
TN201

Fast Fourier Transforms on the Rabbit 2000 and the
Rabbit 3000

The Fourier transform is frequently used to analyze and modify real world signals and waveforms. The
Fourier transform is usually defined as:

When the independent variable corresponds to time, the transform variable corresponds to frequency, in
which case X(f) is called the spectrum of x(t). The original x(t) may be recovered from X(f) by the inverse
Fourier transform, defined by:

In the discrete-time, sampled-data domain of the digital computer, the Fourier transform becomes the dis-
crete-time Fourier transform. The continuous-time variable t becomes the sample number n, and integrals
become summations over a finite block of samples. The discrete-time Fourier transform (DFT) of a
sequence of N samples is defined by:

As in the continuous-time case, we can recover the original sequence by an inverse transform. The inverse
DFT (IDFT) is given by:

The summations above require on the order of N2 operations to evaluate, a number which grows impracti-
cally large as the number of samples increases. The fast discrete-time Fourier transform, or FFT, is a DFT
algorithm whose computation time grows only as N log2N. For even modest values of N, the speed-up

afforded by the FFT algorithm can be dramatic.

X f() x t()e
j2πft–

td
∞–

∞

�=

x t() X f()e
j2πft

fd
∞–

∞

�=

X k() x n()e
j2πkn– N⁄

n 0=

N 1–

�= k = 0, 1, ..., N-1

x n() 1
N
---- X k()e

j2πkn N⁄

k 0=

N 1–

�= n = 0, 1, ..., N-1
022-0048 Rev. C 1

It should be stressed that the FFT is merely a fast algorithm for computing the DFT. It has exactly the same
mathematical properties as the DFT. In the discussions below, we will usually refer to DFT with the under-
standing that it is computed using the FFT algorithm.

Applications
Probably the most common use of the DFT is to compute the frequency spectrum of a sampled time wave-
form, as might be obtained from a microphone or accelerometer output digitized by an analog-to-digital
converter. Radar, sonar, and vibration analysis, for example, make extensive use of the DFT to extract and
reveal signal characteristics that would otherwise be difficult or impossible to perceive from the time
waveforms alone. A practical example using the Rabbit 2000 in vibration analysis is the monitoring of
rotating machinery. By attaching one or more accelerometers to a piece of rotating machinery and comput-
ing the DFTs of their outputs, one can obtain an operating "signature" of the machinery. Changes in the
signature over time can give early warning of mechanical problems or impending failure.

Because of its computational speed, the FFT is often used to perform fast discrete convolution. Discrete

convolution normally requires on the order of N2 operations. This number can be reduced to the order of
N log2N by first transforming the time-domain waveforms to the frequency domain, multiplying the trans-

forms together, and then inverse transform back to the time domain. For large values of N, the speed-up
can be substantial. Fast convolution is especially attractive when a sampled-data sequence must be con-
volved with a filter function whose FFT can be computed and stored ahead of time.

Another application of the FFT is in band-limited interpolation, in which a sequence’s sample rate is
increased by interpolating samples between original samples. For example, imagine that we have a
sequence to convert to an analog waveform by a digital-to-analog converter. The waveform might be a
stimulus for an experiment or a segment of speech. Such waveforms are often computed or stored at the
minimum possible sample rate to save processor cycles and memory. Operating the digital to analog con-
verter at the lowest possible rate complicates the design of the analog reconstruction filter used to smooth
the DAC’s stepped output. The requirements of the reconstruction filter can be relaxed considerably by
increasing the sample rate into the converter. The DFT provides a convenient way to increase the sample
rate without altering the waveform’s character.

To see how the DFT can be used to increase the sample rate, suppose that the sequence to be converted has
a sample rate of 2,500 samples per second and that we wish to increase the sample rate by a factor of 4 to
10,000 samples per second. We start with a convenient block of, say, 256 samples, and then compute its
DFT. Since the samples represent a real signal, we use a version of the FFT that transforms 256 purely real
samples into a 128-point complex spectrum that extends from zero frequency to 1.25 kHz. (The real-to-
complex version of the FFT is about twice as fast as the complex-to-complex FFT.) Next we append 384
zero-valued points to the 128-point positive-frequency spectrum. This enlarged 512-point spectrum is pre-
cisely the spectrum that would have been computed had the original sequence been sampled at 10,000
samples/s. Performing a 512-point inverse DFT on the enlarged spectrum (using a complex-to-real version
of the IFFT) produces a block of 1024 real samples that perfectly reproduce the waveform contained in the
original 256-sample block.
022-0048 Rev. C 2

Windowing
The DFT can be often viewed as a bank of digital filters, all having identical shape and having center fre-
quencies whose absolute values range from zero to Fs/2, where Fs is the sampling frequency. The fre-

quency response of these filters is described by sin(Nπf)/sin(πf). Three adjacent responses are shown in
Figure 1.

Figure 1. sin(Nπf)/sin(πf) Filter Response

The bank of filters can be thought of as dividing the spectrum into a series of bins. Unfortunately the filters
are often not so selective as one would like. First of all, the main lobes of adjacent filters overlap. As a
result, a frequency component that falls in between the center frequencies of two filters contributes to the
outputs of both filters. Second, because the filters have sizeable side lobes that extend far from the main
lobe, a frequency component that falls in between the centers of two filters also contributes to the outputs
of distant filters as well. Consequently, a given DFT output bin may contain misleading contributions from
frequency components that lie far away from its center frequency.

While the overlap of the main lobes is unavoidable, the poor side lobe attenuation of the DFT can be
improved by a process called “windowing.” Windowing modifies the frequency response of the FFT bins
by giving a lower weight to samples that lie closer to the ends of the block of input samples. A frequently
used window function, and the one implemented by the Rabbit FFT library, is the Hann window, some-
times called the "raised cosine" window. It is defined as

Each input sample is multiplied by the corresponding window sample before being transformed. Figure 2
compares the Hann window frequency response to the basic response of the DFT. The improved side-lobe

w n() 0.5 1.0
2π
N
------ n

N
2
----–� �

� �cos+
� �
� �
	

= n = 0,1, ..., N-1
022-0048 Rev. C 3

response is clearly evident. With the improved side-lobe response comes what is usually a minor draw-
back: the width of the main lobe produced by the Hann window is twice the width of the basic response.

Figure 2. Hann Window Frequency Response

(A note on implementation. The Hann window has a particularly simple, three-point DFT. In the Rabbit
FFT library, the Hann window function convolves the three-point DFT with the FFT output spectrum. This
approach has the advantage of not requiring the computation or storage of raised cosine curves for all pos-
sible FFT sizes.)
022-0048 Rev. C 4

Real Signals
Practical applications of the DFT usually deal with real signals, as might be produced by an analog-to-dig-
ital converter. It is possible to use an N-point complex DFT to analyze a 2N-point real input sequence. The
computed N-point complex spectrum will be the positive-frequency portion of the sequence’s complex
spectrum. No information is lost by computing only the positive-frequency portion of the spectrum
because the spectrum of a real sequence is conjugate symmetric. This means that the negative-frequency
portion of the spectrum can be computed from the positive-frequency spectrum via the relations:

Re X[–f] = Re X[f]
Im X[–f] = – Im X[f]

In practice the negative-frequency portion of the spectrum is rarely needed.

The Rabbit FFT library contains both complex-in/complex-out and real-in/complex-out FFT and their
inverse counterparts.

Power Spectrum
When the DFT is used to analyze a signal (either real or complex), one is often concerned not so much
with the amplitude and phase of the signal’s spectrum as with either its power or its magnitude. The power
spectrum is given by:

Power[k] = (Re X[k])2 + (Im X[k])2

When the magnitude is required, it can be computed by extracting the square root of each term in the
power spectrum. The Rabbit FFT library provides a fast, full-precision function to compute the power
spectrum from a complex spectrum.
022-0048 Rev. C 5

THE RABBIT FFT LIBRARY
The Rabbit FFT library comprises seven functions:

fftcplx()
fftcplxinv()
fftreal()
fftrealinv()
hanncplx()
hannreal()
powerspectrum()

These functions operate on a sequence or a spectrum stored in a single array. Data in the array are consid-

ered to be in the form of signed, 16-bit fractions with values that range from −1 to 1 – 215. The effect of
interpreting the data as fractions shows up when two 16-bit numbers are multiplied together to produce a
32-bit result. The 16-bit fractional arithmetic retains the 16 more significant bits of the product, whereas
16-bit integer arithmetic retains the 16 less significant bits.

The best numerical accuracy is obtained when the data to be transformed (or inverse transformed) are mul-
tiplied by a scaling factor so as to be as large as possible and still be representable by 16 bits. This means
that the data should be scaled so that the resulting values lie between -32768 and +32767 (which corre-
spond to fraction values -1 and +32767/32768). For example, for best results a sequence whose values
range from -2048 to +2047 should be scaled so that 2047 becomes 32767. In this case, the scaling factor is
exactly 16. For a sequence whose values range from zero to +200, the optimum scaling factor is
32767/200 or 163. (One might be tempted to use a suboptimum scaling factor of 128 and accomplish the
scaling by left-shifting seven positions. But because the Rabbit's multiply instruction is so fast, left-shifting
seven places takes twice as long as multiplying.)

Depending on the particular function, the array data may be either complex or real. Complex values are
stored such that real parts are contained in the even-numbered array positions and the imaginary parts are
contained in the odd-numbered array positions.

The k th complex point in the array is given by

Re X[k] = x[2k]
Im X[k] = x[2k + 1]

Block floating point arithmetic is used to prevent arithmetic overflow. A binary exponent is associated
with the entire array of data, viz,

xk = x[k] × 2blockexp

During processing any addition or subtraction that would result in an arithmetic overflow causes the entire
array to be scaled down by a factor of two, thereby preventing the overflow. Each time the array is scaled,
its block exponent is increased by one to compensate for this scaling. The actual value of the exponent is
arbitrary, and the calling program may set it to any convenient value.
022-0048 Rev. C 6

The Complex FFT Functions
These functions are in FFT.LIB.

void fftcplx(int *x, int N, int *blockexp);

DESCRIPTION

Computes the complex DFT of the N-point complex sequence contained in the array x and re-
turns the complex result in x. N must be a power of 2 and lie between 4 and 1024. An invalid
N causes a RANGE exception. The N-point complex sequence in array x is replaced with its
N-point complex spectrum. The value of blockexp is increased by 1 each time array x has
to be scaled, to avoid arithmetic overflow.

PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

void fftcplxinv(int *x, int N, int *blockexp);

DESCRIPTION

Computes the inverse complex DFT of the N-point complex spectrum contained in the array x
and returns the complex result in x. N must be a power of 2 and lie between 4 and 1024. An
invalid N causes a RANGE exception. The value of blockexp is increased by 1 each time
array x has to be scaled, to avoid arithmetic overflow. The value of blockexp is also de-
creased by log2N to include the 1/N factor in the definition of the inverse DFT

PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

fftcplx

fftcplxinv
022-0048 Rev. C 7

The Real FFT Functions
The fftreal() and fftrealinv() functions manipulate real sequences and positive-frequency
spectra. The spectrum of a 2N-point real sequence has 2N complex points. However, it also has conjugate
symmetry, so that its N + 1 positive-frequency components contain all the spectral information. The imagi-
nary part of the zero-frequency, or dc term, and the imaginary part of the maximum-frequency, or fmax
term, are always zero. The fmax term is the N + 1 term of the 2N-point spectrum, and so lies one position
beyond the N-point positive-frequency complex spectrum. However, since the fmax term is purely real, we
can store its value in the otherwise zero imaginary part of the dc term.

These functions are in FFT.LIB.

void fftreal(int *x, int N, int *blockexp);

DESCRIPTION

Computes the N-point, positive-frequency complex spectrum of the 2N-point real sequence in
array x. The 2N-point real sequence in array x is replaced with its N-point positive-frequency
complex spectrum. To avoid arithmetic overflow, the value of blockexp is increased by 1
each time array x has to be scaled,.

The imaginary part of the X[0] term (stored in x[1]) is set to the real part of the fmax term.

The 2N-point real sequence is stored in natural order. The zeroth element of the sequence is
stored in x[0], the first element in x[1], and the k th element in x[k].

N must be a power of 2 and lie between 4 and 1024. An invalid N causes a RANGE exception.

PARAMETERS

x Pointer to 2N-point sequence of real fractions.

N Number of complex elements in output spectrum

blockexp Pointer to integer block exponent.

fftreal
022-0048 Rev. C 8

void fftrealinv(int *x, int N, int *blockexp);

DESCRIPTION

Computes the 2N-point real sequence corresponding to theN-point, positive-frequency complex
spectrum in array x. The N-point, positive-frequency spectrum contained in array x is replaced
with its corresponding 2N-point real sequence. The value of blockexp is increased by 1 each
time array x has to be scaled, to avoid arithmetic overflow. The value of blockexp is also
decreased by log2N to include the 1/N factor in the definition of the inverse DFT.

The function expects to find the real part of the fmax term in the imaginary part of the zero-fre-
quency X[0] term (stored x[1]).

The 2N-point real sequence is stored in natural order. The zeroth element of the sequence is
stored in x[0], the first element in x[1], and the k th element in x[k].

N must be a power of 2 and lie between 4 and 1024. An invalid N causes a RANGE exception.

PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

fftrealinv
022-0048 Rev. C 9

The Auxiliary Functions
These functions are in FFT.LIB.

void hanncplx(int *x, int N, int *blockexp);

DESCRIPTION

Convolves an N-point complex spectrum with the three-point Hann kernel. The filtered spec-
trum replaces the original spectrum.

The function produces the same results as would be obtained by multiplying the corresponding
time sequence by the Hann raised-cosine window.

The zero–crossing width of the main lobe produced by the Hann window is 4 DFT bins. The
adjacent sidelobes are 32 db below the main lobe. Sidelobes decay at an asymptotic rate of 18
db per octave.

N must be a power of 2 and lie between 4 and 1024. An invalid N causes a RANGE exception.

PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

hanncplx
022-0048 Rev. C 10

void hannreal(int *x, int N, int *blockexp);

DESCRIPTION

Convolves an N-point positive-frequency complex spectrum with the three-point Hann kernel.
The function produces the same results as would be obtained by multiplying the corresponding
time sequence by the Hann raised-cosine window.

The zero–crossing width of the main lobe produced by the Hann window is 4 DFT bins. The
adjacent sidelobes are 32 db below the main lobe. Sidelobes decay at an asymptotic rate of 18
db per octave.

The imaginary part of the dc term (stored in x[1]) is considered to be the real part of the fmax
term. The dc and fmax spectral components take part in the convolution along with the other
spectral components. The real part of fmax component affects the real part of the X[N-1] com-
ponent (and vice versa), and should not arbitrarily be set to zero unless these components are
unimportant.

PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

RETURN VALUE

None. The filtered spectrum replaces the original spectrum.

hannreal
022-0048 Rev. C 11

void powerspectrum(int *x, int N, *int blockexp);

DESCRIPTION

Computes the power spectrum from a complex spectrum according to

Power[k] = (Re X[k])2 + (Im X[k])2

The N-point power spectrum replaces the N-point complex spectrum. The power of each com-
plex spectral component is computed as a 32-bit fraction. Its more significant 16-bits replace
the imaginary part of the component; its less significant 16-bits replace the real part.

If the complex input spectrum is a positive-frequency spectrum computed by fftreal(), the
imaginary part of the X[0] term (stored x[1]) will contain the real part of the fmax term and
will affect the calculation of the dc power. If the dc power or the fmax power is important, the
fmax term should be retrieved from x[1] and x[1] set to zero before calling powerspec-
trum().

The power of the kth term can be retrieved by:

P[k] = *(long*) & x[2k] * 2blockexp

The value of blockexp is first doubled to reflect the squaring operation applied to all elements
in array x. Then it is further increased by 1 to reflect an inherent division-by-two that occurs
during the squaring operation.

PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

powerspectrum
022-0048 Rev. C 12

TIMING
The execution time of all functions other than powerspectrum() depends somewhat on whether and
by how much the data must be scaled to avoid arithmetic overflow. The following tables present the mea-
sured best case (no scaling) and worst case (maximum scaling) execution times for a 30 MHz Rabbit 2000
running under Dynamic C.

Number of Complex Output Points

32 64 128

Execution Time (ms) Execution Time (ms) Execution Time (ms)

min max min max min max

cplxfft 1.4 1.9 3.2 4.2 7.2 9.6

cplxfftinv 1.4 1.9 3.2 4.2 7.1 9.4

realfft 1.7 2.4 3.8 5.2 8.5 11.5

realfftinv 1.7 2.4 3.9 5.3 8.6 11.6

ffthanncplx 0.2 0.5 0.4 0.8 0.8 1.4

ffthannreal 0.2 0.5 0.4 0.8 0.8 1.4

powerspectrum 0.1 0.3 0.5

Number of Complex Output Points

256 512 1024

Execution Time (ms) Execution Time (ms) Execution Time (ms)

min max min max min max

cplxfft 16.2 21.3 35.8 46.6 78.5 102.5

cplxfftinv 16.2 21.0 35.9 46.7 78.7 102.7

realfft 18.8 25.1 41.1 54.5
N/A1

1 realfft and realfftinv are currently limited to 512 complex output points.

realfftinv 19.0 25.2 41.2 54.6

ffthanncplx 1.5 2.7 2.9 5.3 5.8 10.6

ffthannreal 1.5 2.7 2.9 5.3 5.8 10.6

powerspectrum 1.0 2.0 4.0
022-0048 Rev. C 13

REFERENCES

A.V. Oppenheim and R.W. Shaeffer, Digital Signal Processing, Prentice-Hall, Inc., 1975.
A good primer on digital signal processing with a good discussion of various forms of the FFT.

A.V. Oppenheim and R.W. Shaeffer, Discrete-Time Signal Processing, Prentice-Hall, Inc., 1989.

E.O. Brigham, The Fast Fourier Transform, Prentice-Hall, 1974.
Gives a concise derivation of the real-input/complex-output FFT.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C, Cambridge Uni-
versity Press, 1988. (A second edition was published in 1997.)

Contains C-language examples of the FFT and of the bit-reversal function employed by Rabbit FFT.

D.F. Elliot, Ed., Handbook of Digital Signal Processing, Academic Press, 1987.
The appendix to Chapter 3 describes and compares various window functions.
022-0048 Rev. C 14

	Fast Fourier Transforms on the Rabbit 2000 and the Rabbit 3000
	Applications
	Windowing
	Real Signals
	Power Spectrum
	THE RABBIT FFT LIBRARY
	The Complex FFT Functions
	The Real FFT Functions
	The Auxiliary Functions

	TIMING
	REFERENCES

