
TN205

How to Get a µC/OS-II Application Running

µC/OS-II is a highly configurable, real-time operating system. It can be customized using as many or as
few of the operating system’s features as needed. This application note outlines:

• the configuration constants used in µC/OS-II,

• how to override the default configuration supplied in UCOS2.LIB.

• the necessary steps to get an application running.

It is assumed that the reader has a familiarity with µC/OS-II or has a µC/OS-II reference. MicroC/OS-II,
The Real Time Kernel by Jean J. Labrosse is highly recommended. It can be purchased at the Z-World
store, www.zworld.com/store/home.html, or at http://www.ucos-ii.com/.

Default Configuration
µC/OS-II usually relies on the include file os_cfg.h to get values for the configuration constants. In the
Dynamic C implementation of µC/OS-II , these constants, along with their default values, are in
os_cfg.lib. A default stack configuration is also supplied in os_cfg.lib. µC/OS-II for the Rabbit
uses a more intelligent stack allocation scheme than other µC/OS-II implementations to take better advan-
tage of unused memory.

The default configuration allows up to 10 normally created application tasks running at 64 ticks per sec-
ond. Each task has a 512-byte stack. There are 2 queues specified, and 10 events. An event is a queue,
mailbox or semaphore. You can define any combination of these three for a total of 10. If you want more
than 2 queues, however, you must change the default value of OS_MAX_QS.

Some of the default configuration constants are listed below.

#define OS_MAX_EVENTS 10 // Maximum number of events
// (semaphores, queues, mailboxes)

#define OS_MAX_TASKS 10 // Maximum number of tasks
// (less stat and idle tasks)

#define OS_MAX_QS 2 // Max number of queues in system
#define OS_MAX_MEM_PART 1 // Max number of memory partitions
#define OS_TASK_CREATE_EN 1 // Enable normal task creation
#define OS_TASK_CREATE_EXT_EN 0 // Disable extended task creation
#define OS_TASK_DEL_EN 0 // Disable task deletion
#define OS_TASK_STAT_EN 0 // Disable statistics task creation
#define OS_Q_EN 1 // Enable queue usage
#define OS_MEM_EN 0 // Disable memory manager
#define OS_MBOX_EN 1 // Enable mailboxes
022-0047 Rev. E 1

http://www.zworld.com/store/home.html 
http://www.ucos-ii.com/


#define OS_SEM_EN 1 // Enable semaphores
#define OS_TICKS_PER_SEC 64 // number of ticks in one second
#define STACK_CNT_256 1 // number of 256 byte stacks

// (idle task stack)
#define STACK_CNT_512 OS_MAX_TASKS + 1 // number of 512 byte stacks (task

// stacks + initial program stack)

If a particular portion of µC/OS-II is disabled, the code for that portion will not be compiled, making the
overall size of the operating system smaller. Take advantage of this feature by customizing µC/OS-II based
on the needs of each application.

Custom Configuration
In order to customize µC/OS-II by enabling and disabling components of the operating system, simply
redefine the configuration constants as necessary for the application.

#define OS_MAX_EVENTS 2
#define OS_MAX_TASKS 20
#define OS_MAX_QS 1
#define OS_MAX_MEM_PART 15
#define OS_TASK_STAT_EN 1
#define OS_Q_EN 0
#define OS_MEM_EN 1
#define OS_MBOX_EN 0
#define OS_TICKS_PER_SEC 64

If a custom stack configuration is needed also, define the necessary macros for the counts of the different
stack sizes needed by the application.

#define STACK_CNT_256 1 // idle task stack
#define STACK_CNT_512 2 // initial program + stat task stack
#define STACK_CNT_1K 10 // task stacks
#define STACK_CNT_2K 10 // number of 2K stacks

Follow the µC/OS-II and stack configuration constants with a #use “ucos2.lib” statement. This
ensures that the definitions supplied outside of the library are used, rather than the defaults in the library.

#use ucos2.lib

This configuration uses 20 tasks, two semaphores, up to 15 memory partitions that the memory manager
will control, and makes use of the statistics task. Note that the configuration constants for task creation,
task deletion, and semaphores are not defined as the library defaults will suffice. Also, note that 10 of the
application tasks will each have a 1024 byte stack, 10 will each have a 2048-byte stack, and an extra stack
is declared for the statistics task.



Examples
The following sample programs demonstrate the use of the default configuration supplied in ucos2.lib
and also a custom configuration that overrides the default.

Example 1
In this application, ten tasks are created and one semaphore is created. Each task pends on the semaphore,
gets a random number, posts to the semaphore, displays its random number, and finally delays itself for
three seconds.

Looking at the code for this short application, there are several things to note. First, since µC/OS-II and
slice statements are mutually exclusive (both rely on the periodic interrupt for a “heartbeat”), #use
ucos2.lib must be included in every µC/OS-II application (1). In order for each of the tasks to have
access to the random number generator semaphore, it is declared as a global variable (2). In most cases, all
mailboxes, queues, and semaphores will be declared with global scope. Next, OSInit must be called
before any other µC/OS-II function to ensure that the operating system is properly initialized (3). Before
µC/OS-II can begin running, at least one application task must be created. In this application, all tasks are
created before the operating system begins running (4). It is perfectly acceptable for tasks to create other
tasks. Next, the semaphore each task uses is created (5). Once all of the initialization is done, OSStart
is called to start µC/OS-II running (6). In the code that each of the tasks run, it is important to note the vari-
able declarations. The default storage class in Dynamic C is static, so to ensure that the task code is reen-
trant, all are declared auto (7). Each task runs as an infinite loop, and once this application is started,
µC/OS-II will run indefinitely.



#use ucos2.lib // 1. Explicitly use uC/OS-II library
void RandomNumberTask(void *pdata);

// 2. Declare semaphore global so all tasks have access
OS_EVENT* RandomSem;

void main() {
int i;

OSInit(); // 3. Initialize OS internals

for(i = 0; i < OS_MAX_TASKS; i++) {
// 4. Create each of the system tasks
OSTaskCreate(RandomNumberTask, NULL, 512, i);

}
// 5. Create semaphore to control access to random-number generator
RandomSem = OSSemCreate(1);
OSStart(); // 6. Begin multitasking

}

void RandomNumberTask(void *pdata) {
auto OS_TCB data; // 7. Declare as auto to ensure reentrance
auto INT8U err;
auto INT16U Random;

OSTaskQuery(OS_PRIO_SELF, &data);

while(1) {

// Rand is not reentrant, so access must be controlled via a semaphore.
OSSemPend(RandomSem, 0, &err);
Random = (int)(rand() * 100);
OSSemPost(RandomSem);
printf("Task%d's random #: %d\n", data.OSTCBPrio,Random);

// Wait for 3 seconds in order to view output from each task.
OSTimeDlySec(3);

}
}



Example 2
This application runs exactly the same code as Example 1, except that each of the tasks are created with
1024-byte stacks. The main difference between the two is the configuration of µC/OS-II.

First, each configuration constant that differs from the library default is defined. The configuration in this
example differs from the default in that it allows only two events (the minimum needed when using only
one semaphore), 20 tasks, no queues, no mailboxes, and the system tick rate is set to 32 ticks per second
(1). Next, since this application uses tasks with 1024 byte stacks, it is necessary to define the configuration
constants differently than the library default (2). Notice that one 512 byte stack is declared. Every Dynamic
C program starts with an initial stack, and defining STACK_CNT_512 is crucial to ensure that the applica-
tion has a stack to use during initialization and before multi-tasking begins. Finally ucos2.lib is explic-
itly used (3). This ensures that the definitions in (1 and 2) are used rather than the library defaults. The last
step in initialization is to set the number of ticks per second via OSSetTicksPerSec (4).

The rest of this application is identical to Example 1.



// 1. Define each of the necessary configuration constants for uC/OS-II

#define OS_MAX_EVENTS 2
#define OS_MAX_TASKS 20
#define OS_MAX_QS 0
#define OS_Q_EN 0
#define OS_MBOX_EN 0
#define OS_TICKS_PER_SEC 32

// 2. Define each of the necessary stack configuration constants

#define STACK_CNT_512 1 // initial program stack
#define STACK_CNT_1K OS_MAX_TASKS // task stacks

// 3. This ordering of statements ensures that the above definitions are used instead of the ones
// in the library
#use ucos2.lib

void RandomNumberTask(void *pdata);

// Declare semaphore global so all tasks have access
OS_EVENT* RandomSem;



void main() {
int i;

// Initialize OS internals
OSInit();
for(i = 0; i < OS_MAX_TASKS; i++) {

// Create each of the system tasks
OSTaskCreate(RandomNumberTask, NULL, 1024, i);

}

// Create semaphore to control access to random-number generator
RandomSem = OSSemCreate(1);

// 4. Set number of system ticks per second
OSSetTicksPerSec(OS_TICKS_PER_SEC);

// Begin multitasking
OSStart();

}

void RandomNumberTask(void *pdata) {

// Declare as auto to ensure reentrance
auto OS_TCB data;
auto INT8U err;
auto INT16U Random;

OSTaskQuery(OS_PRIO_SELF, &data);

while(1) {

// Rand is not reentrant, so access must be controlled via a semaphore.
OSSemPend(RandomSem, 0, &err);
Random = (int)(rand() * 100);
OSSemPost(RandomSem);
printf("Task%02d's random #: %d\n", data.OSTCBPrio, Random);

// Wait for 3 seconds in order to view output from each task
OSTimeDlySec(3);

}
}

022-0047 Rev. E 7



Debugging Tips
Dynamic C version 7.20 introduced more control when single-stepping through a µC/OS-II program. Prior
to 7.20, single-stepping occured in whichever task was currently running. It was not possible to limit the
single-stepping to one task.

Starting with Dynamic C 7.20, single-stepping may be limited to the currently running task by using
F8 (Step over). If the task is suspended, single-stepping will also be suspended. When the task is put back
in a running state, single-stepping will continue at the statement following the statement that suspended
execution of the task.

Hitting F7 (Trace into) at a statement that suspends execution of the current task will cause the program to
step into the next active task that has debug information. It may be useful to put a watch on the global vari-
able OSPrioCur to see which task is currently running.

For example, if the current task is going to call OSSemPend() on a semaphore that is not in the signaled
state, the task will be suspended and other tasks will run. If F8 is pressed at the statement that calls
OSSemPend(), the debugger will not single-step in the other running tasks that have debug information.
Single-stepping will continue at the statement following the call to OSSemPend(). If F7 is pressed
instead of F8, the debugger will single-step in the next task with debug information that is put into the run-
ning state.
022-0047 Rev. E 8


	How to Get a µC/OS-II Application Running
	Default Configuration
	Custom Configuration
	Examples
	Debugging Tips


