of put requests performed on this semaphore.
gets Pointer to destination for the number of get requests performed on this semaphore.
suspensions Pointer to destination for the number of thread suspensions on this semaphore.

timeouts
Pointer to destination for the number of thread suspension timeouts on this
semaphore.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful semaphore performance get.
TX_PTR_ERROR (0x03) Invalid semaphore pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_SEMAPHORE my_semaphore;
ULONG puts;

ULONG gets;

ULONG suspensions;

ULONG timeouts;
/* Retrieve performance information on the previously created semaphore. */
status = tx_semaphore_ performance_info_get(&my_semaphore, &puts, &gets, &suspensions,

&timeouts);
/* If status is TX_SUCCESS the performance information was successfully retrieved. */

4.7.7 tx_semaphore_performance_system_info_get()

Get semaphore system performance information
Prototype

UINT tx_semaphore_performance_system_info_get(ULONG *puts, ULONG *gets,
ULONG *suspensions, ULONG *timeouts);

Description
This service retrieves performance information about all the semaphores in the system.
Note:The ThreadX library and application must be built with
TX_SEMAPHORE_ENABLE_PERFORMANCE_INFO defined for this service to return
performance information

Input Parameters

puts Pointer to destination for the total number of put requests performed on all

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 74 / 105

semaphores.

gets
Pointer to destination for the total number of get requests performed on all
semaphores.

suspensions Pointer to destination for the total number of thread suspensions on all semaphores.

timeouts
Pointer to destination for the total number of thread suspension timeouts on all
semaphores.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful semaphore system performance

get.

TX_FEATURE_NOT_ENABLED(0xFF) The system was not compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG puts;
ULONG gets;

ULONG suspensions;

ULONG timeouts;
/* Retrieve performance information on all previously created semaphores. */

status = tx_semaphore_performance_system_info_get(&puts, &gets, &suspensions,
&timeouts);

/* If status is TX_SUCCESS the performance information was successfully retrieved. */

4.7.8 tx_semaphore_prioritize()

Prioritize semaphore suspension list
Prototype

UINT tx_semaphore_prioritize(TX_SEMAPHORE *semaphore_ptr)
Description

This service places the highest priority thread suspended for an instance of the semaphore at the front
of the suspension list. All other threads remain in the same FIFO order they were suspended in.

Input Parameters

semaphore_ptr Pointer to a previously created semaphore.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 75 / 105

Returns
TX_SUCCESS (0x00) Successful semaphore prioritize.
TX_SEMAPHORE_ERROR (0x0C) Invalid counting semaphore pointer.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

No
Example

TX_SEMAPHORE my_semaphore;
UINT status;
/* Ensure that the highest priority thread will receive the next instance of this

semaphore. */
status = tx_semaphore_prioritize(&my_semaphore);
/* If status equals TX_SUCCESS, the highest priority suspended thread is at the

front of the list. The
next tx_semaphore_put call made to this semaphore will wake up this thread. */

4.7.9 tx_semaphore_put()

Place an instance in counting semaphore
Prototype

UINT tx_semaphore_put(TX_SEMAPHORE *semaphore_ptr)
Description

This service puts an instance into the specified counting semaphore, which in reality increments the
counting semaphore by one.
Note:If this service is called when the semaphore is all ones (OxFFFFFFFF), the new put
operation will cause the semaphore to be reset to zero.

Input Parameters

semaphore_ptr Pointer to the previously created counting semaphore control block.

Returns
TX_SUCCESS (0x00) Successful semaphore put.
TX_SEMAPHORE_ERROR (0x0C) Invalid pointer to counting semaphore.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

Yes
Example

TX_SEMAPHORE my_semaphore;
UINT status;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 76 / 105

/* Increment the counting semaphore "my_semaphore." */
status = tx_semaphore_put(&my_semaphore);
/* If status equals TX_SUCCESS, the semaphore count has been incremented. Of

course, if a thread was waiting, it was given the semaphore instance and resumed. */

4.7.10 tx_semaphore_put_notify()

Notify application when semaphore is put
Prototype

UINT tx_semaphore_put_notify(TX_SEMAPHORE *semaphore_ptr,
VOID (*semaphore_put_notify)(TX_SEMAPHORE *));

Description
This service registers a notification callback function that is called whenever the specified semaphore is
put. The processing of the notification callback is defined by the application.

Input Parameters

semaphore_ptr Pointer to previously created semaphore.

semaphore_put_notify
Pointer to application’s semaphore put notification function. If this value is
TX_NULL, notification is disabled.

Returns
TX_SUCCESS (0x00) Successful registration of semaphore put

notification.
TX_SEMAPHORE_ERROR (0x0C) Invalid semaphore pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was compiled with notification
capabilities disabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_SEMAPHORE my_semaphore;
/* Register the "my_semaphore _put_notify" function for monitoring the put operations on the

semaphore "my_semaphore." */

status = tx_semaphore_put_notify(&my_semaphore,
my_semaphore_put_notify);

/* If status is TX_SUCCESS the semaphore put notification function was successfully registered.
*/

void my_semaphore_put_notify(TX_SEMAPHORE *semaphore_ptr)
{

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 77 / 105

/* The semaphore was just put! */
}

4.8 Thread Control Services

4.8.1 tx_thread_create()

Create application thread
Prototype

UINT tx_thread_create(TX_THREAD *thread_ptr,CHAR *name_ptr,
VOID (* entry_function)(ULONG),
ULONG entry_input, VOID *stack_start,
ULONG stack_size, UINT priority,
UINT preempt_threshold,
ULONG time_slice, UINT auto_start)

Description
This service creates an application thread that starts execution at the specified task entry function. The
stack, priority, preemption-threshold, and time-slice are among the attributes specified by the input
parameters. In addition, the initial execution state of the thread is also specified.

Input Parameters

thread_ptr Pointer to a thread control block.
name_ptr Pointer to the name of the thread.

entry_function
Specifies the initial C function for thread execution. When a thread returns from
this entry function, it is placed in a completed state and suspended indefinitely.

entry_input
A 32-bit value that is passed to the thread’s entry function when it first executes.
The use for this input is determined exclusively by the application.

stack_start Starting address of the stack’s memory area.

stack_size
Number bytes in the stack memory area. The thread’s stack area must be large
enough to handle its worst-case function call nesting and local variable usage.

priority
Numerical priority of thread. Legal values range from 0 through
(TX_MAX_PRIORITES-1), where a value of 0 represents the highest priority.

preempt_threshold

Highest priority level (0 through (TX_MAX_PRIORITIES-1)) of disabled
preemption. Only priorities higher than this level are allowed to preempt this
thread. This value must be less than or equal to the specified priority. A value
equal to the thread priority disables preemption-threshold.

time_slice
Number of timer-ticks this thread is allowed to run before other ready threads of
the same priority are given a chance to run. Note that using
preemption-threshold disables time-slicing.Legal time-slice values range from 1

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 78 / 105

to 0xFFFFFFFF (inclusive). A value of TX_NO_TIME_SLICE (a value of 0)
disables time-slicing of this thread.
Using time-slicing results in a slight amount of system overhead. Since
time-slicing is only useful in cases where multiple threads share the same
priority, threads having a unique priority should not be assigned a time-slice.

auto_start

Specifies whether the thread starts immediately or is placed in a suspended
state. Legal options are TX_AUTO_START (0x01) and TX_DONT_START
(0x00). If TX_DONT_START is specified, the application must later call
tx_thread_resume in order for the thread to run.

Returns
TX_SUCCESS (0x00) Successful thread creation.
TX_THREAD_ERROR (0x0E) Invalid thread control pointer. Either the pointer is NULL

or the thread is already created.
TX_PTR_ERROR (0x03) Invalid starting address of the entry point or the stack

area is invalid, usually NULL.
TX_SIZE_ERROR (0x05) Size of stack area is invalid.Threads must have at least

TX_MINIMUM_STACK bytes to execute.

TX_PRIORITY_ERROR (0x0F) Invalid thread priority, which is a value outside the range
of (0 through (TX_MAX_PRIORITIES-1)).

TX_THRESH_ERROR (0x18) Invalid preemption-threshold specified. This value must
be a valid priority less than or equal to the initial priority
of the thread.

TX_START_ERROR (0x10) Invalid auto-start selection.
TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Initialization and threads
Preemption Possible

Yes
Example

TX_THREAD my_thread;
UINT status;
/* Create a thread of priority 15 whose entry point is "my_thread_entry". This thread’s

stack area is 1000 bytes in size, starting at address 0x400000. The

preemption-threshold is setup to allow preemption of threads with priorities ranging from 0
through 14. Time-slicing is disabled. This thread is automatically put into a ready condition.
*/

status = tx_thread_create(&my_thread, "my_thread_name", my_thread_entry, 0x1234,

(VOID *) 0x400000, 1000, 15, 15,
TX_NO_TIME_SLICE, TX_AUTO_START);

/* If status equals TX_SUCCESS, my_thread is ready for execution! */

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 79 / 105

...

/* Thread’s entry function. When "my_thread" actually begins execution, control is
transferred to this function. */

VOID my_thread_entry (ULONG initial_input)

{
/* When we get here, the value of initial_input is 0x1234. See how this was

specified during creation. */
/* The real work of the thread, including calls to other function should be called

from here! */

/* When this function returns, the corresponding thread is placed into a
"completed" state. */

}

4.8.2 tx_thread_delete()

Delete application thread
Prototype

UINT tx_thread_delete(TX_THREAD *thread_ptr)
Description

This service deletes the specified application thread. Since the specified thread must be in a
terminated or completed state, this service cannot be called from a thread attempting to delete itself.
Note:It is the application’s responsibility to manage the memory area associated with the
thread’s stack, which is available after this service completes. In addition, the application must
prevent use of a deleted thread.

Input Parameters

thread_ptr Pointer to the previously created counting semaphore control block.

Returns
TX_SUCCESS (0x00) Successful thread deletion.
TX_THREAD_ERROR (0x0E) Invalid application thread pointer.

TX_DELETE_ERROR (0x11) Specified thread is not in a terminated or completed state.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads and timers

Preemption Possible
No

Example
TX_THREAD my_thread;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 80 / 105

UINT status;
/* Delete an application thread whose control block is "my_thread". Assume that the

thread has already been created with a call to tx_thread_create. */
status = tx_thread_delete(&my_thread);
/* If status equals TX_SUCCESS, the application thread is deleted. */

4.8.3 tx_thread_entry_exit_notify()

Notify application upon thread entry and exit
Prototype

UINT tx_thread_entry_exit_notify(TX_THREAD *thread_ptr,
VOID (*entry_exit_notify)(TX_THREAD *, UINT))

Description
This service registers a notification callback function that is called whenever the specified thread is
entered or exits. The processing of the notification callback is defined by the application.

Input Parameters

thread_ptr Pointer to previously created thread.

entry_exit_notify

Pointer to application’s thread entry/exit notification function. The second
parameter to the entry/exit notification function designates if an entry or exit is
present. The value TX_THREAD_ENTRY (0x00) indicates the thread was entered,
while the value TX_THREAD _EXIT (0x01) indicates the thread was exited. If this
value is TX_NULL, notification is disabled.

Returns
TX_SUCCESS (0x00) Successful registration of the thread entry/exit

notification function.
TX_THREAD_ERROR (0x0E) Invalid thread pointer.
TX_FEATURE_NOT_ENABLED (0xFF) The system was compiled with notification

capabilities disabled.
Allowed From

Initialization, threads, timers, and ISRs
Example

TX_THREAD my_thread;
/* Register the "my_entry _exit_notify" function for monitoring the entry/exit of the thread

"my_thread." */

status = tx_thread_entry_exit_notify(&my_thread, my_entry_exit_notify);
/* If status is TX_SUCCESS the entry/exit notification function was successfully registered. */
void my_entry_exit_notify(TX_THREAD *thread_ptr, UINT condition)
{

/* Determine if the thread was entered or exited. */ if (condition ==

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 81 / 105

TX_THREAD_ENTRY)
/* Thread entry! */ else if (condition ==

TX_THREAD_EXIT)

/* Thread exit! */
}

4.8.4 tx_thread_identify()

Retrieves pointer to currently executing thread
Prototype

TX_THREAD* tx_thread_identify(VOID)
Description

This service returns a pointer to the currently executing thread. If no thread is executing, this service
returns a null pointer.
If this service is called from an ISR, the return value represents the thread running prior to the
executing interrupt handler

Input Parameters
None

Returns
thread pointer Pointer to the currently executing thread. If no thread is executing, the return

value is TX_NULL.
Allowed From

Threads and ISRs
Preemption Possible

No
Example

TX_THREAD *my_thread_ptr;
/* Find out who we are! */ my_thread_ptr = tx_thread_identify();

/* If my_thread_ptr is non-null, we are currently executing from that thread or an ISR that
interrupted that thread. Otherwise, this service was called
from an ISR when no thread was running when the interrupt occurred. */

4.8.5 tx_thread_info_get()

Retrieve information about thread
Prototype

UINT tx_thread_info_get(TX_THREAD *thread_ptr , CHAR **name, UINT *state,
ULONG *run_count,
UINT *priority,UINT *preemption_threshold, ULONG
*time_slice,

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 82 / 105

TX_THREAD **next_thread,
TX_THREAD **suspended_thread)

Description
This service retrieves information about the specified thread.

Input Parameters

thread_ptr Pointer to thread control block.
name Pointer to destination for the pointer to the thread’s name.

state

Pointer to destination for the thread’s current execution state. Possible values
are as follows:
TX_READY (0x00)
TX_COMPLETED (0x01)
TX_TERMINATED (0x02)
TX_SUSPENDED (0x03)
TX_SLEEP (0x04)
TX_QUEUE_SUSP (0x05)
TX_SEMAPHORE_SUSP(0x06)
TX_EVENT_FLAG (0x07)
TX_BLOCK_MEMORY (0x08)
TX_BYTE_MEMORY(0x09)
TX_MUTEX_SUSP (0x0D)

run_count Pointer to destination for the thread’s run count.
priority Pointer to destination for the thread’s priority.
preemption_threshold Pointer to destination for the thread’s preemption-threshold.
time_slice Pointer to destination for the thread’s time-slice.
next_thread Pointer to destination for next created thread pointer.
suspended_thread Pointer to destination for pointer to next thread in suspension list.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful thread information retrieval.

TX_THREAD_ERROR (0x0E) Invalid thread control pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Example
TX_THREAD my_thread;
CHAR *name;

UINT state;

ULONG run_count;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 83 / 105

UINT priority;

UINT preemption_threshold;

UINT time_slice;

TX_THREAD *next_thread;

TX_THREAD *suspended_thread;

UINT status;
/* Retrieve information about the previously created thread "my_thread." */

status = tx_thread_info_get(&my_thread, &name, &state, &run_count,

&priority, &preemption_threshold, &time_slice,
&next_thread,&suspended_thread);

/* If status equals TX_SUCCESS, the information requested is valid. */

4.8.6 tx_thread_performance_info_get()

Get thread performance information
Prototype

UINT tx_thread_performance_info_get(
TX_THREAD *thread_ptr,
ULONG *resumptions, ULONG *suspensions,

ULONG *solicited_preemptions ,
ULONG *interrupt_preemptions,
ULONG *priority_inversions, ULONG *time_slices,
ULONG *relinquishes, ULONG *timeouts,
ULONG *wait_aborts, TX_THREAD **last_preempted_by);

Description
This service retrieves performance information about the specified thread.
Note:The ThreadX library and application must be built with
TX_THREAD_ENABLE_PERFORMANCE_INFO defined in order for this service to return
performance information.

Input Parameters

thread_ptr Pointer to previously created thread.
resumptions Pointer to destination for the number of resumptions of this thread.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 84 / 105

suspensions Pointer to destination for the number of suspensions of this thread

solicited_preemptions
Pointer to destination for the number of preemptions as a result of a ThreadX
API service call made by this thread.

interrupt_preemptions
Pointer to destination for the number of preemptions of this thread as a result
of interrupt processing.

priority_inversions Pointer to destination for the number of priority inversions of this thread.
time_slices Pointer to destination for the number of time-slices of this thread.

relinquishes
Pointer to destination for the number of thread relinquishes performed by this
thread.

timeouts Pointer to destination for the number of suspension timeouts on this thread.
wait_aborts Pointer to destination for the number of wait aborts performed on this thread.
last_preempted_by Pointer to destination for the thread pointer that last preempted this thread.

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful thread performance get.
TX_PTR_ERROR (0x03) Invalid thread pointer.
TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled with performance

information enabled.
Allowed From

Initialization, threads, timers, and ISRs
Example

TX_THREAD my_thread;
ULONG resumptions;

ULONG suspensions;

ULONG solicited_preemptions;

ULONG interrupt_preemptions;

ULONG priority_inversions;

ULONG time_slices;

ULONG relinquishes;

ULONG timeouts;

ULONG wait_aborts;

TX_THREAD *last_preempted_by;
/* Retrieve performance information on the previously created thread. */
status = tx_thread_performance_info_get(&my_thread, &resumptions,

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 85 / 105

&suspensions,&solicited_preemptions, &interrupt_preemptions,
&priority_inversions, &time_slices, &relinquishes, &timeouts,

&wait_aborts, &last_preempted_by);
/* If status is TX_SUCCESS the performance information was successfully retrieved. */

4.8.7 tx_thread_performance_system_info_get()

Get thread system performance information
Prototype

UINT tx_thread_performance_system_info_get(ULONG *resumptions, ULONG
*suspensions, ULONG *solicited_preemptions,
ULONG *interrupt_preemptions, ULONG *priority_inversions, ULONG
*time_slices, ULONG *relinquishes, ULONG *timeouts, ULONG *wait_aborts,
ULONG *non_idle_returns,

ULONG *idle_returns);
Description

This service retrieves performance information about all the threads in the system.
Note:The ThreadX library and application must be built with
TX_THREAD_ENABLE_PERFORMANCE_INFO defined in order for this service to return
performance information.

Input Parameters

resumptions Pointer to destination for the total number of thread resumptions.
suspensions Pointer to destination for the total number of thread suspensions.

solicited_preemptions
Pointer to destination for the total number of thread preemptions as a result of a
thread calling a ThreadX API service.

interrupt_preemptions
Pointer to destination for the total number of thread preemptions as a result of
interrupt processing.

priority_inversions Pointer to destination for the total number of thread priority inversions.
time_slices Pointer to destination for the total number of thread time-slices.
relinquishes Pointer to destination for the total number of thread relinquishes.
timeouts Pointer to destination for the total number of thread suspension timeouts.
wait_aborts Pointer to destination for the total number of thread wait aborts.

non_idle_returns
Pointer to destination for the number of times a thread returns to the system
when another thread is ready to execute.

idle_returns
Pointer to destination for the number of times a thread returns to the system
when no other thread is ready to execute (idle system).

Note:Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 86 / 105

TX_SUCCESS (0x00) Successful thread system performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG resumptions;
ULONG suspensions;

ULONG solicited_preemptions;

ULONG interrupt_preemptions;

ULONG priority_inversions;

ULONG time_slices;

ULONG relinquishes;

ULONG timeouts;

ULONG wait_aborts;

ULONG non_idle_returns;

ULONG idle_returns;
/* Retrieve performance information on all previously created thread. */

status = tx_thread_performance_system_info_get(&resumptions, &suspensions,

&solicited_preemptions, &interrupt_preemptions, &priority_inversions,
&time_slices, &relinquishes, &timeouts, &wait_aborts, &non_idle_returns,
&idle_returns);

/* If status is TX_SUCCESS the performance information was successfully retrieved. */

4.8.8 tx_thread_preemption_change()

Change preemption-threshold of application thread
Prototype

UINT tx_thread_preemption_change(TX_THREAD *thread_ptr,
UINT new_threshold, UINT *old_threshold)

Description
This service changes the preemption-threshold of the specified thread. The preemption-threshold

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 87 / 105

prevents preemption of the specified thread by threads equal to or less than the preemption-threshold
value.
Note:Using preemption-threshold disables time-slicing for the specified thread.

Input Parameters

thread_ptr Pointer to a previously created application thread.
new_threshold New preemption-threshold priority level (0 through (TX_MAX_PRIORITIES-1)).
old_threshold Pointer to a location to return the previous preemption-threshold.

Returns
TX_SUCCESS (0x00) Successful preemption-threshold change.
TX_THREAD_ERROR (0x0E) Invalid application thread pointer.
TX_THRESH_ERROR (0x18) Specified new preemption-threshold is not a valid thread

priority (a value other than (0 through
(TX_MAX_PRIORITIES-1)) or is greater than (lower priority)
than the current thread priority.

TX_PTR_ERROR (0x03) Invalid pointer to previous preemption-threshold storage
location.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads and timers

Preemption Possible
Yes

Example
TX_THREAD my_thread;
UINT my_old_threshold;

UINT status;
/* Disable all preemption of the specified thread. The current preemption-threshold is

returned in "my_old_threshold". Assume that "my_thread" has already been
created. */

status = tx_thread_preemption_change(&my_thread,

0, &my_old_threshold);
/* If status equals TX _SUCCESS, the application thread is non-preemptable by another

thread. Note that ISRs are not prevented by preemption disabling. */

4.8.9 tx_thread_priority_change()

Change priority of application thread
Prototype

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 88 / 105

UINT tx_thread_priority_change(TX_THREAD *thread_ptr,
UINT new_priority, UINT *old_priority)

Description
This service changes the priority of the specified thread. Valid priorities range from 0 through
(TX_MAX_PRIORITES-1), where 0 represents the highest priority level.
Note:The preemption-threshold of the specified thread is automatically set to the new priority. If
a new threshold is desired, the tx_thread_preemption_change service must be used after this
call.

Input Parameters

thread_ptr Pointer to a previously created application thread.
new_priority New thread priority level (0 through (TX_MAX_PRIORITIES-1)).
old_priority Pointer to a location to return the thread’s previous priority.

Returns
TX_SUCCESS (0x00) Successful priority change.
TX_THREAD_ERROR (0x0E) Invalid application thread pointer.
TX_PRIORITY_ERROR (0x0F) Specified new priority is not valid (a value other than (0

through (TX_MAX_PRIORITIES-1)).
TX_PTR_ERROR (0x03) Invalid pointer to previous priority storage location.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Threads and timers
Preemption Possible

Yes
Example

TX_THREAD my_thread;
UINT my_old_priority;

UINT status;
/* Change the thread represented by "my_thread" to priority

0. */

status = tx_thread_priority_change(&my_thread,

0, &my_old_priority);
/* If status equals TX _SUCCESS, the application thread is now at the highest priority level in the

system. */

4.8.10 tx_thread_relinquish()

Relinquish control to other application threads

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 89 / 105

Prototype
VOID tx_thread_relinquish(VOID)

Description
This service relinquishes processor control to other ready-to-run threads at the same or higher priority.

Input Parameters
None

Return Values
None

Allowed From
Threads

Preemption Possible
Yes

Example
ULONG run_counter_1 = 0;
ULONG run_counter_2 = 0;
/* Example of two threads relinquishing control to each other in an infinite loop.

Assume that

both of these threads are ready and have the same priority. The run counters will
always stay within one of each other. */

VOID my_first_thread(ULONG thread_input)
{

/* Endless loop of relinquish. */ while(1)

{
/* Increment the run counter. */ run_counter_1++;
/* Relinquish control to other thread. */ tx_thread_relinquish();

}

}
VOID my_second_thread(ULONG thread_input)
{

/* Endless loop of relinquish. */ while(1)
{

/* Increment the run counter. */ run_counter_2++;

/* Relinquish control to other thread. */ tx_thread_relinquish();

}

}

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 90 / 105

4.8.11 tx_thread_reset()

Reset thread
Prototype

UINT tx_thread_reset(TX_THREAD *thread_ptr);
Description

This service resets the specified thread to execute at the entry point defined at thread creation.
The thread must be in either a TX_COMPLETED or TX_TERMINATED state for it to be reset
Note:The thread must be resumed for it to execute again.

Input Parameters

thread_ptr Pointer to a previously created thread.

Returns
TX_SUCCESS (0x00) Successful thread reset.
TX_NOT_DONE (0x20) Specified thread is not in a TX_COMPLETED or

TX_TERMINATED state.
TX_THREAD_ERROR (0x0E) Invalid thread pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Example
TX_THREAD my_thread;
/* Reset the previously created thread "my_thread." */
status = tx_thread_reset(&my_thread);
/* If status is TX_SUCCESS the thread is reset. */

4.8.12 tx_thread_resume()

Resume suspended application thread
Prototype

UINT tx_thread_resume(TX_THREAD *thread_ptr)
Description

This service resumes or prepares for execution a thread that was previously suspended by a
tx_thread_suspend call. In addition, this service resumes threads that were created without an
automatic start.

Input Parameters

thread_ptr Pointer to a suspended application thread.

Returns
TX_SUCCESS (0x00) Successful thread resume.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 91 / 105

TX_SUSPEND_LIFTED(0x19) Previously set delayed suspension was lifted.
TX_THREAD_ERROR (0x0E) Invalid application thread pointer.
TX_RESUME_ERROR (0x12) Specified thread is not suspended or was previously suspended by

a service other than tx_thread_suspend.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

Yes
Example

TX_THREAD my_thread;
UINT status;
/* Resume the thread represented by "my_thread". */
status = tx_thread_resume(&my_thread);
/* If status equals TX_SUCCESS, the application thread is now ready to execute. */

4.8.13 tx_thread_sleep()

Suspend current thread for specified time
Prototype

UINT tx_thread_sleep(ULONG timer_ticks)
Description

This service causes the calling thread to suspend for the specified number of timer ticks. The amount
of physical time associated with a timer tick is application specific. This service can be called only from
an application thread.

Input Parameters

timer_ticks
The number of timer ticks to suspend the calling application thread, ranging from 0
through 0xFFFFFFFF. If 0 is specified, the service returns immediately.

Returns
TX_SUCCESS (0x00) Successful thread sleep.
TX_WAIT_ABORTED (0x1A) Suspension was aborted by another thread, timer, or ISR.

TX_CALLER_ERROR (0x13) Service called from a non-thread.

Allowed From
Threads

Preemption Possible
Yes

Example
UINT status;
/* Make the calling thread sleep for 100 timer-ticks. */

status = tx_thread_sleep(100);

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 92 / 105

/* If status equals TX_SUCCESS, the currently running application thread slept for the
specified number of timer-ticks. */

4.8.14 tx_thread_stack_error_notify()

Register thread stack error notification callback
Prototype

UINT tx_thread_stack_error_notify(VOID (*error_handler)(TX_THREAD *));
Description

This service registers a notification callback function for handling thread stack errors. When ThreadX
detects a thread stack error during execution, it will call this notification function to process the error.
Processing of the error is completely defined by the application. Anything from suspending the violating
thread to resetting the entire system may be done.
Note:The ThreadX library must be built with TX_ENABLE_STACK_CHECKING defined in order
for this service to return performance information.

Input Parameters

error_handler
Pointer to application’s stack error handling function. If this value is TX_NULL, the
notification is disabled.

Returns
TX_SUCCESS (0x00) Successful thread reset.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled with performance information
enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
void my_stack_error_handler(TX_THREAD *thread_ptr);
/* Register the "my_stack_error_handler" function with ThreadX

so that thread stack errors can be handled by the application. */ status =
tx_thread_stack_error_notify(my_stack_error_handler);
/* If status is TX_SUCCESS the stack error handler is registered.*/

4.8.15 tx_thread_suspend()

Suspend application thread
Prototype

UINT tx_thread_suspend(TX_THREAD *thread_ptr)
Description

This service suspends the specified application thread. A thread may call this service to suspend itself.
Note:If the specified thread is already suspended for another reason, this suspension is held

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 93 / 105

internally until the prior suspension is lifted. When that happens, this unconditional suspension
of the specified thread is performed. Further unconditional suspension requests have no effect.
After being suspended, the thread must be resumed by tx_thread_resume to execute again.

Input Parameters

thread_ptr Pointer to an application thread.

Returns
TX_SUCCESS (0x00) Successful thread suspend.
TX_THREAD_ERROR (0x0E) Invalid application thread pointer.
TX_SUSPEND_ERROR (0x14) Specified thread is in a terminated or completed state.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

Yes
Example

TX_THREAD my_thread;
UINT status;
/* Suspend the thread represented by "my_thread". */
status = tx_thread_suspend(&my_thread);
/* If status equals TX_SUCCESS, the application thread is unconditionally suspended. */

4.8.16 tx_thread_terminate()

Terminates application thread
Prototype

UINT tx_thread_terminate(TX_THREAD *thread_ptr)
Description

This service terminates the specified application thread regardless of whether the thread is suspended
or not. A thread may call this service to terminate itself.
Note:After being terminated, the thread must be reset for it to execute again.

Input Parameters

thread_ptr Pointer to application thread.

Returns
TX_SUCCESS (0x00) Successful thread terminate.

TX_THREAD_ERROR (0x0E) Invalid application thread pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 94 / 105

Threads and timers
Preemption Possible

Yes
Example

TX_THREAD my_thread;
UINT status;
/* Terminate the thread represented by "my_thread". */ status =
tx_thread_terminate(&my_thread);
/* If status equals TX _SUCCESS, the thread is terminated and cannot execute again

until it is reset. */

4.8.17 tx_thread_time_slice_change

Changes time-slice of application thread
Prototype

UINT tx_thread_time_slice_change(TX_THREAD *thread_ptr,
ULONG new_time_slice, ULONG *old_time_slice)

Description
This service changes the time-slice of the specified application thread. Selecting a time-slice for a
thread insures that it won’t execute more than the specified number of timer ticks before other threads
of the same or higher priorities have a chance to execute.
Note:Using preemption-threshold disables time-slicing for the specified thread.

Input Parameters

thread_ptr Pointer to application thread.

new_time_slice
New time slice value. Legal values include TX_NO_TIME_SLICE and numeric
values from 1 through 0xFFFFFFFF.

old_time_slice Pointer to location for storing the previous time-slice value of the specified thread.

Returns
TX_SUCCESS (0x00) Successful time-slice chance.
TX_THREAD_ERROR (0x0E) Invalid application thread pointer.

TX_PTR_ERROR (0x03) Invalid pointer to previous time-slice storage location.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads and timers

Preemption Possible
No

Example
TX_THREAD my_thread;
ULONG my_old_time_slice;

UINT status;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 95 / 105

/* Change the time -slice of the thread associated with "my_thread" to 20. This will mean
that "my_thread" can only run for 20 timer-ticks consecutively before other threads of
equal or higher priority get a chance to run. */

status = tx_thread_time_slice_change(&my_thread, 20, &my_old_time_slice);
/* If status equals TX_ SUCCESS, the thread’s time-slice has been changed to 20 and

the previous time-slice is in "my_old_time_slice." */

4.8.18 tx_thread_wait_abort()

Abort suspension of specified thread
Prototype

UINT tx_thread_wait_abort(TX_THREAD *thread_ptr)
Description

This service aborts sleep or any other object suspension of the specified thread. If the wait is aborted,
a TX_WAIT_ABORTED value is returned from the service that the thread was waiting on.
Note:This service does not release explicit suspension that is made by the tx_thread_suspend

service.
Input Parameters

thread_ptr Pointer to a previously created application thread.

Returns
TX_SUCCESS (0x00) Successful thread wait abort.
TX_THREAD_ERROR (0x0E) Invalid application thread pointer.
TX_WAIT_ABORT_ERROR (0x1B) Specified thread is not in a waiting state.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

Yes
Example

TX_THREAD my_thread;
UINT status;
/* Abort the suspension condition of "my_thread." */
status = tx_thread_wait_abort(&my_thread);
/* If status equals TX_SUCCESS, the thread is now ready again, with a return value

showing its suspension was aborted (TX_WAIT_ABORTED). */

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 96 / 105

4.9 Time Services

4.9.1 tx_time_get()

Retrieves the current time
Prototype

ULONG tx_time_get(VOID)
Description

This service returns the contents of the internal system clock. Each timer-tick increases the internal
system clock by one. The system clock is set to zero during initialization and can be changed to a
specific value by the service tx_time_set.
Note:The actual time each timer-tick represents is application specific.

Input Parameters
None

Return Values
system clock ticks Value of the internal, free running, system clock.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Example
ULONG current_time;
/* Pickup the current system time, in timer-ticks. */
current_time = tx_time_get();
/* Current time now contains a copy of the internal system clock. */

4.9.2 tx_time_set()

Sets the current time
Prototype

VOID tx_time_set(ULONG new_time)
Description

This service sets the internal system clock to the specified value. Each timer-tick increases the
internal system clock by one.
Note:The actual time each timer-tick represents is application specific.

Input Parameters

new_time New time to put in the system clock, legal values range from 0 through 0xFFFFFFFF.
Returns

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 97 / 105

None
Allowed From

Threads, timers, and ISRs
Preemption Possible

No
Example

/* Set the internal system time to 0x1234. */ tx_time_set(0x1234);

/* Current time now contains 0x1234 until the next timer interrupt. */

4.10 Timer Services

4.10.1 tx_timer_activate()

Activate application timer
Prototype

UINT tx_timer_activate(TX_TIMER *timer_ptr)
Description

This service activates the specified application timer. The expiration routines of timers that expire at the
same time are executed in the order they were activated.

Input Parameters

timer_ptr Pointer to a previously created application timer.

Returns
TX_SUCCESS (0x00) Successful application timer activation.
TX_TIMER_ERROR (0x15) Invalid application timer pointer.
TX_ACTIVATE_ERROR (0x17) Timer was already active.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Example
TX_TIMER my_timer;
UINT status;
/* Activate an application timer. Assume that the application timer has already

been created. */
status = tx_timer_activate(&my_timer);
/* If status equals TX_SUCCESS, the application timer is now active. */

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 98 / 105

4.10.2 tx_timer_change()

Change application timer
Prototype

UINT tx_timer_change(TX_TIMER *timer_ptr,
ULONG initial_ticks, ULONG reschedule_ticks)

Description
This service changes the expiration characteristics of the specified application timer. The timer must be
deactivated prior to calling this service.
Note:A call to the tx_timer_activate service is required after this service in order to start the
timer again.

Input Parameters

timer_ptr Pointer to a timer control block.

initial_ticks
Specifies the initial number of ticks for timer expiration. Legal values range from 1
through 0xFFFFFFFF.

reschedule_ticks
Specifies the number of ticks for all timer expirations after the first. A zero for this
parameter makes the timer a one-shot timer.Otherwise, for periodic timers, legal
values range from 1 through 0xFFFFFFFF.

Returns
TX_SUCCESS (0x00) Successful application timer change.

TX_TIMER_ERROR (0x15) Invalid application timer pointer.
TX_TICK_ERROR (0x16) Invalid value (a zero) supplied for initial ticks.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Threads, timers, and ISRs
Preemption Possible

No
Example

TX_TIMER my_timer;
UINT status;
/* Change a previously created and now deactivated timer to expire every 50 timer ticks,

including the initial expiration. */
status = tx_timer_change(&my_timer,50, 50);
/* If status equals TX_SUCCESS, the specified timer is changed to expire every 50

ticks. */

/* Activate the specified timer to get it started again. */
status = tx_timer_activate(&my_timer);

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 99 / 105

4.10.3 tx_timer_create()

Create application timer
Prototype

UINT tx_timer_create(TX_TIMER * timer_ptr, CHAR *name_ptr,
VOID (*expiration_function)(ULONG),

ULONG expiration_input, ULONG initial_ticks,
ULONG reschedule_ticks, UINT auto_activate)

Description
This service creates an application timer with the specified expiration function and periodic.

Input Parameters

timer_ptr Pointer to a timer control block
name_ptr Pointer to the name of the timer.
expiration_function Application function to call when the timer expires.
expiration_input Input to pass to expiration function when timer expires.

initial_ticks
Specifies the initial number of ticks for timer expiration. Legal values range from 1
through 0xFFFFFFFF.

reschedule_ticks
Specifies the number of ticks for all timer expirations after the first. A zero for this
parameter makes the timer a one-shot timer. Otherwise, for periodic timers, legal
values range from 1 through 0xFFFFFFFF.

auto_activate

Determines if the timer is automatically activated during creation. If this value is
TX_AUTO_ACTIVATE (0x01) the timer is made active. Otherwise, if the value
TX_NO_ACTIVATE (0x00) is selected, the timer is created in a non-active state.
In this case, a subsequent tx_timer_activate service call is necessary to get the
timer actually started.

Returns
TX_SUCCESS (0x00) Successful application timer creation.
TX_TIMER_ERROR (0x15) Invalid application timer pointer. Either the pointer is NULL or

the timer is already created.
TX_TICK_ERROR (0x16) Invalid value (a zero) supplied for initial ticks.
TX_ACTIVATE_ERROR (0x17) Invalid activation selected.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
No

Example
TX_TIMER my_timer;
UINT status;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 100 / 105

/* Create an application timer that executes "my_timer_function" after 100 ticks initially
and then after every 25 ticks. This timer is specified to start immediately! */

status = tx_timer_create(&my_timer,"my_timer_name", my_timer_function, 0x1234, 100, 25,
TX_AUTO_ACTIVATE);

/* If status equals TX_ SUCCESS, my_ timer_function will be called 100 timer ticks later
and then called every
25 timer ticks. Note that the value 0x1234 is passed to my_timer_function every time it
is called. */

4.10.4 tx_timer_deactivate()

Deactivate application timer
Prototype

UINT tx_timer_deactivate(TX_TIMER *timer_ptr)
Description

This service deactivates the specified application timer. If the timer is already deactivated, this service
has no effect.

Input Parameters

timer_ptr Pointer to a previously created application timer.

Returns
TX_SUCCESS (0x00) Successful application timer deactivation.

TX_TIMER_ERROR (0x15) Invalid application timer pointer.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

No
Example

TX_TIMER my_timer;
UINT status;
/* Deactivate an application timer. Assume that the application timer has already

been created. */
status = tx_timer_deactivate(&my_timer);
/* If status equals TX_SUCCESS, the application timer is now deactivated. */

4.10.5 tx_timer_delete()

Delete application timer
Prototype

UINT tx_timer_delete(TX_TIMER *timer_ptr)

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 101 / 105

Description
This service deletes the specified application timer.
Note:It is the application’s responsibility to prevent use of a deleted timer.

Input Parameters

timer_ptr Pointer to a previously created application timer.

Returns
TX_SUCCESS (0x00) Successful application timer deletion.

TX_TIMER_ERROR (0x15) Invalid application timer pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
Allowed From

Threads
Preemption Possible

No
Example

TX_TIMER my_timer;
UINT status;
/* Delete application timer. Assume that the application timer has already been created.

*/
status = tx_timer_delete(&my_timer);
/* If status equals TX_SUCCESS, the application timer is deleted. */

4.10.6 tx_timer_info_get()

Retrieve information about an application timer
Prototype

UINT tx_timer_info_get(TX_TIMER *timer_ptr, CHAR **name,
UINT *active, ULONG *remaining_ticks,
ULONG *reschedule_ticks,
TX_TIMER **next_timer)

Description
This service retrieves information about the specified application timer.

Input Parameters

timer_ptr Pointer to a previously created application timer.
name Pointer to destination for the pointer to the timer’s name.

active
Pointer to destination for the timer active indication. If the timer is inactive or this
service is called from the timer itself, a TX_FALSE value is returned. Otherwise, if
the timer is active, a TX_TRUE value is returned.

remaining_ticks Pointer to destination for the number of timer ticks left before the timer expires.
reschedule_ticks Pointer to destination for the number of timer ticks that will be used to automatically

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 102 / 105

reschedule this timer. If the value is zero, then the timer is a one-shot and won’t be
rescheduled.

next_timer Pointer to destination for the pointer of the next created application timer.

Note: Supplying a TX_NULL for any parameter indicates that the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful timer information retrieval.

TX_TIMER_ERROR (0x15) Invalid application timer pointer.
Allowed From

Initialization, threads, timers, and ISRs
Preemption Possible

No
Example

TX_TIMER my_timer;
CHAR *name;

UINT active;

ULONG remaining_ticks;

ULONG reschedule_ticks;

TX_TIMER *next_timer;

UINT status;
/* Retrieve information about the previously created application timer "my_timer." */

status = tx_timer_info_get(&my_timer, &name, &active,&remaining_ticks,
&reschedule_ticks, &next_timer);

/* If status equals TX_SUCCESS, the information requested is valid. */

4.10.7 tx_timer_performance_info_get()

Get timer performance information
Prototype

UINT tx_timer_performance_info_get(TX_TIMER *timer_ptr, ULONG
*activates, ULONG *reactivates,
ULONG *deactivates, ULONG *expirations,
ULONG *expiration_adjusts);

Description
This service retrieves performance information about the specified application timer.

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 103 / 105

Note:The ThreadX library and application must be built with
TX_TIMER_ENABLE_PERFORMANCE_INFO defined for this service to return performance
information.

Input Parameters

timer_ptr Pointer to previously created timer.
activates Pointer to destination for the number of activation requests performed on this timer.

reactivates
Pointer to destination for the number of automatic reactivations performed on this
periodic timer.

deactivates
Pointer to destination for the number of deactivation requests performed on this
timer.

expirations Pointer to destination for the number of expirations of this timer.

expiration_adjusts

Pointer to destination for the number of internal expiration adjustments performed
on this timer. These adjustments are done in the timer interrupt processing for
timers that are larger than the default timer list size (by default timers with
expirations greater than 32 ticks).

Note:Supplying a TX_NULL for any parameter indicates the parameter is not required.
Returns
TX_SUCCESS (0x00) Successful timer performance get.
TX_PTR_ERROR (0x03) Invalid timer pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_TIMER my_timer;
ULONG activates;

ULONG reactivates;

ULONG deactivates;

ULONG expirations;

ULONG expiration_adjusts;
/* Retrieve performance information on the previously created timer. */

status = tx_timer_performance_info_get(&my _timer, &activates, &reactivates,&deactivates,
&expirations, &expiration_adjusts);

/* If status is TX_SUCCESS the performance information was successfully retrieved. */

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 104 / 105

4.10.8 tx_timer_performance_system_info_get()

Get timer system performance information
Prototype

UINT tx_timer_performance_system_info_get(ULONG *activates, ULONG
*reactivates, ULONG *deactivates,

ULONG *expirations, ULONG *expiration_adjusts);
Description

This service retrieves performance information about all the application timers in the system.
Note:The ThreadX library and application must be built with
TX_TIMER_ENABLE_PERFORMANCE_INFO defined for this service to return performance
information.

Input Parameters

activates
Pointer to destination for the total number of activation requests performed on
all timers.

reactivates
Pointer to destination for the total number of automatic reactivation performed
on all periodic timers.

deactivates
Pointer to destination for the total number of deactivation requests performed on
all timers.

expirations Pointer to destination for the total number of expirations on all timers.

expiration_adjusts

Pointer to destination for the total number of internal expiration adjustments
performed on all timers. These adjustments are done in the timer interrupt
processing for timers that are larger than the default timer list size (by default
timers with expirations greater than 32 ticks).

Note:Supplying a TX_NULL for any parameter indicates the parameter is not required.

Returns
TX_SUCCESS (0x00) Successful timer system performance get.

TX_FEATURE_NOT_ENABLED (0xFF)The system was not compiled with performance
Information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG activates;
ULONG reactivates;

ULONG deactivates;

ULONG expirations;

ULONG expiration_adjusts;

SIM7070_SIM7080_SIM7090 Series_ThreadX API_V1.00

www.simcom.com 105 / 105

/* Retrieve performance information on all previously created timers. */

status = tx_timer_performance _system_info_get(&activates, &reactivates,
&deactivates, &expirations, &expiration_adjusts);

/* If status is TX_SUCCESS the performance information was successfully retrieved. */

	About Document
	Version History
	Scope

	Contents
	1Introduction
	1.1Purpose of the document
	1.2Related documents
	1.3Conventions and abbreviations

	2ThreadX Data Types
	2.1Alphabetic Listings
	2.2Listing by Value

	3ThreadX Constants
	3.1TX_BLOCK_POOL
	3.2TX_BYTE_POOL
	3.3TX_EVENT_FLAGS_GROUP
	3.4TX_MUTEX
	3.5TX_QUEUE
	3.6TX_SEMAPHORE
	3.7TX_THREAD
	3.8TX_TIMER
	3.9TX_TIMER_INTERNAL

	4ThreadX API Services
	4.1Block Memory Services
	4.1.1tx_block_allocate()
	4.1.2tx_block_pool_create()
	4.1.3tx_block_pool_delete ()
	4.1.4tx_block_pool_info_get()
	4.1.5tx_block_pool_performance_info_get()
	4.1.6tx_block_pool_performance_system_info_get()
	4.1.7tx_block_pool_prioritize()
	4.1.8tx_block_release()

	4.2Byte Memory Services
	4.2.1tx_byte_allocate()
	4.2.2tx_byte_pool_create()
	4.2.3tx_byte_pool_delete()
	4.2.4tx_byte_pool_info_get()
	4.2.5tx_byte_pool_performance_info_get()
	4.2.6tx_byte_pool_performance_system_info_get()
	4.2.7tx_byte_pool_prioritize()
	4.2.8tx_byte_release()

	4.3Event Flags Services
	4.3.1tx_event_flags_create()
	4.3.2tx_event_flags_delete()
	4.3.3tx_event_flags_get()
	4.3.4tx_event_flags_info_get()
	4.3.5tx_event_flags_performance info_get()
	4.3.6tx_event_flags_performance_system_info_get()
	4.3.7tx_event_flags_set()
	4.3.8tx_event_flags_set_notify()

	4.4Interrupt Control
	4.4.1tx_interrupt_control()

	4.5Interrupt Control
	4.5.1tx_mutex_create()
	4.5.2tx_mutex_delete()
	4.5.3tx_mutex_get()
	4.5.4tx_mutex_info_get()
	4.5.5tx_mutex_performance_info_get()
	4.5.6tx_mutex_performance_system_info_get()
	4.5.7tx_mutex_prioritize()
	4.5.8tx_mutex_put()

	4.6Queue Services
	4.6.1tx_queue_create()
	4.6.2tx_queue_delete()
	4.6.3tx_queue_flush()
	4.6.4tx_queue_front_send()
	4.6.5tx_queue_info_get()
	4.6.6tx_queue_performance_info_get()
	4.6.7tx_queue_performance_system_info_get()
	4.6.8tx_queue_prioritize()
	4.6.9tx_queue_receive()
	4.6.10tx_queue_send()
	4.6.11tx_queue_send_notify()

	4.7Semaphore Services
	4.7.1tx_semaphore_ceiling_put()
	4.7.2tx_semaphore_create()
	4.7.3tx_semaphore_delete()
	4.7.4tx_semaphore_get()
	4.7.5tx_semaphore_info_get()
	4.7.6tx_semaphore_performance_info_get()
	4.7.7tx_semaphore_performance_system_info_get()
	4.7.8tx_semaphore_prioritize()
	4.7.9tx_semaphore_put()
	4.7.10tx_semaphore_put_notify()

	4.8Thread Control Services
	4.8.1tx_thread_create()
	4.8.2tx_thread_delete()
	4.8.3tx_thread_entry_exit_notify()
	4.8.4tx_thread_identify()
	4.8.5tx_thread_info_get()
	4.8.6tx_thread_performance_info_get()
	4.8.7tx_thread_performance_system_info_get()
	4.8.8tx_thread_preemption_change()
	4.8.9tx_thread_priority_change()
	4.8.10tx_thread_relinquish()
	4.8.11tx_thread_reset()
	4.8.12tx_thread_resume()
	4.8.13tx_thread_sleep()
	4.8.14tx_thread_stack_error_notify()
	4.8.15tx_thread_suspend()
	4.8.16tx_thread_terminate()
	4.8.17tx_thread_time_slice_change
	4.8.18tx_thread_wait_abort()

	4.9Time Services
	4.9.1tx_time_get()
	4.9.2tx_time_set()

	4.10Timer Services
	4.10.1tx_timer_activate()
	4.10.2tx_timer_change()
	4.10.3tx_timer_create()
	4.10.4tx_timer_deactivate()
	4.10.5tx_timer_delete()
	4.10.6tx_timer_info_get()
	4.10.7tx_timer_performance_info_get()
	4.10.8tx_timer_performance_system_info_get()

