
AN404

802.11b (Wi-Fi®) Application Kit
Introduction
The 802.11b (Wi-Fi) Application Kit is targeted at experienced embedded systems users to illustrate how
to expand the connectivity of Z-World’s single-board computers and RabbitCore modules to wireless net-
works.

What Else You Will Need

Besides what is supplied with the Application Kit, you will need a PC with an available COM or USB port
to program the RCM3100 in the Application Kit, and you will also need at least a PDA or laptop that is
compatible with the 802.11b wireless standard. If your PC only has a USB port, you will also need an
RS-232/USB converter (Z-World Part No. 540-0070).

The 802.11b (Wi-Fi) Application Kit Getting Started instructions included with the Application Kit show
how to set up and program the RCM3100. Figure 1 shows how your development setup might look once
you’re ready to proceed.

Figure 1. 802.11b Application Kit Wireless Setup

�����

���

�����

���

��� ��� ���

���

���

���

����������

��
�

	
�
�
���
���

	��

�

	�

��

�������
	������	���

���
�

�����

���

�����
����	

�����

���

��

���

���

����	

���
���
���

�

�������
���
��� ���

��
�

��
�

	��

	��

	��

��

	��

���
��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

����
� �

!	��
"�

��

�����

���	

���

�
��

���

���

��

���

���

���

���

���

���

���

���

���	��
�
�

��

��

	�

	�

	�

�

��
	���

�	���"���	�

�����

	�����
	���

	���"���	�

	���

	���

	�
�$

��

	�
�

	�� # �

��

��

�$

��

��

����

��

	��

������

�����

������

�����

	�
�

	�
�

��
�

���

���

��

��
�

#�

��

������

��� ���

#�

��

$ # �

	��
	���

	��

	���

	��$

	���
	���

��

���
#�

#�
���

�

	��

�

	�� 	��

��
�

��
�

��
�

��
�

��

��
�

��
�

��
�

��
�

��
�� ��

�

��
�

��
�

��

��
�

��
�

��
�

��
�

��
�

��
�

���������
���

	���

��	����%�"������	�

�"����%����	�

�
�

�"����%����	�

#�

�

	�&���

	����

��

	'����'�

�'���	'���������������

	�

��
	�

	���

	���

	��

�

	���

	���

	���

�

�

��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

��

�����

�	��

���

!"�	�

���

���

��

���

���

���

���

���

���

���

���

!	��

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

����
� �

!	��
"�

	��
	���

	��

	���

	���

	���

	���

	�

	��

	�
	$

	�

	� 	��

	��

	���

	���

�())*+,

#�

��

��$
���

	�
�

���

�

������

	�
�

	�
�

���

	�
�
��
�

��
$

��
�

��

���

-�
���

	�
�

%����

	�

��

�
��
�

��
�

���

���

	��

��

��

��

��

���

	�
�

	�
�

���

���
#�

��	�	���

%�

��
���

�

	�� 	�� #�

���

��
�

#�

	�� 	�
�

	�
$

	�
�

	�

	�
�

#�

��
�

���

�
	�

	�
��

��

�
"�
�

�
	
�
�

�����������	
���

).��������

�.���
����

�*+/(0��.+)��

���!�(1).1

�
����	
���

022-0093 Rev. C 1

Overview of 802.11b (Wi-Fi)
Wi-Fi*, a popular name for 802.11b, is one of the wireless schemes available in the 802.11 suite conform-
ing to standards defined by IEEE. 802.11b describes the media access and link layer control for a 2.4 GHz
implementation, which can communicate at a top bit-rate of 11 megasamples/s. Other standards describe a
faster implementation (54 megasamples/s) in the 2.4 GHz (802.11g) and a 54 megasamples/s implementa-
tion in the 5.6 GHz band (802.11a). The adoption of 802.11 has been fast because it's easy to use and the
performance is comparable to wire-based LANs. Things look pretty much like a wireless LAN.

Wi-Fi (802.11b) is the most common and cost-effective implementation currently available. This is the
implementation that is used with Z-World’s Wi-Fi Application Kit. A variety of Wi-Fi hardware exists,
from wireless access points (WAPs), various Wi-Fi access devices with PCI, PCMCIA, CompactFlash,
USB and SD/MMC interfaces, and Wi-Fi devices such as Web-based cameras and print servers.

802.11b can operate in one of two modes—in a managed-access mode (BSS), called an infrastructure
mode, or an unmanaged mode (IBSS), called the ad-hoc mode. The 802.11 standard describes the details
of how devices access each other in either of these modes.

Infrastructure Mode

The infrastructure mode requires an access point to manage devices that want to communicate with each
other. An access point is identified with a channel and SSID that it uses to communicate. Typically, an
access point also acts as a gateway to a wired network, either an Ethernet or WAN (DSL/cable modem).
Most access points can also act as a DHCP server, and provide IP, DNS, and gateway functions.

When a device wants to join an access point, it will typically scan each channel and look for a desired
SSID for the access point. A special SSID “default” or “any” means match the SSID of any access point.

Once the access point is discovered, the device will logically join the access point and announce itself.
Once joined, the device can transmit and receive data packets much like an Ethernet-based MAC. Being in
a joined state is akin to having link status in a 10/100Base-T network.

802.11b interface cards implement all of the 802.11b low-level configurations in firmware. In fact, the
802.11b default configuration is often sufficient for a device to join an access point automatically, which it
can do once enabled. Commands issued to the chip set in the interface allow a host program to override the
default configurations and execute functions implemented on the interface cards, for example, scanning for
hosts and access points.

Ad-Hoc Mode

In the ad-hoc mode, each device can set a channel number and a service set identifier (SSID) to communi-
cate with. If devices are operating on the same channel and SSID, they can talk with each other, much like
they would on a wired LAN such as an Ethernet. This works fine for a few devices that are statically con-
figured to talk to each other, and no access point is needed.

Additional Information

802.11 Wireless Networking; published by O'Reilly Media, provides further information about 802.11b
wireless networks. The latest version of this application note is available on Z-World’s Web site.

* Wi-Fi® and the Wi-Fi logo are registered trademarks of the Wi-Fi Alliance.
022-0093 Rev. C 2

http://www.zworld.com/documentation/docs/refs/AN404/AN404.pdf

Dynamic C Functions
Z-World has implemented a packet driver for PRISM-based 802.11b CompactFlash cards,
CFPRISM.LIB, which functions much like an Ethernet driver for the Dynamic C implementation of the
TCP/IP protocol stack. In addition to functioning like an Ethernet packet driver, this driver implements an
API to access the functions implemented on the 802.11b interface card.

The CFPRISM.LIB driver has been developed around Z-World’s 802.11b (Wi-Fi) Application Kit, which
includes a CompactFlash Adapter Board, a CompactFlash-based 802.11b wireless network card, a Rabbit-
Core RCM3100 module, and a Prototyping Board, a programming cable, and a serial cable. We have
tested this packet driver extensively with the Linksys WCF12 card.

Configuring Dynamic C to Use the CFPRISM.LIB Driver

The CFPRISM.LIB driver is supplied on the supplementary CD-ROM included with the 802.11b (Wi-Fi)
Application Kit. Copy CFPRISM.LIB and CFIO.LIB into the Lib\tcpip folder of your Dynamic C
installation if you have not yet done so, and modify the LIB.DIR file in the Lib folder by adding the
lines below.

LIB\TCPIP\CFPRISM.LIB
LIB\TCPIP\CFIO.LIB

This information is provided in the WiFiReadMe.txt file on the supplementary CD-ROM.

Next, you will need to specify this driver to the TCP/IP protocol stack by adding #define PKTDRV to
your source code as in the example below.

...
#define PKTDRV cfprism.lib
#use dcrtcp.lib
...

Alternately, you may add this #define line to the compiler define configuration, which is saved in your
project file.

The #define PKTDRV overrides any packet drivers that may be defined automatically for RabbitCore
modules that already have an Ethernet interface, and replaces it with the CFPRISM.LIB packet driver. If
you are using a RabbitCore module such as the RCM3100 without an Ethernet interface, this #define
PKTDRV will select the CFPRISM.LIB packet driver.

Note that the sample programs on the supplementary CD-ROM do not require the #define PKTDRV
declaration.

You may use all the standard TCP/IP definitions normally used with Ethernet devices as defined in the
TCP/IP User's Manual. [Note that power management and multicasting have not been implemented in
this driver.]

One common TCP/IP stack configuration to use with 802.11b in an access-point environment might be the
the DHCP configuration, which is described in the TCP/IP User's Manual. The following source code
provides an example of a configuration that will allow joining an open access point that has DHCP enabled.
022-0093 Rev. C 3

#define TCPCONFIG 5
#define DISABLE_ETHERNET_AUTOCONF
#define PKTDRV "cfprism.lib"
#use dcrtcp.lib
main(){
 sock_init();
 while(1){
 tcp_tick(NULL);
 }
}

This program will join any access point that is open, and will then attempt to discover its IP, netmask, gate-
way, and DNS address information. Now you can try to ping the RCM3100 with the ComplactFlash card
from another host.

Note that you can discover what IP address was assigned by accessing the administrative function of your
access point. Most access points allow Web-based configuration and access to status information, includ-
ing DHCP leases that are active. Check your documentation for your access point documentation.

Compile-Time Configuration

The default 802.11b configuration that the driver will use is as follows.

Mode : infrastructure

SSID : "any"

WEP : off

You can change this configuration by setting compile-time options. A special define WIFI_INIT is a
list of C instructions that will be executed when the interface is first brought up. You can modify the
SCAN.C sample program that you ran with the Getting Started instructions to only join a specific access
point by specifying an specific SSID as follows.

#define TCPCONFIG 5
#define DISABLE_ETHERNET_AUTOCONF
#define PKTDRV "cfprism.lib"
#define WIFI_INIT \
 wifi_ioctl(NULL,WIFI_MODE,"BSS",0);\
 wifi_ioctl(NULL,WIFI_SSID,"YourAccessPoint",0);

#use dcrtcp.lib
main(){
 sock_init();
 while(1){
 tcp_tick(NULL);
 }
}

022-0093 Rev. C 4

This code forces the card into the following configuration.

Mode : infrastructure
SSID : "YourAccessPoint"
WEP : off

The card will only join an access point that has its SSID set to "YourAccessPoint". These other calls can
also be used at compile time.

wifi_ioctl(NULL,WIFI_MODE,"IBBS",0); // ad-hoc mode
wifi_ioctl(NULL,WIFI_OWNCHAN,"2",0); // set channel
wifi_ioctl(NULL,WIFI_OWNSSID,"MySSID",0); // set SSID for ad-hoc

WEP encryption is handled by the interface card's firmware and thus does not burden the processor.
Z-World recommends that you use WEP encryption whenever possible. The CompactFlash card used in
the 802.11b (Wi-Fi) Application Kit kit supports 64-/128-bit WEP encryption.

Use the following configuration to use WEP encryption.

...
unsigned key0[13] = { 0x12,0x34,0x56,0x78,0x90,0x12,0x34,0x56,0x78,0x90,0x12,0x34,0x56 };
unsigned key1[13] = { 0x12,0x34,0x56,0x78,0x90,0x12,0x34,0x56,0x78,0x90,0x12,0x34,0x56 };
unsigned key2[13] = { 0x12,0x34,0x56,0x78,0x90,0x12,0x34,0x56,0x78,0x90,0x12,0x34,0x56 };
unsigned key3[13] = { 0x12,0x34,0x56,0x78,0x90,0x12,0x34,0x56,0x78,0x90,0x12,0x34,0x56 };

wifi_ioctl(NULL,WIFI_WEP_KEY0,key0,sizeof(key0)); // set 128bit (13 bytes) key
wifi_ioctl(NULL,WIFI_WEP_KEY1,key1,sizeof(key1)); // set 128bit (13 bytes) key
wifi_ioctl(NULL,WIFI_WEP_KEY2,key2,sizeof(key2)); // set 128bit (13 bytes) key
wifi_ioctl(NULL,WIFI_WEP_KEY3,key3,sizeof(key3)); // set 128bit (13 bytes) key
wifi_ioctl(NULL,WIFI_WEP_USEKEY,"0",0); // use KEY0 for xmit
wifi_ioctl(NULL,WIFI_WEP_AUTH,"1",0); // private authentication
wifi_ioctl(NULL,WIFI_WEP_FLAG,"1",0); // enable WEP

The keys have to match in all of the devices that want to use the same access point and communicate with
each other.

Run-Time Configuration

All the wifi_ioctl() calls used in the compile time configuration, which are defined via #define
WIFI_INIT, can also be used at run-time. To change the configuration of the card, use the following calls
to turn off the MAC before you changing the configuration information.

wifi_ioctl(NULL,WIFI_MAC,"off",0);

Then make the following call to enable the card when the configuration has been set.

wifi_ioctl(NULL,WIFI_MAC,"on",0);

Additional functions are also available, and are used in the SCAN.C sample program.

wifi_ioctl(NULL,WIFI_ROAM,"auto"); // "auto", "host" and "manual"

The above function will alter the card’s roaming behavior.
wifi_ioctl(NULL,WIFI_SCANREQ,"",0); // do a scan
wifi_ioctl(NULL,WIFI_SCANRES,scanbuf,sizeof(scanbuf)); // read result

The above functions will request the card to perform a scan and read back the result from the scan request.
The card has to be in a “manual” roam mode for this function to work properly.
022-0093 Rev. C 5

Functions

There is one basic API in the CFPRISM.LIB library.

PARAMETERS

NULL pointer

This table describes the various requests that can be made for the remaining parameters.

In the data column:

char* indicates that data argument is a string, and the len field is ignored
char[] indicates that the argument is a character array, and len indicates the size
struct * indicates that the argument is a pointer to a struct, and len indicates the size of the struct

If you don’t want WEP encryption enabled, do not execute any of the WEP commands in the table.

wifi_ioctl(void*, int cmd, char *data, int len);

cmd *data len Description

WIFI_SSID char* 0 Set SSID string

WIFI_MODE char* 0 "IBBS" or "BSS"

WIFI_OWNCHAN char* 0 "0–14"

WIFI_OWNSSID char* 0 "0–14"

WIFI_WEP_FLAG char* 0 "0" or "1"

WIFI_WEP_USEKEY char* 0 "0" through "3"

WIFI_WEP_KEY0 char[] 5,13 64-/128-bit key

WIFI_WEP_KEY1 char[] 5,13 64-/128-bit key

WIFI_WEP_KEY2 char[] 5,13 64-/128-bit key

WIFI_WEP_KEY3 char[] 5,13 64-/128-bit key

WIFI_WEP_AUTH char* 0 "0" or "1" ("" = off)

WIFI_STATUS
struct

wifi_status*
sizeof(struct
wifi_status)

WIFI_SCANRES
struct

wifi_scanres*
sizeof(struct
wifi_scanres)

WIFI_MAC char* 0 "on" "off"

WIFI_SCANREQ NULL 0

WIFI_ROAM char* 0 "auto", "host", "manual"
022-0093 Rev. C 6

Sample Programs
Sample programs are provided in the Dynamic C Samples\WiFi folder. Each sample program
has comments that describe the purpose and function of the program. Follow the instructions at
the beginning of the sample program.

Other directories in the Samples folder contain specific sample programs that illustrate the use of
the corresponding Dynamic C libraries.

To run a sample program, open it with the File menu (if it is not still open), compile it using the
Compile menu, and then run it by selecting Run in the Run menu. The RCM3100 module must
be in the Program mode (which it will be when the programming cable is connected) and must be
connected to a PC using the programming cable as described in the 802.11b (Wi-Fi) Application Kit
Getting Started instructions.
022-0093 Rev. C 7

SCAN.C

SCAN.C illustrates the chip set's scan function to look for access points or ad-hoc devices. This sample
program does not require additonal configuration of the CompactFlash card, such as setting the IP number
or SSID/channel in order to function, since the CompactFlash card does not actually join an 802.11b net-
work.

Once the scan request has been issued, the host RCM3100 will read out the scan results and parse the
information. The scan results contain information for each device discovered. This information includes
the channel number, the MAC address, the signal strength of the detected device, and the average noise
level as seen by the device. It also includes the SSID of the device.

The Dynamic C STDIO window will display Scanning....Done, and will display a list of access
points/ad-hoc hosts as shown here.

The following fields are shown in the Dynamic C STDIO window.

• Channel—the channel the access point is on (1–11).
• Signal—the signal strength of the access point.
• Noise—the average noise of the channel.
• MAC—the hardware (MAC) address of access point.
• Access Point SSID—the SSID the access point is using.

The LEDs on the Prototyping Board indicate the number of stations found.

LED DS1 LED DS2 No. of Stations Found
OFF OFF 0
OFF ON 1
ON OFF 2
ON ON 3 or more
022-0093 Rev. C 8

WIFISERIAL.C

This sample program is a Wi-Fi to serial converter. It allows networked clients to initiate a connection to a
socket and transparently communicate with the two asynchronous serial ports available on the Prototyping
Board.

To run this sample program, you will
need a separate PDA/laptop with
802.11b wireless compatibility. To
begin, connect Serial Port B on the
Prototyping Board to an available
COM port on your PC using the serial
cable as shown in the diagram. If your
PC only has one COM port (or one
USB port), compile and run
WIFISERIAL.C first with the pro-
gramming cable attached, then connect
Serial Port B.

As shipped, the serial port configura-
tion is as follows.

Serial Port B (TCP port 3023,
57600 baud)

Serial Port C (TCP port 23,
57600 baud)

The Wi-Fi configuration for this pro-
gram is as follows.

Mode : infrastructure

SSID : "any"

The TCP/IP configuration is

TCPCONFIG 1

which is the static IP configuration

_PRIMARY_STATIC_IP "10.10.6.100"
_PRIMARY_NETMASK "255.255.255.0"
MY_NAMESERVER "10.10.6.1"
MY_GATEWAY "10.10.6.1"

The TCP/IP configuration is set via the TCPCONFIG macro in the TCP_CONFIG.LIB library. Most
Z-World sample programs use TCPCONFIG 1. See the TCP_CONFIG.LIB library in the Dynamic C
Lib\TCPIP directory for more information about other macro definitions.

Serial Port Connections

�����

���

�����

���

��� ��� ���

���

���

���

����������

��
�

	
�
�
���
���

	��

�

	�

��

�������
	������	���

���
�

�����

���

�����
����	

�����

���

��

���

���

����	

���
���
���

�

�������
���
��� ���

��
�

��
�

	��

	��

	��

��

	��

���
��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

����
� �

!	��
"�

��

�����

���	

���

�
��

���

���

��

���

���

���

���

���

���

���

���

���	��
�
�

��

��

	�

	�

	�

�

��

	���

�	���"���	�

�����

	�����
	���

	���"���	�

	���

	���

	�
�$

��

	�
�

	�� # �

��

��

�$

��

��

����

��

	��

������

�����

������

�����

	�
�

	�
�

��
�

���

���

��

��
�

#�

��

������

��� ���

#�

��

$ # �

	��
	���

	��

	���

	��$

	���
	���

��

���
#�

#�
���

�

	��

�

	�� 	��

��
�

��
�

��
�

��
�

��

��
�

��
�

��
�

��
�

��
�� ��

�

��
�

��
�

��

��
�

��
�

��
�

��
�

��
�

��
�

���������
���

	���

��	����%�"������	�

�"����%����	�

�
�

�"����%����	�

#�

�

	�&���

	����

��

	'����'�

�'���	'���������������

	�

��
	�

	���

	���

	��

�

	���

	���

	���

�

�

��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

��

�����

�	��

���

!"�	�

���

���

��

���

���

���

���

���

���

���

���

!	��

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

����
� �

!	��
"�

	��
	���

	��

	���

	���

	���

	���

	�

	��

	�
	$

	�

	� 	��

	��

	���

	���

�())*+,

#�

��

��$
���

	�
�

���

�

������

	�
�

	�
�

���

	�
�
��
�

��
$

��
�

��

���

-�
���

	�
�

%����

	�

��

�
��
�

��
�

���

���

	��

��

��

��

��

���

	�
�

	�
�

���

���
#�

��	�	���

%�

��
���

�

	�� 	�� #�

���

��
�

#�

	�� 	�
�

	�
$

	�
�

	�

	�
�

#�

��
�

���

�
	�

	�
��

��

�����������
�����

����

�
�

��

�$

��

��

����

#�

�

	�&���

	����

	'����'�

�'���	'���������������

�
"�
�

�
	
�
�

������

�����������	
���

).��������

�.���
����

�*+/(0��.+)��
2

�*+/(0��.+)��

�.0.+*3�*34*�0/5*6�71
8/)9�1/5��
022-0093 Rev. C 9

Open HyperTerminal on your PC and set the properties for a
COM1 or COM2 connection, depending on which PC serial port
is connected to Serial Port B.

Next, open HyperTerminal on the wireless PDA/laptop, and set
the IP address and port to match the _PRIMARY_STATIC_IP
address and port number specified above for Serial Port B.

You may now type away in one HyperTerminal window, and
your message will be displayed in the other HyperTerminal win-
dow. Note that there is no character echo, so you will not be able
to view the text you are typing in the HyperTerminal window
where you are typing.
022-0093 Rev. C 10

DATALOGGER.C

This sample program illustrates the use of embedded Web servers and downloadable data via wireless by
implementing a prototype wireless datalogger. A PDA or laptop can connect to the device to display or
download the log file, reset the log files, and set the current date/time.

The configuration required to connect to this sample program in its shipped configuration is as follows:

Mode : infrastructure

SSID : "any"

The TCP/IP configuration is

TCPCONFIG 1

which is the static IP configuration

_PRIMARY_STATIC_IP "10.10.6.100"
_PRIMARY_NETMASK "255.255.255.0"
MY_NAMESERVER "10.10.6.1"
MY_GATEWAY "10.10.6.1"

The TCP/IP configuration is set via the TCPCONFIG macro in the TCP_CONFIG.LIB library. Most
Z-World sample programs use TCPCONFIG 1. See the TCP_CONFIG.LIB library in the Dynamic C
Lib\TCPIP directory for more information about other macro definitions.

The DATALOGGER.C sample program is designed for use with an Analog Devices TMP04F temperature
sensor. Connect the temperature sensor to the Prototyping Board as follows.

• V+ (2) to +5 V

• GND (3) to GND

• DOUT [1] to PF7

This temperature sensor outputs PWM signals that can be used to compute the temperature.

The figure at right shows the timing dia-
gram with T1 = high period and T2 = low
period.

The Rabbit 3000 microprocessor has
pulse width capture hardware that can
measure pulse timings. We use both channels on the same pin, but measure both the high and the
low periods into the variables tmp04_T1 and tmp04_T2.

The output from this sample program in your Web browser will resemble the following sample output.
Simply open the Web browser using the IP address identified in the _PRIMARY_STATIC_IP line.

Analog Devices TMP04F Output Format

����

Temperature (°C) 235 400 T1×
T2

---------------------⎝ ⎠
⎛ ⎞–=

Temperature (°F) 720 720 T1×
T2---------------------⎝ ⎠

⎛ ⎞–=
022-0093 Rev. C 11

Web Log
01/01/2004 05:20:00 - 27.7C
01/01/2004 05:20:15 - 27.7C
01/01/2004 05:20:30 - 27.3C
01/01/2004 05:20:45 - 27.5C
01/01/2004 05:21:00 - 27.3C
01/01/2004 05:21:15 - 27.1C
01/01/2004 05:21:30 - 26.9C
01/01/2004 05:21:45 - 26.9C
01/01/2004 05:22:00 - 27.4C
022-0093 Rev. C 12

WPINGME.C

This sample program initializes the TCP/IP protocol stack and prints out Wi-Fi status information to allow
you to determine if your configuration can join an access point. The sample program allows pinging from
a remote host on the network.

To run this sample program, you will need a separate PDA/laptop with 802.11b wireless compatibility.
Once you’re ready, just compile and run the sample program. The Dynamic C STDIO window will
display any activity on the host PC connected to the RCM3100.

The Wi-Fi configuration for this program is as follows.

Mode : infrastructure

SSID : "any"

The TCP/IP configuration is

TCPCONFIG 1

which is the static IP configuration

_PRIMARY_STATIC_IP "10.10.6.100"
_PRIMARY_NETMASK "255.255.255.0"
MY_NAMESERVER "10.10.6.1"
MY_GATEWAY "10.10.6.1"

The TCP/IP configuration is set via the TCPCONFIG macro in the TCP_CONFIG.LIB library. Most
Z-World sample programs use TCPCONFIG 1. See the TCP_CONFIG.LIB library in the Dynamic C
Lib\TCPIP directory for more information about other macro definitions.

Next, open a command window on the wireless PDA/laptop, and type the command

ping IP "<PRIMARY_STATIC_IP>"

where "<PRIMARY_STATIC_IP>" is the IP address set in the above configuration. One or more reply
lines will then appear to display the results of the ping.
022-0093 Rev. C 13

Helpful Hints
1. When an access point is turned off after a CompactFlash card has joined it, the Linksys WCF12 card will

remain in the “joined” state and will wait for the access point to become alive again. This may require
cycling of the MAC interface to find a new access point using the following code sequence.

...
wifi_ioctl(NULL,WIFI_MAC,"off",0);
wifi_ioctl(NULL,WIFI_MAC,"on",0);

2. If you are using a PC or other computer to communicate with the Wi-Fi enabled RCM3100, and you
change the wireless CompactFlash card, you may need to flush the ARP cache in the PC or other com-
puter that holds the translation for the hardware (MAC) address to the IP address with the following
command at the MS-DOS prompt.

arp -d

Wireless CompactFlash cards contain their own MAC address, and changing them changes the MAC
address for the Wi-Fi enabled embedded application. PCs typically time out the hardware translation
cache after a few minutes, or when the interface is restarted. However, it may be necessary to flush the
cache manually if you are in a hurry.

3. Do not hot-swap wireless CompactFlash cards. The interface and software driver are not designed to
allow hot-swapping.

4. The CompactFlash Adapter Board in this kit was designed to be used with Wi-Fi CompactFlash cards. It
has not been tested for compatibility with other types of CompactFlash cards.

5. When using the wifi_ioctl() calls, a call with a zero-length string "" will cause the requested
operation to not execute.

wifi_ioctl(NULL,WIFI_OWNCHAN,"",0); // don't execute this command

Use the following command if you want the operation to execute.
wifi_ioctl(NULL,WIFI_OWNCHAN,"0",0); // set the channel to the default

In particular, you should use the following lines if you do not want to enable WEP.

wifi_ioctl(NULL,WIFI_WEP_FLAG,"",0);
wifi_ioctl(NULL,WIFI_WEP_AUTH,"",0);

Better yet, just don’t use them at all. The only exception to this is SSID where a zero-length string will
set the SSID to "none" or "any".

6. Check www.zworld.com/products/WiFi_App_Kit/ for the latest information on the 802.11b (Wi-Fi)
Application Kit. The latest software updates are available at www.zworld.com/support/downloads/
downloads_prod.shtml.
022-0093 Rev. C 14

http://www.zworld.com/products/WiFi_App_Kit/
http://www.zworld.com/support/downloads/downloads_prod.shtml
http://www.zworld.com/support/downloads/downloads_prod.shtml

CompactFlash Cards
The following CompactFlash cards were evaluated by Z-World for the 802.11b (Wi-Fi) Application Kit,
and were found to provide satisfactory results.

Manufacturer and Model Hardware Onboard Firmware Comments

Ambicom WL1100C-CF — —

Belkin F5D6060 — — Type 1.5

Compex iWavePort WCF11 — —

D-Link DCF-660W v. A1 1.3.6

Hawking Technology H-CF30W — —

Linksys WCF11 — — Type 1.5

Linksys WCF12 — —

Netgear MA701 v. 1.0 1.4.9

Proxim ORiNOCO Classic Gold
PC Card — —

Needs CompactFlash to
PCMCIA adapter,
supports external antenna

SanDisk SDWCFB-000-768 v 1.0 1.4.9

SMC SMC2642W — 1.3.6

TRENDnet TEW-222CF — 1.4.2
022-0093 Rev. C 15

References
Matthew S. Gast, 802.11 Wireless Networking; O'Reilly Media, Incorporated, 2002.

TCP/IP User's Manual; Z-World Online Documentation.
022-0093 Rev. C 16

Z-World, Inc.
2900 Spafford Street

Davis, California 95616-6800
USA

Telephone: (530) 757-3737
Fax: (530) 757-3792

www.zworld.com

Rabbit Semiconductor
2932 Spafford Street

Davis, California 95616-6800
USA

Telephone: (530) 757-8400
Fax: (530) 757-8402

www.rabbitsemiconductor.com

	802.11b (Wi-Fi®) Application Kit
	Introduction
	What Else You Will Need

	Overview of 802.11b (Wi-Fi)
	Infrastructure Mode
	Ad-Hoc Mode
	Additional Information

	Dynamic C Functions
	Configuring Dynamic C to Use the CFPRISM.LIB Driver
	Compile-Time Configuration
	Run-Time Configuration
	Functions

	Sample Programs
	SCAN.C
	WIFISERIAL.C
	DATALOGGER.C
	WPINGME.C

	Helpful Hints
	CompactFlash Cards
	References

