

HT93214 Series 1-memory Tone/Pulse Dialer

Features

Patent Number: 86474, 84545(R.O.C)

1

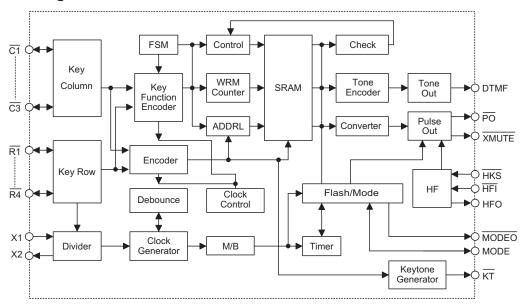
- Operating Voltage: 2.0V~5.5V
- Low standby current
- Low memory retention current: 0.1μA (Typ.)
- Tone/Pulse switchable
- 32 (pulse)/31 (tone) digits for redialing
- Pause and $P \rightarrow T$ key for PBX
- 4×4 keyboard matrix
- 3.58MHz crystal or ceramic resonator

- Hand-free control
- Pause, $P \rightarrow T$ can be saved for redialing
- · One-key redialing
- Keytone output
- Pause time: 2.2s
- · Cascadable manual dialing after redialing
- Calibrated DTMF timing for redialing
- HT93214A: 16-pin DIP package
 HT93214B/AT: 18-pin DIP package

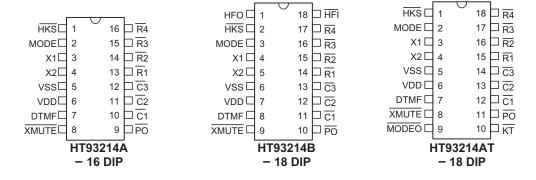
General Description

The HT93214 are dialer series designed for low cost telephone set applications with expandable features such as Lock function, keytone and LCD display interface. With a 4×4 keyboard, it performs normal tone/pulse switchable dialing, and provides one-key redialing function with a 32-digit memory for speed dial-

ing. An on-chip oscillator is built-in to work with an external 3.58Mhz crystal or ceramic resonator for accurate timing. The HT93214 provides 300ms (F1 key) and 600ms (F2 key) of flash time; Tone dialing and 10pps, 20pps selection with 1/2 M/B ratio for pulse dialing.

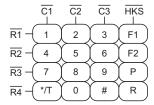


Selection Table


HT93214 series

Function Item	Hand- Free	Key Tone	Flash	Flash Time (ms)	Pulse No.	Tone Duration (ms)	Inter Tone Pause (ms)	pps	M/B	PKG DIP 300mil
HT93214A			Control	300/600	N	94	96	10/20	1/2	16
HT93214B	√		Control	300/600	N	94	96	10/20	1/2	18
HT93214AT		√	Control	300/600	N	94	96	10/20	1/2	18

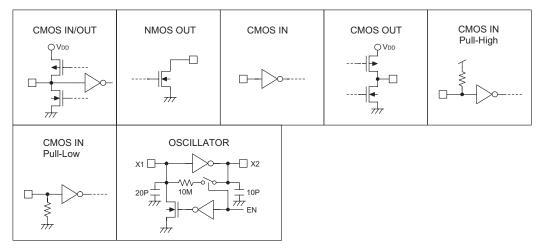
Block Diagram



Pin Assignment

Keyboard Information

Pin Description


Pin Name	I/O	Internal Connection	Description			
<u>C1</u> ~ <u>C3</u> <u>R1</u> ~ <u>R4</u>	I/O	CMOS I/O	These pins along with the \overline{HKS} form a 4×4 keyboard matrix which can perform keyboard input detection. When on-hook $(\overline{HKS} = high)$ all the pins are set high. While off-hook the column group $(\overline{C1} \sim \overline{C3})$ is set low and the row group $(\overline{R1} \sim \overline{R4})$ remains high for input detection. Pressing a key connects a single row to a single column \overline{HKS} and actuates the system oscillator that results in a dialing signal output. If more than two keys are pressed at the same time, no response occurs. The key-in debounce time is 20ms.			
X1	I	OSC	OSC The system oscillator consists of an inverter, a bias resistor the necessary load capacitor on chip. Connecting a star 3.579545MHz crystal or ceramic resonator to the X1 and X2 minals can implement the oscillator function. The oscillator			
X2	О		turned off in the standby mode, and is actuated whenever a key- board entry is detected.			
XMUTE	О	NMOS Open Drain	NMOS open drain structure pulled to VSS during dialing signal transmission. Otherwise, it is an open circuit. This pin is used to mute the speech circuit when transmitting the dial signal.			
HKS	I	CMOS	This pin is used to monitor the status of the hook-switch and its combination with \overline{HFI} can control the \overline{PO} pin output to make or break the line. $\overline{HKS}=VDD$: On-hook state ($\overline{PO}=low$). Except for \overline{HFI} (hand-free control input), other functions are all disabled. $\overline{HKS}=VSS$: Off-hook state ($\overline{PO}=high$). The chip is in the standby mode and ready to receive the key input.			

Pin Name	I/O	Internal Connection	Description
PO	0	NMOS	NMOS open drain output structure, which by receiving the \overline{HKS} and HFO signals, control the dialer so as to connect or disconnect the telephone line. \overline{PO} is pulled to VSS when \overline{HKS} is high (on-hook) and HFO is low. \overline{PO} is an open circuit which make the line connection when \overline{HKS} is low (off-hook) or HFO is high. During the off-hook state, this pin also outputs the dialing pulse train in pulse mode dialing. While in the tone mode, this pin is always an open circuit.
MODE	I/O	CMOS	This is a tri-state input/output pin, used for dialing mode selection, either Tone mode or Pulse mode, 10pps/20pps MODE=VDD: Pulse, 10pps, M/B=1/2 MODE=Floating: Pulse, 20pps, M/B=1/2 MODE=VSS: Tone. The MODE selection is checked each time a key input is received.
DTMF	О	CMOS	This pin is active only when the chip transmits tone dialing signals. Otherwise, it always outputs a low. The pin outputs tone signals to drive the external transmitter amplifier circuit. The load resistor (to $V_{SS})$ should not be less than $5 \mathrm{k} \Omega$ and any DC load connected to V_{DD} is not allowed.
KT	О	NMOS	NMOS open drain structure for keytone output. It outputs 34ms of 600Hz tone burst when any key is pressed in the pulse mode or when a function key is pressed in the tone mode.
ны	I	CMOS	Pulled-high, this pin is a schmitt trigger input structure. Active low. Applying a negative going pulse to \overline{HFI} can toggle the HFO once and hence control the hand-free function. The pull-high resistance of \overline{HFI} is about 200k Ω typ. An external RC network is recommended for input debouncing.
НГО	О	CMOS	The HFO pin is a CMOS output structure. Its output is toggle-controlled by a negative transition on \overline{HFI} pin. When HFO is high, the hand-free function is enabled and \overline{PO} outputs a high to connect the line. The hand-free function can be released by an on-off-hook operation or by another \overline{HFI} input. Refer to the functional description for the hand-free functional operation.
VDD	_	_	Positive power supply, 2.0V~5.5V for normal operation
VSS	_	_	Negative power supply
MODEO	О	NMOS	NMOS open drain output pin pulled to VSS during tone output and is an open circuit during pulse output.

Approximate internal connection circuits

Absolute Maximum Ratings

Supply Voltage0.3V to 6V	Storage Temperature50°C to 125°C
Input Voltage V_{SS} -0.3V to V_{DD} +0.3V	Operating Temperature20°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics

 F_{OSC} =3.5795MHz, Ta=25°C

G11	D		Test Conditions			Т	ъл	TT
Symbol	Parameter	V_{DD}	Co	onditions	Min.	Тур.	Max.	Unit
V_{DD}	Operating Voltage	_		_	2	_	5.5	V
$I_{ m DD}$	Operating Current	2.5V	Pulse	Off-hook	_	0.2	1	mA
100	Operating Current		Tone	Keypad entry		0.6	2	mA
I_{STB}	Standby Current	1V	On-hook, no load No entry		_		1	μА
V_{R}	Memory Retention Voltage	_		_	1	_	5	V
I_R	Memory Retention Current	1V	On-hook		_	0.1	0.2	μΑ
V_{IL}	Input Low Voltage		_		V_{SS}		$0.2V_{ m DD}$	V
V_{IH}	Input High Voltage			_	$0.8 V_{ m DD}$	_	V_{DD}	V

Gl 1	Danamatan	7	Test Conditions	ъл.	m	М.	Unit
Symbol	Parameter	V_{DD}	Conditions	Min.	Тур.	Max.	Onit
I_{XMO}	XMUTE Leakage Voltage	_	V _{XMUTE} =12V No entry			1	μА
I_{OLXM}	XMUTE Sink Current	2.5V	V _{XMUTE} =0.5V	1	_	_	mA
$I_{\overline{HKS}}$	HKS Pin Input Current	2.5V	$V_{\overline{HKS}}=2.5V$	_		0.1	μА
$R_{ m HFI}$	HFI Pull- High Resistance	2.5V	V _{HFI} =0V		200	_	kΩ
I_{OH1}	Keypad Pin Source Current	2.5V	V _{OH} =0V	-4	_	-40	μΑ
I_{OL1}	Keypad Pin Sink Current	2.5V	V _{OL} =2.5V	200	400	_	μА
$I_{ m OH2}$	HFO Pin Source Current	2.5V	V _{OH} =2V	-1	_	_	mA
I_{OL2}	HFO Pin Sink Current	2.5V	V _{OL} =0.5V	1	_	_	mA
I_{OL3}	MODEO Sink Current	2.5V	V _{OL} =0.5V	0.6	3.5	_	mA
T_{FP}	Pause Time After Flash	2.5V	_	_	800	_	ms
$T_{ m RP}$	One-key Redialing Pause Time	2.5V	_	_	800	_	ms
Fosc	System Frequency	_	_	_	3.58	_	MHz
T_{DB}	Key-in Debounce Time	2.5V	_	_	20	_	ms
$T_{ m BRK}$	Break Time For One-key Redialing	2.5V	_	_	2.2	_	s
Т	Office of Delay William	0.537	10pps	_	800	_	
T_{HKDL}	Off-hook Delay Time	2.5V	20pps		500		ms

Pulse Mode Electrical Characteristics

 $F_{\rm OSC}\!\!=\!3.5795 MHz,\, Ta\!=\!25^{\circ}C$

Chal	l Domenton		Test Conditions	Min.	Т	Max.	IIm:4
Symbol	Parameter	V_{DD}	Conditions	Min.	Тур.	max.	Unit
I_{POH}	PO Output Source Current	2.5V	V _{OH} =2V	-0.2			mA
I_{POL}	PO Output Sink Current	2.5V	$V_{\rm OL}$ =0.5 V	0.2	0.6	_	mA
P_{R}	Pulse Rate	_	$\begin{array}{c} MODE \ pin \ is \\ connected \ to \ V_{DD} \end{array}$	_	10	_	pps
			MODE pin is opened	_	20	_	
M/B	Make/Break Ratio	_		_	33:66	_	%
Т	m D 11:11 m		M/B=33:66 (10 pps)	_	33	_	
T_{PDP}	Pre-digit-pause Time		M/B=33:66 (20 pps)	_	17	_	ms

Cl- al	Damanadan		Test Conditions	ъл:	Т	Morr	TT:4
Symbol	Parameter	V_{DD}	Conditions	Min.	Тур.	Max.	Unit
T_{IDP}	T		10 pps	_	800	_	
1 IDP	Inter-digit-pause Time	_	20 pps	_	500	_	ms
Т	D.I. M.I. D.		10 pps, M/B=1/2	_	33.3	_	
$\parallel \mathrm{T_M}$	M Pulse Make Duration	_	20 pps, M/B=1/2	_	16.7	_	ms
T			10 pps, M/B=1/2	_	66.6	_	
T_{B}	Pulse Break Duration	_	20 pps, M/B=1/2	_	33.3	_	ms
T_{P}	Pause Time	_	_	_	2.2	_	s

Tone Mode Electrical Characteristics

Cl1	Danasastan	Test Conditions		D/I.	Т	Max.	Unit
Symbol	Parameter	V_{DD}	Conditions	Min.	Тур.	max.	Unit
V_{TDC}	DTMF Output DC Level	_	No load	$0.45 \mathrm{V}_{\mathrm{DD}}$	_	$0.7 V_{ m DD}$	V
I_{TOL}	DTMF Sink Current	2.5V	V_{DTMF} =0.5V	0.1	_		mA
V_{TAC}	DTMF Output AC Level	_	Row group, R_L =5k Ω	0.12	0.155	0.18	Vrms
$R_{ m L}$	DTMF Output Load	2.5V	THD≤–23dB	5	_		kΩ
A_{CR}	Column Pre-emphasis	2.5V	Row group=0dB	1	2	3	dB
THD	Tone Signal Distortion	2.5V	R_L =5k Ω		-30	-23	dB
T_{TMIN}	Minimum Tone Duration		Auto-redial		94		ms
T_{ITPM}	Minimum Inter-Tone Pause	_	Auto-redial	_	96	_	ms

THD (Distortion) (dB) = 20 log ($\sqrt{V1^2 + V2^2 + + Vn^2}$ / $\sqrt{Vi^2 + Vh^2}$)

Vi, Vh: Row group and column group signals

V1, V2, ... Vn: Harmonic signals (BW=300Hz \sim 3500Hz)

Functional Description

Keyboard matrix

 $\overline{\text{C1}} \sim \overline{\text{C3}}$, $\overline{\text{HKS}}$ and $\overline{\text{R1}} \sim \overline{\text{R4}}$ form a keyboard matrix. Together with a standard 4×4 keyboard, the keyboard matrix is used for dialing entries. The keyboard arrangement of the HT93214 series is shown in the **Keyboard Information**.

Tone frequency

Tone	Output Free	Of Errors	
Name	Specified	Actual	% Error
R1	697	699	+0.29%
$\overline{\mathrm{R2}}$	770	766	-0.52%
$\overline{\mathrm{R3}}$	852	847	-0.59%
$\overline{\mathrm{R4}}$	941	948	+0.74%
$\overline{\text{C1}}$	1209	1215	+0.50%
$\overline{\text{C2}}$	1336	1332	-0.30%
$\overline{\text{C3}}$	1477	1472	-0.34%

Note: % Error does not contain the crystal frequency drift

Dialing specification selection

• The specifications are selected by the MODE pin.

MODE	Tone/Pulse	Dial Rate	M/B Ratio
VDD	Pulse	10pps	1/2
VSS	Tone		_
Floating	Pulse	20pps	1/2

• The MODE pin status is checked whenever a digit key is pressed, however the M/B and pulse rate are determined at the first key entry.

Hand-free function operation

When HFO is low, a falling edge triggers the HFI, enabling the Hand-free function (HFO becomes high).

• Reset Hand-free function

When HFO is high, the Hand-free function is enabled and can be reset by:

- Off-hook
- Applying a falling edge to HFI
- Hand-free function table

Current State		Next State		
Hook SW	HFO	Input	HFO	Dialing?
_	Low	HFI ↓	High	Yes
On hook	High	HFI ↓	Low	No
Off hook	High	HFI ↓	Low	Yes
On hook	_	of off-hook	Low	Yes
Off hook	Low	on hook	Low	No
Off hook	High	on hook	High	Yes

Flash

Two flash keys are provided, namely F1, F2 for both series. All the flash key function as control key with different break duration. Whenever a flash key is pressed the \overline{PO} pin will be forced low for a T_F duration and the transmission of the new digit key inputs will be further delayed for a T_{FP} after T_F . See the following table for flash duration selection.

Item	F1	F2
HT93214	300ms	600ms

Key definition

• 0,1,2,3,4,5,6,7,8,9 keys

These are dialing number input keys for both the pulse mode and the tone mode operation.

• */T

This key executes the $P{\to}T$ function and waits a $T_{P{\to}T}$ duration in the pulse mode. On the other hand, the */T key executes the * function in the tone mode. The */T key will occupy one memory digit in either tone or pulse mode.

• #

This is a dialing signal key for the tone mode only, no response in the pulse mode.

F1. F2

Pressing one of the flash keys will force the \overline{PO} pin to become low for the T_F duration. To transmit the dial signals of the key input that are entered after the F key, a wait period T_{FP} (sec) after \overline{PO} pin returns from low is provided.

• P

Pause key. The execution of this key pauses the output for the T_P duration (2.2s).

R

Redial key. It executes redialing as well as one-key redial function.

Keyboard Operation

The following operations are described under an on-off- hook or on-hook condition with the hand-free active condition.

Normal dialing

- Pulse mode

 (a) without */T

 Keyboard input: D1 D2 ... Dn

 Dialing output: D1 D2 ... Dn

 RM: D1 D2 ... Dn

 (b) with */T

 Keyboard input: D1 D2 ... Dn */T Dn+1 ...

 Dm

 Dialing output: D1 D2 ... Dn TP→T Dn+1 ... Dm

 Pulse Tone

 RM: D1 D2 ... Dn */T Dn+1 ... Dm
- Tone mode
- (a) without */T

 Keyboard input: D1 D2 ... Dn

 Dialing output: D1 D2 ... Dn

RM: D1 D2 ... Dn

(b) with */T

```
Keyboard input: D1 D2 ... Dn */T Dn+1 ...
Dm

Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
```

RM: D1 D2 ... Dn * Dn+1 ... Dm

Note: The maximum capacity of the RM memory is 32 digits. When more than 32 digits are entered, the signal is transmitted but the redial function is inhibited.

Redial

- Pulse mode
 - (a) without */T

RM content: D1 D2 ... Dn Keyboard input: R

Dialing output: D1 D2 ... Dn

RM: Unchanged

(b) with */T

RM content: D1 D2 ... Dn */T Dn+1 ... Dm

Keyboard input: R

Dialing output: D1 D2 ... Dn $T_{P \rightarrow T}$ Dn+1 ... Dm $T_{P \rightarrow T}$ Tone

RM: Unchanged

- Tone mode
 - (a) without */T

RM content: D1 D2 ... Dn

Keyboard input: R

Dialing output: D1 D2 ... Dn

RM: Unchanged

(b) with */T

10

RM content: D1 D2 ... Dn */T Dn+1 ... Dm

Keyboard input: R

Dialing output: D1 D2 ... Dn * Dn+1 ... Dm

RM: Unchanged

- · One-key redial
 - Pulse mode

(a) without */T

RM: D1 D2 ... Dn

(b) with */T

Keyboard input: D1 D2... Dn */T Dn+1 ...

 $\begin{array}{c|c} \hline Dm & R \\ \hline \\ Dialing output: & \underline{D1} & \underline{D2} \dots \underline{Dn} & \underline{TP} \rightarrow \underline{T} & \underline{Dn+1} \dots \underline{Dm} \\ \hline \\ \end{array}$

Pulse Tone
TBRK TRP D1 D2 ... Dn TP→T
Pulse

D<u>n+1 ... D</u>m

Tone RM: D1 D2 ... Dn */T Dn+1 ... Dm

- Tone mode

(a) without */T

Keyboard input: D1 D2 ... Dn R

Dialing output: D1 D2 ... Dn TBRK TRP D1 D2

... Dn RM: D1 D2 ... Dn

(b) with */T

Keyboard input: D1 D2 ... Dn */T Dn+1 ...

Dm R

Dialing output: D1 D2 ... Dn * Dn+1 ... Dm

TBRK TRP D1 D2 ... Dn * Dn+1

... Dr

RM: D1 D2 ... Dn * Dn+1 ... Dm

Note: If the dialing number exceeds 32 digits, redialing is inhibited and PO=open

- Flash
 - Flash as a control key

Keyboard input: $\boxed{\text{D1}}$ $\boxed{\text{D2}}$... $\boxed{\text{Dn}}$ $\boxed{\text{F}}$ $\boxed{\text{Dn+1}}$... $\boxed{\text{Dm}}$

Dialing output: D1 D2 ... Dn TF TFP Dn+1 ...

Dm Dm

RM: Dn+1 ... Dm

Note: T_F: break a flash time

Pause

Keyboard input: $\boxed{\text{D1}}$ $\boxed{\text{D2}}$... $\boxed{\text{Dn}}$ $\boxed{\text{P}}$ $\boxed{\text{Dn+1}}$... $\boxed{\text{Dm}}$

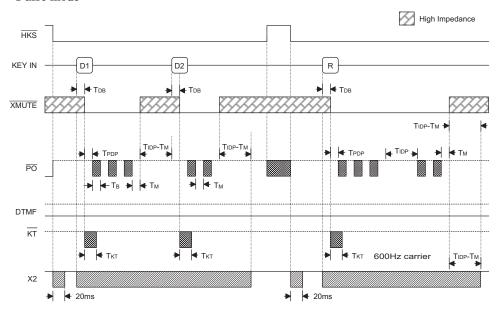
Dialing output: D1 D2 ... Dn TP Dn+1 ... Dm

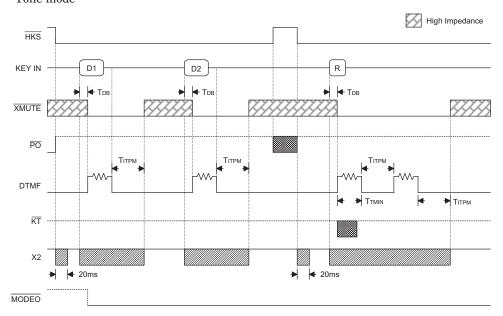
RM: D1 D2 ... Dn P Dn+1 ... Dm

Note

RM: Redial memory

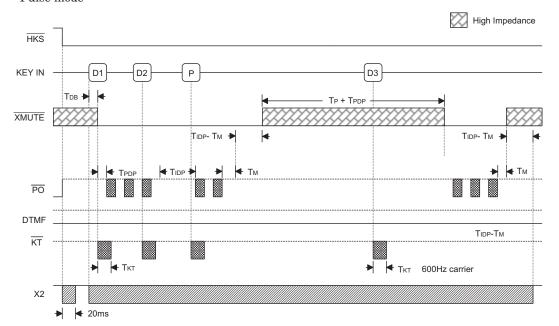
D1 D2 ... Dn: 0~9

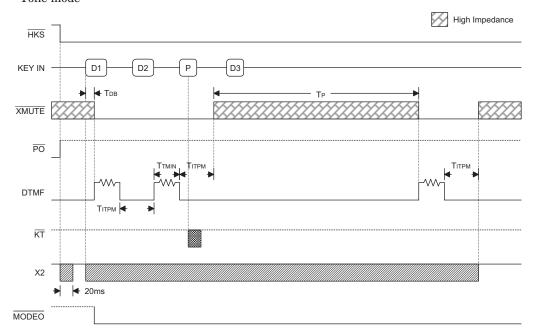

Dn+1 ... Dm: 0~9, *, #


Timing Diagrams

Normal dialing

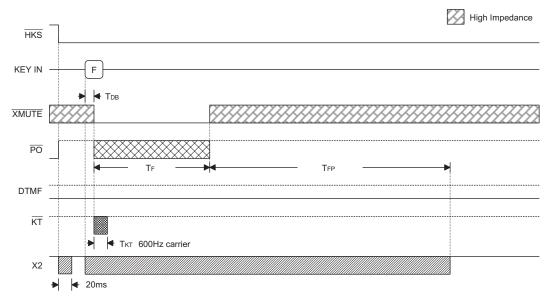
• Pulse mode


• Tone mode

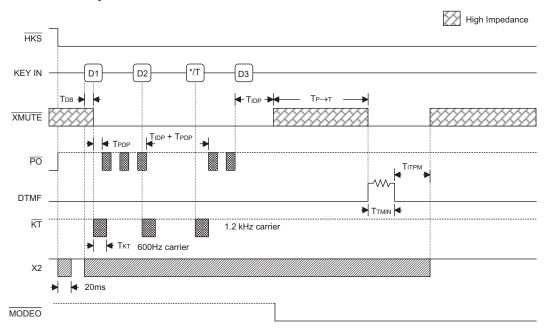


Dialing with PAUSE key

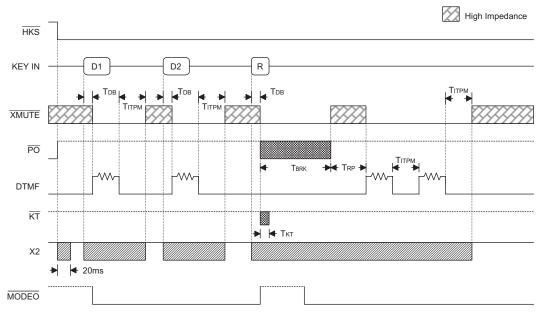
• Pulse mode



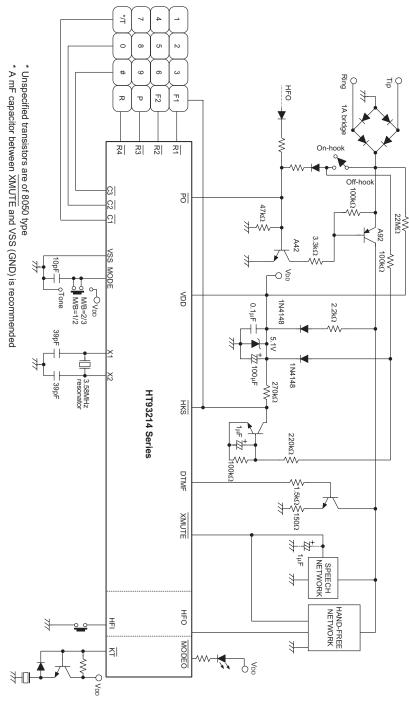
• Tone mode



• Flash key operation



• Pulse to Tone operation



• One key redial operation

Application Circuits

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.

Tel: 886-3-563-1999 Fax: 886-3-563-1189

Holtek Semiconductor Inc. (Taipei Office)

11F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C.

Tel: 886-2-2782-9635 Fax: 886-2-2782-9636

Fax: 886-2-2782-7128 (International sales hotline)

Holtek Semiconductor (Hong Kong) Ltd.

RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong

Tel: 852-2-745-8288 Fax: 852-2-742-8657

Holtek Semiconductor (Shanghai) Ltd.

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China

Tel: 021-6485-5560 Fax: 021-6485-0313

Holmate Technology Corp.

48531 Warm Springs Boulevard, Suite 413, Fremont, CA 94539

Tel: 510-252-9880 Fax: 510-252-9885

Copyright © 2001 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.