

POWERTIP TECH. CORP.

DISPLAY DEVICES FOR BETTER ELECTRONIC DESIGN

Specification For Approval

Customer		:					7
Model Type		ï	_ LCI	O MC	DU	LE_	
Sample Code	:						
Mass Produc	tion Code	1	PG12	2864LRS	-KN	IN-H	
Edition		:	0	2,			
Customer Sign	Sales Sig	checke	ed By	Approved	Ву	Prepared	Ву
						赵份蓬力	1,62
				cole 19	V		

NO.PT-A-005-2

Revision Record

Date(y/m/d)	Rev.	Description	Note	Page
2002/07/06	0	Revised Contents		

Total Page: 1 ~ 26

1. SPECIFICATIONS

- 1.1 Features
- 1.2 Mechanical Specifications
- 1.3 Absolute Maximum Ratings
- 1.4 DC Electrical Characteristics
- 1.5 Optical Characteristics
- 1.6 Backlight Characteristics

2. MODULE STRUCTURE

- 2.1 Counter Drawing
- 2.2 Interface Pin Description
- 2.3 Timing Characteristics
- 2.4 Display Command

3. QUALITY ASSURANCE SYSTEM

- 3.1 Quality Assurance Flow Chart
- 3.2 Inspection Specification

4. RELIABILITY TEST

4.1 Reliability Test Condition

5. PRECAUTION RELATING PRODUCT HANDLING

- 5.1 Safety
- 5.2 Handling
- 5.3 Storage
- 5.4 Terms of Warranty

1. SPECIFICATIONS

1.1 Features

Item	Standard Value
Display Type	128 * 64 dots
LCD Type	STN, Gray, Transflective, Positive, Extended Temp.
Driver Type	1/64 Duty , 1/9 Bias
Viewing Direction	6 O' clock
Backlight	Yellow-Green LED B/L
Weight	67.2g
Other	-

1.2 Mechanical Specifications

ltem	Standard Value	Unit
Outline Dimension	93.0mm(L) * 70.0mm(w) * 14.0mm(H)(Max)	mm
Viewing Area	72.0mm(L) * 40.0mm(w)	mm
Active Area	66.52mm(L) * 33.24mm(w)	mm
Dot Size	0.48mm(L) * 0.48mm(w)	mm
Dot Pitch	0.52mm(L) * 0.52mm(w)	mm

1.3 Absolute Maximum Ratings

Item	Symbol	Condition	Min.	Max.	Unit
Power Supply Voltage	V_{DD}	1	-0.3	7.0	V
LCD Driver Supply Voltage	V_{DD} - V_{EE}	-	V _{DD} -19.0	V _{DD} +0.3	V
Input Voltage	V_{IN}	-	-0.3	V _{DD} +0.3	V
Operating Temperature	T_OP	-	-20	70	°C
Storage Temperature.	T _{ST}	-	-30	80	°C
Humidity	H _D	-		90	%RH

1.4 DC Electrical Characteristics

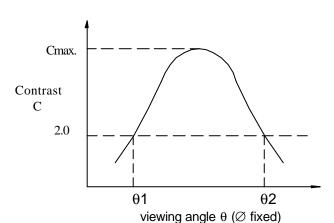
 V_{DD} = 5.0 V ± 5% , V_{SS} = 0V , Ta = 25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Logic Supply Voltage	V_{DD}	-	4.5	5.0	5.5	V
"H" Input Voltage	V_{IH}	-	0.7 V DD	ı	Vdd	V
"L" Input Voltage	V_{IL}	-	0	ı	0.3 V DD	V
"H" Output Voltage	V_{OH}	IOH=-0.2mA	2.4	1	1	V
"L" Output Voltage	V_{OL}	IOL=1.6mA	-	ı	0.4	V
Supply Current	l _{DD}	$V_{DD} = 5.0 \text{ V}$	-	2.5	5.0	mA
		V _{DD} - V _O (-20°C)	-	1	-	
LCD Driver Voltage	V_{OP}	V _{DD} - V _O (25°C)	-	14.0	-	V
		V _{DD} - V _O (70°C)	-	ı	-	

1.5 Optical Characteristics

1/64Duty , 1/9Bias , VOP = 14.0 V , Ta = 25° C

Item	Symbol	Conditions	Min.	Тур.	Max.	Reference	
\ <i>I</i> ' - A I -	θ1	0.000.00	-45°	-	•	Notes 1 & 2	
View Angle	θ2	C <u>></u> 2.0,∅= 0°	50°	ı	ı	Notes 1 & 2	
Contrast Ratio	O	θ=5°, Ø= 0°	3	7	-	Note 3	
Response Time(rise)	Tr	θ= 5°, Ø= 0°	-	150 ms	-	Note 4	
Response Time(fall)	Tf	θ= 5°, Ø= 0°	-	300 ms	-	Note 4	

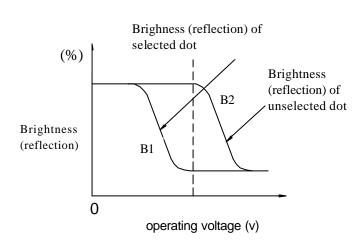

Note 1: Definition of angles θ and \emptyset

Light (when reflected) $z (\theta=0^{\circ})$ Sensor $Y(\emptyset=180^{\circ})$ LCD panel X' Z'

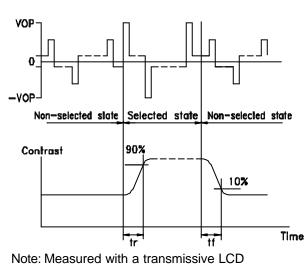
 $Y(\emptyset=0^\circ)$

 $(\theta=90^\circ)$

Note 2: Definition of viewing angles θ 1 and θ 2


Note: Optimum viewing angle with the naked eye and viewing angle θ at Cmax. Above are not always the same

Note 3: Definition of contrast C


Light (when transmitted)

C = Brightness (reflection) of unselected dot (B2)

Brightness (reflection) of selected dot (B1)

Note 4: Definition of response time

 V_{OPR} : Operating voltage f_{FRM} : Frame frequency

t_f: Response time (fall)

panel which is displayed 1 cm2

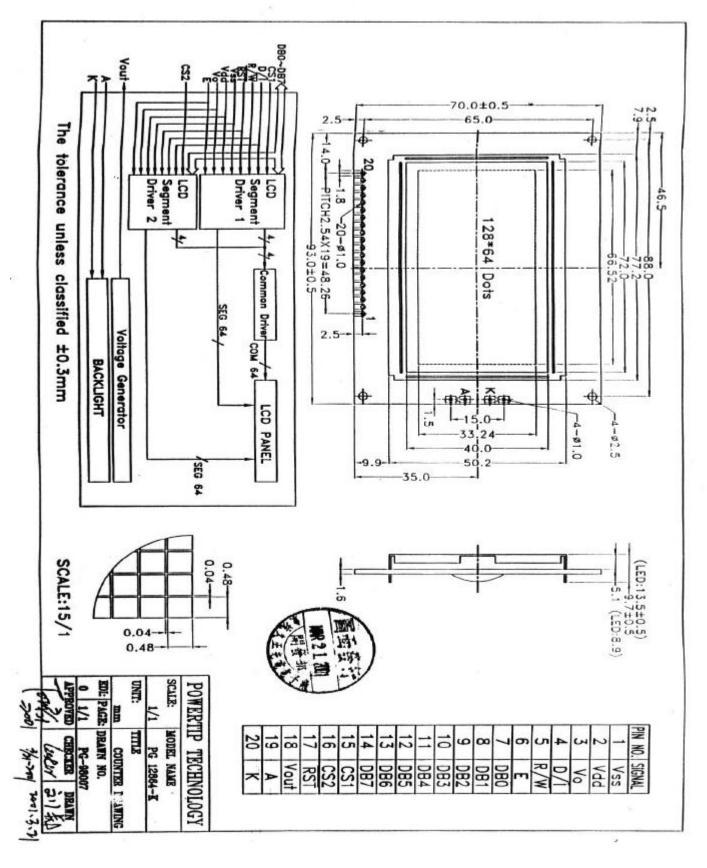
t_r: Response time (rise)

1.6 Backlight Characteristics

LCD Module with LED Backlight

Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit
Forward Current	lF	Ta =25°C	1	975	mA
Reverse Voltage	VR	Ta =25°C	1	8	V
Power Dissipation	Ро	Ta =25°C	1	4.5	W
Operating Temperature	T _{OP}	-	-20	70	°C
Storage Temperature	T _{ST}	-	-40	80	°C

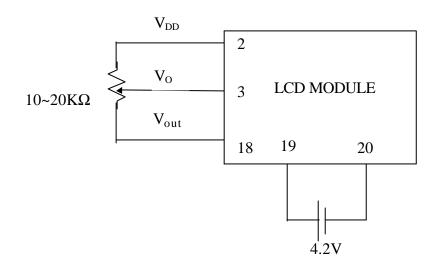

Electrical Ratings

Ta =25°C

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Forward Voltage	VF	IF=390 mA	-	4.2	4.6	V
Reverse Current	lR	VR=8V	-	-	0.2	mA
Luminous Intensity (with LCD, Dots Off)	IV	lF=390 mA	184	230	-	cd/m ²
Wavelength	р	IF=390 mA	571	-	576	nm
Color		Yellow-Green				

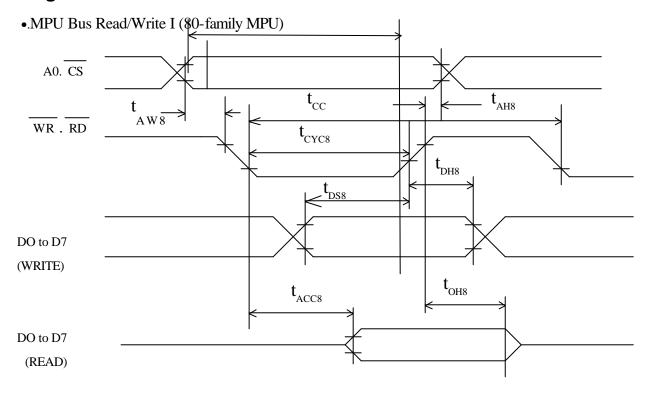
2. MODULE STRUCTURE

2.1 Counter Drawing

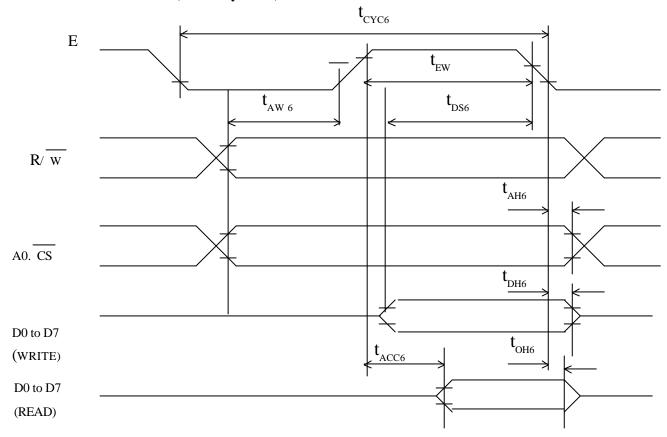

POWERTIP TECHNOLOGY CORPORATION

DISPLAY DEVICES FOR BETTER ELECTRONIC DESIGN

2.2 Interface Pin Description


Pin No.	Symbol	Function
1	Vss	Signal ground (GND)
2	Vdd	Power supply for logic (VDD> VSS)
3	Vo	Operating voltage for LCD (variable)
4	D/ I	Register selection input High =Data register Low =Instruction register (for write) Busy flag address counter (for read)
5	R/W	Read/Write signal input is used to select the read/write mode. High =Read mode, Low =Write mode
6	Е	Start enable signal to read or write the data
7-14	DB0-DB7	Data bus
15	CS1	Chip enable for D2 (segment 1 to segment 64)
16	CS2	Chip enable for D3 (segment 65 to segment 128)
17	RST	Reset signal
18	Vout	Negative voltage power supply
19	A	Power supply for LED backlight (+)
20	K	Power supply for LED backlight (-)

Contrast Adjust



2.3 Timing Characteristics

• MPU Bus Read/Write II (68-family MPU)

• MPU Bus Read/Write I (80-family MPU)

 $V_{DD} = +5V + 10\%, V_{SS} = 0V, Ta = 25^{\circ}C$

Item	Symbol	Conditions	Min.	Max.	Unit
Address hold time	t_{AH8}	1	10	ı	ns
Address setup time	$t_{ m AW8}$	-	20	ı	ns
System cycle time	$t_{\rm CYC8}$	1	1000	ı	ns
Control pulse width	t_{CC}	-	200	ı	ns
Data setup time	$t_{ m DS8}$	-	80	ı	ns
Data hold time	$t_{ m DH8}$	-	10	1	ns
RD access time	t_{ACC8}	G 100 PF	-	90	ns
Output disable time	t_{CH8}	$C_L=100 \text{ PF}$	10	60	ns

• MPU Bus Read/Write II (68-family MPU)

 $V_{DD} = +5V + 10\%$, $V_{SS} = 0V$, Ta = 25°C

					,	
Item		Symbol	Conditions	Min.	Max.	Unit
System cycle t	ime	$t_{\rm CYC6}$	-	1000	-	ns
Address setup	time	$t_{ m AW6}$	-	20	-	ns
Address hold t	ime	t_{AH6}	-	10	1	ns
Data hold time		$t_{ m DS6}$	-	80	1	ns
Data hold time		$t_{ m DH6}$	-	10	-	ns
Output disable	time	$t_{ m OH6}$	G 100 PF	10	60	ns
Access time		t_{ACC6}	$C_L=100 \text{ PF}$	-	90	ns
Enable pulse	Read		-	100	-	ns
width	Write	$t_{ m EW}$	-	80	-	ns

2.4 Display Command Summary

						Code								
Command	A0	— RD	WR	D7	D6	D5	D4	D5	D2	D1	D0	Function		
Display	0	1	0	1	0	1	0	1	1	1	0/1	Turns display on or off.		
On/Off												1: ON, 0:OFF		
Display start	0	1	0	1	1	0	Displa	y sta	rt ad	dress	(o to	Specifies RAM line corresponding to top		
line							31)					line of display.		
Set page	0	1	0	1	0	1	1	1	0	Page (o to 3)	Sets display RAM page in page address		
address												register.		
Set column	0	1	0	0		•	•					Sets display RAM column address in		
(segment)						Colur	nn addr	ess (o to	79)		column address register.		
address												cordinii address register.		
												Reads the following status: BUSY 1: Busy		
												BUSY 1: Busy		
												0: Ready		
												ADC 1: CW output		
Read status	0	0	1	Busy	ADC	ON/OFF	Reset	0	0	0	0	0: CCW output		
												ON/OFF 1: Display off		
												0: Display on		
												RESET 1: Being reset		
												0: Normal		
Write display	1	1	0									Writes data from data bus into display		
data						V	Vrite da	ta				RAM.		
Read display	1	0	1			T.	Read da	ta.				Reads data from display RAM onto data		
data						r	ccau ua	ıa				bus.		
Select ADC	0	1	0	1	0	1	0	0	0	0	0/1	0: CW output, 1:CCW output		
Statis drive	0	1	0	1	0	1	0	0	1	0	0/1	Selects static driving operation.		
ON/OFF												1:static drive, 0: Normal driving		
Select duty	0	1	0	1	0	1	0	1	0	0	0/1	Selects LCD duty cycle		
												1: 1/32, O: 1/16		
Read-Modify-	0	1	0	1	1	1	0	0	0	0	0	Read-modify-write ON		
Write												Reau-mouny-write ON		
End	0	1	0	1	1	1	0	1	1	1	0	Read-modify-write OFF		
Reset	0	1	0	1	1	1	0	0	0	1	0	Software reset		

POWERTIP TECHNOLOGY CORPORATION

DISPLAY DEVICES FOR BETTER ELECTRONIC DESIGN

Command description

Table 3 is the command table. The SED1520 series identifies a data bus using a combination of A0 and $R/W(RD \text{ or } \overline{WR})$ signals. As the MPU translates a command in the internal timing only (independent from the external clock). Its speed is very high. The busy check is usually not required.

Display ON/OFF

A0	RD	$\frac{R/\overline{w}}{\overline{w}R}$	D7	D6	D5	D4	Dз	D2	D1	D ₀	
0	1	0	1	0	1	0	1	1	1	D	Α

AEH,AFH

This command turns the display on and off.

D=1: Display OND=0: Display OFF

Display Start Line

This command specifies the line address shown if Figure 3 and indicates the display line that corresponds to COM0. The display area begins at the specified line address and continues in the line address increment direction. This area having the number of lines of the specified display duty is displayed. If the line address is changed dynamically by this command the vertical smooth scrolling and paging can be used.

		R/w									
A0	RD	WR	D7	D6	D5	D4	Dз	D2	D1	Do	
0	1	0	1	1	0	A4	Аз	A2	A1	Ao	C0H to DFI

This command loads the display start line register.

A4	А3	A2	A1	Α0	Line Address
0	0	0	0	0	0
0	0	0	0	1	1
		:			:
		:			:
1	1	1	1	1	31

Set Page Address

This command specifies the page address that corresponds to the low address of the display data RAM when it is accessed by the MPU. Any bit of the display data RAM can be accessed when its page address and column address are specified. The display status is not changed even when the page address is changed.

		R/w									
A0	RD	WR	D7	D6	D5	D4	Дз	D2	D1	D ₀	
0	1	0	1	0	1	1	1	0	A1	A0	B8H to BBH

This command loads the page address register.

A1	Α0	Page
0	0	0
0	1	1
1	0	2
1	1	3

Set column Address

This command specifies a column address of the display data RAM. When the display data RAM is accessed by the MPU continuously, the column address is incremented by 1 each time it is accessed from the set address. Therefore, the MPU can access to data continuously. The column address stops to be incremented at address 80, and the page address is not changed continuously.

		R/w									
Α0	RD	WR	D7	D6	D5	D4	Дз	D2	D1	D ₀	
0	1	0	0	A6	A5	A4	А3	A2	A1	A0	00H to 4FH

This command loads the column address register.

A6	A5	A4	А3	A2	A1	A0	Line Address
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
			:				:
			:				:
1	0	0	1	1	1	1	79

Read Status

A0	— RD	$\frac{R/}{w}$	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	BUSY	ADC	ON/OFF	RESET	0	0	0	0

Reading the command I/O register (A0=0) yields system status information.

- The busy bit indicates whether the driver will accept a command or not.
 - Busy=1: The driver is currently executing a command or is resetting. No new command will be accepted.
 - Busy=0: The driver will accept a new command.
- The ACD bit indicates the way column addresses are assigned to segment drivers.
 - ADC=1: Normal. Column address $n \rightarrow \text{segment driver } n$.
 - ADC=0: Inverted. Column address 79-u \rightarrow segment driver u.
- The ON/OFF bit indicates the current status of the display.
 - It is the inverse of the polarity of the display ON/OFF command.

ON/OFF=1: Display OFF

ON/OFF=0: Display ON

- The RESET bit indicates whether the driver is executing a hardware or software reset or if it is in normal
 operating mode.
 - RESET=1: Currently executing reset command.
 - RESET=0: Normal operation

Write Display Data

		R/w								
Α0	RD	WR	D7	D6	D5	D4	Dз	D2	D1	D ₀
1	1	0				Write	data			

Writes 8-bit of data into the display data RAM, at a location specified by the contents of the column address and page address registers and then increments the column address register by one.

Read Display Data

		R/w								
A0	RD	WR	D7	D6	D5	D4	Dз	D2	D1	D ₀
1	0	1				Read	data			

Reads 8-bits of data from the data I/O latch, updates the contents of the I/O latch with display data from the display data RAM location specified by the contents of the column address and page address registers and then increments the column address register.

After loading a new address into the column address register one dummy read is required before valid data is obtained.

Select ADC

		R/w								
A0	RD	WR	D7	D6	D5	D4	Dз	D2	D1	D ₀
0	1	0	1	0	1	0	0	0	0	D

A0H, A1H

This command selects the relationship between display data RAM column addresses and segment drivers.

D=1: SEG0 ← column address 4FH,...(inverted)

D=0: SEG0 ← column address 00H,...(normal)

This command is provided to reduce restrictions on the placement of driver ICs and routing of traces during printed circuit board design. See Figure 2 for a table of segments and column addresses for the two values of D.

Static Drive ON/OFF

A0		R/W WR	D7	D6	D5	D4	D 3	D2	D1	D ₀
0	1	0	1	0	1	0	0	1	0	D

A4H, ,A5H

Forces display on and all common outputs to be selected.

D=1: Static drive on D=0: Static drive off

PG12864LRS-KNN-H Revision: 0 (DK)

Select Duty

		R/w									
Α0	RD	WR	D7	D6	D5	D4	Dз	D2	D1	D ₀	
0	1	0	1	0	1	0	1	0	0	D	Δ

A8H, ,A9H

This command sets the duty cycle of the LCD drive and is only valid for the SED1520F and SED1522F. It is invalid for the SED1521F which performs passive operation. The duty cycle of the SED1521F is determined by the externally generated FR signal.

SED1520 SED1522

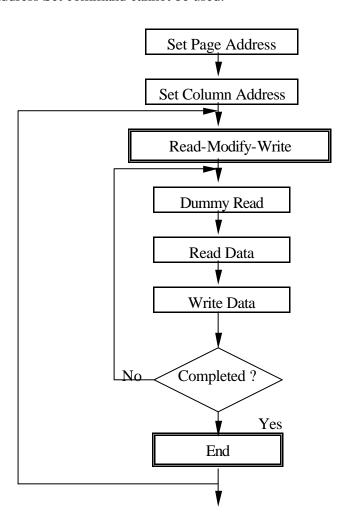
D=1: 1/32 duty cycle 1/16 duty cycle D=0: 1/16 duty cycle 1/8 duty cycle

When using the SED1520F0A,SED1522F0A(having a built-in oscillator) and the SED1521F0A continuously, set the duty as follows:

		SED1521FoA
SED1520FOA	1/32	1/32
	1/16	1/16
SED1522FOA	1/16	1/32
	1/8	1/16

Read-Modify-Write

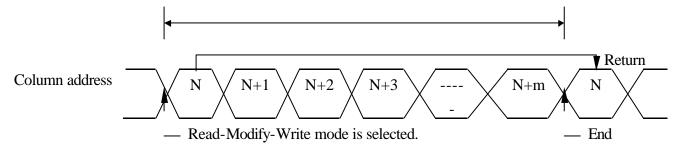
A0	 RD	R/W WR	D7	D6	D5	D4	D 3	D2	D1	D ₀
0	1	0	1	1	1	0	0	0	0	0


EOH

This command defeats column address register auto-increment after data reads. The current contents of the column address register are saved. This mode remains active until an End command is received.

• Operation sequence during cursor display

When the End command is entered, the column address is returned to the one used during input of Read-Modify-Write command. This function can reduce the load of MPU when data change is repeated at a specific display area(such as cursor blinking).


* Any command other than Data Read or Write can be used in the Read-Modify-Write mode. However, the Column Address Set command cannot be used.

End

		R/w									
A0	RD	WR	D7	D6	D5	D4	Dз	D2	D1	Do	
0	1	0	1	1	1	0	1	1	1	0	EEH

This command cancels read-modify-write mode and restores the contents of the column address register to their value prior to the receipt of the Read-Modify-Write command.

POWERTIP TECHNOLOGY CORPORATION

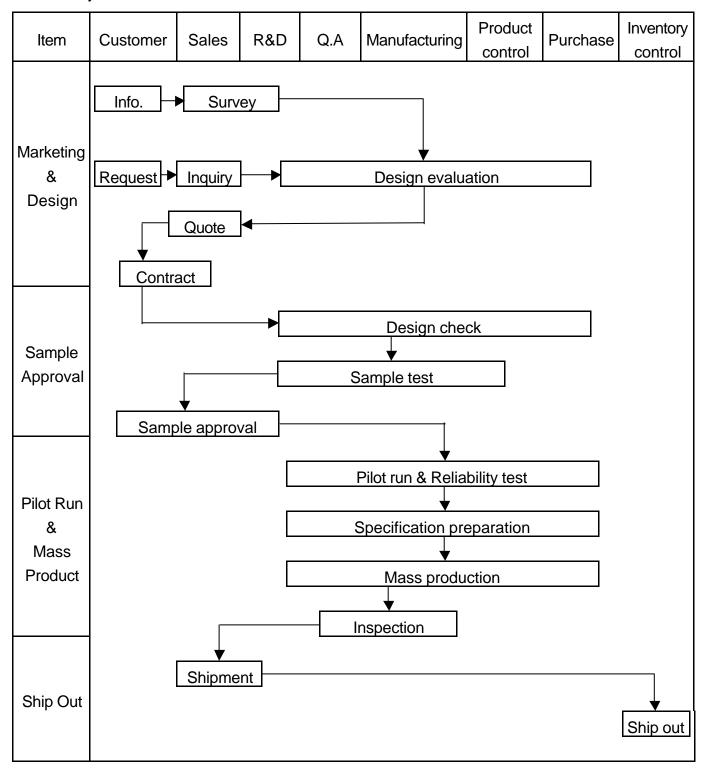
☐ DISPLAY DEVICES FOR BETTER ELECTRONIC DESIGN

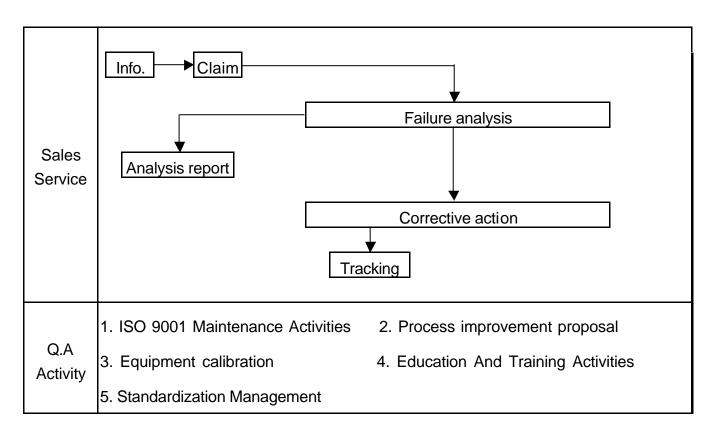
Reset

		R/w								
A0	RD	WR	D7	D6	D5	D4	Dз	D2	D1	D ₀
0	1	0	1	1	1	0	0	0	1	0

E2H

This command clears


- the display start line register.
- and set page address register to 3 page.


It does not affect the contents of the display data RAM.

When the power supply is turned on, a Reset signal is entered in the RES pin. The Reset command cannot be used instead of this Reset signal.

3. QUALITY ASSURANCE SYSTEM

3.1 Quality Assurance Flow Chart

3.2 Inspection Specification

Inspection Standard: MIL-STD-105E Table Normal Inspection Single Sampling Level .

Equipment: Gauge, MIL-STD, Powertip Tester, Sample,

IQC Defect Level: Major Defect AQL 0.65; Minor Defect AQL 1.0.

FQC Defect Level: 100% Inspection.
OUT Going Defect Level: Sampling.

Specification:

ΝO	Item	Specification	Judge	Level
1	Part Number	Inconsistent with the P/N on the flow chart of production	N.G.	Major
2	Quantity	Inconsistent Q'TY with the flow chart of production	N.G.	Major
	Electronic	Display short	N.G.	Major
	Electronic	Missing line	N.G.	Major
3	characteristics	Dot missing A > 1/2 Dot size	N.G.	Major
	A=(L + W) ÷ 2	No function	N.G.	Major
	7(2.77).2	Out put data error	N.G.	Major
		Material difference with flow chart	N.G.	Major
	A	LCD Assembled in opposite direction	N.G.	Major
	Appearance	Bezel assembled in opposite direction	N.G.	Major
	A=(L + W) ÷ 2	Shadow within LCD V./A + 1.0 mm	N.G.	Major
4	 	Dirty particle A > 0.4 mm	N.G.	Minor
7	Dirty particle (Include	Dirty particle length > 3.0mm And 0.01mm < Width 0.05mm (Width > 0.05mm Measure by area)	N.G.	Minor
	scratch, bubble)	Without protective film	N.G.	Minor
		Conductive rubber over bezel	N.G.	Minor
		Burned PCB	N.G.	Major
		Green paint stripped & visible circuit A > 1.0mm (Finish coat not counted in)	N.G.	Minor
	PCB Appearance	A particle across the circuit	N.G	Minor
5		Circuit split > 1/2 Circuit width	N.G	Minor
	A=(L + W) ÷ 2	Any circuit risen	N.G	Minor
		0.2mm < Tin ball area A 0.4mm And Q'TY > 4 Pieces	N.G	Minor
		Tin ball area A > 0.4mm	N.G	Minor

NO	Item	Specification	Judge	Level
		Too soft: Shape by touch changed	N.G.	Major
	Molding	Insufficient epoxy: IC circuit or IC pad visible	N.G.	Minor
6	appearance A=(L + W) ÷ 2	Excessive epoxy: Diameter > 20mm Or High > 2.5mm	N.G.	Minor
		Pin hole through to IC and A > 0.2mm	N.G.	Minor
		Angle between frame and TAB > 45 +10	N.G.	Minor
7	Bezel appearance	Electroplate strip A > 1.0mm (Top view only)	N.G.	Minor
/	A=(L + W) ÷ 2	Rust (Top view only)	N.G.	Minor
		Crack	N.G.	Minor
	De aldiabt aleetsis	Error backlight color	N.G.	Major
	Backlight electric characteristics	No function	N.G.	Major
8	characteristics	Any LED dot no function	N.G.	Major
	A=(L + W) ÷ 2	PIN soldering without tin A > 1/2 solder pad	N.G.	Minor
	7(2: **):2	Solder PIN high > 1.5mm	N.G.	Minor
9	LCD Appearance A=(L + W) ÷ 2	Polarize rise over V/A	N.G.	Minor
		Components mark unclearly	N.G.	Minor
		Components' distance more than 0.7mm firm the PCB	N.G.	Minor
10	Assembly parts A=(L + W) ÷ 2	Error position ,not in center D > 1/4W D D Pad	N.G.	Minor
		Non- solder area > Twice solder area	N.G.	Minor
		Flux area A > 1/4 solder area	N.G.	Minor
		Component broken	N.G.	Minor

4. RELIABILITY TEST

4.1 Reliability Test Condition

NO	Item	Test Co	ondition	Applicable Standard		
1	High Temperature Storage	Surrounding Temperate	Storage At 80 ± 2 96~100 hrs Surrounding Temperature, Then Storage At Normal Condition 4hrs.			
2	Low Temperature Storage	Storage At -30 ± 2 Surrounding Temperat At Normal Condition 4	MIL-202E			
3	High Temperature Humidity Storage	·				
4	Temperature Cycling	-20 25 (30Mins) (5Mins)	70 25	MIL-202E		
5	Vibration	10~55Hz (1 M X,Y And Z Direction	,	MIL-202E		
6	Drop Test	Packing Weight (Kg) 0 ~ 45.4 45.4 ~ 90.8 90.8 ~ 454 Over 454	Drop High (Cm) 122 76 61 46	MIL-810E		

5. PRECAUTION RELATING PRODUCT HANDLING

5.1 SAFETY

- 5.1.1 If the LCD panel breaks, be careful not to get the liquid crystal to touch your skin.
- 5.1.2 If the liquid crystal touches your skin or clothes, please wash it off immediately by using soap and water.

5.2 HANDLING

- 5.2.1 Avoid any strong mechanical shock which can break the glass.
- 5.2.2 Avoid static electricity which can damage the CMOS LSI—When working with the module , be sure to ground your body and any electrical equipment you may be using.
- 5.2.3 Do not remove the panel or frame from the module.
- 5.2.4 The polarizing plate of the display is very fragile. So, please handle it very carefully, do not touch, push or rub the exposed polarizing with anything harder than an HB pencil lead (glass, tweezers, etc.)
- 5.2.5 Do not wipe the polarizing plate with a dry cloth , as it may easily scratch the surface of plate.
- 5.2.6 Do not touch the display area with bare hands, this will stain the display area.
- 5.2.7 Do not use ketonics solvent & aromatic solvent. Use with a soft cloth soaked with a cleaning naphtha solvent.

5.3 STORAGE

- 5.3.1 Store the panel or module in a dark place where the temperature is 25 ± 5 and the humidity is below 65% RH.
- 5.3.2 Do not place the module near organics solvents or corrosive gases.
- 5.3.3 Do not crush, shake, or jolt the module.

5.4 TERMS OF WARRANTY

5.4.1 Applicable warrant period

The period is within thirteen months since the date of shipping out under normal using and storage conditions.

5.4.2 Unaccepted responsibility

This product has been manufactured to your company's specification as a part for use in your company's general electronic products. It is guaranteed to perform according to delivery specifications. For any other use apart from general electronic equipment, we cannot take responsibility if the product is used in medical devices, nuclear power control equipment, aerospace equipment, fire and security systems or any other applications in which there is a direct risk to human life and where extremely high levels of reliability are required.