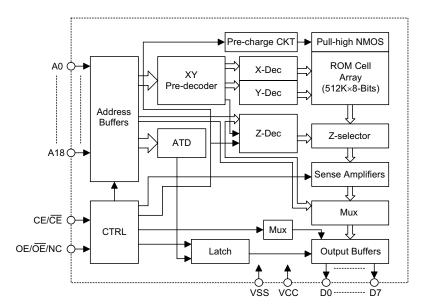


Features

- Operating voltage: 2.7V~5.5V
- Low power consumption
 - Operation: 25mA max. (V_{CC}=5V) 10mA max. (V_{CC}=3V)
- Standby: 60μA max. (V_{CC}=5V) 20μA max. (V_{CC}=3V)
- Access time: 90ns max. (V_{CC}=5V) 250ns max. (V_{CC}=3V)

- 512K×8-bit of mask ROM
- Mask option: chip enable CE/CE, and output enable OE/OE/NC
- TTL compatible inputs and outputs
- Tristate outputs
- Fully static operation
- 32-pin DIP/SOP package


General Description

The HT23C040H is a read-only memory with high performance CMOS storage device whose 4096K of memory is arranged into 512K word by 8 bits.

For application flexibility, the chip enable and output enable control pins can be selected as active high or active low. This flexibility not only allows easy interface with most microprocessors, but also eliminates bus conten-

Block Diagram

tion in multiple bus microprocessor systems. An additional feature of the HT23C040H is its ability to enter the standby mode whenever the chip enable (CE/ \overline{CE}) is inactive, thus reducing current consumption to below 60 μA . The combination of these functions makes the chip suitable for high density low power memory applications.

Pin Assignment

			1	
NC 🗆	1	32	□vcc	
A16 🗆	2	31	🗆 A18	
A15 🗆	3	30	🗆 A17	
A12 🗆	4	29	🗆 A14	
A7 🗆	5	28	🗆 A13	
A6 🗆	6	27	🗆 A8	
A5 🗆	7	26	🗆 A9	
A4 🗆	8	25	🗆 A11	
A3 🗆	9	24		
A2 🗆	10	23	🗆 A10	
A1 🗆	11	22		
A0 🗆	12	21	🗆 D7	
D0 🗆	13	20	🗆 D6	
D1 🗆	14	19	🗆 D5	
D2 🗆	15	18	🗆 D4	
VSS 🗆	16	17	🗆 D3	
HT23C040H				
-	2 DIP-A			
	74			

Pin Description

Pin Name	I/O	Description	
NC		No connection	
A0~A18	I	Address inputs	
D0~D7	0	Data outputs	
VSS	_	Negative power supply, ground	
CE/CE	I	Chip enable/Output enable input	
OE/OE/NC	I	Output enable input	
VCC		Positive power supply	

Absolute Maximum Ratings

Supply Voltage0.3V to 6V	Storage Temperature50°C to 125°C
Input Voltage–0.3V to $V_{CC} \mbox{+} 0.3 V$	Operating Temperature40°C to 85°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

Ta=-	<u>40°C</u>	to	850	^o
1a	40 C	, 10	00	C

0h.c.!	Demonster	1	Test Conditions		Тур.	Max.	Unit
Symbol	Parameter	Vcc	V _{CC} Conditions				
Supply vo	Itage: 4.5V~5.5V						
V _{CC}	Operating Voltage	_		4.5	_	5.5	V
ICC1	Operating Current	5V	O/P No load, f=5MHz	_	_	25	mA
V _{IL1}	Input Low Voltage	5V		V _{SS}	_	0.8	V
V _{IH1}	Input High Voltage	5V		2.2	_	V _{CC}	V
V _{OL1}	Output Low Voltage	5V	I _{OL} =3.2mA	_	_	0.4	V
V _{OH1}	Output High Voltage	5V	I _{OH} =-1mA	2.4	_	V _{CC}	V
ILI	Input Leakage Current	5V	V _{IN} =0 to V _{CC}	_	_	10	μA
I _{LO}	Output Leakage Current	5V	V _{OUT} =0 to V _{CC}	_	_	10	μA
I _{STB1}	Standby Current	5V	$CE=V_{IL}, \overline{CE}=V_{IH}$	_	_	1.5	mA
I _{STB2}	Standby Current	5V	$\frac{CE \le 0.2V}{\overline{CE} \ge V_{CC} - 0.2V}$	_	_	60	μA
C _{IN}	Input Capacitance (See note)		f=1MHz	_	_	10	pF
C _{OUT}	Output Capacitance (See note)		f=1MHz	_	_	10	pF
Supply vo	Itage: 2.7V~3.3V						
Vcc	Operating Voltage			2.7	_	3.3	V
I _{CC2}	Operating Current	3V	O/P No load, f=5MHz	_	_	10	mA
V _{IL2}	Input Low Voltage	3V		V _{SS}	_	0.4	V
V _{IH2}	Input High Voltage	3V		1.5	_	V _{CC}	V
V _{OL2}	Output Low Voltage	3V	I _{OL} =2mA	_	_	0.4	V
V _{OH2}	Output High Voltage	3V	I _{OH} =-0.6mA	1.5	_	V _{CC}	V
ILI	Input Leakage Current	3V	V _{IN} =0 to V _{CC}	_	_	10	μA
I _{LO}	Output Leakage Current	3V	V _{OUT} =0 to V _{CC}	_	_	10	μA
C _{IN}	Input Capacitance (See Note)	_	f=1MHz	_	_	10	pF
COUT	Output Capacitance (See Note)	_	f=1MHz		_	10	pF

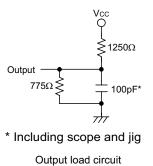
Note: These parameters are periodically sampled but not 100% tested.

A.C. Characteristics

 T_a =-40°C to 85°C

Symbol	Parameter	3V±10%		5V±10%		Unit
Symbol		Min.	Max.	Min.	Max.	Unit
t _{CYC}	Cycle Time	200		90		ns
t _{AA}	Address Access Time		250		90	ns
t _{ACE}	Chip Enable Access Time	—	250	—	90	ns
t _{AOE}	Output Enable Access Time		150		60	ns
t _{OH}	Output Hold Time			7.5		ns
toD	Output Disable Time (See Note)				60	ns
t _{OE}	Output Enable Time (See Note)			7.5		ns

Note: These parameters are periodically sampled but not 100% tested.


A.C. test condition

Output load: see figure right

Input rise and fall time: 10ns

Input pulse levels: 0.4V to 2.4V

Input and output timing reference levels: 0.8V and 2.0V (V_{CC}=5V) 1.5V (V_{CC}=3V)

Functional Description

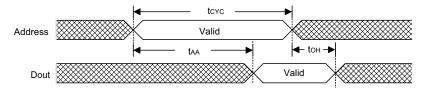
The HT23C040H has two modes, namely data read mode and standby mode, controlled by CE/\overline{CE} and $OE/\overline{OE}/NC$ inputs.

Standby mode

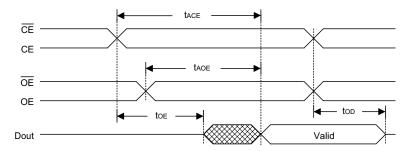
The HT23C040H offers lower current consumption, controlled by the chip enable input (CE/CE). When a low/high level is applied to the CE/CE input regardless of the output enable (OE/OE/NC) states the chip will enter the standby mode.

Data read mode

When both the chip enable (CE/ \overline{CE}) and the output enable (OE/ \overline{OE} /NC) are active, the chip is in data read mode. Otherwise, active CE/ \overline{CE} and inactive OE/ \overline{OE} /NC result in deselect mode. The output will remain in Hi-Z state.

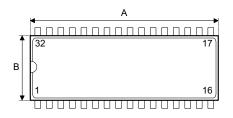

Operation truth table

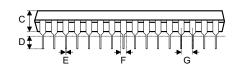
Mode	CE/CE	OE/OE	A0~A18	D0~D7
Read	H/L	H/L	Valid	Data Out
Deselect	H/L	L/H	х	High Z
Standby	L/H	х	х	High Z

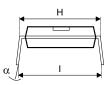

Note: $H=V_{IH}$, $L=V_{IL}$, $X=V_{IH}$ or V_{IL}

Timing Diagrams

• Propagation delay due to address (CE/CE and OE/OE are active)

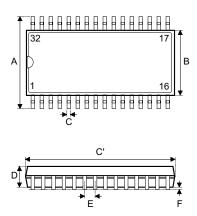

• Propagation delay due to chip and output enable (address valid)





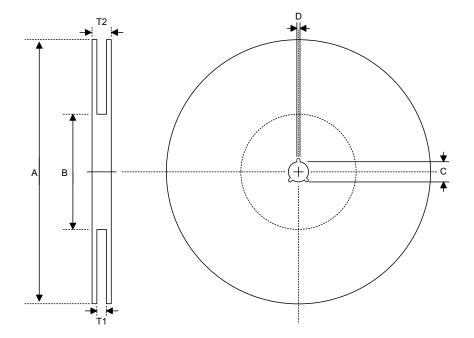
Package Information

32-pin DIP (600mil) outline dimensions



Symbol		Dimensions in mil	
Symbol	Min.	Nom.	Max.
A	1635	—	1665
В	535	_	555
С	145		155
D	125	_	145
E	16		20
F	50	_	70
G	_	100	_
Н	595		615
I	635	—	670
α	0°		15°

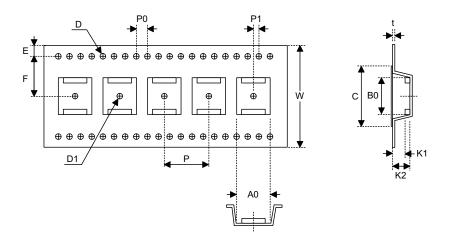
32-pin SOP (450mil) outline dimensions



Symbol		Dimensions in mil				
Symbol	Min.	Nom.	Max.			
А	543	—	557			
В	440	_	450			
С	14		20			
C′	_		817			
D	100		112			
E	_	50	_			
F	4		_			
G	32		38			
Н	4	_	12			
α	0 °		10°			

Product Tape and Reel Specifications

Reel dimensions



SOP 32W

Symbol	Description	Dimensions in mm
А	Reel Outer Diameter	330±1.0
В	Reel Inner Diameter	100±0.1
С	Spindle Hole Diameter	13.0+0.5
D	Key Slit Width	2.0±0.5
T1	Space Between Flange	32.8+0.3
T2	Reel Thickness	38.2+0.2

Carrier tape dimensions

SOP 32W

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	32.0+0.3 _0.1
Р	Cavity Pitch	16.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	14.2±0.1
D	Perforation Diameter	1.55+0.1
D1	Cavity Hole Diameter	2.0+0.25
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	14.7±0.1
B0	Cavity Width	20.9±0.1
K1	Cavity Depth	3.0±0.1
K2	Cavity Depth	3.4±0.1
t	Carrier Tape Thickness	0.35±0.05
С	Cover Tape Width	25.5

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan Tel: 886-2-2655-7070 Fax: 886-2-2655-7373 Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233 Tel: 021-6485-5560 Fax: 021-6485-0313 http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office) 43F, SEG Plaza, Shen Nan Zhong Road, Shenzhen, China 518031 Tel: 0755-8346-5589 Fax: 0755-8346-5590 ISDN: 0755-8346-5591

Holtek Semiconductor Inc. (Beijing Sales Office)

Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031 Tel: 010-6641-0030, 6641-7751, 6641-7752 Fax: 010-6641-0125

Holmate Semiconductor, Inc. (North America Sales Office)

46712 Fremont Blvd., Fremont, CA 94538 Tel: 510-252-9880 Fax: 510-252-9885 http://www.holmate.com

Copyright © 2002 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.