
AN411

Color Touchscreen Application Kit
The Color Touchscreen Application Kit contains the hardware and software for creating an easy-to-use
graphical interface for device monitoring and control. A graphics library, some predefined bitmaps and a
variety of sample programs provide the tools you’ll need to program the Rabbit-based controller to display
stationary and “animated” graphics on the Reach Technology SLCD Graphics Touch Terminal (GTT).

Hardware Components
The Color Touchscreen Application Kit has the following hardware:

• RCM3720 RabbitCore module

• RCM3720 Prototyping Board with RS-232 circuits installed.

• Reach Technology GTT

The hardware connection between the RCM3720 and the GTT are shown in Figure 1, and are explained in
detail in the Color Touchscreen Application Kit Getting Started instructions (located on the supplemental
Dynamic C CD).

Figure 1. Color Touchscreen Hardware Interface

Any applications developed using the Color Touchscreen Application Kit can be easily ported to any Rab-
bit-based single-board computer or RabbitCore module with an RS-232 interface. For a complete descrip-
tion of the RCM3720 and the prototyping board included in this kit, refer to the RCM3700 User’s Manual
(located on the Dynamic C CD).

���
����
���
	
���
��
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

��
��
	���
���

	
���
��
���
���

���	��
���	��

���
���
���
���
���
���
���
���
���
���

��
��
	���
���
	
���
��
���
���

���	��
���	��

���
���
���
���
���
���
���
���
���
���

���
����
���
�	��

��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��

���

���

���

���

���

���

���

���

�� ��

�� ��

��
��

����

��

���

�� ���

���

�������

��

��

���

�������������� �
�������

�!�

�!�

�!�
�!"

�!�

�!��

�!��

�!��

�!��

�!��

�!��

�!���!�

�!��

�!���!�

�!�

�!��

�!��

�!� �!�

�!�

�!� �!�

�!�

�!��!�

�!"

�!�

�!�� �!�

�!�

�!�

�!�

�!"

�!�

��

���

��

���

��

��
��

��

�"

��

��

��

��

��

����

���

��
���

��

��
�����

�����
���

���
���

���

�
�

�
�

��

��

�

��

�

��
�
����
"
��
�

��� �����
"

��
�

���
���

��
�

��
�

��
"

���
���

���
���
���

�� ���

��� �� ���

��

��
�

��
�
��
�

��
����

���
���

��"
���

��

��

��� ���

�� ��
��

��� ��
�

 �

���

���

#�

�� ���

$�

$�

���
��� ���

�" ��
�

 � ���
���

��
"

���

���
���
���

���

��

���
���

��"

��

���

���
��

��

���

��
�

��

���
�"

���

$�

$�
��������
$�

���

��%�����&'()*��)+*&

,-&'.)/&

�&'()*
�0)1-&'��)+*&

�2
�
�
��

�
�
�12'-

�
�
�

�

�

�'23')44(,3
�)+*&

�&)/5�')15(/6��27/5��&'4(,)*

��������2,
�'2-2-81(,3��2)'0
022-0108 Rev. B 1

Software and Documentation
The Color Touchscreen Application Kit comes with three CD-ROMs:

1. Dynamic C CD contains:

• Dynamic C installation

• Dynamic C documentation and RCM3720 documentation

2. Supplemental Dynamic C CD contains:

• Application Kit sample programs

• Color Touchscreen Application Kit Getting Started instructions

3. Reach Technology CD contains:

• BMPload.exe, a Windows program for downloading images and macros to the GTT

• SGTT.pdf, SLCD Graphics Touch Terminal Technical Manual: the user’s manual for the
Reach GTT

• AN100.pdf, Reach Technology document describing a full-featured application that uses the
low-level Reach commands instead of the API functions provided with the Color Touchscreen
Application Kit.

Definitions
This section clarifies some terms.

bitmap
A graphical image created using a program such as Windows Paint. The bitmaps are downloaded to the
Reach GTT via the Windows program BMPload.exe. This makes them available for display or for use
as a button object.

button
A defined area of the screen that is touch sensitive (see “touch area”) and has two bitmaps associated with
it, one for when the button is not pressed and the other for when it is pressed.

latched button
Type of button that operates in a push on/ push off mode.

momentary button
Type of button that is activated for as long as the operator is pressing it.

typematic
Operation associated with a momentary button. It is a feature that causes the button notification to be
repeated for as long as the button is pressed.

touch area
An area of the screen defined by x and y coordinates that has a user-assigned number associated with it.
When the area is touched, a message is sent from the Reach controller to the Rabbit. A total of 128 touch
areas are allowed.
022-0108 Rev. B 2

Sample Programs
The software included with the supplemental Dynamic C CD contains the bitmaps and macros that need to
be loaded to the Reach Technology display before the sample programs listed below can be run. A
summary of the loading process is described in the Color Touchscreen Application Kit Getting Started
instructions. For complete details on the loading process refer to Appendix A of the SLCD Graphics Touch
Terminal Technical Manual.

When you installed the supplemental Dynamic C CD, you also installed some sample programs that
illustrate the use of the RCM3720 with the Reach Technology GTT. These sample programs can be found
in the Dynamic C Samples\ColorTouchscreen folder.

TIP: Use the bitmaps, macros, and sample programs from the Dynamic C supplemental CD.
While these are based on the bitmaps and the sample program included with the Reach Technol-
ogy CD, the sample programs on the Dynamic C supplemental CD contain all the latest
enhancements.

Each sample program has comments that describe the purpose and function of the program.
Follow the instructions in the comments at the beginning of the sample program. Note that the
RCM3720 must be installed on the Prototyping Board when using these sample programs, and it
must be connected to the GTT as shown in Figure 1 after the bitmaps and macros have been
loaded.

To run a sample program, open it with the File menu, then compile and run it by pressing F9. The
following sample programs are available.

LCD_BAR_CHART1.C, LCD_BAR_CHART2.C, LCD_BAR_CHART3.C

Various demos of bar charts.

LCD_BUTTON1.C, LCD_BUTTON2.C, LCD_BUTTON3.C

Various demos of input to the GTT using buttons.

LCD_PONG1.C, LCD_PONG2.C

Colorful take on the familiar pong demo.

LCD_TEXT1.C

Demo of text moving across the screen.

SLCD_DEMO.C

A comprehensive demo that exercises many of the kit’s API functions.
022-0108 Rev. B 3

Source Code Walk-Through
In this section the sample program LCD_BUTTON1.C is used to show how easy it is to create and display
a button that will notify your application when it has been pressed. We will only examine some of the
code; to view the source code for the entire program you must open it in Dynamic C or a text editor.

One of the first things that must be done in any application written for the Color Touchscreen Application
Kit is initializing the serial port communication channel between the Rabbit-based controller and the
Reach GTT. The graphics library provides some macros that make the serial port initialization very easy.
All you have to do is #define one of the serial port macros. For example, if Serial Port D is used to connect
the Reach GTT to the Rabbit, the application must include the statement:

#define LCD_USE_PORTD // tells library which serial port to use

Every button must be identified by an integer in the range of 1 to 127.

#define BUTTON1 1 // Create a button ID for button function

Buttons have two states: on (pressed) and off (unpressed); therefore, each button must have two associated
images. The images are identified by their position in demo.lst, a file that defines which BMPs are
copied to the Reach GTT. If you open \samples\ColorTouchscreen\BMP_Macro\demo.lst,
you will see that the .bmp files we want to display are the 30th and 31st files in the list.

#define BMP_big_button 30
#define BMP_big_button_dn 31

All sample programs or user-defined applications that call API functions from this kit’s graphics library
must include the statement:

#use REACH.LIB

The sample program includes some board setup calls to allow the sample program to be used with all
Rabbit-based single-board computers and RabbitCore modules. When an RCM3600 or RCM3700 series
RabbitCore module is used with the RCM3700 Prototyping Board, PE5 must be toggled low to enable the
RS-232 chip since the RCM3700 Prototyping Board Serial Ports C and D are also used with the IrDA
transceiver on the RCM3700 Prototyping Board.

#if BOARD_FAMILY == RCM36
BitWrPortI(PEDR, &PEDRShadow, 0, 5); // set low to enable rs232 device
#endif

The BL2600 series of single-board computers has its configureable DIO0–DIO3 set as inputs and DIO4–
DIO7 set as outputs for use with the Demonstration Board.

#if BOARD_FAMILY == BL26
digOutConfig (0x00F0); // DIO0-3 = Input, DIO4-7 = Output
#endif

The main loop of the program is straight-forward:

main() {
int pressed_button; // variable to store which button has been pressed

brdInit(); // initialize board for this demo
setup_lcd(); // Connect with LCD, setup colors, and clear screen
022-0108 Rev. B 4

while (1) {
lcd_ClearScreen(); // Clear screen
drawButtons();

// wait for button press & release
while((pressed_button = lcd_GetTouch(100)) == -1);
if (pressed_button == BUTTON1) {

lcd_ClearScreen();
lcd_DispText("You got me!", 100, 100, MODE_NORMAL);
fnMsDelay(1000); // delay long enough to read displayed text
pressed_button = 0; // reset pressed button value

}
}

}

The function brdInit() is familiar to most Dynamic C users. It is a board-specific function that initial-
izes I/O and system ports. The next function call, setup_lcd() is a local function that was defined
prior to main(). A call to lcd_Connect() is made by setup_lcd() in order to establish a serial
communication channel between the RCM3720 and the GTT. Once the communication channel is opera-
tional, details like font choice and screen colors are requested.

With the initialization procedures completed, the sample program enters an endless while loop. The GTT
screen is cleared (lcd_ClearScreen()) and a call is made to the local function drawButtons().

void drawButtons()
{

// define and draw a button
lcd_ButtonDef(BUTTON1, // BUTTON NUMBER 1

BTN_MOM, // momentary button
BTN_TLXY, 120, 80, // top left x-y coordinates
BTN_TYPE, BUTTON_PRESS, // notify on press
BTN_TEXT, "Hit me!", // text in button
BTN_TXTOFFSET, 5, 20, // text x-y coordinates
BTN_BMP, BMP_big_button, BMP_big_button_dn,
BTN_END);

}

The API function lcd_ButtonDef() allows you to associate graphic images (BMP_big_button
and BMP_big_button_dn) with a button number (BUTTON1). You can locate the button anywhere on
the screen by specifying the top left x and y coordinates. You can also superimpose text on the button. See
the function description for lcd_ButtonDef() for other button parameters that you can customize.

After the button is displayed on the Reach GTT, the program waits for it to be pressed:

while((pressed_button = lcd_GetTouch(100)) == -1);

The program will stay in the while loop until it receives notification from the GTT that a screen press has
taken place. It then checks to make sure the expected button was pressed before responding to it. The
response is to remove the button graphic before displaying some text (lcd_DispText()). A delay is
added (fnMsDelay()) to give the user time to read the text. Then the screen is cleared, the button is
redrawn, and the program again waits for a button press notification.
022-0108 Rev. B 5

Dynamic C Functions
The functions described in this section are for use with the Color Touchscreen Application Kit. The
source code is in \LIB\DISPLAYS\ColorTouchscreen\REACH.LIB.

All the function calls are nonreentrant and blocking. Each function call is associated with a
command for the Reach GTT. These commands are documented in the Graphics Touch Terminal
Technical Manual.

Several of the API functions in REACH.LIB take a variable number of parameters. These optional
parameters come in groups, with the first parameter in the group being one of a documented set of
identifiers, and subsequent parameters in the group being the value specific to that identifier. The
list of parameter groups must be terminated using a parameter that signifies the end of the
parameter list. Here is an example:

lcd_Chart(0, // chart id number
CHART_TLXY, 50, 50, // left/top corner
CHART_BRXY, 70, 200, // right/bottom corner
CHART_BKG, lcd_LTGRAY_D, // background color
CHART_PEN 2, lcd_DKRED_D, // pen width and color
CHART_END); // end of parameter list

fnMsDelay

void fnMsDelay(unsigned int tdly);

DESCRIPTION

Creates a delay of the specified number of milliseconds.

PARAMETER

tdly Number of milliseconds to wait

RETURN VALUE

None.
022-0108 Rev. B 6

lcd_Backlight

int lcd_Backlight(int brightness);

DESCRIPTION

Modifies the backlight brightness.

PARAMETER

brightness The backlight brightness (0–5, where 5 is the brightest).

RETURN VALUE

lcd_SUCCESS: full message received
lcd_CMD_ERR-(parameter number): illegal brightness value
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 7

lcd_Bar

int lcd_Bar(int bar_nbr, ..., BAR_END);

DESCRIPTION

This function is used in two ways—it can be used to define a bar graph, with default values for
each of the optional parameters; and it can be used to update the defined bar graph with speci-
fied values using the BAR_VALUE parameter.

PARAMETERS

bar_nbr the number of the bar graph (0–9)

The remaining parameters are optional and may be used in any order (unless otherwise speci-
fied). The parameter name and value must be entered as follows:

<parameter name>, <parameter value>, [<parameter value2>,]

BAR_END must be the final parameter

BAR_VALUE (float) This macro is a special case; if it is the first “optional” parameter,
no other parameters are evaluated, and the value is displayed on the bar
chart. The execution of this option must be preceded by a call to this func-
tion without BAR_VALUE since the first parameter BAR_END is optional
for this special case.

After normalization using BAR_MAX_VALUE (top/right) and
BAR_MIN_VALUE (bottom/left) the float value is converted to an integer
for transmission to the display.

The chart will not be displayed on the screen until a BAR_VALUE is spec-
ified.

NOTE: Defining any of the following parameters will cause several of the parameters not being
defined in the statement to take on their default values (unless otherwise indicated).

BAR_TLXY (int) two values: top left x and y coordinates in pixels, this is the coordi-
nate closest to (0,0), the top left corner of the GTT. The default values start
at (9,10), and will be updated based on BAR_SEP. This parameter must
precede BAR_BRXY or BAR_SIZE, whichever is used.

BAR_BRXY (int) two values: bottom right x and y coordinates in pixels. If these values
are specified, they will be used to calculate the BAR_SIZE values.

BAR_SIZE (int) two values: x and y pixel sizes. The default values are (50,100). Any
time this parameter is specified, its value becomes the default.

BAR_SEP (int) two values: x and y separation in pixels relative to BAR_TLXY. This
is only used if you want multiple bars evenly spaced and do not want to
specify the BAR_TLXY for each. The default values are (64,110). Any
time this parameter is specified, its values become the default.
022-0108 Rev. B 8

lcd_Bar (continued)

BAR_MAX_VALUE (float) value at “top” of bar; default = 100.0.

BAR_MIN_VALUE (float) value at "bottom" of bar; default = 0.0.

BAR_SEG (int) percentage of full scale for the start of upper segment and/or the
middle segment; maximum value = 100, default is one green segment from
0% to 100%

The bar graph may have as many as three segments. If no segments are
specified, there will be one segment.

One BAR_SEG parameter:

Top/right segment: Green from specified value to 100%
Bottom/left segment: Yellow from 0% to specified value

Two BAR_SEG parameters:

Top/right segment: Green from first specified value to 100%
Middle segment: Yellow from 2nd specified value to first specified value
Bottom/left segment: Red from 0% to second specified value

For proper operation the higher percentage value must be listed first.
BAR_SEG must not be specified for the top segment.

BAR_SEGCOLOR (int) the color associated with the last defined BAR_SEG. See BAR_SEG
for the default colors. Any time this parameter is specified, its value be-
comes the default.

See the Reach Technology manual for Set Color (Detailed) for more infor-
mation.

BAR_BORDER (int) width, in pixels, of the border; default = 1. Any time this parameter
is specified, its value becomes the default.

Bar Orientation Use only one of the following two macros with no parameter.

BAR_VERT vertical orientation (default), the minimum value is at the bottom

BAR_HORIZ horizontal orientation, the minimum value is on the left

If no orientation is specified, the function will determine the orientation au-
tomatically based on the following formula.

if (BRx - TLx)/(BRy - TLy) ≤ 1.0
orientation = BAR_VERT

BAR_BKG (int) background color; default = gray (0x888). Any time this parameter
is specified, its value becomes the default.

See the section titled “Set Color (Detailed)” in the SLCD Graphics Touch Terminal
Technical Manual (sgtt.pdf) for more information.
022-0108 Rev. B 9

lcd_Bar (continued)

RETURN VALUE

lcd_SUCCESS: full message received
lcd_CMD_ERR-(parameter number): illegal parameter
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error

EXAMPLE

lcd_Bar(0,
 BAR_TLXY, 50, 50,
 BAR_SIZE, 50, 100,
 BAR_BKG, lcd_LTGRAY_D,
 BAR_SEGCOLOR, lcd_RED_D, // force top segment to red
 BAR_SEG, 70, // middle segment ends at 70%
 BAR_SEGCOLOR, lcd_YELLOW_D, // middle segment to yellow
 BAR_SEG, 30, // bottom segment ends at 30%
 BAR_SEGCOLOR, lcd_GREEN_D, // bottom segment to green
 BAR_END);

lcd_Bar(0, BAR_VALUE, 50.5); // display a value on bar chart

lcd_BeepVolume

int lcd_BeepVolume(int Volume);

DESCRIPTION

Sets the beep volume and saves the setting in global variable lcd_beepvolume.

PARAMETER

Volume The beep volume. Valid values are in the range 0–255, with 255 being the
maximum volume.

RETURN VALUE

lcd_SUCCESS: full message received
lcd_CMD_ERR-(parameter number): illegal volume
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 10

lcd_BFcolorsB

int lcd_BFcolorsB(int ForeColor, int Backcolor);

DESCRIPTION

Sets the default basic background and foreground colors.

The colors have been predefined:
:

PARAMETERS

ForeColor foreground color

BackColor background color

RETURN VALUE

lcd_SUCCESS: full message received
lcd_CMD_ERR-(parameter number): illegal color
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error

lcd_BLACK lcd_WHITE lcd_BLUE lcd_GREEN

lcd_CYAN lcd_RED lcd_MAGENTA lcd_BROWN

lcd_DGREY lcd_GREY lcd_LGREY lcd_LBLUE

lcd_LGREEN lcd_LCYAN lcd_LRED lcd_LMAGENTA

lcd_YELLOW
022-0108 Rev. B 11

lcd_BFcolorsD

int lcd_BFcolorsD(int ForeColor, int Backcolor);

DESCRIPTION

Sets the detailed background and foreground colors as explained in the section titled “Set
Color (Detailed)” in the SLCD Graphics Touch Terminal Technical Manual.

Some of the available colors have been predefined:

PARAMETERS

ForeColor foreground color

BackColor background color

RETURN VALUE

lcd_SUCCESS: full message received
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error

lcd_RED_D lcd_DKRED_D lcd_GREEN_D lcd_DKGREEN_D

lcd_BLUE_D lcd_DKBLUE_D lcd_YELLOW_D lcd_GRAY_D

lcd_LTGREY_D lcd_MDGRAY_D lcd_VLTGRAY_D
022-0108 Rev. B 12

lcd_ButtonDef

int lcd_ButtonDef(int ButtonID, ... BTN_END);

DESCRIPTION

Defines a button. The size of the button is determined by its associated bit map. The GTT sends
a notification when a screen touch is detected; the notification is the string referred to in the
function description for lcd_GetTouch().

notification on button press = x<n><return>
notification on button release = r<n><return>
<n> = ButtonID

PARAMETERS

ButtonID Identifies a button. Must be in the range of 1 to 127.

The remaining parameters are optional; if they are not passed to the function default values will
be used. The parameters may be used in any order (unless otherwise specified). With the excep-
tion of the operating mode parameters, the parameter name and value must be entered as fol-
lows:

<parameter name>, <parameter value>, [<parameter valueN>,]

BTN_END must be the final parameter when not using BAR_VALUE

The following two parameters define the button’s operating mode. They are mutually exclusive.
The operating mode should immediately follow ButtonID.

BTN_MOM This defines the button operation as “momentary,” and is the default. Any
time this value is specified, it becomes the default.

BTN_LAT This defines the button operation as “latched.” Any time this value is spec-
ified, it becomes the default.

The coordinates can be forced using the following three parameters. Note that the (0,0) location
is the top left corner of the LCD.

BTN_TLXY (int) two values: top left x and y coordinates. This is the coordinate clos-
est to (0,0). If no values are entered, the button will be placed at an x offset
BTN_SEP from the previous x value. If this is greater than
BTN_MARGINS (second value), the x will be reset to BTN_MARGINS
(first value) and the y value will be increased by BTN_SEP. Both values
are initialized to 10.

BTN_SEP (int) two values: allows you to specify the x and y separation values for
placing multiple buttons without having to specify BTN_TLXY for each.
The separation is defined as the distance between the top left corners of the
bitmaps. Any time this parameter is specified, its value becomes the de-
fault. Both values are initialized to 80. (Note that the buttons will “draw”
in the x direction, first then the y direction.)
022-0108 Rev. B 13

lcd_ButtonDef (continued)

BTN_MARGINS (int) two values: the left and right margins for automatic positioning
of multiple buttons. See BTN_TLXY. Any time this parameter is spec-
ified, its value becomes the default. The values are initialized to (10,
310); MIN value = 0, MAX value = 339.

BTN_TYPE (int) one value: button type; its default value is BUTTON_RELEASE.
Any time BTN_TYPE is specified, its value becomes the default. The
parameter value can be one of the macros listed under “Momentary” or
“Latched.”

Momentary:
• BUTTON_PRESS: notify on press
• BUTTON_TYPEMATIC: notify on press - typematic function
• BUTTON_RELEASE: notify on release (default)
• BUTTON_PR: notify on press and release

Latched:
• BUTTON_LAT: latching: display appropriate bitmap (see
BTN_BMP) for off and on states.

• BUTTON_LAT_0: initialize to state 0
• BUTTON_LAT_1: initialize to state 1

BTN_TEXT BTN_MOM: (char*) address of the button text.

BTN_LAT: (char*) two values for the addresses of the button text.
The first value is button off; the second value is button on.

The current limit for the button text string is 19 characters total.

BTN_TXTOFFSET BTN_MOM: (int) two values: x and y offset values within the button
for text.

BTN_LAT: (int) four values: x and y offset values within the button
for the text. The first two values are for button off text; the second two
values are for button on text.

Any time this parameter is specified, its values become the default.
The values are initialized to 5.

BTN_BMP (int) two values: bit map numbers, the first one is for the off state and
the second one is for the on state. Any time this parameter is specified,
its values becomes the default. The values are initialized to 22 and 23.

RETURN VALUE

lcd_SUCCESS: full message received
lcd_CMD_ERR-(parameter number): illegal button
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 14

lcd_Calibrate

int lcd_Calibrate(void);

DESCRIPTION

Runs a calibration procedure whereby the user is asked to touch points on the screen to calibrate
it. The calibration values are stored in non-volatile memory and restored on power-on.

This command will not cause the program to block during calibration. It is the responsibility of
the programmer or user to ensure that the calibration is complete before using the LCD/touch-
screen. The following code is one way to do this.

while (lcd_Origin(0,0) != lcd_SUCCESS)
fnMsDelay(1000); // wait for done calibrate

RETURN VALUE

lcd_SUCCESS: full message received
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 15

lcd_Chart

int lcd_Chart(int chart_nbr, ..., CHART_END);

DESCRIPTION

This function is used in two ways—it can be used to define a stripchart that will then be dis-
played on the GTT; and it can be used to update the defined stripchart with specified values us-
ing the CHART_VALUE parameter. There are default values for each of the optional parameters.

PARAMETERS

chart_nbr number of the stripchart (0–4)

The remaining parameters are optional and may be used in any order (unless otherwise speci-
fied). The parameter name and value must be entered as follows:

<parameter name>, <parameter value>, [<parameter value2>,]

CHART_END must be the final parameter when not using CHART_VALUE

CHART_VALUE (float) displays chart values. This is a special case; if it is the first op-
tional parameter, no other parameters are evaluated and the values are dis-
played on the stripchart. There must be a value for each of the defined pens.
Any parameters following the values will be ignored. The execution of this
option must be preceded by a call to this function without CHART_VALUE.
After normalization using CHART_MAX_VALUE and
CHART_MIN_VALUE, the float value is converted to an integer for trans-
mission to the display.

NOTE: Defining any of the following parameters will cause all the parameters not being defined
in the statement to take on their default values.

Default coordinates are calculated based on the chart_nbr assuming one column of five
evenly spaced stripcharts. The coordinates can be forced using the following two parameters.
Keep in mind that the (0,0) location is the top left corner of the LCD.

CHART_TLXY (int) two values: top left x and y coordinates, this is the coordinate closest
to (0,0). The default values will place up to five stripcharts. The starting
(x,y) for a stripchart can be calculated as follows:

x = 20, y = (stripchart number * 45) + 10

CHART_BRXY (int) two values: bottom right x and y coordinates. The default values
will create a stripchart 180 pixels wide and 40 pixels high.

CHART_MAX_VALUE (float) value at “top” of bar; default = 100.0.

CHART_MIN_VALUE (float) value at “bottom” of bar; default = 0.0.
022-0108 Rev. B 16

lcd_Chart (continued)

CHART_PEN two values:

(int) pen width in pixels: 1 or 2; default is 1
(int) the color for the pen, default is dark red. Several of the
available colors have been defined in this library (see
lcd_BFcolorsD()). See the section titled “Set Color (De-
tailed)” in the SLCD Graphics Touch Terminal Technical Manual
for those colors that are not defined in reach.lib.

The stripchart may have as many as three pens. The pen number is
identified by the order it appears in the parameter list; in the exam-
ple below pen 1 and pen 2 are defined. If none are specified, there
will be one pen. If more than one pen is desired, you must define
values for pen 1.

CHART_DATA_WIDTH (int) number of horizontal pixels per data point; default = 4.

CHART_BKG (int) background color, default is dark blue. See the section ti-
tled “Set Color (Detailed)” in the SLCD Graphics Touch Ter-
minal Technical Manual for more information.

RETURN VALUE

lcd_SUCCESS: full message received
lcd_CMD_ERR-(parameter number): illegal parameter
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error

EXAMPLE

lcd_Chart (0,
 CHART_TLXY, 50, 50,
 CHART_BRXY, 70, 200,
 CHART_BKG, lcd_LTGRAY_D,
 CHART_PEN, 2, lcd_DKRED_D,
 CHART_PEN, 2, lcd_DKBLUE_D,
 CHART_END);
022-0108 Rev. B 17

lcd_Circle

int lcd_Circle(int x, int y, int radius, int filled);

DESCRIPTION

Draws a circle using the current foreground color.

PARAMETERS

x center x coordinate in pixels

y center y coordinate in pixels

radius radius in pixels

filled <0: not filled, line width is 1 pixel
1: filled with current foreground color

RETURN VALUE

lcd_SUCCESS: full message received
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error

lcd_ClearScreen

int lcd_ClearScreen(void);

DESCRIPTION

Clears the screen to the current background color.

RETURN VALUE

lcd_SUCCESS: full message received
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 18

lcd_Connect

int lcd_Connect(void);

DESCRIPTION

Opens the serial port and initializes communication with the display. The default baud rate is
115200 bps. Before executing this function, you must first define which serial port to use by
defining the macro LCD_USE_PORT<serial port designator A..F>; for example,

#define LCD_USE_PORTB

There is a fixed 200 ms delay to allow the GTT to initialize.

RETURN VALUE

lcd_SUCCESS: full message received
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error

lcd_Cursor

int lcd_Cursor(int xval, int yval);

DESCRIPTION

Sets the cursor location for subsequent text commands; coordinates are relative to origin.

PARAMETERS

xval x coordinate (0–319)

yval y coordinate (0–239)

RETURN VALUE

lcd_SUCCESS: full message received
lcd_CMD_ERR-(parameter number): illegal coordinate
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 19

lcd_DefTouchArea

int lcd_DefTouchArea(int IDnum, ... TA_END);

DESCRIPTION

Sets a touch area on the GTT or defines the touchmatic area. When the touch area is pressed, the
GTT will send an “x” response followed by the touch area IDnum.

PARAMETERS

IDnum Touch area ID number to set (must be between 128 and 255).

The remaining parameters are optional and may be used in any order (unless otherwise speci-
fied). The parameter name and value must be entered as follows:
<parameter name>, <parameter value>,

TA_END must be the final parameter

The coordinates can be forced using the following two parameters. Keep in mind that the (0,0)
location is the top left corner of the LCD. If both values are 0, the area will be placed at the lo-
cation specified by the last lcd_Origin statement.

TA_TLXY (int) two values: top left x and y coordinates. This is the coordinate clos-
est to (0,0). Note that if both values are 0, the area will be placed at the lo-
cation specified by the last lcd_Origin statement. If no values are
entered, the area will be placed at an x offset TA_SEP from the previous x
value. If this is >300, x will be reset to 0, and the y value will be increased
by TA_SEP. Both values are initialized to 10.

TA_SIZE (int) two values: the x and y size of the area. Any time this parameter is
specified, its value becomes the default. Both values are initialized to 20.

TA_SEP (int) two values. Allows you to specify x and y separation values between
top/left corners of the bit maps for placing multiple areas without having
to specify the x and y values for each. The separation is measured relative
to the top left corner of the bitmaps. Any time this parameter is specified,
its value becomes the default. Both values are initialized to 20. Note that
the areas will proceed in the x direction first, then y.

TA_TYPE (int) mode for the touch area:
TOUCH_HIDDEN: display does not invert on press
TOUCH_INVERT: display inverts on press (default mode)
TOUCH_TYPEMATIC: will use the current typematic setup.

Any time this parameter is specified, its value becomes the default. The
value is initialized to TOUCH_INVERT.

RETURN VALUE

lcd_SUCCESS: full message received
lcd_CMD_ERR-(parameter number): illegal coordinate
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 20

lcd_DispBitmap

int lcd_DispBitmap(int BmpID, int xCoord, int yCoord);

DESCRIPTION

Displays a bitmap on the Reach GTT. The bitmaps included with the Color Touchscreen Appli-
cation Kit were drawn with the Windows Paint program. See the Reach manual (SLCD
Graphics Touch Terminal Technical Manual) for details on downloading bitmaps.

PARAMETERS

BmpID bitmap number

xCoord starting x coordinate (0 = left side)

yCoord starting y coordinate (0 = top)

RETURN VALUE

lcd_SUCCESS: full message received
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 21

lcd_DispText

int lcd_DispText(char *Text, int xCoord, int yCoord, int mode);

DESCRIPTION

Diaplay text on the Reach GTT. There are several display modes. To see their differences, run
the sample program \Samples\ColorTouchscreen\lcd_text.c substituting other
display modes for MODE_NORMAL.

PARAMETERS

Text Pointer to the text to display. The maximum number of characters is 126.

xCoord horizontal starting point. If both horizontal and vertical coordinates are 0,
no coordinates are sent and the text will be displayed at a previously de-
fined location.

yCoord vertical starting point. If both horizontal and vertical coordinates are 0, no
coordinates are sent and the text will be displayed at a previously defined
location.

mode One of these display modes:

• MODE_NORMAL
• MODE_TRANS - transparent, text is written on top of current dis-

play
• MODE_XOR - exclusive OR
• MODE_REV - foreground/background colors are reversed
• MODE_TRANS_REV - transparent reversed

RETURN VALUE

lcd_SUCCESS: full message received
lcd_CMD_ERR-(parameter number): string too long
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 22

lcd_DrawMode

int lcd_DrawMode(int mode);

DESCRIPTION

Sets the drawing mode.

PARAMETERS

mode 0 = normal
1 = XOR

RETURN VALUE

lcd_SUCCESS: full message received
lcd_CMD_ERR-(parameter number): illegal mode
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error

lcd_Font

int lcd_Font(char *Font);

DESCRIPTION

 Sets the default font.

PARAMETER

Font Pointer to the font descriptor.

Current proportional fonts are:
"8", "10", "10S", "13", "13B", "16", "16B", "18BC", "24", "24B",
"24BC", "32", "32B"
Current mono-spaced fonts are:
"4x6", "6x8", "6x9", "8x8", "8x9", "8x10", "8x12", "8x13",
"8x15B", "8x16", "8x16L", "14x24", "16x32", "16x32i", "24x48",
"32x64", "40x80", "60x120"
See the Reach Technology manual on the Reach Technology CD for addi-
tional details.

RETURN VALUE

lcd_SUCCESS: full message received
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 23

lcd_GetTouch

int lcd_GetTouch(int tdly);

DESCRIPTION

Recognizes a touchscreen press by examining the first character of the string sent by the Reach
GTT. The first character will be “x,” “r” or “s.” This function returns a 16-bit integer, with the
touchscreen area number in the low byte. For latched buttons, the high byte is 1 if the button
was pressed and a 0 if not.

PARAMETER

tdly maximum number of milliseconds to wait

RETURN VALUE

>0: button number (0-127) or touchscreen area number (128-255)
-1: no touchscreen press detected

lcd_Line

int lcd_Line(int x0, int y0, int x1, int y1);

DESCRIPTION

Draws a line using the current foreground color and pen width.

PARAMETERS

x0 starting pixel number of the x coordinate

y0 starting pixel number of the y coordinate

x1 ending pixel number of the x coordinate

y1 ending pixel number of the y coordinate

RETURN VALUE

lcd_SUCCESS: full message received
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 24

lcd_Origin

int lcd_Origin(int xval, int yval);

DESCRIPTION

 Sets the origin for subsequent commands.

PARAMETERS

xval x value (0–319)

yval y value (0–2390)

RETURN VALUE

lcd_SUCCESS: full message received
lcd_CMD_ERR-(parameter number): illegal coordinate
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error

lcd_PenWidth

int lcd_PenWidth(int width);

DESCRIPTION

Sets the width in pixels for lines, rectangles, and triangles, but not circles. The value is saved in
global variable lcd_penwidth.

PARAMETERS

width width in pixels (1–200)

RETURN VALUE

lcd_SUCCESS: full message received
lcd_CMD_ERR-(parameter number): illegal pen width
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 25

lcd_Rectangle

int lcd_Rectangle(int x0, int y0, int x1, int y1, int style);

DESCRIPTION

Draws a rectangle using the current foreground color and pen width.

PARAMETERS

x0 top left x coordinate in pixels

y0 top left y coordinate in pixels

x1 bottom right x coordinate in pixels

y1 bottom right y coordinate in pixels

style 0 = regular line
1 = filled rectangle with current foreground color
2 = dotted rectangle (one-pixel dots—overrides pen width)

RETURN VALUE

lcd_SUCCESS: full message received
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error

lcd_SetState

int lcd_SetState(int button, int state);

DESCRIPTION

Sets the state of a latching button.

PARAMETERS

button The button number (1–127)

state State value for the button:
0 (button is off)
1 (button is on)

RETURN VALUE

lcd_SUCCESS: full message received
lcd_CMD_ERR-(parameter number): illegal button
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 26

lcd_Triangle

int lcd_Triangle(int x0, int y0, int x1, int y1, int x2, int y2,
int color);

DESCRIPTION

Draws a triangle using the current foreground color and pen width, unless a fill color is speci-
fied.

PARAMETERS

x0 top left vertex x coordinate in pixels

y0 top left vertex y coordinate in pixels

x1 top right vertex x coordinate in pixels

y1 top right vertex y coordinate in pixels

x2 bottom vertex x coordinate in pixels

y2 bottom vertex y coordinate in pixels

color fill color in RGB format (see the section titled “Set Color (Detailed)”
in the SLCD Graphics Touch Terminal Technical Manual)
-1 = no fill color

RETURN VALUE

lcd_SUCCESS: full message received
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 27

lcd_Typematic

int lcd_Typematic(int delay, int repeatdelay);

DESCRIPTION

Sets typematic parameters for momentary buttons.

PARAMETERS

delay The delay in milliseconds before the button starts to repeat. Must be a mul-
tiple of 10 ms.

repeatdelay The delay in milliseconds between repeats. Must be a multiple of 10 ms.

RETURN VALUE

lcd_SUCCESS: full message received
lcd_UNKNOWN_ERR: packet too long
lcd_TIMEOUT_ERR: timeout error
022-0108 Rev. B 28

Calculator Keypad Function Calls
The library SAMPLES\LIB\ColorTouchscreen\REACH_CALCULATOR.LIB provides the
function calls to demonstrate a virtual calculator on a Reach GTT.

lcd_calculator_Display

int lcd_calculator_Display(int Keypad_BitMap_number, int X, int Y);

DESCRIPTION

 Sets up and displays the specified keypad.

PARAMETERS

Keypad_BitMap_number the bitmap number for the keypad

X horizontal offset in pixels from the top left corner of the GTT

Y vertical offset in pixels from the top left corner of the GTT

RETURN VALUE

lcd_SUCCESS

Calculator

float Calculator(void);

DESCRIPTION

Allows the operator to use the calculator displayed by lcd_calculator_Display().
This is a blocking function and will not return a value to the calling program until the operator
presses the return key (RET).

RETURN VALUE

The result of the calculation.
022-0108 Rev. B 29

Z-World, Inc.
2900 Spafford Street

Davis, California 95616-6800
USA

Telephone: (530) 757-3737
Fax: (530) 757-3792

www.zworld.com

Rabbit Semiconductor
2932 Spafford Street

Davis, California 95616-6800
USA

Telephone: (530) 757-8400
Fax: (530) 757-8402

www.rabbitsemiconductor.com

	Color Touchscreen Application Kit
	Hardware Components
	Software and Documentation
	Definitions
	bitmap
	button
	touch area

	Sample Programs
	Source Code Walk-Through
	Dynamic C Functions
	fnMsDelay
	lcd_Backlight
	lcd_Bar
	lcd_BeepVolume
	lcd_BFcolorsB
	lcd_BFcolorsD
	lcd_ButtonDef
	lcd_Calibrate
	lcd_Chart
	lcd_Circle
	lcd_ClearScreen
	lcd_Connect
	lcd_Cursor
	lcd_DefTouchArea
	lcd_DispBitmap
	lcd_DispText
	lcd_DrawMode
	lcd_Font
	lcd_GetTouch
	lcd_Line
	lcd_Origin
	lcd_PenWidth
	lcd_Rectangle
	lcd_SetState
	lcd_Triangle
	lcd_Typematic
	Calculator Keypad Function Calls
	lcd_calculator_Display
	Calculator

