

HT7A3942 Evaluation Board : 19V/65W AC-DC Adapter

D/N: HA0293E

Feature

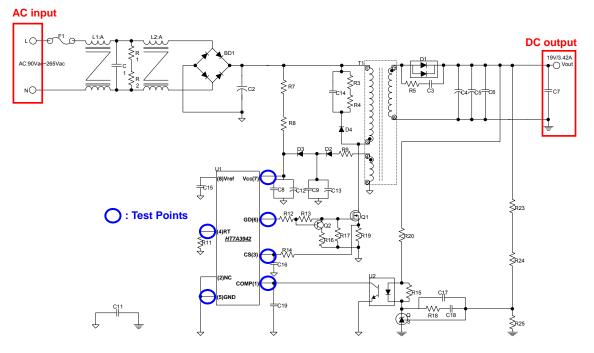
- Average Efficiency up to 87% at Vac = 90~265 Full Range, Max. Efficiency up to 88.1%
- No-Load/Stand-by Power Consumption less than 0.3W @ 115Vac/60Hz and 230Vac/50Hz
- Wide Operating Temperature -40°C ~ 85°C
- 65KHz Operating Frequency at 8.2K External Resister
- Single-sided board
- Output short circuit protected
- Non-audible-noise Green Mode Control

General Description

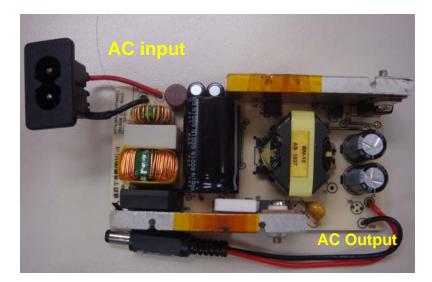
This Evaluation Board is designed to offer assistance with power system designs which use the HT7A3942. The HT7A3942 integrates many enhanced functions which do not require external function pin control but operate automatically when the device is powered-on. Power system designers are not required to have extensive knowledge of these functions but rather just to focus their attention on peripheral circuit design and component selection issues. This simplifies greatly the power system procedure and allows for faster time-to-market solutions.

This Evaluation Board is a AC-DC type adapter with a rating of 19V/65W and has an average efficiency of up to 87% at 90~265V. At its full Vac range, the maximum efficiency can be up to 88.1%. Standby power consumes less than 0.3W @ 115V and 230V Vac, and satisfies Energy Star 2.0 Spec.

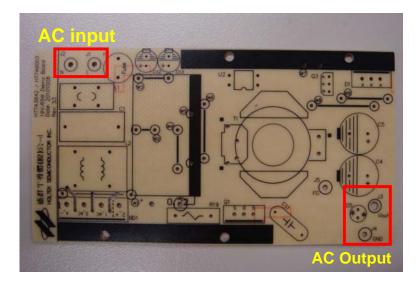
The specification, schematic BOM and PCB layout of the 65W Adapter are all provided in this Application Note.

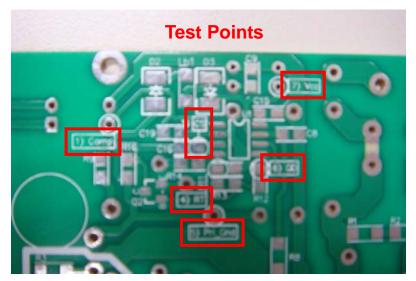

Operating Conditions

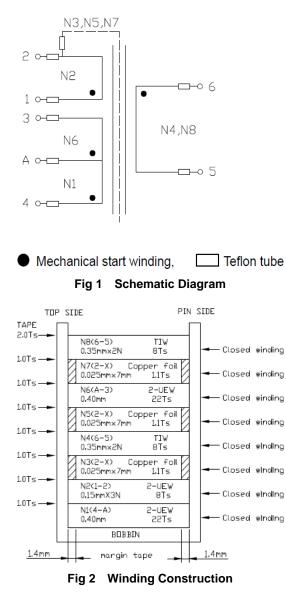
Parameter	Value
Input Voltage Range	90~265Vac
Input Frequency Range	50/60Hz
Output Voltage	19V
Max. Output Current	3.42A
Max. Output Wattage	65W
Operating Temperature	-40~85°C
Performance	
Output Ripple Voltage	< 380mV
Average Efficiency @ Vac=90~265V	87%
No-Load/Stand-by Power Consumption @115Vac/60Hz and 230Vac/50Hz	< 0.3W

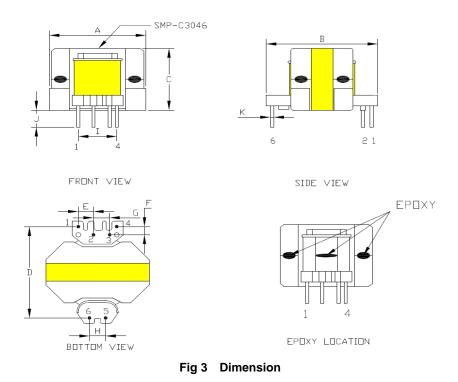


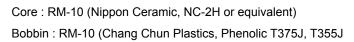
Application Circuit


65W Demo Board Schematic


System Board Introduction




BOM


Location	Qty	Unit	Description	Vendor	Note
BD1	1	EA	BRIDGE DIODE_ GBU1008_10A/800V	DIODES	
C1	1	EA	CAP MKP_275VAC/0.22UF		
C2	1	EA	CAP_KXW_120UF/400V_105°C	RUBYCON	
C3	1	EA	CAP_ 1206_X7R_1000PF/1000V	SHINY SPACE	
C4,C5	2	EA	CAP_ZLH_680UF/25V	RUBYCON	
C6,C7,C8,C9,C15,C18	6	EA	CAP_0805_X7R_0.1UF/50V		
C11	1	EA	CAP_XY1_220PF/250V		
C12,C13	2	EA	CAP_33UF/50V_105°C		
C14	1	EA	CAP_ 1206_X7R_3300PF/1000V	SHINY SPACE	
C16	1	EA	CAP_ 0805_X7R_75PF/50V		
C17					OPEN
C19	1	EA	CAP_0805_X7R_0.022UF(22nF)/50V		
D1	1	EA	DIODE_TO220AB_STPS20H100CT_10A*2/100V	ST	
D2,D3	2	EA	DIODE_SMA/DO214AC_GS1G_1A/400V	JGD	
D4	1		DIODE_SMA/DO214AC_S2MA_2A/1000V	WTE	
F1	1	EA	FUSE_T_3.15V/250V		
L1:A	1		CHOKE COMMON MODE_ TC-BIF0.6X13T-1264	3LCOIL	
			CHOKE COMMON MODE_	3LCOIL	
L2:A	1	EA	LFT1608-0.55X56T-MY-SC6Z0		
Q1	1	EA	MOS_TO220AB_IRFB9N60A_9.2A/600V	IR	
Q2	1	EA	PNP_SOT23_BC807-25_1.2A/-45V	FAIRCHILD	
Q3	1	EA	IC_TO92_TL431_2.5V		
R1,R2	2	EA	RES_1206_RK73B2BTTD J_1.0MOHM	KOA	
R3,R4	2	EA	RES_1206_RK73B2BTTD513J_51KOHM	KOA	
R5	1	EA	RES_1206_RK73B2BTTD470J	KOA	
R7,R8	2	EA	RES_1206_HV732BTTD364J_510KOHM		
R9	1	EA	RES_0805_1.5 OHM		
R11	1	EA	RES_0805_8.2K OHM_±1%		
R12,R13	2	EA	RES_0805_20.0 OHM_±1%		
R14	1	EA	RES_0805_1.0K OHM_±1%		
R15	1	EA	RES_0805_1.0K OHM_±1%		
R16	1	EA	RES_0805_4.7 OHM_±1%		
R17	1	EA	RES_0805_10.0K OHM_±1%		
R19	1	EA	RES_BPR_BPR28CFR22J_0.22 OHM/2W	KOA	
R20	1	EA	RES_0805_120.0 OHM_±1%		
R18	1	EA	RES_0805_0.0 OHM_±1%		
R23	1		RES_0805_2.2K OHM_±1%		
R24	1	EA	RES_0805_24.0K OHM_±1%		
R25	1	EA	RES_0805_3.9K OHM_±1%		
T1	1	EA	TRANS_SMP-C3046	SHANG MING	
U1	1	EA	 IC_SOP8_HT7A3942	HOLTEK	
U2	1		PHOTO_DIP4_PC817	SHARP	

Transformer Specification

PCB Layout (Not in Scale)

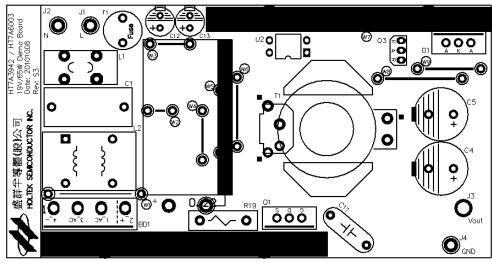


Fig 4 PCB Top Overlay

HT7A3942 Evaluation Board : 19V/65W AC-DC Adapter

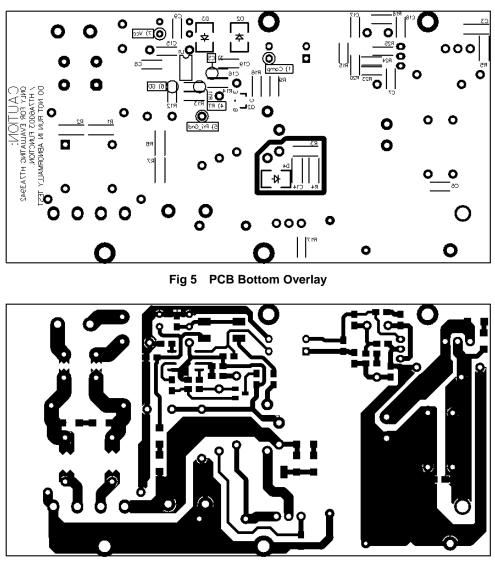


Fig 6 PCB Bottom Layer

Function Description

This Adapter is implemented using Flyback topology, which is the most familiar architecture in AC/DC power applications. Advantages of Flyback topology are simplicity and lower costs, however their efficiencies are not as good as Forward or QR-mode topologies, where average efficiencies of up to about 88%, 90% are possible. The performance of this adapter, implemented using the HT7A3942, is excellent, giving an average efficiency of over 87% and a maximum efficiency of 88.1%, which almost reaches Forward or QR-mode performance levels. The adapter's operating temperature range reaches Industry Levels, from -40~85°C, allowing the adapter to operate in a stable condition even in extreme environments such as ultra low temperature outdoor areas, The detailed specification and design suggestions for this Adapter are shown in the following data.

The input/output specifications are shown in Table 1 and Table 2.

Input Specification

Symbol	Description	Condition	Specification	Unit
Vi	Input Voltage		90 to 265	Vac
fi	Input Frequency		47 to 63	Hz
Pi (no load)	Input Power with no Output	230V, 50Hz	≦300	mW

Table 1 Input Specifications

Output Specification

Symbol	Description	Condition	Specification	Unit
Vo	Output Voltage		19.5	Vdc
Vo(ripple,p-p)	Peak to Peak Output Ripple Voltage	20MHz	< 380	mV
		Bandwidth		
t _{holdup}	Hold-Up Time	115Vac/60Hz,	10	
		Full Load	10	ms
	Line Regulation		±5	%
	Load Regulation		±5	%
t _{start-up}	Start-Up Time	90Vac/60Hz,	≦3	S
		Full Load		
t _{rise}	Vout Rise Time	90Vac/60Hz,	≤20	ms
		Full Load	≥20	
η	Efficiency	Energy Star	> 07	%
	Efficiency	(EPS2.0)	≧87	/0

Table 2 Output Specifications

Performance : The Efficiency and Stand-by Power performance data is shown in Table 3 and Table 4.

Efficiency

		Energy	Efficiency (%)				
IC	Condition	Star EPS 2.0 (%)	Average	25% Load	50% Load	75% Load	100% Load
HT7A3942	115Vac, 60Hz	≧87	87.6588	87.0307	88.1982	87.9114	87.6948
HT7A3942	230Vac, 50Hz	≧87	87.1703	87.0157	87.0805	87.5840	88.1111

Table-3 Efficiency Result

Note: The voltage measurement point is at the PCB side and output current is made using 6 & 1/2 multi-meter. Measurements were made at 115Vac/60z and 230Vac/50Hz.

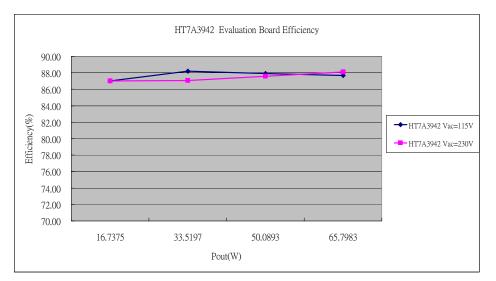


Fig 7 HT7A3942 Efficiency

Stand-by Power

Condition	Energy Star EPS 2.0 (mW)	Output Voltage (Vdc)	No Load Power Consumption (mW)
90Vac, 60Hz	≦300	19.23	183.4
115Vac, 60Hz	≦300	19.31	168.8
230Vac, 50Hz	≦300	19.31	246.5
265Vac, 50Hz	≦300	19.31	288.5

 Table 4
 Output Voltage and Power Consumption for No-Load/Stand-by Conditions

Output Regulation

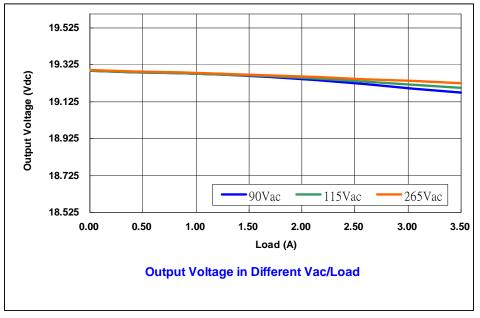


Fig 8 Output Regulation

Start-up Time Output Regulation

Start-Up time was measured for the main input voltage and under full load (3.42A) conditions. When the AC is connected, the start-up current will charge C12 via the R7/R8 resistors. After Vcc exceeds 14V (UVLO_on), the HT7A3942 will send out a PWM signal to turn-on the output.

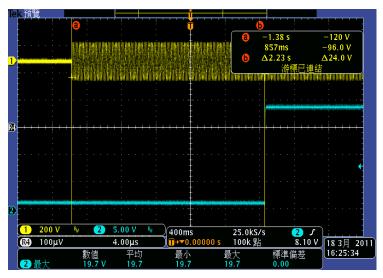


Fig 9 Start-Up Time is 857ms at 90Vac, Full Load

If it is required to reduce the start-up time:

- The user can decrease the R7/R8 resistor values however the stand-by power consumption will be affected.
- A smaller C12 capacitor value also can improve the start-up time. If this solution is used, then it is required to ensure that the discharge voltage must be greater than UVLO_off before the system power is ready.

Current Limit

The HT7A3942 has current limit function at the CS pin. When Vcs is greater than 1Vdc, the device internal circuitry will limit the PWM duty to avoid excessive currents in the primary side. The current limit can be set by the R19 (Rs) value.

$$V_{cs} = 1V = I_{peak} \times R_s$$

And the
$$I_{peak} = \frac{V_{in}}{L_m} \times Duty \times \frac{1}{f_{sw}}$$

The schematic shows a low pass filter (R14/C16) between Rs and CS pin. For a 65kHz switching frequency, the suggested values are $1k\Omega$ and 75pF.

Oscillator Frequency Tuning

By choosing an appropriate external resistor from the RT Pin to GND, a suitable operating frequency can be generated. The relationship between the RT value and the operating frequency is shown in Fig. 11.

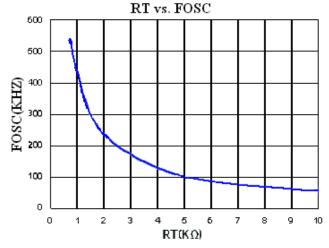


Fig 10 RT and Operating Frequency Relationship

Short Circuit Protection -- SCP

To protect the device from damage due to under/over loads or short circuit conditions, a smart SCP function is implemented in the device. If the VCOMP increases to the SCP threshold of 4.7V and remains there for longer than 40ms, then the protection scheme will be activated which will turn off the gate output to stop power circuit switching.

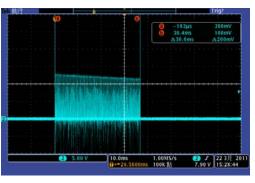


Fig 11 (1). SCP test PWM at 85Vac

Fig 11 (2). SCP test PWM at 85Vac

For general Power Supply Unit applications, the Vout rise time is less than 20ms. Therefore the SCP response time of 40ms is enough in actual applications.