
bit
 com-
ere

 fre-

re the
to

a soft-
 board
ve.

 MHz
sed.

d

216

, Inc.
iel

ed by

t,
, the
ith no
ock
ents
Microprocessor Benchmark Results

Rabbit Semiconductor 5 Feb. 2000

1. Description of Benchmark Tests

A benchmark program was devised to test the floating point performance of the Rab
2000 against a number of popular 8-bit microprocessors. In order to ensure that the
parison was based on practical microprocessor systems the following ground rules w
applied.

• The system must be able to generate standard baud rates. This restricts the clock
quencies that can be used.

• The system must be able to operate using 55 nS access time flash memory to sto
code. This avoids system that must use impractical or overly expensive memory
store code.

In most cases the actual tests were run using available equipment and in one case
ware simulator. The performance figures were scaled if the clock speed that the test
operated at was different than the ideal clock speed according the ground rules abo

The microprocessors tested are as follows

• Rabbit 2000 microprocessor using a Z-World Jackrabbit board operating at 14.73
and scaled to 29.49 MHz. Z-World’s Dynamic C for the Rabbit version 6.10 was u

• AMD 188ES microprocessor using a Tern A104-40 board operating at 40 MHz an
scaled to 36.8 MHz. Borland C version 3.31 was used.

• Zilog Z180 microprocessor using a Z-World model 2200 controller operating at 9.
MHz and scaled to24.47 MHz. Z-World Dynamic C for the Z180 was used.

• Dallas DS80C320 high speed 8051 compatible microprocessor using a Systronix
HSM-KISS controller board operating at 25 MHz and scaled to 33.18 MHz. The K
8051 compiler was used.

• Generic (e.g. Phillips) 8051 as tested using a JSIM-51 an 8051 simulator develop
Jens Altmann.

See homepage: http://www.home.t-online.de/home/Jens.Altmann/jsim-e.htm

The results were scaled to match an 8051 operating at 33.18 MHz.

The floating point operations benchmarked included add, multiply, divide, square roo
sine, log, exponent and arc tangent. In addition one benchmark of integer arithmetic
“sieve of Eratosthenes,” was run on all of the processors. All of the tests were run w
wait states in the memory access. Corrections were made for the overhead of the cl
interrupt when applicable. An interrupt driven clock was used to time the measurem
Chapter Title February 7, 2000 1

al

ks. All
ve is

, the
n addi-
 the

 made
is fac-
d to

ristic
point.
n the
are
 neces-
except in the case of the AMD188ES where a stopwatch was used to time the interv
between breakpoints in the debugger.

2. Results

The table below contains the results for the various microprocessors and benchmar
the results are given in microseconds for the particular operation except that the sie
given in milliseconds.

3. Analysis of Results

It should be obvious that the results depend on the quality of the floating point library
speed of the microprocessor and the quality of the code generated by the compiler. I
tion the time required for a particular operation may vary considerably depending on
values used. For example, some libraries may compute the sine of zero very quickly
because the library routine contains a shortcut for this special case. An attempt was
to avoid non representative tests, but considerable variation may still exist due to th
tor. In addition the results above may vary slightly from results of similar tests allude
or published at other times.

The poor results for the AMD188ES for floating point operations is a typical characte
associated with development software for x86 processors without hardware floating
This is due to the use of a software emulator for the hardware floating point unit whe
hardware unit is not present. Such an approach is very inefficient because the softw
must emulate the elaborate hardware and thus do work that goes far beyond what is

Table 1. Floating Point Operation Benchmarks

Rabbit
2000

8051
Dallas

DS80C32
(fast 8051)

Z180
AMD188ES

(x86)

Clock Speed MHz 29.49 33.18 33.18 24.58 36.86

floating add 9.6 uS 78 uS 32 uS 26 uS 194 uS

floating mul 12 85 34 42 184

floating div 27 239 156 109 202

square root 32 805 334 343 355

sine 94 1112 452 1238 804

atan 118 1327 551 1262 1195

log 134 1482 613 1465 1141

exp 93 1815 740 772 1360

sieve (int, ms) 90 mS 270 mS 123 mS 301 mS 130 mS
2 February 7, 2000 Chapter Titie

ple
rison
d

 for
metic.

g
ers
 for
,

e. In
ture

 IAR
he

 multi-
onds
sieve

 in the
o-
coun-

does
ard

ly the
sary to accomplish the floating operation desired. The relative effect is worse for sim
operations, such as add or multiply. It is not unfair to use these numbers in a compa
since the Borland compiler is widely used for embedded work with the x86 family an
other available compilers appear to take the same approach.

Starting with version 6.10 of Dynamic C for the Rabbit the floating point library was
enhanced and is highly optimized for speed. More efficient algorithms were adopted
divide and square root. Power series expansions were performed using integer arith

Both the Keil and Borland C compilers are considered (except for the Borland floatin
point on non-FPU systems) to be among the best and most highly optimized compil
available for embedded work and they have been in use for many years. Dynamic C
the Rabbit, being a new compiler, will probably improve its performance fairly rapidly
increasing the advantage of the Rabbit-Dynamic C combination.

4. Other Tests Performed

A few benchmark tests were performed on the Atmel AVR. The AVR is not an 8-bit
microprocessor (although it is so advertised) since its instruction word is 16-bits wid
addition it has a Harvard architecture and a RISC style register set. Harvard architec
uses independent code and data memories that may be accessed in parallel.

The tests were performed using the IAR demo AVR compiler, downloadable from the
web site, that includes a simulator that may be used to keep track of clock cycles. T
times are for a 6 MHz clock, the maximum possible for the AVR. The floating add
required between 14 and 50 microseconds depending on the numbers. The floating
ply required about 100 microseconds. The square root required about 500 microsec
and the other math functions tested above required about 1000 microseconds. The
program ran in 91 milliseconds which is an excellent time. Examination of the code
showed that the sieve ran fast because the compiler placed virtually all the variables
AVR’s 32 internal registers. This approach does not necessarily scale up to larger pr
grams since there may not be enough registers, or considerable overhead will be en
tered in saving and restoring registers during subroutine calls. Harvard architecture
not scale up well either, since for efficient implementation all memory must be on bo
the microprocessor chip.

Tests were also performed on the AMD 186ES which is a 16-bit processor. General
AMD 186 ran about 1.6 times as fast as the AMD 188ES.
Chapter Title February 7, 2000 3

	Microprocessor Benchmark Results
	Rabbit Semiconductor 5 Feb. 2000
	1. Description of Benchmark Tests
	2. Results
	Table 1. Floating Point Operation Benchmarks

	3. Analysis of Results
	4. Other Tests Performed

