PRODUCT MANUAL

Dynamic C

Integrated C Development System
For Rabbit 2000 and 3000 Microprocessors

User’'s Manual

019-0125J

The latest revision of this manual is available on the Rabbit Web site,
www.rabbit.com, for free, unregistered download.

http://www.rabbit.com/

Dynamic C User’s Manual
Part Number 019-0125] ¢ Printed in the U.S.A.

Digi International Inc.© 2007-2008 « All rights reserved.

Digi International Inc. reserves the right to make changes and
improvements to its products without providing notice.

Trademarks

RabbitSys™ is a trademark of Digi International Inc.

Rabbit® and Dynamic C® are registered trademarks of Digi International Inc.

Windows® is a registered trademark of Microsoft Corporation

ii

RABBI TSy

PRODUCT MANUAL

Table of Contents

1. Installing Dynamic C...........ccoovviiiiiiininnnnns 1 4.15 POINEETS ...t 29
1.1 ReqUIrementsccoceevevevevereereeeeenerereennnns 1 4.16 Pointers to Functions, Indirect Calls........ 30
1.2 ASSUMPHONS ..vovieierrvieiieveceeee e 1 4.17 Argument Passing............ccococevevviiininns 31
2. Introduction to DYNAMIC C.oooooo 3 4.18 Program FIowcccoeoiviiiiiiiiiieee 32
2.1 The Nature of Dynamic C 3 4.18.1 Loops ... 32
T T T 4.18.2 Continue and Break 33
2.1.1 Speed..c..ooeeiieieee e 3 4.18.3 Branching 34
2.2 Dynamic C Enhancements and Differences4 .y L o
2.3 Rabbit and 2180 Comparison 6 4.19 Function Chainingccccoeceevvreeneennene 36
T T T R e 4.20 Global Initialization............cceceeveererneennen. 37
3. Quick Tutorialc.cooovivievieiieeeeceeee 7 4.21 LADIATI€S ...cvvveeeeveeeeeeeeeeeeeeeeeeeeeeeeeeeen, 38
3.1 Run DEMOIL.C....ccccvviiiiieeeeeee e 8 4211 LIB.DIR .cceeeiiiiiiiiiicecee 39
3.1.1 Single Steppingcceevevevereeerennnn. 9 4.22 Headerscccoeveeenerenenenienieececeeeenes 39
3.1.2 Watch Expression..........ccccceveneen. 9 4.23 MOdUIEScoeereereiiiirieienieneecceeeeenne 39
3.1.3 Breakpoint.........ccocoeveveveererereneneee. 9 4.23.1 The Parts of a Module................ 40
3.1.4 Editing the Program 10 4.23.2 Module Sample Code................. 42
32Run DEMO2.C ..o 10 4.23.3 Important Notescccccueeuenee 43
3.2.1 Watching Variables Dynamically. 10 4.24 Function Description Headers 44
33 Run DEMO3.C...ooovivieiicieeeieeeeee 11 4.25 Support Files.......cccoeveeerieienieieeeeeee 44
3.3.1 Cooperative Multitasking............. 1 5. Multitasking with Dynamic C 45
3.4Run DEMOA4.C......ccovveiiiiieiieeeeeeee e 12 . . .
3.4.1 Trace Macros. .. 13 5.1 Cooperatlye Multitaskingccccoeeeeuennenne 45
3.5 Summary of Features............o.... 14 52A Real-Tlme: Problem........ R 46
5.2.1 Solving the Real-Time Problem
4, Language.......cccoceevereeerieiereiiieieieieeee e 15 with a State Machine......................... 47
4.1 C Language Elements.........c..cccoovevvrvenenen. 15 5.3 Costa temMentsceceverervenveveveeeeeennenne 48
4.2 Punctuation TOKeNS..........cccovvevevveveveennnne 16 5.3.1 Solving the Real-Time Problem
4.3 DALA oo 17 with Costatementscccoeenrnne. 48
4.3.1 Data Type Limits............cccovueneene. 17 5.3.2 Costatement Syntax 49
44 NAMES oot eeeeaes 18 5.3.3 Control Statements....................... 49
4.5 MACTOS .voevveeeeeeeeeeeeeeeeee e 19 5.4 Advanced Costatement Topics................. 51
4.5.1 Macro Operators # and ##............ 19 5.4.1 The CoData Structure 51
4.5.2 Nested Macro Definitions............ 20 5.4.2 CoData Fieldscccccoverveereennen. 52
4.5.3 Macro Restrictions...........c........... 21 5.4.3 Pointer to CoData Structure.......... 53
4.6 NUMDETSceeeieeieercceeeieereeeeeeeseeeeees 21 5.4.4 Functions for Use With Named
4.7 Strings and Character Data........................ 22 CoStatementsccceeeereereenienennnns 53
4.7.1 String Concatenation.................... 22 5.4.5 Firsttime Functionscccc...... 54
4.7.2 Character Constants 23 5.4.6 Shared Global Variables............... 54
4.8 S tatemMentS......cevveveeereieriiereiereeereeeieneens 24 5.5 Cofunctionscccccoeveoiiciiciiniciicene, 54
4.9 Declarationsccoceeeeveeveeeeeeeeeeerenennns 24 5.5.1 Cofunction Syntaxc.c..... 54
4.10 FUNCHONS......voveveeeeeeeieeeeeeeeeieeeeee e 5.5.2 Calling Restrictions...................... 55
4.11 Prototypes 5.5.3 CoData Structure............cccceueueeeee. 56
4.12 Type Definitions..........ccocevvrrreeeeererrenennnns 26 5.5.4 Firsttime Functions 56
4.13 Aggregate Data Types.......ccvvveeeeeevrerennn. 27 5.5.5 Types of Cofunctions................... 56
4131 AITAY oo 27 5.5.6 Types of Cofunction Calls 58
4.13.2 StrUCIUTE ..., 28 5.5.7 Special Code Blocks.................... 59
4.13.3 UNION....ooeeevieiereeiereeeeeeeeeeenes 28 5.5.8 Solving the Real-Time Problem
4.13.4 COMPOSILES....evevevererrenerreeiennns 28 with Cofunctionsccoeeveeveneenennn 60
4.14 Storage Classesc.ceevevrvererereerererenns 29 5.6 Patterns of Cooperative Multitasking....... 60
Dynamic C User’s Manuall rabbit.com iii

http://www.rabbit.com

5.7 T iming Considerations.............cc.cccvrvevenene. 61 8. Run-Time Errorsccccoeeveieveveiiniiiereiins 111
5.7.1 waitfor Accuracy Limits............... 61 8.1 Run-Time Error Handling...........c.cccc..... 111
5.8 Overview of Preemptive Multitasking......62 8.1.1 Error Code Ranges............c.c....... 111
5.9 Slice Statementscceceevereerereerennenns 62 8.1.2 Fatal Error Codescc.cueuee.... 112
5.9.1 Slice SyntaX.......cccceeeveveereeneenennen. 62 8.2 User-Defined Error Handler 113
5.9.2USALE .eouviiieeieiiieeeeeceeee 62 8.2.1 Replacing the Default Handler... 113
5.9.3 Restrictionscocevveeveveveeerennenn. 63 8.3 Run-Time Error Loggingccco.v...... 114
5.9.4 Slice Data Structure.............c........ 63 8.3.1 Error Log Buffer............cccuen..... 114
5.9.5 Slice Internals........ccccccvveevveeeeennnen. 63 8.3.2 Initialization and Defaults........... 115
5.10 LC/OS-Icneiieeeee et 66 8.3.3 Configuration Macros 115
5.10.1 Changes to nC/OS-II.................. 66 8.3.4 Error Logging Functions............ 116
5.10.2 Tasking Aware Interrupt Service 8.3.5 Examples of Error Log Use........ 116
Routines (TA-ISR) ...ccooovreviiieiees 68
5.10.3 Library Reentrancy 74 9. M;r?idry Manaﬁement H;
5.10.4 How to Get a pC/OS-II Application .1 Memory Map T —
Runni 9.1.1 Memory Mapping Control 118
UNNING c..veenvteireenriesaeeeieesieeesieesaee e 75 012 M to Use S d Flash for Cod
5.10.5 Compatibility with TCP/IP......... 80 s acto fo Lse second Flash for Lode
5.10.6 Debugging Tipscccccveeverevenennen. 81 .
9.2 Extended Memory Functions.................. 118
5.11 SUMMATY ..o 81 ;
)) ' 9.3 Code Placement in Memory 118
6. Debugging with Dynamic C............................ 83 9.4 Dynamic Memory Allocation.................. 119
61 Debugg%ng Features Prior to Dypamic ¢ 9.8 3 10. File SyStems.......cccovverrerirrrrierreesseesens 121
6.2 Debugging Features Introduced in Dynamic
co ’4 LOL FS2 ot 121
6.3 Debugging Toolsccccoveveririeneiieeiens 85 10.1.1 Gene.ral Usage e 121
6.3.1 printf()]5 10.1.2 Application Requirements........ 123
6.3.2 Software Breakpoints 86 10.1.3 Flle.System API quctlgns """" 1.26
. . 10.1.4 Setting up and Partitioning the File
6.3.3 Single Stepping.........cceecevveeceennne 88
6.3.4 Watch EXPIesSions............oovovere..]9 Systerp e 127
6.3.5 Evaluate EXpressions.................. 90 10.1.5 File Identifiers e 129
6.3.6 Memory Dumpc.cocoevevevenennnnne 91 10.1.6 Skeleton Program Using FS2...131
63 7T7MAPFile oo 92 10.2 FAT File System.......c.ccevverveveerveriennenne 132
6.3.8 Execution Trace.......c.cooeveeererenene. 94 10.2.1 Overview of FAT Documentation ..
6.3.9 Symbolic Stack Trace................... 95 133))
6.3.10 Assert Macroc.cocoeveeerererenne. 96 10.2.2 Running Your First FAT Sample
6.3.11 Miscellaneous Debugging Tools.96 Programcccoevveiincniininienne 133
6.4 Where to Look for Debugger Features99 10.2.3 More Sample Programs............ 140
6.4.1 Run and Inspect Menus............... 100 10.2.4 FAT Operationsccccecevuenene 146
6.4.2 Options MenU..........cccoeveueenenenne. 100 10.2.5 More FAT Information.............. 156
65D 3'4'3 SWmdqw MeNU o ig(l) 11. Using Assembly Language...........cccc..coo...... 163
> Debug Strategies e T 11.1 Mixing Assembly and C............ccoceeneee 163
6.5.1 Good Programming Practices.....101
o 11.1.1 Embedded Assembly Syntax....163
6.5.2 Finding the Bugccccovvennenee. 102
6.6 Ref Other Debuseine Inf : 11.1.2 Embedded C Syntax.................. 164
-6 Reterence to Other Debugging Information . 11.1.3 Setting Breakpoints in Assembly ...
104 164
7. The Virtual Driver...........cccoooeevevveeeveeeeeee. 105 11.2 Assembler and Preprocessor 165
7.1 Defa ult Operation............cccecevrerverereennnn 105 11.2.1 Comments........c.ccoovivrrerennnene. 165
7.2 Calling GLOBAL _INIT()....ccccoevrveunanes 105 11.2.2 Defining Constants.................... 165
7.3 Global Timer Variablesc.cccccevevernanes 106 11.2.3 Multiline Macros.............cc....... 167
7.3.1 Example: Timing Loop............... 106 11.2.4 Labelscceveveenveieiceciiccncnns 167
7.3.2 Example: Delay Loop................. 107 11.2.5 Special Symbolsc.ccccevuenee 167
7.4 W atchdog Timerscccocevevrveverrneninnnnn. 108 11.2.6 C Variablescccoovrrnnnnnns 168
7.4.1 Hardware Watchdog................... 108 11.3 Stand-Alone Assembly Code.................. 169
7.4.2 Virtual Watchdogs 108 11.3.1 Stand-Alone Assembly Code in
7.5 Preemp tive Multitasking Drivers............ 109 Extended Memoryccccevevnnnee. 169
iv rabbit.com Table of Contents

http://www.rabbit.com

11.3.2 Example of Stand-Alone Assembly SEZChAINooeiiieiiieeeee e 204

Codenn 170 Shared.......cccoeeveecieeiieeieeee e 204
11.4 Embedded Assembly Code oo 170 ShOI’t .. %82
11.4.1 The Stack Frame..............ccooooo. 170 SO 08
11.4.2 Embedded Assembly Example 172 SPEEA .o 205
11.4.3 The Disassembled Code Window ..] 7215 (o 206
173 SETUCT.eeuvieeeieeeireereeieeereeiee e eeeeeeae e 206
11.4.4 Local Variable Access............... 174 SWlt((Jihf. .. %8;
11.5 C Calling Assemblycooooocccoccvivivnn 175 N
11.5.1 Passing Parameters................... 175 UNSIZNEd ..o 208
11.5.2 Location of Return Results....... 175 USEIX 1evieiiiieeieeeeeiieeeeeeeaeeeeeeeeaaeeeeeens 208
11.5.3 Returning a Structure 175 VOId - 209
11.6 Assembly Calhng C oo 177 VOI.atIIC .. 209
. . 21 1 (o) RN 209
11.7 Interrupt Routines in Assembly 178 waitfordone
11.7.1 Steps Followed by an ISR 178 (WEQ) oo 210
11.7.2 Modifying Interrupt Vectors..... 179 While....ooiiiiiee e 210
1 l 8 Common Problems l 84 Xdata .. 21 1
D415 1 o KOUUU USROS 212
12. KeYWOTdScucvivivieeieiiieicieieieieieiceeieieieieieieineaa 185 XSEANG oo 212
abandon ___ 1 85 yleld SETEPR e 2 1 3
ADOTE .o 185 12.1 Compiler Directives.........coocuvvuiicucnines 214
AlIGN.ceieieeeeeeee e 186 1S3 1o DU 214
alWways ON.....ccooevieieeieieeceicee e 186 HCIASS e 214
ANYMEIM .evvieeiieeieeeereereeeereereeeaeenseenns 186 #debug
] 1 U 187 #10debUZeovveieieieeeeee 215
AULO .ot e e 187 HAefINe ..oovvveeeieeeeee e 215
bbramcccoeeiviiii e, 187 #endasmoooeveiieiiiiiieeeee e, 215
break.....oooveeeeeieeeeeeeeeee e 188 Hatalocooeeeeee e 215
C et 188 #GLOBAL INITccooiiieeeee 216
CASE .. ieeeeeeeeeeeeeeeeeeeeeeareeeeeesaaeeeeeeeaaes 188 F5 440 SRR TR 216
Char......ccooeeiieeeeee e 189 #funcchain..........ccccoooeveeeeieiceeneee 216
COTUNC .o 189 #if
CONSE e 190 #elif
CONLINUEeveeieeeieeeereeeeeee e 191 #else
COSTALE ..uvvvieiee e 191 #Hendif.......ooooeeiiiii e 217
debug...oviieieiiee 191 £ e (<) SRRSO 217
default.......cccoovevieiiiiieceeeee 192 #ifndef........oooei 218
16 Lo TSRO 192 #interleave
€IS oo 192 #nointerleaveccooceevvvevnnennennn. 218
13110 V1 4 DR 193 #makechainccccooeevvveeeiieieeeeinnen, 218
EXLEITL ettt 193 HMEMIMAP.....eoveerreereeniieeieenieeeieeeeens 219
FIrSttME oo 194 £230) 212410 U: TSP 219
float .vveieeieeeeee e 194 HPrecompileoovveeverreeieiieieereeeee 220
o) ORI 195 Hundefcovvviiiie 220
£ 00 1 J S SRRUSRPRRRURN 195 FEUSE cvveeere et et eve e 220
5 R 196 #useix
TIE 0N ceviiiiiieee e 196 HNOUSCIX ..o 221
INE oo 197 Ea 2 & o RN 221
INECTTUPE vttt 197 T 41| AU 221
INErTUPt_ VECLOT ..o 198 £5:41011 010) ¢ SR 221
o leall 200 HZIMPOTT ..o 222
lgglgn%gg 13.0perat0r§ s 223
N0AEDUL ... 201 13.1 Arithmetic Operatorsccocveuevnenenns 224
TIOTST e eeeereee et eeere e e e 201 RN 224
LTS S 201 e 224
NULL e 201 * 225
e 502 R o
register ... 202 ...
TCEUTTY oo i, 203 B PN 226
TOOL 1oviieeeieeeeeeeeeree e et e eere e e eeanes 203 TSRS 226
SCOFUNC w.oovis 203 O 226

Dynamic C User’s Manuall rabbit.com v

http://www.rabbit.com

13.2 Assignment Operators...........cccceeeeneenee. 227 14.2.7 Options Menu..........cccceeveneenen. 254
S rterrererereriaeeras e stss et e s esstesnesanessasrees 227 Environment Options.................... 254
s 227 Editor Tabcceceveenvinnnnn 254
o e e e e 227 Gutter & Margin Tab 257
K rrvreetrrrreessnesassree e s te b eene st snesatrans 227 Display Tab.....ccccooeevvreennen. 259

e e 227 Syntax Colors Tab........c..cc.c.... 260
0= e 227 Code Templates Tab................. 261
o et 227 Debug Windows Tab................ 262
DI e 228 Print/Alerts Tab..........ccceneen.e. 269

et 228 Project Options.........cccceveeueercnnene 270
A reereresnesoneessrersanessarssanessassernessasssanesns 228 Communications Tab............... 270

e 228 Compiler Tabc.cccecvveerennenne. 272

13.3 Bitwise Operators.......c..coeeveveveeereerenne 228 Debugger Tab........ccccocerenrennenn 278
G SO PTUPRRORPRURON 228 Defines Tab.......ccocevveeenennen. 281
DD e 228 Targetless Tabccccecerennnnee 283
& e 229 14.2.8 Window Menu............cccun.en.e. 286
2N 229 14.2.9 Help Menu........cocoonvvnninnnnn. 292
| .. 229 15 Command Line Interface 295
N..... ... 229 15'1 Default States ... 295

13.4 Relational Operators......................ccc. 230 15.2 User INput......cccoeveverenenncnnenncncen 295
B T 230 15'3 SaVing Output tO a File 296
o ettt ettt e e e e 230 15.4 Command Line Switches ...mmreeveeeen.. 206
> ... 230 15.4'1 Switches Without Parameters...296
>:..: .. 230 15.4.2 Switches Requiring a Parameter304

13.5 Equality Operators.............covvvveveeveveeeeeee 231 15.5 EXAMPIES ... 312
':_: ... ;g} 15.6 Command Line RFU ..oooeeooee 313

13.6 Logical OPErators..............oowwvveersserreeen. 231 16.Project Filesccoovvierncccrecerce 317
&& v 231 16.1 Project File Namescooooovvirvvenrnnenn. 317
(| e 231 16.1.3 Active Project..........c.cccoeeeeee. 317
e 232 16.2 Updating a Project File 318

13.7 Postfix EXPIessionscococvvervnnn.. 232 16.3 Menu Selections........ccoccevereeiereeneenneae 318
() e 232 16.4 Command Line Usage..........ccooovvvrnvene. 319
L] 232 17. Hints and Tipsccocoevererereeirieieeeeeeeeens 321

(dOt) ... 232 17.1 A User-Defined BIOS ..o 321

T 233 17.2 ESFCIENCY wevvvvvoererrrereeseeeeeeeeeeseeeeeeseeeeee 322

13.8 Reference/Dereference Operators 233 17.2.1 Nodebug Keyword 320
& .. 233 17.2.2 In'llne I/O 323
*‘ ... 233 173 Run_tlme Storage of Data 323

13.9 Conditional Operatorsc..cccevveruenene 234 17.3.1 User Block ..o 324
e e 234 17.3.2 Flash File System 324

13.10 Other Operators 235 17.3.3 WriteFlash2 ..o, 324
(type) .. 235 17.3.4 Battery-Backed RAM....oovi. 324
SIZEOT . e 235 17.4 Root Memory Reduction TlpS 325
5 seeseetetcentntettatctttttettetettetcttenttttartosentoncnnnn 236 17.41 IIlCI'eaSlIlg ROOt Code Space ..325

14. Graphical User Interface.............ccccoooevvuen.... 237 17.4.2 Increasing Root Data Space327

14.1 Editingcoovoviviiiiiiiiiccccccc, 237 Appendix A: Macros and Global Variables 329

14.2 MENUS ...t 238 Macros Defined by the Compiler 329
14.2.1 Using Keyboard Shortcuts........ 238 Macros Defined in the BIOS or Configuration
14.2.2 File MenU.......ococevvviiriiiinnnnnen, 239 LiDrariesv.eveeeereeerieeesieeseeeseeeseeeenes 331
14.2.3 Bdit Menuooveviiiriiinnen, 241 Global Variablescoocoerrnienrnineennenes 332
14.2.4 Compile Menu.........cccccevennnee 245 EXCeption TYPES ...ccvvevevereriirireeieieieeeiennas 333
1425 Run Menu.......coceiiiiiiinn, 247 Rabbit RegiStersc.ccoovvveirveereeriiereene, 333
14.2.6 Inspect Menu.........ccoceeevueennenne 249

Vi rabbit.com Table of Contents

http://www.rabbit.com

Appendix B: Map File Generation 335
Grammar.........cooceeveeeenieneeneeeene e 335

Appendix C: Security Software & Utility Programs
337

Rabbit Embedded Security Pack............... 337

AES . s 337

SSL . s 337

Dynamic C Utilities......c.ccovevvererieerercnnns 338

Library File Encryption 338

File Compression Utilityc........ 339

Font and Bitmap Converter Utility341

Rabbit Field Utilityc.coeeirennnnee 341

Appendix D: Additional Documentation......... 347
Software License Agreementcccceenneeee. 349
INAEX et 353

Dynamic C User’s Manual

rabbit.com

Vii

http://www.rabbit.com

viii rabbit.com Table of Contents

http://www.rabbit.com

PRODUCT MANUAL

1. INSTALLING DYNAMIC C

Insert the installation disk or CD in the appropriate disk drive on your PC. The installation should begin
automatically. If it doesn’t, issue the Windows “Run...” command and type the following command

<disk>:\SETUP

The installation program will begin and guide you through the installation process.

1.1 Requirements

Dynamic C requires an IBM-compatible PC running Windows 2000 or later with at least one free COM or
USB port.

Please note that Windows Vista is supported by Dynamic C out of the box if there is only one processor in
the host PC or laptop. With multiple processors (a.k.a., dual cores) present in the host system, you must
check Windows “Processor Affinity” setting in order to ensure Vista compatibility with Dynamic C. Tech-
nical note TN257 “Running Dynamic C with Windows Vista” has instructions for modifying the “Proces-
sor Affinity” setting. This technical note is available on the Rabbit website:

http://www.rabbit.com/support/techNotes_whitePapers.shtml#dcp

Starting with Dynamic C 9.60, the “Processor Affinity” setting is set automatically.

1.2 Assumptions

It is assumed that the reader has a working knowledge of:

= The basics of operating a software program and editing files under Windows on a PC.
* Programming in a high-level language.

= Assembly language and architecture for controllers.

Refer to one or both of the following texts for a full treatment of C:

= The C Programming Language by Kernighan and Ritchie (published by Prentice-Hall).
= C: A Reference Manual by Harbison and Steel (published by Prentice-Hall).

Dynamic C User’s Manuall rabbit.com 1

http://www.rabbit.com
http://www.rabbitsemiconductor.com/support/techNotes_whitePapers.shtml#dcp

rabbit.com Installing Dynamic C

http://www.rabbit.com

| RABBI TS PRODUCT MANUAL

2. INTRODUCTION TO DYNAMIC C

Dynamic C is an integrated development sysem for writing embedded software. It is designed for use with
Rabbit controllers and other controllers based on the Rabbit microprocessor.

2.1 The Nature of Dynamic C

Dynamic C integrates the following development functions:

« Editing

* Compiling

* Linking

* Loading

* Debugging

into one program. In fact, compiling, linking and loading are one function. Dynamic C has an easy-to-use,
built-in, full-featured text editor. Dynamic C programs can be executed and debugged interactively at the

source-code or machine-code level. Pull-down menus and keyboard shortcuts for most commands make
Dynamic C easy to use.

Dynamic C also supports assembly language programming. It is not necessary to leave C or the develop-
ment system to write assembly language code. C and assembly language may be mixed together.

Debugging under Dynamic C includes the ability to use printf commands, watch expressions and
breakpoints. Watch expressions can be used to compute C expressions involving the target’s program vari-
ables or functions. Watch expressions can be evaluated while stopped at a breakpoint or while the target is
running its program. Dynamic C 9 introduces advanced debugging features such as execution and stack
tracing. Execution tracing can be used to follow the execution of debuggable statements, including such
information as function/file name, source code line and column numbers, action performed, time stamp of
action performed and register contents. Stack tracing shows function call sequences and parameter values.

Dynamic C provides extensions to the C language (such as shared and protected variables, costatements
and cofunctions) that support real-world embedded system development. Dynamic C supports cooperative
and preemptive multitasking.

Dynamic C comes with many function libraries, all in source code. These libraries support real-time pro-
gramming, machine level I/O, and provide standard string and math functions.

2.1.1 Speed

Dynamic C compiles directly to memory. Functions and libraries are compiled and linked and downloaded
on-the-fly. On a fast PC, Dynamic C might load 30,000 bytes of code in five seconds at a baud rate of
115,200 bps.

Dynamic C User’s Manuall rabbit.com 3

http://www.rabbit.com

2.2 Dynamic C Enhancements and Differences

Dynamic C differs from a traditional C programming system running on a PC or under UNIX. The reason?
To better help customers write the most reliable embedded control software possible. It is not possible to
use standard C in an embedded environment without making adaptations. Standard C makes many
assumptions that do not apply to embedded systems. For example, standard C implicitly assumes that an
operating system is present and that a program starts with a clean slate, whereas embedded systems may
have battery-backed memory and may retain data through power cycles. Rabbit has extended the C lan-
guage in a number of areas.

2.2.1 Dynamic C Enhancements
Many enhancements have been added to Dynamic C. Some of these are listed below.

Function Chaining, a concept unique to Dynamic C, allows special segments of code to be embedded
within one or more functions. When a named function chain executes, all the segments belonging to
that chain execute. Function chains allow software to perform initialization, data recovery, or other
kinds of tasks on request.

Costatements allow cooperative, parallel processes to be simulated in a single program.
Cofunctions allow cooperative processes to be simulated in a single program.

Slice Statements allow preemptive processes in a single program.

Dynamic C supports embedded assembly code and stand-alone assembly code.

Dynamic C has keywords that help protect data shared between different contexts (shared) or stored in
battery-backed memory (protected).

Dynamic C has a set of features that allow the programmer to make the fullest use of xmem (extended
memory). The compiler supports a 1 MB physical address space.

Normally, Dynamic C takes care of memory management, but there are instances where the program-
mer will want to take control of it. Dynamic C has keywords and directives to help put code in the
proper place, such as: root, xmem, and #memmap.

See Chapter 9 for further details on memory management.

rabbit.com Introduction to Dynamic C

http://www.rabbit.com

2.2.2 Dynamic C Differences

The main differences in Dynamic C are summarized in the list below and discussed in detail in Chapter 4.
“Language” and Chapter 12. “Keywords”.

If a variable is explicitly initialized in a declaration (e.g., int X = 03), it is stored in flash memory
(EEPROM) and cannot be changed by an assignment statement. Such a declaration will generate a
warning that may be suppressed using the const keyword:

const Int x =0

To initialize static variables in Static RAM (SRAM) use #GLOBAL__INIT sections. Note that other C
compilers will automatically initialize all static variables to zero that are not explicitly initialized before
entering the main function. Dynamic C programs do not do this because in an embedded system you
may wish to preserve the data in battery-backed RAM on reset

The numerous include files found in typical C programs are not used because Dynamic C has a library
system that automatically provides function prototypes and similar header information to the compiler
before the user’s program is compiled. This is done via the #use directive. This is an important topic
for users who are writing their own libraries. Those users should refer to Section 4.23, “Modules” for
more information.

When declaring pointers to functions, arguments should not be used in the declaration. Arguments may
be used when calling functions indirectly via pointer, but the compiler will not check the argument list
in the call for correctness. See Section 4.16 for more information

Bit fields are not supported.

Separate compilation of different parts of the program is not supported or needed.

Dynamic C User’s Manuall rabbit.com 5

http://www.rabbit.com

2.3 Rabbit and Z180 Comparison

A major difference in the way Dynamic C interacts with a Rabbit-based board compared to a Z180 or
386EX board is that Dynamic C expects no BIOS kernel to be present on the target when it starts up.
Dynamic C stores the BIOS kernel as a C source file. Dynamic C compiles and loads it to the Rabbit target
when it starts. This is accomplished using the Rabbit CPU’s bootstrap mode and a special programming
cable provided in all Rabbit product development kits. This method has numerous advantages.

= A socketed flash is no longer needed. BIOS updates can be made without a flash-EPROM burner since
Dynamic C can communicate with a target that has a blank flash EPROM. Blank flash EPROM can be
surface-mounted onto boards, reducing manufacturing costs for both Rabbit and other board develop-
ers. BIOS updates can then be made available on the Web.

* Advanced users can see and modify the BIOS kernel directly.

* Board developers can design Dynamic C compatible boards around the Rabbit CPU by simply follow-
ing a few simple design guidelines and using a “skeleton” BIOS provided by Rabbit.

* A major feature is the ability to program and debug over the Internet or local Ethernet. This requires
either the use of a RabbitLink board, available alone or as an option with Rabbit-based development
kits, or the use of RabbitSys.

6 rabbit.com Introduction to Dynamic C

http://www.rabbit.com

PRODUCT MANUAL

3. QUICK TUTORIAL

Sample programs are provided in the Dynamic C Samples folder, which is in the root directory where
Dynamic C was installed. The Samples folder contains many subfolders, as shown in Figure 3.1. Sample
programs are provided in source code format. You can open the source code file in Dynamic C and read
the comment block at the top of the sample program for a description of its purpose and other details.
Comments are also provided throughout the source code. This documentation, provided by the software
engineers, is a rich source of information.

Figure 3.1 Screenshot of Samples Folder

Lok in: I _4 Samples j ﬁl

[EAES Encryption _dmtarget _Gps

| 1EI12000 I dmunit _lze

| 1BI2100 _IDOWN_LOAD _llcam

| 1BIZ500 _ 1EmaH andling £ | nitrLipks

| I Cofunc _IFR __lJackrab

|| Costate £ FileSpztem [LCD_Keppad

KN i

File name: I Open I
Filez of wpe: II: Source [*.c) j Cancel |

The subfolders contain sample programs that illustrate the use of the various Dynamic C libraries. For
example, the subfolders “Cofunc” and “Costate” have sample programs illustrating the use of
COFUNC.L1IB and COSTATE . L 1B, libraries that support cooperative multitasking using Dynamic C lan-
guage extensions. Besides its subfolders, the Samples folder also contains some sample programs to dem-
onstrate various aspects of Dynamic C. For example, the sample program Pong.c demonstrates output
to the Stdio window.

In the rest of this chapter we examine four sample programs in some detail.

Dynamic C User’s Manuall rabbit.com 7

http://www.rabbit.com

3.1 Run DEMO1.C

This sample program will be used to illustrate some of the functions of Dynamic C. Open the file
Samples/DEMO1 . C using the File menu or the keyboard shortcut <Ctrl+O>. The program will appear
in a window, as shown in Figure 3.2 (minus some comments). Use the mouse to place the cursor on the
function name printf in the program and press <Ctrl+H>. This brings up a Function Description window
for printf (). You can do this with all functions in the Dynamic C libraries, including libraries you
write yourself.

Figure 3.2 Sample Program DEMO1.C

% C:\DC_960%5amples’DEMO1.C][]

fﬁ-:(-ﬁ-:(-ﬁ-:(-ﬁ-:(-************************

demol. c
E=World, 2000

Sample program for Dyvhnamic © Premier tutorial
:i-si-:i-si-si-si-si-:i-si-:i-si-:i-si-si-si-si-:i-si-:i-si-si-si-si-:i-si-:i-si-:i-si-si-si-***********************K

mainil] |

int i, 3j:

i = 0;

while (1] {
i++:

for [(j=0; J<20000; J+44+):;

printf(™i = Fdvyn™, i):

To run DEMO1 . C compile it using the Compile menu, and then run it by selecting “Run” in the
H Run menu. (The keyboard shortcut <F9> will compile and run the program. You may also use
- the green triangle toolbar button as a substitute for <F9>.)

The value of the counter should be printed repeatedly to the Stdio window if everything went well. If this
doesn’t work, review the following points:

= The target should be ready, indicated by the message “BIOS successfully compiled...” If you did not
receive this message or you get a communication error, recompile the BIOS by pressing <Ctrl+Y> or
select “Reset Target / Compile BIOS” from the Compile menu.

= A message reports “No Rabbit Processor Detected” in cases where the wall transformer is not con-
nected or not plugged in.

* The programming cable must be connected to the controller. (The colored wire on the programming
cable is closest to pin 1 on the programming header on the controller). The other end of the program-
ming cable must be connected to the PC serial port. The COM port specified in the Communications

8 rabbit.com Quick Tutorial

http://www.rabbit.com

dialog box must be the same as the one the programming cable is connected to. (The Communications
dialog box is accessed via the Communications tab of the Options | Project Options menu.)

= To check if you have the correct serial port, press <Ctrl+Y>. If the “BIOS successfully compiled ...”
message does not display, choose a different serial port in the Communications dialog box until you
find the serial port you are plugged into. Don’t change anything in this menu except the COM number.
The baud rate should be 115,200 bps and the stop bits should be 1.

3.1.1 Single Stepping

To experiment with single stepping, we will first compile DEMO1 . C to the target without run-
‘J ning it. This can be done by clicking the compile button on the task bar. This is the same as press-
ing F5. Both of this actions will compile according to the setting of “Default Compile Mode.”
(See “Default Compile Mode” in Chapter 14, for how to set this parameter.) Alternatively you may select
Compile | Compile to Target from the main menu.

After the program compiles a highlighted character (green) will appear at the first executable
statement of the program. Press the <F8> key to single step (or use the toolbar button). Each time
the <F8> key is pressed, the cursor will advance one statement. When you get to the statement:
for(J=0, J< ...,itbecomesimpractical to single step further because you would have to press
<F8> thousands of times. We will use this statement to illustrate watch expressions.

3.1.2 Watch Expression

Watch expressions may only be added, deleted or updated in run mode. To add a watch expres-
ﬂ sion click on the toolbar button pictured here, or press <Ctrl+W> or choose “Add Watch” from
~ the Inspect menu. The Add Watch Expression popup box will appear. Type the lower case letter
“4” and click on either “Add” or “OK.” The former keeps the popup box open, the latter closes it. Either
way the Watches window appears. This is where information on watch expressions will be displayed. Now
continue single stepping. Each time you do, the watch expression (J) will be evaluated and printed in the
Watches window. Note how the value of “j” advances when the statement j++ is executed.

3.1.3 Breakpoint
Move the cursor to the start of the statement:
for (J=0; J<20000; j++);
To set a breakpoint on this statement, press <F2> or select “Toggle Breakpoint” from the Run menu. A red
highlight appears on the first character of the statement. To get the program running at full speed, press

<F9>. The program will advance until it hits the breakpoint. The breakpoint will start flashing both red and
green colors.

To remove the breakpoint, press <F2> or select “Toggle Breakpoint” on the Run menu. To continue pro-
gram execution, press <F9>. You will see the value of “i” displayed in the Stdio window repeatedly until
program execution is halted.

You can set breakpoints while the program is running by positioning the cursor to a statement and using
the <F2> key. If the execution thread hits the breakpoint, a breakpoint will take place. You can toggle the
breakpoint with the <F2> key and continue execution with the <F9> key.

Dynamic C User’s Manuall rabbit.com 9

http://www.rabbit.com

Starting with Dynamic C 9, you can also set breakpoints while in edit mode. Breakpoint information is not
only retained when going back and forth from edit mode to debug mode, it is stored when a file is closed
and restored when the file is re-opened.

3.1.4 Editing the Program

Press <F4>to put Dynamic C into edit mode. Use the “Save as” choice on the File menu to save the file
with a new name so as not to change theoriginal demo program. Save the file asMYTEST . C. Now change
the number 20000 in the For statement to 10000. Then use the <F9> key to recompile and run the pro-
gram. The counter displays twice as quickly as before because you reduced the value in the delay loop.

3.2 Run DEMO2.C

Go back to edit mode and open the program DEMOZ2 . C. This program is the same as the first program,
except that a variable K has been added along with a statement to increment “k” by the value of “i” each
time around the endless loop. Compile and run DEMO2 . C.

3.2.1 Watching Variables Dynamically
Press <Ctrl+W> to open the “Add Watch Expression” popup box.

Type “k” in the text entry box, then

click “OK” (or “Add”) to add the
expression “k” to the top of the list of Wakch Espression Ik j
watch expressions. Now press
<Ctrl+U>, the keyboard shortcut for
updating the watch window. Each
time you press <Ctrl+U>, you will see
the current value of K.

ok | Cancel | Help |

Add another expression to the watch window:
k*5

Then press <Ctrl+U> several times to observe the watch expressions “k” and “k*5.”

10 rabbit.com Quick Tutorial

http://www.rabbit.com

3.3 Run DEMO3.C

The example below, sample program DEMO3 . C, uses costatements. A costatement is a way to perform a
sequence of operations that involve pauses or waits for some external event to take place.

3.3.1 Cooperative Multitasking

Cooperative multitasking is a way to perform several different tasks at virtually the same time. An exam-
ple would be to step a machine through a sequence of tasks and at the same time carry on a dialog with the
operator via a keyboard interface. Each separate task voluntarily surrenders its compute time when it does
not need to perform any more immediate activity. In preemptive multitasking control is forcibly removed
from the task via an interrupt.

Dynamic C has language extensions to support both types of multitasking. For cooperative multitasking
the language extensions are costatements and cofunctions. Preemptive multitasking is accomplished with
slicing or by using the uC/OS-II real-time kernel.

Advantages of Cooperative Multitasking

Unlike preemptive multitasking, in cooperative multitasking variables can be shared between different
tasks without taking elaborate precautions. Cooperative multitasking also takes advantage of the natural
delays that occur in most tasks to more efficiently use the available processor time.

The DEMO3 . C sample program has two independent tasks. The first task prints out a message to Stdio
once per second. The second task watches to see if the keyboard has been pressed and prints the entered
key.

main() {
int secs; // seconds counter
secs = 0; // initialize counter
(1) while (1) { // endless loop

// First task will print the seconds elapsed.
2 costate {

secs++; // increment counter
A3 waitfor(DelayMs(1000)); // wait one second
printf(*'%d seconds\n', secs); // print elapsed seconds
“4 1}
// Second task will check if any keys have been pressed.
costate {
o) if ('kbhit()) abort; // key been pressed?
printf(’* key pressed = %c\n'", getchar(Q));
by
(6) } // end of while loop
b5 // end of main

The numbers in the left margin are reference indicators and not part of the code. Load and run the pro-
gram. The elapsed time is printed to the Stdio window once per second. Push several keys and note how
they are reported.

Dynamic C User’s Manuall rabbit.com 11

http://www.rabbit.com

The elapsed time message is printed by the costatement starting at the line marked (2). Costatements need
to be executed regularly, often at least every 25 ms. To accomplish this, the costatements are enclosed in a
whi le loop. The whi le loop starts at (1) and ends at (6). The statement at (3) waits for a time delay, in
this case 1000 ms (one second). The costatement executes each pass through the whi e loop. When a
wailtfor condition is encountered the first time, the current value of MS_T IMER is saved and then on
each subsequent pass the saved value is compared to the current value. If a wai tfor condition is not
encountered, then a jump is made to the end of the costatement (4), and on the next pass of the loop, when
the execution thread reaches the beginning of the costatement, execution passes directly to the waitfor
statement. Once 1000 ms has passed, the statement after the wai tFor is executed. A costatement can
wait for a long period of time, but not use a lot of execution time. Each costatement is a little program with
its own statement pointer that advances in response to conditions. On each pass through the whi le loop
as few as one statement in the costatement executes, starting at the current position of the costatement’s
statement pointer. Consult Chapter 5 for more details.

The second costatement in the program checks to see if an alpha-numeric key has been pressed and, if one
has, prints out that key. The abort statement is illustrated at (5). If the abort statement is executed, the
internal statement pointer is set back to the first statement in the costatement, and a jump is made to the
closing brace of the costatement.

Observe the value of secs while the program is running.To illustrate the use of snooping, use the watch
window to observe secs while the program is running. Add the variable secs to the list of watch expres-
sions, then press <Ctrl+U> repeatedly to observe as SECS increases.

3.4 Run DEMO4.C

The sample program DEMO4 . C uses execution tracing. This is one of the advanced debugging features
introduced in Dynamic C 9. Tracing records program state information based on options you choose in the
Debugger tab of the Project Options dialog. The information captured from the target by Dynamic C’s
tracing feature is displayed in the Trace window, available from the Window menu. To make the target
send trace information, you must turn on tracing either from the INSPECT menu or from within your pro-
gram using one of the macros described here.

To use this sample program, first go to the
Debugger tab of the Project Options dialog,
select Enable Tracing, and choose Full for
the Trace Level. Click OK to save and close “ 0= M “ = “ e lﬁ AR ST

L= Dynamic C Dist. 9.00

File Edit Caompile Run Inspect|opting Wiindow Help

the dialog, then compile and run DEMO4 . C. “ = B = = Project Options

When the program finishes, the Trace win-
dow will open and you can examine its
entries. The Trace window can be opened
anytime after the program is compiled, but execution speed is slightly affected if the window is open while
the program is running.

Toolbars r

12 rabbit.com Quick Tutorial

http://www.rabbit.com

3.4.1 Trace Macros

Trace macros provide more fine-grained control than the menu options.

_TRACE

The _TRACE macro creates one entry in the trace buffer containing the program state information at the
time the macro executes. It is useful if you want to monitor one statement closely rather than follow the
flow of part of a program. In Demo4 .c, _TRACE is executed at lines 45 and 77, as you can see in the

screenshot in Figure 3.3.
Figure 3.3 Trace window contents after running Demo4.c

ﬁE:"\DEINFHDE‘\SAHPLES‘\DEHD#.E Trace
Achion Function | File Mame Line/Col
DEMO4._C

Execute foo DEMO4_C &0,z
Execute foo LEMO4_C &5l,2
Execute foo LEMO4_C 62,1
Exit foo DEMO4._C G2, 1
Execute main LEMO4_C 71,4
MACERO fool DEMO4.C 45,1
MACERO main DEMO4._C .1
Execute foo LEMO4_C Lg, 4
Execute foo DEMO4_C &0,z
Execute foo LEMO4_C &5l,2
Execute foo LEMO4_C 62,1
Exit foo DEMO4._C GZ,1
Execute main LEMO4_C 20,4
Execute main LEMO4_C 81,4
MACERO fool DEMO4._C 45,1
Execute main LEMO4_C gz .4
Execute main DEMO4_C 23,1
Exit main DEMO4._C 23,1

The _TRACE macro does not affect the _ TRACEON and _ TRACEOFF macros, and likewise is not
affected by them. It will execute regardless of whether tracing is turned on or off. An interesting thing to
note about _ TRACE is that it generate a trace statement even when it appears in a nodebug function.

_TRACEON

The _TRACEON macro turns on tracing. This does not cause any information to be recorded by itself like
the _ TRACE macro, but rather causes a change of state within the debug kernel so that program state infor-
mation is recorded for program and library statements executed thereafter, until the _ TRACEOFF macro is
executed or by menu command. Dynamic C captures the information you specified in the Project Options
dialog and displays it in the Trace window.

In Demo4 .c, TRACEON is executed in the function Foo (). Note that tracing is turned on in the second
call to Fool () in main(), but that except for the _ TRACE statement there are no trace statements for
Fo01 (). This is because statements in nodebug functions are not traceable.

_TRACEOFF

The _ TRACEOFF macro turns off tracing, starting with the next statement after it executes. Instances of
the _TRACE macro will still execute, but tracing remains off until it is turned on by the_ TRACEON macro
or by menu command.

Dynamic C User’s Manuall rabbit.com 13

http://www.rabbit.com

3.5 Summary of Features

This chapter provided a quick look at the interface of Dynamic C and some of the powerful options avail-
able for embedded systems programming. The following several paragraphs are a summary of what we’ve
discussed.

Development Functions

When you load a program it appears in an editor window. You compile by clicking Compile on the task bar
or from the Compile menu. The program is compiled into machine language and downloaded to the target
over the serial port. The execution proceeds to the first statement of main, where it pauses, waiting to run.
Press <F9> or select “Run” on the Run menu. If want to compile and run the program with one keystroke,
use <F9>, the run command; if the program is not already compiled, the run command compiles it.

Single Stepping

This is done with the F8 key. The F7 key can also be used for single stepping. If the F7 key is used, then
descent into functions will take place. With F8 the function is executed at full speed when the statement
that calls it is stepped over.

Setting Breakpoints

The F2 key is used to toggle a breakpoint at the cursor position. Prior to Dynamic C 9, breakpoints could
only be toggled while in run mode, either while stopped at a breakpoint or when the program ran at full
speed. Starting with Dynamic C 9, breakpoints can be set in edit mode and retained when changing modes
or closing the file.

Watch Expressions

A watch expression is a C expression that is evaluated on command in the Watches window. An expres-
sion is basically any type of C statement that can inclide operators, variables, structures and function calls,
but not statements that require multiple lines such as For or switch. You can have a list of watch
expressions in the Watches window. If you are single stepping, then they are all evaluated on each step.
You can also command the watch expressions to be evaluated by using the <Ctrl+U> command. When a
watch expression is evaluated at a breakpoint, it is evaluated as if the statement was at the beginning of the
function where you are single stepping.

Costatements

A costatement is a Dynamic C extension that allows cooperative multitasking to be programmed by the
user. Keywords, like abort and wai tfor, are available to control multitasking operation from within
costatements.

Execution Tracing

Execution tracing allows you to follow the flow of your program’s execution in real time instead of single
stepping through it. The Trace window can show which statement was executed, what type of action it
was, when it was executed, and the contents of the registers after executing it. You can also save the con-
tents of the Trace window to a file.

14 rabbit.com Quick Tutorial

http://www.rabbit.com

RABBIT o

able functions. Please see the Dynamic C Function Reference Manual for detailed descriptions of these
API functions. Dynamic C libraries are in source code, allowing the creation of customized libraries.

PRODUCT MANUAL

4. LANGUAGE

Dynamic C is based on the C language. The programmer is expected to know programming methodologies
and the basic principles of the C language. Dynamic C has its own set of libraries, which include user-call-

Before starting on your application, read through the rest of this chapter to review C-language features and
understand the differences between standard C and Dynamic C.

4.1 C Language Elements

A Dynamic C program is a set of files consisting of one file with a main() function and the requested
library files. Each file is a stream of characters that compose statements in the C language. The language

has grammar and syntax, that is, rules for making statements. Syntactic elements, often called tokens, form
the basic elements of the C language. Some of these elements are listed in Table 4-1.

Table 4-1. Language Elements

Syntactic Element Description
punctuation Symbols used to mark beginnings and endings
names Words used to name data and functions
numbers Literal numeric values
strings Literal character values enclosed in quotes
directives Words that start with # and control compilation
keywords Words used as instructions to Dynamic C
operators Symbols used to perform arithmetic operations

Dynamic C User’s Manual

rabbit.com

15

http://www.rabbit.com

4.2 Punctuation Tokens

Punctuation serves as boundaries in C programs. Table 4-2 lists the punctuation tokens.

Table 4-2. Punctuation Marks and Tokens

Token

Description

Terminates a statement label.

Terminates a simple statement or a do loop.

Separates items in a list, such as an argument list,
declaration list, initialization list, or expression list.

@

Encloses argument or parameter lists. Function calls
always require parentheses. Macros with parameters
also require parentheses. Also used for arithmetic and
logical sub expressions.

{13}

Begins and ends a compound statement, a function
body, a structure or union body, or encloses a function
chain segment.

//

Indicates that the rest of the line is a comment and isnot
compiled.

/* .

*/

Comments are nested between the /* and */ tokens.

16

rabbit.com

Language

http://www.rabbit.com

4.3 Data

Data (variables and constants) have type, size, structure, and storage class. Basic (a.k.a., primitive) data
types are shown below.

Table 4-3. Dynamic C Basic Data Types

Data Type Description
char 8-bit unsigned integer. Range: 0 to 255 (0xFF)
int 16-bit signed integer. Range: -32,768 to +32,767

unsigned int

16-bit unsigned integer. Range: 0 to +65,535

long

32-bit signed integer. Range: -2,147,483,648 to +2,147,483,647

unsigned long

32-bit unsigned integer. Range 0 to 2321

32-bit IEEE floating-point value. The sign bit is 1 for negative
values. The exponent has 8 bits, giving exponents from -127 to

float +128. The mantissa has 24 bits. Only the 23 least significant bits
are stored; the high bit is 1 implicitly. (Rabbit controllers do not
have floating-point hardware.) Range: 1.18 x 1038 t0 3.40 x 1038

enum Defines a list of named integer constants. The integer constants are

signed and in the range: -32,768 to +32,767.

4.3.1 Data Type Limits

The following symbolic names for the hardcoded limits of the data types are defined in Fimits_h.

#define
#define
#define
#define
#define

#define
#define
#define

#define
#define
#define
#define
#define
#define

CHAR_BIT
UCHAR_MAX
CHAR_MIN
CHAR_MAX

MB_LEN_MAX

SHRT_MIN
SHRT_MAX
USHRT_MAX

INT_MIN
INT_MAX
UINT_MAX
LONG_MIN
LONG_MAX
ULONG_MAX

8
255
0]
255
1

-32768
32767
65535

-32767
32767

65535
-2147483647
2147483647
4294967295

Dynamic C User’s Manual

rabbit.com 17

http://www.rabbit.com

4.4 Names

Names identify variables, certain constants, arrays, structures, unions, functions, and abstract data types.
Names must begin with a letter or an underscore (_), and thereafter must be letters, digits, or an under-
score. Names may not contain any other symbols, especially operators. Names are distinct up to 32 charac-
ters, but may be longer. Names may not be the same as any keyword. Names are case-sensitive.

Examples
my_function // ok
_block // ok
test32 // ok
Jumper- // not ok, uses a minus sign
3270type // not ok, begins with digit
Cleanup_the_data_now // These names are not distinct in Dynamic C 6.19

Cleanup_the_data_later // but are distinct in all later versions.

References to structure and union elements require compound names. The simple names in a compound
name are joined with the dot operator (period).

cursor.loc.x = 10; // set structure element to 10

Use the #deFine directive to create names for constants. These can be viewed as symbolic constants.
See Section 4.5, “Macros.”

#define READ 10
#define WRITE 20
#define ABS 0}
#define REL 1
#define READ_ABS READ + ABS
#define READ REL READ + REL

The term READ_ABS is the same as 10 + 0 or 10, and READ_REL is the same as 10 + 1 or 11. Note that
Dynamic C does not allow anything to be assigned to a constant expression.

READ_ABS = 27; // produces a compiler error

To accomplish the above statement, do the following:

#undef READ_ABS
#define READ_ABS 27

18 rabbit.com Language

http://www.rabbit.com

4.5 Macros

Macros may be defined in Dynamic C by using #define. A macro is a name replacement feature.
Dynamic C has a text preprocessor that expands macros before the program text is compiled. The pro-
grammer assigns a name, up to 31 characters, to a fragment of text. Dynamic C then replaces the macro
name with the text fragment wherever the name appears in the program. In this example,

#define OFFSET 12
#define SCALE 72

int 1, X;

i = x * SCALE + OFFSET;

the variable T gets the value X * 72 + 12. Macros can have parameters such as in the following code.

#define word(a, b) (a<<8 | b)

char c;

int i, j;

i =word(j, ¢); // sameasi=(j<<8]|c)
The compiler removes the surrounding white space (comments, tabs and spaces) and collapses each
sequence of white space in the macro definition into one space. It places a \ before any ** or \ to preserve
their original meaning within the definition.

4.5.1 Macro Operators # and ##

Dynamic C implements the # and ## macro operators.

The # operator forces the compiler to interpret the parameter immediately following it as a string literal.
For example, if a macro is defined

#define report(value, fmt)\
printf(#value "=" #fmt "\n", value)

then the macro in
report(string, %s);
will expand to
printf("string™ =" "%s" '"\n", string);
and because C always concatenates adjacent strings, the final result of expansion will be

printf("string=%s\n", string);

The ## operator concatenates the preceding character sequence with the following character sequence,
deleting any white space in between. For example, given the macro

#define set(X,y,z) X ## z ## _ ## y(QO
the macro in

set(AASC, FN, 6);
will expand to

AASC6_FNQ);

For parameters immediately adjacent to the ## operator, the corresponding argument is not expanded
before substitution, but appears as it does in the macro call.

Dynamic C User’s Manuall rabbit.com 19

http://www.rabbit.com

4.5.2 Nested Macro Definitions

Generally speaking, Dynamic C expands macro calls recursively until they can expand no more. Another
way of stating this is that macro definitions can be nested.

The exceptions to this rule are

1. Arguments to the # and ## operators are not expanded.

2. To prevent infinite recursion, a macro does not expand within its own expansion.

The following complex example illustrates this.

#define A B

#define B C

#define uint unsigned iInt

#define M(X) M ## Xx

#define MM(X,y,z) X =y ## z

#define string something

#define write(value, fmt)\

printf(#value =" #fmt '"\n", value)

The code
uint z;
M (M) (A,A,B);
write(string, %s);

will expand first to

unsigned int z; // simple expansion
MM (A,A,B); // M(M) doesn’t expand recursively
printf("string™ =" "%s"™ "\n", string); // #value — "string" #fmt — "%s"

then to
unsigned int z;
A = AB; // from A=A ##B

printf("string” =" "%s" "\n", something);
// string — something

then to

unsigned int z;

B = AB; // A—>B
printf("string=%s\n", something); // concatenation
and finally to

unsigned int z;
C = AB; //B->C
printf('string = %s\n", something);

20 rabbit.com Language

http://www.rabbit.com

4.5.3 Macro Restrictions

The number of arguments in a macro call must match the number of parameters in the macro definition.
An empty parameter list is allowed, but the macro call must have an empty argument list. Macros are
restricted to 32 parameters and 126 nested calls. A macro or parameter name must conform to the same
requirements as any other C name. The C language does not perform macro replacement inside string liter-
als, character constants, comments, or within a #define directive.

A macro definition remains in effect unless removed by an #undeT directive. If an attempt is made to
redefine a macro without using #unde¥, a warning will appear and the original definition will remain in
effect.

4.6 Numbers

Numbers are constant values and are formed from digits, possibly a decimal point, and possibly the letters
U, L, X, orA—F, or their lower case equivalents. A decimal point or the presence of the letter E or F
indicates that a number is real (has a floating-point representation).

Integers have several forms of representation. The normal decimal form is the most common.

10 327 1000 0

An integer is long (32-bit) if its magnitude exceeds the 16-bit range (-32768 to +32767) or if it has the let-
ter L appended.

oL -32L 45000 32767L

An integer is unsigned if it has the letter U appended. It is Bong if it also has L appended or if its magni-
tude exceeds the 16-bit range.

ou 4294967294U 32767U 1700UL

An integer is hexadecimal if preceded by OX.

OX7E OxEOO0O0 OXFFFFFFFA
It may contain digits and the letters a—F or A—F.

An integer is octal if begins with zero and contains only the digits 0—7.

0177 020000 000000630

A real number can be expressed in a variety of ways.

4.5 means 4.5
4Ff means 4.0
0.3125 means 0.3125

456e-31 means 456 x 107!
0.3141592el1 means 3.141592

Dynamic C User’s Manuall rabbit.com 21

http://www.rabbit.com

4.7 Strings and Character Data
A string is a group of characters enclosed in double quotes ("").
"Press any key when ready..."

Strings in C have a terminating null byte appended by the compiler Although C does not have a string data
type, it does have character arrays that serve the purpose. C does not have string operators, such as concat-
enate, but library functions strcat() and strncat() are available.

Strings are multibyte objects, and as such they are always referenced by their starting address, and usually
by a char™ variable. More precisely, arrays are always passed by address. Passing a pointer to a string is
the same as passing the string. Refer to Section 4.15 for more information on pointers.

The following code illustrates a typical use of strings.

const char * const select = "Select option\n";
char start[32];

strcpy(start,"Press any key when ready...\n");
printf(select); // pass pointer to string

printf(start); // Dpass string

Note that both the pointer and the elements of the array are explicitly defined as const. Some versions of
Dynamic C allowed the second const to be omitted. Current versions of the compiler generate an error
unless the second const is included.

4.7.1 String Concatenation

Two or more string literals are concatenated when placed next to each other. For example:
"Rabbits" "like carrots.”

becomes, during compilation:
"Rabbits like carrots."

If the strings are on multiple lines, the macro continuation character must be used. For example:

"Rabbits™\
"don’t like line dancing."

becomes, during compilation:

"Rabbits don’t like line dancing.”

22 rabbit.com Language

http://www.rabbit.com

4.7.2 Character Constants

Character constants have a slightly different meaning. They are not strings. A character constant is
enclosed in single quotes (* ") and is a representation of an 8-bit integer value.

a- "\n* "\x1B*"

Any character can be represented by an alternate form, whether in a character constant or in a string. Thus,
nonprinting characters and characters that cannot be typed may be used.

A character can be written using its numeric value preceded by a backslash.

\x41 // the hex value 41
\101 /7 the octal value 101, a leading zero is optional
\B10000001 // the binary value 10000001

There are also several “special” forms preceded by a backslash.

\a bell \b backspace

\f formfeed \n newline

\r carriage return \t tab

\Vv vertical tab \O null character

\\ Dbackslash \cC the actual character C

\” single quote \”” double quote
Examples

"He said \"Hello.\"" // embedded double quotes

const char j = "Z%; // character constant

const char* MSG = "Put your disk in the A drive.\n";

// embedded new line at end
printf(MSG); // print MSG
char* default = ""; // empty string: a single null byte

Dynamic C User’s Manuall rabbit.com 23

http://www.rabbit.com

4.8 Statements

Except for comments, everything in a C program is a statement. Almost all statements end with a semico-
lon. A C program is treated as a stream of characters where line boundaries are (generally) not meaningful.
Any C statement may be written on as many lines as needed. Prior to Dynamic C 9.60, the compiler will
parse up to 250 bytes for any single C statement in a ““.c” or a ““.1ib” file. Starting with Dynamic C 9.60, the
compiler will parse up to 64K bytes for any single C statement in a “.c” file; the 250 byte limit still exists
for “.1ib” files.

A statement can be many things. A declaration of variables is a statement. An assignment is a statement. A
whi le or for loop is a statement. A compound statement is a group of statements enclosed in braces
{ and }. A group of statements may be single statements and/or compound statements.

Comments (the /* . . . */ kind) may occur almost anywhere, even in the middle of a statement, as long as
they begin with /* and end with */.

4.9 Declarations

A variable must be declared before it can be used. That means the variable must have a name and a type,
and perhaps its storage class could be specified. If an array is declared, its size must be given. Root data
arrays are limited to a total of 32,767 elements.

static int thing, array[12]; // static integer variable &
// static integer array

auto float matrix[3][3]; // auto float array with 2 dimensions

char *message="Press any key...” // initialized pointer to char array

If an aggregate type (Struct or union) is being declared, its internal structure has to be described as
shown below.

struct { // description of structure
char flags;
struct { // anested structure here
int x;
int y;
} loc;
} cursor;
int a;
a = cursor.loc.x; // use of structure element here

24 rabbit.com Language

http://www.rabbit.com

4.10 Functions

The basic unit of a C application program is a function. Most functions accept parameters (a.k.a., argu-
ments) and return results, but there are exceptions. All C functions have a return type that specifies what
kind of result, if any, it returns. A function with a Vo id return type returns no result. If a function is
declared without specifying a return type, the compiler assumes that it is to return an 1Nt (integer) value.

A function may call another function, including itself (a recursive call). The main function is called auto-
matically after the program compiles or when the controller powers up. The beginning of the main func-
tion is the entry point to the entire program.

4.11 Prototypes
A function may be declared with a prototype. This is so that:

= Functions that have not been compiled may be called.
* Recursive functions may be written.

* The compiler may perform type-checking on the parameters to make sure that calls to the function
receive arguments of the expected type.

A function prototype describes how to call the function and is nearly identical to the function’s initial
code.

/* This is a function prototype.*/
long tick _count (char clock_id);

/* This is the function’s definition.*/
long tick _count (char clock_id){

}

It is not necessary to provide parameter names in a prototype, but the parameter type is required, and all
parameters must be included. (If the function accepts a variable number of arguments, as print¥ does,
use an ellipsis.)

/* This prototype is as good as the one above. */
long tick count (char);

/> This is a prototype that uses ellipsis. */
int startup (device id, ...);

Dynamic C User’s Manuall rabbit.com 25

http://www.rabbit.com

4.12 Type Definitions

Both types and variables may be defined. One virtue of high-level languages such as C and Pascal is that
abstract data types can be defined. Once defined, the data types can be used as easily as simple data types

like int, char, and Float. Consider this example.

typedef int MILES; // abasic type named MILES

typedef struct { // astructure type...
float re; // ...
float im; // ..
} COMPLEX; // ..named COMPLEX
MILES distance; // declare variable of type MILES
COMPLEX z, *zp; // declare variable of & pointer to type COMPLEX .

Use typedeT to create a meaningful name for a class of data. Consider this example.

typedef unsigned int node;
void Nodelnit(node);

void Nodelnit(unsigned int);

This example shows many of the basic C constructs.

// type name is informative
// not very informative

/*Put descriptive information in your program code using this form of comment,
which can be inserted anywhere and can span lines. The double slash comment
(shown below) may be placed at the end of a line.*/

#define SIZE 12

int g, h;

float sumSquare(iInt, int);
void Init(Q);

main(Q{

float Xx;

initQ);

X = sumSquare(g, h);
printf(“x = %F”’,x);

}
void init(Q){
g = 10;
h = SIZE;
}

float sumSquare(int a, int b){

float temp;

temp = a*a + b*b;

return(temp);
+

/* and here is the end of the program */

26 rabbit.com

// A symbolic constant defined.
// Declare global integers.

// Prototypes for

// functions below.

// Program starts here.

// xislocal to main.

// Call a void function.

// x gets sumSquare value.

// printfis a standard function.

// Void functions do things but
// they return no value.

// Here, it uses the symbolic
// constant defined above.

// Integer arguments.
// Local variables.

// Arithmetic statement.
// Return value.

Language

http://www.rabbit.com

The program above calculates the sum of squares of two numbers, g and h, which are initialized to 10 and
12, respectively. The main function calls the 1nit function to give values to the global variables g and h.
Then it uses the sumSquare function to perform the calculation and assign the result of the calculation to
the variable X. It prints the result using the library function pr intF, which includes a formatting string as
the first argument.

Notice that all functions have { and } enclosing their contents, and all variables are declared before use.
The functions iNTt() and sumSquare () were defined before use, but there are alternatives to
this.This was explained in Section 4.11.

4.13 Aggregate Data Types

Simple data types can be grouped into more complex aggregate forms.

4.13.1 Array

A data type, whether it is simple or complex, can be replicated in an array. The declaration

int item[10]; // An array of 10 integers.

represents a contiguous group of 10 integers. Array elements are referenced by their subscript.
j = item[n]; // The nth element of the array.
Array subscripts count up from 0. Thus, item[7] above is the eighth item in the array. Notice the [and

] enclosing both array dimensions and array subscripts. Arrays can be “nested.” The following doubly
dimensioned array, or “array of arrays.”

int matrix[7][3];

is referenced in a similar way.

scale = matrix[i][j];

The first dimension of an array does not have to be specified as long as an initialization list is specified.

int x[1[2] = { {1, 2}, {3, 4}, {5, 6} };
char string[] = "abcdefg';

Dynamic C User’s Manuall rabbit.com 27

http://www.rabbit.com

4.13.2 Structure
Variables may be grouped together in structures (struct in C) or in arrays. Structures may be nested.

struct {
char flags;
struct {
int x;
int y;
} loc;
} cursor;

Structure members—the variables within a structure—are referenced using the dot operator.
J = cursor.loc.x

The size of a structure is the sum of the sizes of its components.

4.13.3 Union

A union overlays simple or complex data. That is, all the union members have the same address. The size
of the union is the size of the largest member.

union {
int ival;
long jval;
float xval;

¥ u;

Unions can be nested. Union members—the variables within a union—are referenced, like structure ele-
ments, using the dot operator.

J = u.ival

4.13.4 Composites

Composites of structures, arrays, unions, and primitive data may be formed. This example shows an array
of structures that have arrays as structure elements.

typedef struct {

int *x;

int c[32]; // array in structure
} node;
node list[12]; // array of structures

Refer to an element of array C (above) as shown here.

z = list[n].c[m];

list[0].c[22] = OxFF37;

28 rabbit.com Language

http://www.rabbit.com

4.14 Storage Classes

Variable storage can be auto or static. The term “static” means the data occupies a permanent fixed
location for the life of the program. The term “auto” refers to variables that are placed on the system stack
for the life of a function call.The default storage class is auto, but can be changed by using #class
static. The default storage class can be superseded by the use of the keyword auto or staticina
variable declaration.

These terms apply to local variables, that is, variables defined within a function. If a variable does not
belong to a function, it is called a global variable—available anywhere in the program—but there is no
keyword in C to represent this fact. Global variables always have static storage.

The register type is reserved, but is not currently implemented. Dynamic C will change a variable to
be of type auto if register is encountered. Even though the register keyword is not implemented,
it still can not be used as a variable name or other symbol name. Its use will cause unhelpful error mes-
sages from the compiler.

4.15 Pointers

A pointer is a variable that holds the 16-bit logical address of another variable, a structure, or a function.
The indirection operator (*) is used to declare a variable as a pointer. The address operator (&) is used to
set the pointer to the address of a variable.

int *ptr_to _i;

int i;

ptr_to i = &i; // set pointer equal to the address of i
i = 10: // assign a value to i

J = *ptr_to_i; // this sets j equal to the value in i

In this example, the variable ptr_to_ i is a pointer to an integer. The statement “j = *ptr_to_i;” refer-
ences the value of the integer by the use of the asterisk. Using correct pointer terminology, the statement
dereferences the pointer ptr_to_i. Then *ptr_to_i and 1 have identical values.

Note that ptr_to_i and 1 do not have the same values because ptr_to_ i is a pointer and i is an
int. Note also that * has two meanings (not counting its use as a multiplier in others contexts) in a vari-
able declaration such as Int *ptr_to_1 ; the * means that the variable will be a pointer type, and in
an executable statement J = *ptr_to_1; means “the value stored at the address contained in
ptr_to_i.”

Pointers may point to other pointers.

int *ptr_to_i;
int **ptr_to_ptr_to_i;
int i,j;
ptr_to_i = &i; // Set pointer equal to the address of i
ptr_to _ptr_to i = &ptr_to_i; // Seta pointer to the pointer
// to the address of i

10; // Assign avalue to i
**ptr_to_ptr_to_i; // This sets j equal to the value in i.

(ST

Dynamic C User’s Manuall rabbit.com 29

http://www.rabbit.com

It is possible to do pointer arithmetic, but this is slightly different from ordinary integer arithmetic. Here
are some examples.

float f[10], *p, *q; // an array and some ptrs

p = &f; // point p to array element 0
q = pt5; // point q to array element 5
qt+; // point q to array element 6
p=p+q; // illegal!

Because the Tloat is a 4-byte storage element, the statement = p+5 sets the actual value of q to
p+20. The statement q++ adds 4 to the actual value of q. If ¥ were an array of 1-byte characters, the
statement ++ adds 1 to q.

Beware of using uninitialized pointers. Uninitialized pointers can reference ANY location in memory.
Storing data using an uninitialized pointer can overwrite code or cause a crash.

A common mistake is to declare and use a pointer to char, thinking there is a string. But an uninitialized
pointer is all there is.

char* string;

strcpy(string, "hello™); // Invalid!
printf(string); // Invalid!

Pointer checking is a run-time option in Dynamic C. Use the Compiler tab on the Options | Project Options
menu. Pointer checking will catch attempts to dereference a pointer to unallocated memory. However, if an
uninitialized pointer happens to contain the address of a memory location that the compiler has already
allocated, pointer checking will not catch this logic error. Because pointer checking is a run-time option,
pointer checking adds instructions to code when pointer checking is used.

4.16 Pointers to Functions, Indirect Calls

Pointers to functions may be declared. When a function is called using a pointer to it, instead of directly,
we call this an indirect call.

The syntax for declaring a pointer to a function is different than for ordinary pointers, and Dynamic C syn-
tax for this is slightly different than the standard C syntax. Standard syntax for a pointer to a function is:

returntype (*name)([argument list]);
for example:

int (*funcl)(int a, int b);
void (*func2)(char®*);

Dynamic C doesn’t recognize the argument list in function pointer declarations. The correct Dynamic C
syntax for the above examples would be:

int (*funcl)Q;
void (*func2)();

30 rabbit.com Language

http://www.rabbit.com

You can pass arguments to functions that are called indirectly by pointers, but the compiler will not check
them for correctness. This means that the auto promotions provided by Dynamic C type checking will not
occur, so values must be cast to the type that is expected or the size may not be correct. For example, if a
function takes a long as a parameter, and you pass it a 16-bit integer value, it must be cast to type long in
order for 4 bytes to be put onto the stack.

The following program shows some examples of using function pointers.

typedef int (*fnptr)(); // create pointer to function that returns an integer

main(){
int x,y;
int (*fncl)(Q; // declare var fncl as a pointer to an int function.
fnptr fp2; // declare var fp2 as pointer to an int function
fncl = intfunc; // initialize fncl to point to intfunc()
fp2 = intfunc; // initialize fp2 to point to the same function.
X = (*fncl)(1,2); // call intfunc() via fncl
y = (*fp2)(3.,4); // call intfunc() via fp2

printf(C'%d\n*, Xx);
printf(C'%d\n", y);
}
int intfunc(int x, int y){
return x+y;

}

4.17 Argument Passing

In C, function arguments are generally passed by value. That is, arguments passed to a C function are gen-
erally copies on the program stack of the variables or expressions specified by the caller. Changes made to
these copies do not affect the original values in the calling program.

In Dynamic C and most other C compilers, however, arrays are always passed by address. This policy
includes strings (which are character arrays).

Dynamic C passes Structs by value on the stack. Passing a large struct takes a long time and can
easily cause a program to run out of memory. Pass pointers to large Structs if such problems occur.

For a function to modify the original value of a parameter, pass the address of, or a pointer to, the parame-
ter and then design the function to accept the address of the item.

Dynamic C User’s Manuall rabbit.com 31

http://www.rabbit.com

4.18 Program Flow

Three terms describe the flow of execution of a C program: sequencing, branching and looping. Sequenc-
ing is simply the execution of one statement after another. Looping is the repetition of a group of state-
ments. Branching is the choice of groups of statements. Program flow is altered by calling a function, that
is transferring control to the function. Control is passed back to the calling function when the called func-
tion returns.

4.18.1 Loops

A whi le loop tests a condition at the start of the loop. As long as expression is true (non-zero), the loop
body (some statement(s)) will execute. If expression is initially false (zero), the loop body will not execute.
The curly braces are necessary if there is more than one statement in the loop body.

while(expression){
some statement(s)
}

A do loop tests a condition at the end of the loop. As long as expression is true (non-zero) the loop body
(some statement(s)) will execute. A do loop executes at least once before its test. Unlike other controls,
the do loop requires a semicolon at the end.

do{
some statements
Jwhile(expression);

The For loop is more complex: it sets an initial condition (expl), evaluates a terminating condition (exp2),
and provides a stepping expression (exp3) that is evaluated at the end of each iteration. Each of the three
expressions is optional.

for(expl ; exp2 ; exp3){
some statement(s)
}

If the end condition is initially false, a For loop body will not execute at all. A typical use of the For loop
is to count N times.

sum = O;
for(C i = 0; i <n; i++){
sum = sum + array[i];

}

This loop initially sets 1 to 0, continues as long as 1 is less than n (stops when 1 equals n), and increments
i at each pass.

Another use for the For loop is the infinite loop, which is useful in control systems.

for(;;){ some statement(s) }

32 rabbit.com Language

http://www.rabbit.com

Here, there is no initial condition, no end condition, and no stepping expression. The loop body (some
statement(s)) continues to execute endlessly. An endless loop can also be achieved with a whi e loop.
This method is slightly less efficient than the For loop.

while(1l) { some statement(s) }

4.18.2 Continue and Break
Two keywords are available to help in the construction of loops: continue and break.

The continue statement causes the program control to skip unconditionally to the next pass of the loop.
In the example below, if bad is true, more statements will not execute; control will pass back to the top of
the whi e loop.

get char(Q);

while(! EOF){
some statements
1T(bad) continue;
more statements

}

The break statement causes the program control to jump unconditionally out of a loop. In the example
below, if cond_RED is true, more statements will not be executed and control will pass to the next state-
ment after the ending curly brace of the for loop

for(1=0;i1<n;i1++){
some statements
1T cond RED) break;
more statements

}

The break keyword also applies to the switch/case statement described in the next section. The
break statement jumps out of the innermost control structure (loop or switch statement) only.

There will be times when break is insufficient. The program will need to either jump out more than one
level of nesting or there will be a choice of destinations when jumping out. Use a goto statement in such
cases. For example,

whille(some statements){
for(1=0;i<n;i++){
some statements
iT(cond_RED) goto yyy;
some statements
iT(code BLUE) goto zzz;
more statements

}

Handle cond_RED
zzz:
handle code BLUE

Dynamic C User’s Manual rabbit.com 33

http://www.rabbit.com

4.18.3 Branching

The goto statement is the simplest form of a branching statement. Coupled with a statement label, it sim-
ply transfers program control to the labeled statement.

some statements

abc:
other statements
goto abc;

more statements
goto def;

def:
more statements

The colon at the end of the labels is required. In general, the use of the goto statement is discouraged in
structured programming.

The next simplest form of branching is the 1T statement. The simple form of the 1T statement tests a con-
dition and executes a statement or compound statement if the condition expression is true (non-zero). The
program will ignore the 1T body when the condition is false (zero).

i1T(expression){
some statement(s)
}

A more complex form of the 1T statement tests the condition and executes certain statements if the expres-
sion is true, and executes another group of statements when the expression is false.

iT(expression){

some statement(s) // iftrue
Yelse{
some statement(s) // iffalse

}

The fullest form of the 1T statements produces a succession of tests.

iT(expr;){
some statements
yelse 1f(expry){
some statements
Yelse if(exprz){
some statements

}else{
some statements
e

The program evaluates the first expression (expr). If that proves false, it tries the second expression
(expr,), and continues testing until it finds a true expression, an e 1 se clause, or the end of the if state-

ment. An e I se clause is optional. Without an el se clause, an i1 f/else 1T statement that finds no
true condition will execute none of the controlled statements.

34 rabbit.com Language

http://www.rabbit.com

The swi tch statement, the most complex branching statement, allows the programmer to phrase a “mul-
tiple choice” branch differently.

switch(expression){

}

First the switch expression is evaluated. It must have an integer value. If one of the consty values

case const; :
statements;
break;

case const, :
statements,
break;

case consty :
statements;
break;

default:
stateme ntSDEFAU LT

matches the switch expression, the sequence of statements identified by the consty expression is exe-

cuted. If there is no match, the sequence of statements identified by the defaul t label is executed. (The
defaul t part is optional.) Unless the break keyword is included at the end of the case’s statements, the

program will “fall through” and execute the statements for any number of other cases. The break key-

word causes the program to exit the switch/case statement.

The colons (:-) after case and defaul t are required.

Dynamic C User’s Manual

rabbit.com

35

http://www.rabbit.com

4.19 Function Chaining

Function chaining allows special segments of code to be distributed in one or more functions. When a
named function chain executes, all the segments belonging to that chain execute. Function chains allow the
software to perform initialization, data recovery, and other kinds of tasks on request. There are two direc-
tives, #makechain and #funcchain, and one keyword, segchain that create and control function
chains:

#makechain chain_name
Creates a function chain. When a program executes the named function chain, all of the func-
tions or chain segments belonging to that chain execute. (No particular order of execution can
be guaranteed.)

#funcchain chain_name name
Adds a function, or another function chain, to a function chain.

segchain chain_name { statements }
Defines a program segment (enclosed in curly braces) and attaches it to the named function
chain.

Function chain segments defined with segchain must appear in a function directly after data declara-
tions and before executable statements, as shown below.

my_function(){
/* data declarations */
segchain chain_x{
/* some statements which execute under chain_x */
}

segchain chain_y{
/* some statements which execute under chain y */

/* function body which executes when my_function is called */

}

A program will call a function chain as it would an ordinary void function that has no parameters. The fol-
lowing example shows how to call a function chain that is named recover.

#makechain recover

recover();

36 rabbit.com Language

http://www.rabbit.com

4.20 Global Initialization

Various hardware devices in a system need to be initialized, not only by setting variables and control regis-
ters, but often by complex initialization procedures. Dynamic C provides a specific function chain,
_GLOBAL_INIT, for this purpose. Your program can add segments to the _GLOBAL_ INIT function
chain, as shown in the example below.

long my_ func(char j);

main({
my_func(100);
}

long my func(char j){
static int i;
static long array[256];

// The GLOBAL INIT section is automatically run once when the program starts up

#GLOBAL_INIT{
for(i = 0; i < 100; i++){
array[i] = i*i;

}
return array[jl; // only this code runs when the function is called

}

The special directive #GLOBAL_INIT{ 7} tells the compiler to add the code in the block enclosed in
braces to the _GLOBAL__INIT function chain. Any number of #GLOBAL_INIT sections may be used in
your code. The order in which they are called is indeterminate since it depends on the order in which they
were compiled. The storage class for variables used in a global initialization section must be static. Since
the default storage class is auto, you must define variables as static in your application.

The _GLOBAL_ INIT function chain is always called when your program starts up, so there is nothing
special to do to invoke it. In addition, it may be called explicitly at any time in an application program with
the statement:

_GLOBAL_INITQ;

Make this call this with caution. All costatements and cofunctions will be initialized. See Section 7.2 for
more information about calling GLOBAL_INIT().

Dynamic C User’s Manuall rabbit.com 37

http://www.rabbit.com

4.21 Libraries

Dynamic C includes many libraries—files of useful functions in source code form. They are located in the
\LIB directory where Dynamic C was installed. The default library file extension is . L 1B. Dynamic C
uses functions and data from library files and compiles them with an application program that is then
downloaded to a controller or saved to a . bin file.

An application program (the default file extension is - C) consists of a source code file that contains a main
function (called main) and usually other user-defined functions. Any additional source files are consid-
ered to be libraries (though they may have a . C extension) and are treated as such. The minimum applica-
tion program is one source file, containing only:

mainQ{}

Libraries (those defined by you and those defined by Rabbit) are “linked” with the application through the
#use directive. The #use directive identifies a file from which functions and data may be extracted.
Files identified by #use directives are nestable, as shown below. (The #use directive is a replacement
for the #include directive, which is not supported in Dynamic C.)

Figure 4.1 Nesting Files in Dynamic C

Application X.LIB Y.LIB
#use x.1ibA— | #use y.1ib4— 7 T
main () { function | |77
- function
#use z.1ib function ZLIB
#use z.lib T

m | -

Most libraries needed by Dynamic C programs have #use statements in 1 ib\ . .\default.h.

Section 4.23 explains how Dynamic C knows which functions and global variables in a library are avail-
able for use.

38 rabbit.com Language

http://www.rabbit.com

4.21.1 LIB.DIR

Any library that is to be #use’d in a Dynamic C program must be listed in the file LIB.DIR, or another
* _DIR file specified by the user.

The lib.dir strategy starting with Dynamic C 9.30 allows naming a folder with optional mask(s). No mask
implies *.* and multiple masks are separated by ““;” so that “lib”” and “lib*.*” both include all files and
“Pib*_1lib;*._c;*_h*” includes all files with extensions of . I'ib, . c and . h. Dynamic C gener-
ated file (e.g., -mdl, .hxl, etc.) are not parsed, which means they are excluded when using the wildcard
mask.

Dynamic C now enforces unique file extension names regardless of path, so that “#use myfile.lib” can not
use an unintended copy of myfi le . b as the list of pathnames included in 1ib.dir is searched for
the first occurrence of that file extension. An error message naming both full paths will come up when try-
ing to compile ANY program alerting the user of the infraction.

4.22 Headers

The following table describes two kinds of headers used in Dynamic C libraries.

Table 4-4. Dynamic C Library Headers

Header Name Description

Make functions and global variables in the library known to

Module headers Dynamic C.

Describe functions. Function headers form the basis for function

Function Description headers lookup help.

You may also notice some “Library Description” headers at the top of library files. These have no special
meaning to Dynamic C, they are simply comment blocks.

4.23 Modules

A Dynamic C library typically contains several modules. Modules must be understood to write efficient
custom libraries. Modules provide Dynamic C with the names of functions and variables within a library
that may be referenced by files that have a #use directive for the library somewhere in the code.

Modules organize the library contents in such a way as to allow for smaller code size in the compiled
application that uses the library. To create your own libraries, write modules following the guidelines in
this section.

The scope of modules is global, but indeterminate compilation order makes the situation less than straight-
forward. Read this entire section carefully to understand module scope.

Dynamic C User’s Manuall rabbit.com 39

http://www.rabbit.com

4.23.1 The Parts of a Module
A module has three parts: the key, the header, and the body. The structure of a module is:

/*** BeginHeader funcl, var2, */
prototype for funcl
extern var2
/*** EndHeader */
definition of funcl
declaration for var2
possibly other functions and data

A module begins with its BeginHeader comment and continues until either the next BeginHeader
comment or the end of the file is encountered.

4.23.1.1 Module Key

The module key is usually contained within the first line of the module header. It is a list of function and
data names separated by commas. The list of names may continue on subsequent lines.

/*** BeginHeader [name;, name,,]1 */

It is important to format the BeginHeader comment correctly, otherwise Dynamic C cannot find the
contents of the module. The case of the word “beginheader” is unimportant, but it must be preceded by a
forward slash, 3 asterisks and one space (/***). The forward slash must be the first character on the
line. The BeginHeader comment must end with an asterisk and a forward slash (*7).

The key tells the compiler which functions exist in the module so the compiler can exclude the module if
names in the key are not referenced. Data declarations (constants, structures, unions and variables) as well
as macros and function chains (both #makechain and #funchain statements) do not need to be
named in the key if they are completely defined in the header, i.e, no extern declaration. They are fully
known to the compiler by being completely defined in the module header. An important thing to remember
is that variables declared in a header section will be allocated memory space unless the declaration is pre-
ceded with extern.

4.23.1.2 Module Header

Every line between the BeginHeader and EndHeader comments belongs to the header of the module.
When a library is linked to an application (i.e., the application has the statement: #use “library_name”),
Dynamic C precompiles every header in the library, and only the headers.

With proper function prototypes and variable declarations, a module header ensures proper type checking
throughout the application program. Prototypes, variables, structures, typedefs and macros declared in a
header section will always be parsed by the compiler if the library is #used, and everything will have
global scope. It is even permissible to put function bodies in header sections, but it’s not recommended
because the function will be compiled with any application that #uses the library. Since variables declared
in a header section will be allocated memory space unless the declaration is preceded with extern, the
variable declaration should be in the module body instead of the header to save data space.

The scope of anything inside the module header is global; this includes compiler directives. Since the
headers are compiled before the module bodies, the last one of a given type of directive encountered will
be in effect and any previous ones will be forgotten.

40 rabbit.com Language

http://www.rabbit.com

Using compiler directives like #class or #memmap inside module headers is inadvisable. If it is impor-
tant to set, for example, “#class auto” for some library modules and “#class static” for others, the appropri-
ate directives should be placed inside the module body, not in the module header. Furthermore, since there
is no guaranteed compilation order and compiler directives have global scope, when you issue a compiler
directive to change default behavior for a particular module, at the end of the module you should issue
another compiler directive to change back to the default behavior. For example, if a module body needs to
have its storage class as static, have a “#class static” directive at the beginning of the module body and
“#class auto” at the end.

4.23.1.3 Module Body

Every line of code after the EndHeader comment belongs to the body of the module until (1) end-of-file
or (2) the BeginHeader comment of another module. Dynamic C compiles the entire body of a module
if any of the names in the key or header are referenced anywhere in the application. So keep modules
small, don’t put all the functions in a library into one module. If you look at the Dynamic C libraries you’ll
notice that many modules consist of one function. This saves on code size, because only the functions that
are called are actually compiled into the application.

To further minimize waste, define code and data only in the body of a module. It is recommended that a
module header contain only prototypes and extern declarations because they do not generate any code
by themselves. That way, the compiler will generate code or allocate data only if the module is used by the
application program.

Dynamic C User’s Manuall rabbit.com 41

http://www.rabbit.com

4.23.2 Module Sample Code

There are many examples of modules in the L ib directory of Dynamic C. The following code will illus-
trate proper module syntax and show the scope of directives, functions and variables.

/*** BeginHeader ticks*/
extern unsigned long ticks;
/*** EndHeader */

unsigned long ticks;

/*** BeginHeader Get_Ticks */
unsigned long Get_Ticks();
/*** EndHeader */

unsigned long Get_Ticks(){
¥

/*** BeginHeader Inc_Ticks */
void Inc_Ticks(C int 1);
/*** EndHeader */

Hasm
Inc_Ticks::
or a

ipset 1

ipres

ret
#endasm

There are three modules defined in this code. The first one is responsible for the variable ticks, the sec-
ond and third modules define functions Get_Ticks() and Inc_Ticks that access the variable.

Although Inc_Ticks is an assembly language routine, it has a function prototype in the module header,
allowing the compiler to check calls to it.

If the application program calls Inc_Ticks or Get_Ticks() (or both), the module bodies corre-
sponding to the called routines will be compiled. The compilation of these routines triggers compilation of
the module body corresponding to ticks because the functions use the variable ticks.

42 rabbit.com Language

http://www.rabbit.com

/*** BeginHeader func _a */
int func_a();

#ifdef SECONDHEADER
#define XYZ
#endi T

/*** EndHeader */

int func_a({
#ifdef SECONDHEADER

printf ('l am function A.\n");
#endif

}

/*** BeginHeader func b */

int func b(Q;
#define SECONDHEADER

/*** EndHeader */

#ifdef XYZ
#define FUNCTION_B
#endi

int func b {
#ifdef FUNCTION_B
printf ("'l am function B.\n");
#endif

}

Let’s say the above file is named my library . Lib. If an application has the statement

#use “mylibrary.1ib” and then calls func_b(), will the printf statement be reached? The
answer is no. The order of compilation for module headers is sequential from the beginning of the file,
therefore, the macro SECONDHEADER is undefined when the first module header is parsed.

If an application #uses this library and then makes a call to Func_a(), will that function’s print state-
ment be reached? The answer is yes. Since all the headers were compiled first, the macro
SECONDHEADER is defined when the first module body is compiled.

4.23.3 Important Notes

Remember that in a Dynamic C application there is only one file that contains main(). All other source
files used by the file that containsmain() are regarded as library files. Each library must be included in a
LIB.DIR (or a user defined replacement for it). Although Dynamic C uses - L I B as the library extension,
you may use anything you like as long as the complete path is entered in your LIB_DIR file.

There is no way to define file scope variables in Dynamic C libraries.

Dynamic C User’s Manuall rabbit.com 43

http://www.rabbit.com

4.24 Function Description Headers

Each user-callable function in a Dynamic C library has a descriptive header preceding the function to
describe the function. Function headers are extracted by Dynamic C to provide on-line help messages.

The header is a specially formatted comment, such as the following example.

/* START FUNCTION DESCRIPTIQN kst kot dede

Wr10port

<l10.LIB>

SYNTAX: void WrlOport(int portaddr, int value);
DESCRIPTION:
Writes data to the specified 1/0 port.

PARAMETER1:
PARAMETERZ2:

portaddr - register address of the port.
value - data to be written to the port.

RETURN VALUE: None
KEY WORDS: parallel port

SEE ALSO:

RdI0port

If this format is followed, user-created library functions will show up in the Function Lookup <Ctrl+H>
feature if the library is listed in Fib.dur or its replacement. Note that these sections are scanned in only
when Dynamic C starts.

4.25 Support Files

Dynamic C has several support files that are necessary in building an application. These files are listed

below.
Table 4-5. Dynamic C Support Files
File Name Purpose of File
DCW.CFG Contains configuration data for the target controller.
DC . HH Contains prototypes, basic type definitions, #define, and default modes for
) Dynamic C. This file can be modified by the programmer.

DEFAULT . H Contains a set qf #use directives for each control product that Rabbit ships. This
file can be modified.
Contains pathnames for all libraries that will be known to Dynamic C. The
programmer can add or remove libraries from this list. The factory default is for this

LIB.DIR file to contain all the libraries onthe Dynamic C distribution disk. Any library that is
to be used in a Dynamic C program must be listed in the file L1B.DIR, or another
*_DIR file specified by the user.

PROJECT . DCP These files hold the default compilation environment that is shipped from the factory.

i DEFAULT . DCP may be modified, but not PROJECT . DCP. See Chapter 16 for

DEFAULT .DCP) .

details on project files.

44

rabbit.com Language

http://www.rabbit.com

| RABEIT-stg= PRODUCT MANUAL

5. MULTITASKING WITH DYNAMIC C

In a multitasking environment, more than one task (each representing a sequence of operations) can
appear to execute in parallel. In reality, a single processor can only execute one instruction at a time. If an
application has multiple tasks to perform, multitasking software can usually take advantage of natural
delays in each task to increase the overall performance of the system. Each task can do some of its work
while the other tasks are waiting for an event, or for something to do. In this way, the tasks execute almost

in parallel.

There are two types of multitasking available for developing applications in Dynamic C: preemptive and
cooperative. In a cooperative multitasking environment, each well-behaved task voluntarily gives up con-
trol when it is waiting, allowing other tasks to execute. Dynamic C has language extensions, costatements
and cofunctions, to support cooperative multitasking.

Preemptive multitasking is supported by the slice statement, which allows a computation to be divided into
small slices of a few milliseconds each, and by the pC/OS-II real-time kernel.

5.1 Cooperative Multitasking

In the absence of a preemptive multitasking kernel or operating system, a programmer given a real-time
programming problem that involves running separate tasks on different time scales will often come up
with a solution that can be described as a big loop driving state machines.

Figure 5-1 Big Loop

Y

Top of loop

Y

State machine

¢

State machine

¢

State machine
I

Within this endless loop, tasks are accomplished by small fragments of a program that cycle through a
series of states. The state is typically encoded as numerical values in C variables.

Dynamic C User’s Manuall rabbit.com 45

http://www.rabbit.com

State machines can become quite complicated, involving a large number of state variables and a large
number of states. The advantage of the state machine is that it avoids busy waiting, which is waiting in a
loop until a condition is satisfied. In this way, one big loop can service a large number of state machines,
each performing its own task, and no one is busy waiting.

The cooperative multitasking language extensions added to Dynamic C use the big loop and state machine
concept, but C code is used to implement the state machine rather than C variables. The state of a task is
remembered by a statement pointer that records the place where execution of the block of statements has
been paused to wait for an event.

To multitask using Dynamic C language extensions, most application programs will have some flavor of
this simple structure:

main() {
int 1;
whille(1) { // endless loop for multitasking framework
costate { // task 1
- - - // body of costatement
3
costate { // task?2
.- // body of costatement
}
}
}

5.2 A Real-Time Problem

The following sequence of events is common in real-time programming.
Start:

Wait for a pushbutton to be pressed.
Turn on the first device.

Wait 60 seconds.

Turn on the second device.

Wait 60 seconds.

Turn off both devices.

Go back to the start.

A

The most rudimentary way to perform this function is to idle (“busy wait”) in a tight loop at each of the
steps where waiting is specified. But most of the computer time will used waiting for the task, leaving no
execution time for other tasks.

46 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

5.2.1 Solving the Real-Time Problem with a State Machine
Here is what a state machine solution might look like.

tasklstate = 1; // initialization:
while(1){
switch(tasklstate){

case 1:
iT(buttonpushed()){
tasklstate=2; turnondevicel();
timerl = time; // time incremented every second

}

break;

case 2:
1T (time-timerl) >= 60L){
tasklstate=3; turnondevice2();
timer2=time;
}

break;

case 3:
iT((time-timer2) >= 60L){
tasklstate=1; turnoffdevicel();
turnoffdevice2();
}

break;

}

/> other tasks or state machines */

}

If there are other tasks to be run, this control problem can be solved better by creating a loop that processes
a number of tasks. Now each task can relinquish control when it is waiting, thereby allowing other tasks to
proceed. Each task then does its work in the idle time of the other tasks.

Dynamic C User’s Manuall rabbit.com 47

http://www.rabbit.com

5.3 Costatements

Costatements are Dynamic C extensions to the C language which simplify implementation of state
machines. Costatements are cooperative because their execution can be voluntarily suspended and later
resumed. The body of a costatement is an ordered list of operations to perform -- a task. Each costatement
has its own statement pointer to keep track of which item on the list will be performed when the costate-
ment is given a chance to run. As part of the startup initialization, the pointer is set to point to the first
statement of the costatement.

The statement pointer is effectively a state variable for the costatement or cofunction. It specifies the state-
ment where execution is to begin when the program execution thread hits the start of the costatement.

All costatements in the program, except those that use pointers as their names, are initialized when the
function chain _GLOBAL__INIT is called. _GLOBAL__INIT is called automatically by premain before
main is called. Calling _GLOBAL_ INIT from an application program will cause reinitialization of any-
thing that was initialized in the call made by premain.

5.3.1 Solving the Real-Time Problem with Costatements

The Dynamic C costatement provides an easier way to control the tasks. It is relatively easy to add a task
that checks for the use of an emergency stop button and then behaves accordingly.

while(1){
costate{ ... } // task 1
costate{ // task 2

waitfor(buttonpushed());
turnondevicel();
waitfor(DelaySec(60L));
turnondevice2();
waitfor(DelaySec(60L));
turnoffdevicel();
turnoffdevice2();

}

costate{ ... } // task n
}

The solution is elegant and simple. Note that the second costatement looks much like the original descrip-
tion of the problem. All the branching, nesting and variables within the task are hidden in the implementa-
tion of the costatement and its wai tfor statements.

48 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

5.3.2 Costatement Syntax
The keyword costate identifies the statements enclosed in the curly braces that follow as a costatement.

costate [name [state]] { [statement | yield; | abort; |
waitfor(expression); 1 . . .}

name can be one of the following:

« A valid C name not previously used. This results in the creation of a structure of type CoData of the
same name.

* The name of a local or global CoData structure that has already been defined
* A pointer to an existing structure of type CoData

Costatements can be named or unnamed. If name is absent the compiler creates an unnamed structure of
type CoData for the costatement.

state can be one of the following:
e always_on

The costatement is always active. This means the costatement will execute every time it is encoun-
tered in the execution thread, unless it is made inactive by CoPause (). It may be made active
again by CoResume ().

e Init_on

The costatement is initially active and will automatically execute the first time it is encountered in
the execution thread. The costatement becomes inactive after it completes (or aborts). The costate-
ment can be made inactive by CoPause ().

If state is absent, a named costatement is initialized in a paused init_on condition. This means that
the costatement will not execute until CoBegin() or CoResume () is executed. It will then execute
once and become inactive again.

Unnamed costatements are always_on. You cannot specify init_on without specifying a costatement
name.

5.3.3 Control Statements
This section describes the control statements identified by the keywords: waitfor, yield and abort.

waitfor (expression);

The keyword wa i tfor indicates a special waitfor statement and not a function call. Each time
waitfor is executed, expression is evaluated. If true (non-zero), execution proceeds to the next state-
ment; otherwise a jump is made to the closing brace of the costatement or cofunction, with the statement
pointer continuing to point to the wa i tfor statement. Any valid C function that returns a value can be
used in a waltfor statement.

Figure 5-2 shows the execution thread through a costatement when a waitfor evaluates to false. The
diagram on the left side shows which statements are executed the first time through the costatement. The
diagram on the right shows that when the execution thread again reaches the costatement the only state-
ment executed is the waitfor. As long as the wal tFor continues to evaluate to false, it will be the only
statement executed within the costatement.

Dynamic C User’s Manuall rabbit.com 49

http://www.rabbit.com

Figure 5-2 Execution thread when waitfor evaluates to false

v

Statement
Statement

waitfor (

Statement
Statement

costate ...

{

) 5%

- T = < l
- ~
7

costate ...
Statement
Statement
R e
=~ >» waitfor(
Statement
Statement

{

) 574

—|

v g

(b) Subsequent Times

v -

(a) First Time

Figure 5-3 shows the execution thread through a costatement when a wai tfor evaluates to true.

Figure 5-3 Execution thread when waitfor evaluates to true

- T = < l
> ~
7

/ costate ... {
Statement
Statement

\\—)waitfor(

Statement
Statement

: |

v

yield

The yield statement makes an unconditional exit from a costatement or a cofunction. Execution contin-
ues at the statement following y i e ld the next time the costatement or cofunction is encountered by the
execution thread.

Figure 5-4 Execution thread with yield statement

v

costate ...
Statement
statement
yield; -~
statement
Statement

{

—

—

— ~

’/—_—\\l
e

/ costate ...

| Statement
\ statement

yield;
[~ — > statement
Statement

}
|

{

" /

l

(b) Execution thread the
next time the costate
is encountered

(a) Execution of yield

50 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

abort
The abort statement causes the costatement or cofunction to terminate execution. If a costatement is

always_on, the next time the program reaches it, it will restart from the top. If the costatement is not
always_on, it becomes inactive and will not execute again until turned on by some other software.

Figure 5-5 Execution thread with abort statement

v v

costate ... { costate ... {

statement
Statement

Statement
Statement

abort; -~

Statement
Statement

abort;
\ Statement
| statement

S i

(a) At time of abort (b) Next time

A costatement can have as many C statements, including abort, yield, and wai tfor statements, as
needed. Costatements can be nested.

5.4 Advanced Costatement Topics

Each costatement has a structure of type CoData. This structure contains state and timing information. It
also contains the address inside the costatement that will execute the next time the program thread reaches
the costatement. A value of zero in the address location indicates the beginning of the costatement.

5.4.1 The CoData Structure
typedef struct {
char CSState;
unsigned int lastlocADDR;
char lastlocCBR;
char ChkSum;
char firsttime;
union{
unsigned long ul;
struct {
unsigned int ul;
unsigned int u2;
} us;
} content;
char ChkSum2;
} CoData;

Dynamic C User’s Manuall rabbit.com 51

http://www.rabbit.com

5.4.2 CoData Fields
This section describes the fields of the CoData structure.

CSState
The CSState field contains two flags, STOPPED and INIT. The possible flag values and their meaning
are in the table below.

Table 5-1. Flags that Specify the Run Status of a Costatement

STOPPED INIT State of Costatement
e e Done, or has been initialized to run, but set to

y y inactive. Set by CoReset().

yes no Paused, waiting to resume. Set by CoPause ().

no yes Initialized to run. Set by CoBegin().
Running. CoResume () will return the flags to

no no .
this state.

The function 1sCoDone () returns true (1) if both the STOPPED and INIT flags are set. The function
i1sCoRunning() returns true (1) if the STOPPED flag is not set.

The CSState field applies only if the costatement has a name. The CSState flag has no meaning for
unnamed costatements or cofunctions.

Last Location

The two fields lastl0ocADDR and lastlocCBR represent the 24-bit address of the location at which to
resume execution of the costatement. If last10CADDR is zero (as it is when initialized), the costatement
executes from the beginning, subject to the CSState flag. If lastlocADDR is nonzero, the costatement
resumes at the 24-bit address represented by lastl10cADDR and lastlocCBR.

These fields are zeroed whenever one of the following is true:

= the CoData structure is initialized by a call to _GLOBAL_INIT, CoBegin or CoOReset
« the costatement is executed to completion

® the costatement is aborted.

Check Sum
The ChkSum field is a one-byte check sum of the address. (It is the exclusive-or result of the bytes in
lastlocADDR and lastlocCBR.) If ChkSum is not consistent with the address, the program will

generate a run-time error and reset. The check sum is maintained automatically. It is initialized by
_GLOBAL_INIT, CoBegin and CoReset.

First Time

The Firsttime field is a flag that is used by a wai tfor, or wai tFfordone statement. It is set to 1
before the statement is evaluated the first time. This aids in calculating elapsed time for the functions
DelayMs, DelaySec, DelayTicks, IntervalTick, IntervalMs, and IntervalSec.

52 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

Content
The content field (a union) is used by the costatement or cofunction delay routines to store a delay
count.

Check Sum 2
The ChkSum2 field is currently unused.

5.4.3 Pointer to CoData Structure
To obtain a pointer to a named costatement’s CoData structure, do the following:

static CoData costl; // allocate memory for a CoData struct
static CoData *pcostl;

pcostl = &costl; // get pointer to the CoData struct
CoBegin (pcostl); // initialize CoData struct

costate pcostl { // pcostl is the costatement name and also a

.- // pointer to its CoData structure.

}

The storage class of a named CoData structure must be static.

5.4.4 Functions for Use With Named Costatements

For detailed function descriptions, please see the Dynamic C Function Reference Manual or select Func-
tion Lookup/Insert from Dynamic C’s Help menu (keyboard shortcut is <Ctrl-H>).

All of these functions are in COSTATE . L 1B. Each one takes a pointer to a CoData struct as its only
parameter.

int isCoDone(CoData* p);
This function returns true if the costatement pointed to by p has completed.

int isCoRunning(CoData* p);
This function returns true if the costatement pointed to by p will run if given a continuation call.

void CoBegin(CoData* p);
This function initializes a costatement’s CoData structure so that the costatement will be execut-
ed next time it is encountered.

void CoPause(CoData* p);
This function will change CoData so that the associated costatement is paused. When a cos-
tatement is called in this state it does an implicit yield until it is released by a call from
CoResume or CoBegin.

void CoReset(CoData* p);
This function initializes a costatement’s CoData structure so that the costatement will not be
executed the next time it is encountered unless the costatement is declared always_on.
void CoResume(CoData* p);
This function unpauses a paused costatement. The costatement resumes the next time it is called.

Dynamic C User’s Manuall rabbit.com

53

http://www.rabbit.com

5.4.5 Firsttime Functions

In a function definition, the keyword Firsttime causes the function to have an implicit first parameter:
a pointer to the CoData structure of the costatement that calls it. User-defined Firsttime functions are
allowed.

The following Firsttime functions are defined in COSTATE . L1B.

DelayMs(), DelaySec(), DelayTicks()
IntervalMs(), IntervalSec(), IntervalTick(Q)

For more information see the Dynamic C Function Reference Manual. These functions should be called
inside a wal tfor statement because they do not yield while waiting for the desired time to elapse, but
instead return O to indicate that the desired time has not yet elapsed.

5.4.6 Shared Global Variables

The variables SEC_TIMER, MS_TIMER and TICK_TIMER are shared, making them atomic when being
updated. They are defined and initialized in VDRIVER . L1B. They are updated by the periodic interrupt
and are used by Tirsttime functions. They should not be modified by an application program. Costate-
ments and cofunctions depend on these timer variables being valid for use in wai tfor statements that
call functions that read them. For example, the following statement will access SEC_TIMER.

waitfor(DelaySec(3));

5.5 Cofunctions

Cofunctions, like costatements, are used to implement cooperative multitasking. But, unlike costatements,
they have a form similar to functions in that arguments can be passed to them and a value can be returned
(but not a structure).

The default storage class fora cofunction’s variables is Instance. An instance variable behaves like
a static variable, i.e., its value persists between function calls. Each instance of an Indexed Cofunction
has its own set of instance variables. The compiler directive #class does not change the default storage
class for a cofunction’s variables.

All cofunctions in the program are initialized when the function chain _GLOBAL__INIT is called. This
call is made by premain.

5.5.1 Cofunction Syntax
A cofunction definition is similar to the definition of a C function.

cofunc|scofunc type [name][[dim]]([type argl, ..., type argN])
{ [statement | yield; | abort; | waitfor(expression);]... }

cofunc, scofunc

The keywords cofunc or scofunc (a single-user cofunction) identify the statements enclosed in curly
braces that follow as a cofunction.

54 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

type
Whichever keyword (cofunc or scofunc) is used is followed by the data type returned (void, int,
etc.).

name

A name can be any valid C name not previously used. This results in the creation of a structure of type
CoData of the same name.

dim
The cofunction name may be followed by a dimension if an indexed cofunction is being defined.

cofunction arguments (argl, . . ., argN)
As with other Dynamic C functions, cofunction arguments are passed by value.

cofunction body

A cofunction can have as many C statements, including abort, yield, waitfor, andwaitfordone
statements, as needed. Cofunctions can contain calls to other cofunctions.

5.5.2 Calling Restrictions
You cannot assign a cofunction to a function pointer then call it via the pointer.

Cofunctions are called using awaitfordone statement. Cofunctions and the waitfordone statement
may return an argument value as in the following example.

int j,k,x,y,z;
J = waitfordone x = Cofuncl;
k = waitfordone{ y=Cofunc2(...); z=Cofunc3(...); }

The keyword wai tfordone (can be abbreviated to the keyword wFd) must be inside a costatement or
cofunction. Since a cofunction must be called from inside a wfd statement, ultimately a wfd statement
must be inside a costatement. If only one cofunction is being called by wfd the curly braces are not
needed.

The wfd statement executes cofunctions and Firsttime functions. When all the cofunctions and
Tirsttime functions listed in the wfd statement are complete (or one of them aborts), execution pro-
ceeds to the statement following wfd. Otherwise a jump is made to the ending brace of the costatement or
cofunction where the wfd statement appears and when the execution thread comes around again control is
given back to wfd.

In the example above, X, Y and Z must be set by return statements inside the called cofunctions. Exe-
cuting a return statement in a cofunction has the same effect as executing the end brace. In the example
above, the variable K is a status variable that is set according to the following scheme. If no abort has taken
place in any cofunction, K is set to 1, 2, ..., n to indicate which cofunction inside the braces finished exe-
cuting last. If an abort takes place, K is set to -1, -2, ..., -n to indicate which cofunction caused the abort.

Dynamic C User’s Manuall rabbit.com 55

http://www.rabbit.com

5.5.2.1 Costate Within a Cofunc

In all but trivial cases (where the costate is really not necessary), a costate within a cofunc causes execu-
tion problems ranging from never completing the cofunc to unexpected interrupts or target lockups. To
avoid these problems, do not introduce costates with nested wfd cofuncs into a cofunc. If you find yourself
coding such a thing, consider these alternatives:

1. Intermediate regular functions can be used between the cofuncs to isolate them.
2. A regular wai tfor (function) can be substituted for the top level costate's wfd cofunction.

3. The nested costates with wfd cofuncs can be moved up into the body of the calling function, replacing
the top-level costate with the wfd cofunc.

A compiler error will be generated if a costate is found within a cofunction.

5.5.2.2 Using the IX Register
Functions called from within a cofunction may use the [X register if they restore it before the cofunction is
exited, which includes an exit via an incomplete wa i tfordone statement.

In the case of an application that uses the #useix directive, the IX register will be corrupted when any
stack-variable using function is called from within a cofunction, or if a stack-variable using function con-
tains a call to a cofunction.

5.5.3 CoData Structure

The CoData structure discussed in Section 5.4.1 applies to cofunctions; each cofunction has an associated
CoData structure.

5.5.4 Firsttime Functions

The Firsttime functions discussed in “Firsttime Functions” on page 54 can also be used inside cofunc-
tions. They should be called inside a wai tFor statement. If you call these functions from inside a wfd
statement, no compiler error is generated, but, since these delay functions do not yield while waiting for
the desired time to elapse, but instead return 0 to indicate that the desired time has not yet elapsed, the wfd
statement will consider a return value to be completion of the Fi rsttime function and control will pass
to the statement following the wfd.

5.5.5 Types of Cofunctions
There are three types of cofunctions: simple, indexed and single-user. Which one to use depends on the
problem that is being solved. A single-user, indexed cofunction is not valid.

5.5.5.1 Simple Cofunction
A simple cofunction has only one instance and is similar to a regular function with a costate taking up
most of the function’s body.

5.5.5.2 Indexed Cofunction
An indexed cofunction allows the body of a cofunction to be called more than once with different parame-
ters and local variables. The parameters and the local variable that are not declared static have a special
lifetime that begins at a first time call of a cofunction instance and ends when the last curly brace of the
cofunction is reached or when an abort or return is encountered.

56 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

The indexed cofunction call is a cross between an array access and a normal function call, where the array
access selects the specific instance to be run.

Typically this type of cofunction is used in a situation where N identical units need to be controlled by the
same algorithm. For example, a program to control the door latches in a building could use indexed
cofunctions. The same cofunction code would read the key pad at each door, compare the passcode to the
approved list, and operate the door latch. If there are 25 doors in the building, then the indexed cofunction
would use an index ranging from 0 to 24 to keep track of which door is currently being tested. An indexed
cofunction has an index similar to an array index.

waitfordone{ ICofunc[n](-.-..); I1Cofunc2[m](--.); }

The value between the square brackets must be positive and less than the maximum number of instances
for that cofunction. There is no runtime checking on the instance selected, so, like arrays, the programmer
is responsible for keeping this value in the proper range.

5.5.5.2.1 Indexed Cofunction Restrictions
Costatements are not supported inside indexed cofunctions. Single user cofunctions can not be indexed.

5.5.5.3 Single User Cofunction

Since cofunctions are executing in parallel, the same cofunction normally cannot be called at the same
time from two places in the same big loop. For example, the following statement containing two simple
cofunctions will generally cause a fatal error.

waitfordone{ cofunc_nameA(); cofunc_nameA(Q);}

This is because the same cofunction is being called from the second location after it has already started,
but not completed, execution for the call from the first location. The cofunction is a state machine and it
has an internal statement pointer that cannot point to two statements at the same time.

Single-user cofunctions can be used instead. They can be called simultaneously because the second and
additional callers are made to wait until the first call completes. The following statement, which contains
two calls to single-user cofunction, is okay.

waitfordone(scofunc_nameA(); scofunc_nameA();}

loopinit()
This function should be called in the beginning of a program that uses single-user cofunctions. It initializes
internal data structures that are used by loophead () .

loophead()
This function should be called within the “big loop” in your program. It is necessary for proper single-user
cofunction abandonment handling.

Dynamic C User’s Manuall rabbit.com 57

http://www.rabbit.com

Example

// echoes characters
main() {
int c;
serAopen(19200) ;
loopinit();
while (1) {
loophead();
costate {
wfd ¢ = cof_serAgetc();
wfd cof_serAputc(c);

}
}

serAclose();

5.5.6 Types of Cofunction Calls

A wFd statement makes one of three types of calls to a cofunction.

5.5.6.1 First Time Call

A first time call happens when a wFd statement calls a cofunction for the first time in that statement. After
the first time, only the original wfd statement can give this cofunction instance continuation calls until
either the instance is complete or until the instance is given another first time call from a different state-
ment. The lifetime of a cofunction instance stretches from a first time call until its terminal call or until its
next first time call.

5.5.6.2 Continuation Call
A continuation call is when a cofunction that has previously yielded is given another chance to run by the
enclosing WFd statement. These statements can only call the cofunction if it was the last statement to give
the cofunction a first time call or a continuation call.

5.5.6.3 Terminal Call
A terminal call ends with a cofunction returning to its wfd statement without yielding to another cofunc-
tion. This can happen when it reaches the end of the cofunction and does an implicit return, when the
cofunction does an explicit return, or when the cofunction aborts.

58 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

5.5.7 Special Code Blocks

The following special code blocks can appear inside a cofunction.

everytime { statements }

This must be the first statement in the cofunction. The everytime statement block will be executed on
every cofunc continuation call no matter where the statement pointer is pointing. After the every-
time statement block is executed, control will pass to the statement pointed to by the cofunction’s
statement pointer.

The everytime statement block will not be executed during the initial cofunc entry call.

abandon { statements }

This keyword applies to single-user cofunctions only and must be the first statement in the body of the
cofunction. The statements inside the curly braces will be executed if the single-user cofunction is forc-
ibly abandoned. A call to loophead() (defined in COFUNC . L 1B) is necessary for abandon state-
ments to execute.

Example
Samples/COFUNC/ COFABAND.C illustrates the use of abandon.

scofunc SCofTest(int i){
abandon {
printf('CofTest was abandoned\n™);
}
while(i>0) {
printf('CofTest(%d)\n",1);
yield;
}
}

main(){
int x;
Ffor(x=0;x<=10;x++) {
loophead();
if(x<5) {
costate {
wfd SCofTest(l); // first caller

}
}

costate {
wfd SCofTest(2); // second caller
}
}
}

In this example two tasks in main() are requesting access to SCOFTest. The first request is honored
and the second request is held. When loophead () notices that the first caller is not being called each
time around the loop, it cancels the request, calls the abandonment code and allows the second caller in.

Dynamic C User’s Manual rabbit.com 59

http://www.rabbit.com

5.5.8 Solving the Real-Time Problem with Cofunctions
Cofunctions, with their ability to receive arguments and return values, provide more flexibility and speci-
ficity than our previous solutions.

for(;;){
costate{ // task 1
wfd emergencystop();
for (i=0; i<MAX DEVICES; i++)
wfd turnoffdevice(i);

}
costate{ // task?2
wfd x = buttonpushed();
wfd turnondevice(X);
waitfor(DelaySec(60L));
wfd turnoffdevice(X);
ks
costate{ ... } // taskn

}

Using cofunctions, new machines can be added with only trivial code changes. Making
buttonpushed() a cofunction allows more specificity because the value returned can indicate a partic-
ular button in an array of buttons. Then that value can be passed as an argument to the cofunctions
turnondevice and turnoffdevice.

5.6 Patterns of Cooperative Multitasking

Sometimes a task may be something that has a beginning and an end. For example, a cofunction to trans-
mit a string of characters via the serial port begins when the cofunction is first called, and continues during
successive calls as control cycles around the big loop. The end occurs after the last character has been sent
and the wai tFordone condition is satisified. This type of a call to a cofunction might look like this:

waitfordone{ SendSerial(‘''string of characters'); }
[next statement]

The next statement will execute after the last character is sent.

Some tasks may not have an end. They are endless loops. For example, a task to control a servo loop may
run continuously to regulate the temperature in an oven. If there are a a number of tasks that need to run
continuously, then they can be called using a single wai tFordone statement as shown below.

costate {
waitfordone { Taskl(); Task2(); Task3(); Task4(:; }
[to come here is an error]

}

Each task will receive some execution time and, assuming none of the tasks is completed, they will con-
tinue to be called. If one of the cofunctions should abort, then the waitfordone statement will abort,
and corrective action can be taken.

60 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

5.7 Timing Considerations

In most instances, costatements and cofunctions are grouped as periodically executed tasks. They can be
part of a real-time task, which executes every n milliseconds as shown below using costatements.

Figure 5-6 Costatement as Part of Real-Time Task

lentel' every n milliseconds

costate{ ... }
costate{ ... }
costate{ ... }
costate{ ... }

I exit

If all goes well, the first costatement will be executed at the periodic rate. The second costatement will,
however, be delayed by the first costatement. The third will be delayed by the second, and so on. The fre-
quency of the routine and the time it takes to execute comprise the granularity of the routine.

If the routine executes every 25 milliseconds and the entire group of costatements executes in 5 to 10 mil-
liseconds, then the granularity is 30 to 35 milliseconds. Therefore, the delay between the occurrence of a
waitfor event and the statement following the waitfor can be as much as the granularity, 30 to 35
ms. The routine may also be interrupted by higher priority tasks or interrupt routines, increasing the varia-
tion in delay.

The consequences of such variations in the time between steps depends on the program’s objective. Sup-
pose that the typical delay between an event and the controller’s response to the event is 25 ms, but under
unusual circumstances the delay may reach 50 ms. An occasional slow response may have no conse-
quences whatsoever. If a delay is added between the steps of a process where the time scale is measured in
seconds, then the result may be a very slight reduction in throughput.

If there is a delay between sensing a defective product on a moving belt and activating the reject solenoid
that pushes the object into the reject bin, the delay could be serious. If a critical delay cannot exceed 40
ms, then a system will sometimes fail if its worst-case delay is 50 ms.

5.7.1 waitfor Accuracy Limits

If an idle loop is used to implement a delay, the processor continues to execute statements almost immedi-
ately (within nanoseconds) after the delay has expired. In other words, idle loops give precise delays. Such
precision cannot be achieved with waitfor delays.

A particular application may not need very precise delay timing. Suppose the application requires a 60-
second delay with only 100 ms of delay accuracy; that is, an actual delay of 60.1 seconds is considered
acceptable. Then, if the processor guarantees to check the delay every 50 ms, the delay would be at most
60.05 seconds, and the accuracy requirement is satisfied.

Dynamic C User’s Manuall rabbit.com 61

http://www.rabbit.com

5.8 Overview of Preemptive Multitasking
In a preemptive multitasking environment, tasks do not voluntarily relinquish control. Tasks are scheduled

to run by priority level and/or by being given a certain amount of time.

There are two ways to accomplish preemptive multitasking using Dynamic C. The first way is via a
Dynamic C construct called the “slice” statement (described in Section 5.9). The second way is pC/OS-I1,
a real-time, preemptive kernel that runs on the Rabbit microprocessor and is fully supported by Dynamic C
(described in Section 5.10).

5.9 Slice Statements

The sl ice statement, based on the costatement language construct, allows the programmer to run a block
of code for a specific amount of time.

5.9.1 Slice Syntax

slice ([context buffer,] context_buffer_size, time_slice)
[name]{[statement]yield; |abort; |waitfor(expression);]}

context buffer_size

This value must evaluate to a constant integer. The value specifies the number of bytes for the buffer
context_buffer. Itneeds to be large enough for worst-case stack usage by the user program and
interrupt routines.

time_slice
The amount of time in ticks for the slice to run. One tick = 1/1024 second.

name

When defining a named sl i ce statement, you supply a context buffer as the first argument. When you
define an unnamed sl i ce statement, this structure is allocated by the compiler.

[statement | yield; | abort; | waitfor(expression);]
The body of a sl i ce statement may contain:

* Regular C statements
= yield statements to make an unconditional exit.
= abort statements to make an execution jump to the very end of the statement.

= waitfor statements to suspend progress of the slice statement pending some condition indicated by
the expression.

5.9.2 Usage

The sl ice statement can run both cooperatively and preemptively all in the same framework. A slice
statement, like costatements and cofunctions, can suspend its execution with an abort, yield, or
waitfor. It can also suspend execution with an implicit y1e ld determined by the time_slice
parameter that was passed to it. A routine called from the periodic interrupt forms the basis for scheduling
slice statements. It counts down the ticks and changes the s i ce statement’s context.

62 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

5.9.3 Restrictions
Since a sl ice statement has its own stack, local auto variables and parameters cannot be accessed while
in the context of a S i ce statement. Any function called from the slice statement performs normally.

Only one sl ice statement can be active at any time, which eliminates the possibility of nesting slice
statements or using a S1 1 ce statement inside a function that is either directly or indirectly called from a
sl ice statement. The only methods supported for leaving a Sl i ce statement are completely executing
the last statement in the S ice, or executing an abort, yield or waitfor statement.

The return, continue, break, and goto statements are not supported.

Slice statements cannot be used with uC/OS-II or TCP/IP.

5.9.4 Slice Data Structure

Internally, the s1 1 ce statement uses two structures to operate. When defining a named sl i ce statement,
you supply a context buffer as the first argument. When you define an unnamed s 1 1 ce statement, this
structure is allocated by the compiler. Internally, the context buffer is represented by the S1iceBuffer
structure below.

struct SliceData {
int time_out;
void* my_sp;
void* caller_sp;
CoData codata;

}

struct SliceBuffer {
SliceData slice_data;
char stack[]; // fills rest of the slice buffer

¥

5.9.5 Slice Internals

When a sl ice statement is given control, it saves the current context and switches to a context associated
with the s 1ce statement. After that, the driving force behind the Sl 1 ce statement is the timer interrupt.
Each time the timer interrupt is called, it checks to see if a S1 i ce statement is active. If a Sl i ce state-
ment is active, the timer interrupt decrements the time_out field in the sl1ce’s S iceData. When
the field is decremented to zero, the timer interrupt saves the Sl 1ce statement’s context into the
SliceBuffer and restores the previous context. Once the timer interrupt completes, the flow of control
is passed to the statement directly following the s1 1 ce statement. A similar set of events takes place
when the sl 1ce statement does an explicit yield/abort/waitfor.

Dynamic C User’s Manuall rabbit.com 63

http://www.rabbit.com

5.9.5.1 Example 1

Two sl ice statements and a costatement will appear to run in parallel. Each block will run indepen-
dently, but the sl i ce statement blocks will suspend their operation after 20 ticks for slice_a and 40
ticks for shice_b. Costate a will not release control until it either explicitly yields, aborts, or completes.
In contrast, s ice_a will run for at most 20 ticks, then sl ice_b will begin running. Costate a will get
its next opportunity to run about 60 ticks after it relinquishes control.

main () {
int x, y, z;
for G A
costate a {

}

slice(600, 20) { // slice a

}

slice(600, 40) { // slice b

}
}
}

5.9.5.2 Example 2

This code guarantees that the first slice starts on TICK_TIMER evenly divisible by 80 and the second

starts on TICK_TIMER evenly divisible by 105.

main() {
for(::) {
costate {
slice(500,20) {

waitfor(IntervalTick(80));

}
slice(500,50) {

waitfor(IntervalTick(105);

// slice a

// slice b

64 rabbit.com

Multitasking with Dynamic C

http://www.rabbit.com

5.9.5.3 Example 3
This approach is more complicated, but will allow you to spend the idle time doing a low-priority back-
ground task.

main() {
int time left;
long start_time;

for(;;) {
start_time = TICK TIMER;
slice(500,20) { // slice a
waitfor(IntervalTick(80));
}
slice(500,50) { // slice b

waitfor(IntervalTick(105));

¥

time_left = 75-(TICK_TIMER-start_time);

if(time_left>0) {
slice(5600,75-(TICK_TIMER-start_time)) { //slice ¢

}
}
}

Dynamic C User’s Manuall rabbit.com

65

http://www.rabbit.com

5.10 HC/OS-I]

puC/OS-11 is a simple, clean, efficient, easy-to-use real-time operating system that runs on the Rabbit
microprocessor and is fully supported by the Dynamic C development environment. With Dynamic C,
there is no fee to pay for the “Object Code Distribution License” that is usually required for embedding
pC/OS-II in a product.

pnC/OS-II is capable of intertask communication and synchronization via the use of semaphores, mail-
boxes, and queues. User-definable system hooks are supplied for added system and configuration control
during task creation, task deletion, context switches, and time ticks.

For more information on pC/OS-II, please refer to Jean J. Labrosse’s book, MicroC/OS-I1, The Real-Time
Kernel (ISBN: 0-87930-543-6). The data structures (e.g., Event Control Block) referenced in the Dynamic
C pC/OS-II function descriptions are fully explained in Labrosse’s book. It can be purchased at the Rabbit
store, www.rabbit.com/store/, or at http://www.ucos-ii.com/.

The Dynamic C version of pC/OS-II has the new features and API changes available in version 2.51 of
uC/OS-I1. The documentation for these changes will be in the /Samples/UCos-11 directory. The file
Newv251 . pdf contains all of the features added since version 2.00 and Relv251 . pdT contains release
notes for version 2.51.

The remainder of this section discusses the following:

* Dynamic C enhancements to pC/OS-II

* Tasking aware ISRs

* Dynamic C library reentrancy

* How to get a pC/OS-II application running
* TCP/IP compatibility

« API function descriptions

* Debugging tips

5.10.1 Changes to pC/OS-Il
Minor changes have been made to pC/OS-II to take full advantage of services provided by Dynamic C.

5.10.1.1 Ticks per Second

In most implementations of uC/OS-II, OS_TICKS_PER_SEC informs the operating system of the rate at
which OSTimeTick is called; this macro is used as a constant to match the rate of the periodic interrupt.
In uC/OS-II for the Rabbit, however, changing this macro will change the tick rate of the operating system
set up during OSInit. Usually, a real-time operating system has a tick rate of 10 Hz to 100 Hz, or 10-100
ticks per second. Since the periodic interrupt on the Rabbit occurs at a rate of 2 kHz, it is recommended
that the tick rate be a power of 2 (e.g., 16, 32, or 64). Keep in mind that the higher the tick rate, the more
overhead the system will incur.

In the Rabbit version of pC/OS-II, the number of ticks per second defaults to 64. The actual number of
ticks per second may be slightly different than the desired ticks per second if TicksPerSec does not
evenly divide 2048.

Changing the default tick rate is done by simply defining OS_TICKS_PER_SEC to the desired tick rate
before calling OSInit(). For example, to change the tick rate to 32 ticks per second:

66 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com
http://www.rabbitsemiconductor.com/store/
http://www.ucos-ii.com/

#define 0S_TICKS_PER_SEC 32
0SInitQ);
6éétart();

5.10.1.2 Task Creation

In a pC/OS-II application, stacks are declared as static arrays, and the address of either the top or bottom
(depending on the CPU) of the stack is passed to OSTaskCreate. In a Rabbit-based system, the
Dynamic C development environment provides a superior stack allocation mechanism that pC/OS-II
incorporates. Rather than declaring stacks as static arrays, the number of stacks of particular sizes are
declared, and when a task is created using either OSTaskCreate or OSTaskCreateExt, only the
size of the stack is passed, not the memory address. This mechanism allows a large number of stacks to be
defined without using up root RAM.

There are five macros located in ucos2 . 1ib that define the number of stacks needed of five different
sizes. To have three 256-byte stacks, one 512-byte stack, two 1024-byte stacks, one 2048-byte stack, and
no 4096-byte stacks, the following macro definitions would be used:

#define STACK_CNT_256 3 // number of 256 byte stacks
#define STACK _CNT_512 1 // number of 512 byte stacks
#define STACK_CNT_1K 2 // number of 1K stacks
#define STACK_CNT_2K 1 // number of 2K stacks
#define STACK_CNT_4K 0 // number of 4K stacks

These macros can be placed into each uC/OS-II application so that the number of each size stack can be
customized based on the needs of the application. Suppose that an application needs 5 tasks, and each task
has a consecutively larger stack. The macros and calls to OSTaskCreate would look as follows

#define STACK_CNT_256 2 // number of 256 byte stacks
#define STACK_CNT_512 2 // number of 512 byte stacks
#define STACK _CNT_1K 1 // number of 1K stacks
#define STACK_CNT_2K 1 // number of 2K stacks
#define STACK_CNT_4K 1 // number of 4K stacks

OSTaskCreate(taskl, NULL, 256, 0);
OSTaskCreate(task2, NULL, 512, 1);
OSTaskCreate(task3, NULL, 1024, 2);
OSTaskCreate(task4, NULL, 2048, 3);
OSTaskCreate(task5, NULL, 4096, 4);

Note that STACK_CNT_256 is set to 2 instead of 1. pC/OS-II always creates an idle task which runs
when no other tasks are in the ready state. Note also that there are two 512 byte stacks instead of one. This
is because the program is given a 512 byte stack. If the application utilizes the pC/OS-II statistics task,
then the number of 512 byte stacks would have to be set to 3. (Statistic task creation can be enabled and
disabled via the macro OS_TASK_STAT_EN which is located in ucos2 . 1 ib). If only 6 stacks were
declared, one of the calls to OSTaskCreate would fail.

Dynamic C User’s Manuall rabbit.com 67

http://www.rabbit.com

If an application uses 0STaskCreateEXxt, which enables stack checking and allows an extension of the
Task Control Block, fewer parameters are needed in the Rabbit version of pC/OS-II. Using the macros in
the example above, the tasks would be created as follows:

OSTaskCreateExt(taskl, NULL, 0, O, 256, NULL, OS_TASK_OPT_STK_CHK |
0OS_TASK_OPT_STK_CLR);

OSTaskCreateExt(task2, NULL, 1, 1, 512, NULL, OS_TASK OPT_STK CHK |
0S_TASK_OPT_STK_CLR);

OSTaskCreateExt(task3, NULL, 2, 2, 1024, NULL, OS_TASK_OPT_STK_CHK |
OS_TASK_OPT_STK_CLR);

OSTaskCreateExt(task4, NULL, 3, 3, 2048, NULL, OS_TASK OPT_STK_CHK |
0S_TASK_OPT_STK_CLR);

OSTaskCreateExt(task5, NULL, 4, 4, 4096, NULL, OS_TASK_OPT_STK_CHK |
0S_TASK_OPT_STK_CLR);

5.10.1.3 Restrictions

At the time of this writing, pC/OS-II for Dynamic C is not compatible with the use of slice statements.
Also, see the function description for OSTimeTickHook() for important information about preserving
registers if that stub function is replaced by a user-defined function.

Due to Dynamic C's stack allocation scheme, special care should be used when posting messages to either
a mailbox or a queue. A message is simply a void pointer, allowing the application to determine its mean-
ing. Since tasks can have their stacks in different segments, auto pointers declared on the stack of the task
posting the message should not be used since the pointer may be invalid in another task with a different
stack segment.

5.10.2 Tasking Aware Interrupt Service Routines (TA-ISR)

Special care must be taken when writing an interrupt service routine (ISR) that will be used in conjunction
with pC/OS-II so that pC/OS-II scheduling will be performed at the proper time.

5.10.2.1 Interrupt Priority Levels

puC/OS-II for the Rabbit reserves interrupt priority levels 2 and 3 for interrupts outside of the kernel. Since
the kernel is unaware of interrupts above priority level 1, interrupt service routines for interrupts that occur
at interrupt priority levels 2 and 3 should not be written to be tasking aware. Also, a wC/OS-II application
should only disable interrupts by setting the interrupt priority level to 1, and should never raise the inter-
rupt priority level above 1.

5.10.2.2 Possible ISR Scenarios

There are several different scenarios that must be considered when writing an ISR for use with uC/OS-I1.
Depending on the use of the ISR, it may or may not have to be written so that it is tasking aware. Consider
the scenario in Figure 5-7. In this situation, the ISR for Interrupt X does not have to be tasking aware since
it does not re-enable interrupts before completion and it does not post to a semaphore, mailbox, or queue.

68 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

Figure 5-7 Type 1 ISR
Task 1

Interrupt X

Interrupt X ISR

ipres

Task 1

If, however, an ISR needs to signal a task to the ready state, then the ISR must be tasking aware. In the
example in Figure 5-8, the TA-ISR increments the interrupt nesting counter, does the work necessary for
the ISR, readies a higher priority task, decrements the nesting count, and returns to the higher priority task.

Figure 5-8 Type 2 ISR

Task 2
Interrupt X
Nesting =1
Interrupt X TA-ISR Task 1 is readied
Nesting =0
ipres

Task 1

It may seem as though the ISR in Figure 5-8 does not have to increment and decrement the nesting count.
However, this is very important. If the ISR for Interrupt X is called during an ISR that re-enables interrupts
before completion, scheduling should not be performed when Interrupt X completes; scheduling should
instead be deferred until the least nested ISR completes. Figure 5-9 shows an example of this situation.

Dynamic C User’s Manuall rabbit.com 69

http://www.rabbit.com

As can be seen here, although the ISR for interrupt Z does not signal any tasks by posting to a semaphore,
mailbox, or queue, it must increment and decrement the interrupt nesting count since it re-enables inter-

Figure 5-9 Type 2 ISR Nested Inside Type 3 ISR

Task 2

Interrupt Z

Nesting = 1
Do critical code
Interrupt Z TA-ISR ipres

Interrupt X

Nesting = 2
Interrupt X TA-ISR Task 1 is readied

Nesting =1
ipres

Finish ISR

Nesting =0

Task 1

rupts (Ipres) prior to finishing all of its work.

5.10.2.3 General Layout of a TA-ISR

A TA-ISR is just like a standard ISR except that it does some extra checking and house-keeping. The fol-

lowing table summarizes when to use a TA-ISR.

Table 5-2. Use of TA-ISR

HC/OS-11 Application

Type 12

Type 2b

Type 3°

TA-ISR Required? No

Yes

Yes

a. Type 1—Leaves interrupts disabled and does not signal task to ready state

b. Type 2—Leaves interrupts disabled and signals task to ready state
c. Type 3—Reenables interrupts before completion

Figure 5-10 shows the logical flow of a TA-ISR.

70 rabbit.com

Multitasking with Dynamic C

http://www.rabbit.com

Figure 5-10 Logical Flow of a TA-ISR

Save registers used by TA-ISR

¢

Clear interrupt source

¢

Increment nesting count

¢

Do work necessary for interrupt

¢

Reenable interrupts (optional)

¢

Call OSIntExit

¢

Decrement Nesting Count

¢

. Yes . .
Is Nesting ==0 ? Is switch pending ?
4>
No
No l Yes
Restore Registers used by TA-ISR Switch to new task
Return from interrupt
Dynamic C User’s Manuall rabbit.com 71

http://www.rabbit.com

5.10.2.3.1 Sample Code for a TA-ISR

Fortunately, the Rabbit BIOS and libraries provide all of the necessary flags to make TA-ISRs work. With
the code found in Listing 1, minimal work is needed to make a TA-ISR function correctly with uC/OS-II.
TA-ISRs allow pC/OS-II the ability to have ISRs that communicate with tasks as well as the ability to let
ISRs nest, thereby reducing interrupt latency.

Just like a standard ISR, the first thing a TA-ISR does is to save the registers that it is going to use (1).
Once the registers are saved, the interrupt source is cleared (2) and the nesting counter is incremented (3).
Note that bios_1ntnesting is a global interrupt nesting counter provided in the Dynamic C libraries
specifically for tracking the interrupt nesting level. If an ipres instruction is executed (4) other interrupts
can occur before this ISR is completed, making it necessary for this ISR to be a TA-ISR.

If it is possible for the ISR to execute before uC/OS-II has been fully initialized and started multi-tasking,
a check should be made (5) to insure that pC/OS-II is in a known state, especially if the TA-ISR signals a
task to the ready state (6).

After the TA-ISR has done its necessary work (which may include making a higher priority task than is
currently running ready to run), OS INtEX 1t must be called (7). This pC/OS-II function determines the
highest priority task ready to run, sets it as the currently running task, and sets the global flag
bios_swpend if a context switch needs to take place. Interrupts are disabled since a context switch is
treated as a critical section (8).

If the TA-ISR decrements the nesting counter and the count does not go to zero, then the nesting level is
saved in bios_intnesting (9), the registers used by the TA-ISR are restored, interrupts are re-enabled
(if not already done in (4)), and the TA-ISR returns (12). However, if decrementing the nesting counter in
(9) causes the counter to become zero, then bios_swpend must be checked to see if a context switch
needs to occur (10).

If a context switch is not pending, then the nesting level is set (9) and the TA-ISR exits (12). If a context
switch is pending, then the remaining context of the previous task is saved and a long call, which insures
that the Xpc is saved and restored properly, is made to bios_intexit (11). bios_intexitis
responsible for switching to the stack of the task that is now ready to run and executing a long call to
switch to the new task. The remainder of (11) is executed when a previously preempted task is allowed to
run again.

Listing 1

#asm

taskaware_isr::
push af ; push regs needed by isr (@D
push hl ; clear interrupt source (2)
Id hl,bios_intnesting ; increase the nesting count A3)
inc (hD)
; ipres (optional) @
; do processing necessary for interrupt
id a, (OSRunning) ; MCOS multitasking yet? 5)
or a
jr z ,talisr_decnesting
; possibly signal task to become ready ()
call OSIntEXit ; sets bios_swpend if higher

; prio ready a)

72 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

taisr_decnesting:

push ip
ipset 1
id hl,bios_intnesting
dec (hD)
jr nz,taisr_noswitch
id a, (bios_swpend)
or a
jr z,taisr_noswitch
push de
push bc
ex af,af’
push af
exx
push hi
push de
push bc
push iy
Icall bios_intexit
pop y
pop bc
pop de
pop hi
exx
pop af
ex af,af’
pop bc
pop de
taisr_noswitch:
pop 1ip
taisr_done:
pop hi
pop af
ipres
ret
#endasm

; nesting counter == 1?

> switch pending?

@)

€C)

(10)

an

a2

Dynamic C User’s Manual

rabbit.com

73

http://www.rabbit.com

5.10.3 Library Reentrancy

When writing a pC/OS-II application, it is important to know which Dynamic C library functions are non-
reentrant. If a function is non-reentrant, then only one task may access the function at a time, and access to
the function should be controlled with a pC/OS-II semaphore. The following is a list of Dynamic C func-
tions that are non-reentrant.

Table 5-3. Dynamic C Non-Reentrant Functions

Library Non-Reentrant Functions
MATH.LIB randg, randb, rand
RS232_L1B All

RTCLOCK.LIB write_rtc, tm_wr

STDIO.LIB kbhit, getchar, gets, getswf, selectkey

STRING.LIB atof?, atoil, strtok

clockDoublerOn, clockDoublerOff,

SYS-LIB useMainOsc, useClockDivider, use32kHzOsc

VDRIVER.LIB VdGetFreeWd, VdReleaseWd

XMEM.LIB WriteFlash

digOut, digOn, digOff, jriolnit, analn,

JRIO.LIB anaOut, cof_analn

JR485.LIB All

a. reentrant but sets the global _XTOXEFrT flag

The Dynamic C serial port functions (RS232_.L1IB functions) should be used in a restricted manner with
uC/OS-II. Two tasks can use the same port as long as both are not reading, or both are not writing; i.e., one
task can read from serial port X and another task can write to serial port X at the same time without con-
flict.

74 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

5.10.4 How to Get a uC/OS-Il Application Running
uC/OS-I1 is a highly configureable, real-time operating system. It can be customized using as many or as
few of the operating system’s features as needed. This section outlines:

* The configuration constants used in nC/OS-I1
* How to override the default configuration supplied in UCOS2 . L 1B

= The necessary steps to get an application running

It is assumed that the reader has a familiarity with pC/OS-II or has a pC/OS-II reference (MicroC/OS-II,
The Real-Time Kernel by Jean J. Labrosse is highly recommended).

5.10.4.1 Default Configuration

uC/OS-II usually relies on the include file 0S_c¥g. h to get values for the configuration constants. In the
Dynamic C implementation of pC/OS-I1, these constants, along with their default values, are in
os_cfg. lib. A default stack configuration is also supplied in 0s_c¥g. 1 ib. pC/OS-II for the Rabbit
uses a more intelligent stack allocation scheme than other pC/OS-II implementations to take better advan-
tage of unused memory.

The default configuration allows up to 10 normally created application tasks running at 64 ticks per sec-
ond. Each task has a 512-byte stack. There are 2 queues specified, and 10 events. An event is a queue,
mailbox or semaphore. You can define any combination of these three for a total of 10. If you want more
than 2 queues, however, you must change the default value of 0S_MAX_QS.

Some of the default configuration constants are:

0S_MAX_EVENTS Max number of events (semaphores, queues, mailboxes)
Default is 10

0S_MAX_TASKS Maximum number of tasks (less stat and idle tasks)
Default is 10

0S_MAX_QS Max number of queues in system
Default is 2

0S_MAX_ MEM_PART Max number of memory partitions

Default is 1

0S_TASK_CREATE_EN Enable normal task creation
Default is 1

OS_TASK_CREATE_EXT_EN Disable extended task creation

Default is 0
OS_TASK_DEL_EN Disable task deletion

Default is 0
0OS_TASK_STAT_EN Disable statistics task creation

Default is 0
0S_Q_EN Enable queue usage

Defaultis 1

Dynamic C User’s Manuall rabbit.com 75

http://www.rabbit.com

OS_MEM_EN Disable memory manager

Default is 0
0S_MBOX_EN Enable mailboxes
Defaultis 1
0S_SEM_EN Enable semaphores
Default is 1
OS_TICKS_PER_SEC Number of ticks in one second
Default is 64
STACK_CNT_256 Number of 256 byte stacks (idle task stack)
Defaultis 1
STACK_CNT_512 Number of 512-byte stacks

(task stacks + initial program stack)

Default is 0S_MAX_TASKS+1 (11)
If a particular portion of nC/OS-II is disabled, the code for that portion will not be compiled, making the
overall size of the operating system smaller. Take advantage of this feature by customizing pC/OS-II
based on the needs of each application.

5.10.4.2 Custom Configuration

In order to customize pC/OS-II by enabling and disabling components of the operating system, simply
redefine the configuration constants as necessary for the application.

#define OS_MAX_EVENTS 2
#define OS_MAX_TASKS 20
#define O0S_MAX_QS 1
#define 0S_MAX_MEM_PART 15
#define OS_TASK_STAT_EN 1
#define 0S_Q_EN 0
#define OS_MEM_EN 1
#define OS_MBOX_EN 0
#define OS_TICKS_PER_SEC 64

If a custom stack configuration is needed also, define the necessary macros for the counts of the different
stack sizes needed by the application.

#define STACK _CNT_256 1 // idle task stack

#define STACK _CNT_512 2 // initial program + stat task stack
#define STACK _CNT_1K 10 // task stacks

#define STACK_CNT_2K 10 // number of 2K stacks

In the application code, follow the pC/OS-II and stack configuration constants with a #use
“ucos2. lib” statement. This ensures that the definitions supplied outside of the library are used, rather
than the defaults in the library.

This configuration uses 20 tasks, two semaphores, up to 15 memory partitions that the memory manager
will control, and makes use of the statistics task. Note that the configuration constants for task creation,
task deletion, and semaphores are not defined, as the library defaults will suffice. Also note that ten of the

76 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

application tasks will each have a 1024 byte stack, ten will each have a 2048 byte stack, and an extra stack
is declared for the statistics task.

5.10.4.3 Examples

The following sample programs demonstrate the use of the default configuration supplied in UCOS2 . L 1B
and a custom configuration which overrides the defaults.

Example 1

In this application, ten tasks are created and one semaphore is created. Each task pends on the semaphore,
gets a random number, posts to the semaphore, displays its random number, and finally delays itself for
three seconds.

Looking at the code for this short application, there are several things to note. First, since pC/OS-II and
slice statements are mutually exclusive (both rely on the periodic interrupt for a “heartbeat”), #use
“ucos2. 1ib” must be included in every uC/OS-II application (1). In order for each of the tasks to have
access to the random number generator semaphore, it is declared as a global variable (2). In most cases, all
mailboxes, queues, and semaphores will be declared with global scope. Next, 0SInit() must be called
before any other nC/OS-II function to ensure that the operating system is properly initialized (3). Before
puC/OS-II can begin running, at least one application task must be created. In this application, all tasks are
created before the operating system begins running (4). It is perfectly acceptable for tasks to create other
tasks. Next, the semaphore each task uses is created (5). Once all of the initialization is done,
0SStart() is called to start wC/OS-II running (6). In the code that each of the tasks run, it is important
to note the variable declarations. Each task runs as an infinite loop and once this application is started,
pC/OS-II will run indefinitely.

Dynamic C User’s Manuall rabbit.com 77

http://www.rabbit.com

// 1. Explicitly use pC/OS-II library
#use "'ucos2.lib"

void RandomNumberTask(void *pdata);

// 2. Declare semaphore global so all tasks have access
0S_EVENT* RandomSem;

void main(Q){
int i;
// 3. Initialize OS internals
osInit(Q);
for(i = 0; i < OS_MAX_TASKS; i++)

// 4. Create each of the system tasks
OSTaskCreate(RandomNumberTask, NULL, 512,

// 5.semaphore to control access to random number generator
RandomSem = 0OSSemCreate(1l);

// 6. Begin multitasking

);

oSsSstart();
}
void RandomNumberTask(void *pdata)
{
0S_TCB data;
INT8U err;
INT16U RNum;
OSTaskQuery(0OS_PRIO_SELF, &data);
while(1)
{
// Rand is not reentrant, so access must be controlled via a semaphore.
0SSemPend(RandomSem, 0, &err);
RNum = (int)(rand() * 100);
0SSemPost(RandomSem) ;
printf(*"'Task®%d®s random #: %d\n',data.OSTCBPrio,RNum);
// Wait 3 seconds in order to view output from each task.
OSTimeDlySec(3);
}
}

78

rabbit.com

Multitasking with Dynamic C

http://www.rabbit.com

Example 2
This application runs exactly the same code as Example 1, except that each of the tasks are created with
1024-byte stacks. The main difference between the two is the configuration of pC/OS-IIL.

First, each configuration constant that differs from the library default is defined. The configuration in this
example differs from the default in that it allows only two events (the minimum needed when using only
one semaphore), 20 tasks, no queues, no mailboxes, and the system tick rate is set to 32 ticks per second
(1). Next, since this application uses tasks with 1024 byte stacks, it is necessary to define the configuration
constants differently than the library default (2). Notice that one 512 byte stack is declared. Every
Dynamic C program starts with an initial stack, and defining STACK_CNT_512 is crucial to ensure that
the application has a stack to use during initialization and before multi-tasking begins. Finally

ucos2. Lib is explicitly used (3). This ensures that the definitions in (1 and 2) are used rather than the
library defaults. The last step in initialization is to set the number of ticks per second via
0SSetTicksPerSec (4). The rest is identical to example 1 and is explained in the previous section.

/7 1. Define necessary configuration constants for uC/OS-I1

#define 0OS_MAX_EVENTS 2
#define 0S_MAX_ TASKS 20
#define 0S_MAX QS 0
#define 0S_Q_EN 0
#define OS_MBOX_EN 0
#define OS_TICKS_PER_SEC 32

/7 2. Define necessary stack configuration constants
#define STACK_CNT_512 1 // initial program stack
#define STACK_CNT_1K 0OS_MAX_TASKS // task stacks

// 3. This ensures that the above definitions are used
#use "'ucos2.lib"

void RandomNumberTask(void *pdata);

// Declare semaphore global so all tasks have access
0S_EVENT* RandomSem;

void main(){
int i;
// Initialize OS internals
osInit(Q);
for(i = 0; 1 < OS_MAX _TASKS; i++){

// Create each of the system tasks
OSTaskCreate(RandomNumberTask, NULL, 1024, i);

}

// semaphore to control access to random number generator
RandomSem = 0OSSemCreate(1l);

// 4. Set number of system ticks per second
0SSetTicksPerSec(0OS_TICKS _PER_SEC);

// Begin multi-tasking
osstart();

Dynamic C User’s Manuall rabbit.com 79

http://www.rabbit.com

void RandomNumberTask(void *pdata)

{

// Declare as auto to ensure reentrancy.
auto OS_TCB data;
auto INT8U err;
auto INT16U RNum;

OSTaskQuery(0OS_PRIO_SELF, &data);
while(1)
{

// Rand is not reentrant, so access must be controlled via a semaphore.
0SSemPend(RandomSem, 0, &err);

RNum = (int)(rand() * 100);

0SSemPost(RandomSem) ;

printf("'Task%02d"s random #: %d\n",data.OSTCBPrio,RNum);

// Wait 3 seconds in order to view output from each task.
OSTimeDlySec(3);
}
}

5.10.5 Compatibility with TCP/IP
The TCP/IP stack is reentrant and may be used with the pC/OS real-time kernel. The line
#use ucos2.lib

must appear before the line

#use dcrtcp.lib
A call to OSInit() must be made before calling sock_init().

5.10.5.1 Socket Locks

Each socket used in a pC/OS-II application program has an associated socket lock. Each socket lock uses
one semaphore of type OS_EVENT. Therefore, the macro MAX_0S_EVENTS must take into account each
of the socket locks, plus any events that the application program may be using (semaphores, queues, mail-
boxes, event flags, or mutexes).

Determining OS_MAX_EVENTS may get a little tricky, but it isn't too bad if you know what your program
is doing. Since MAX_SOCKET_LOCKS is defined as:

#define MAX_SOCKET_LOCKS (MAX_TCP_SOCKET_BUFFERS +
MAX_UDP_SOCKET_BUFFERS)
0S_MAX_EVENTS may be defined as:
#define OS_MAX_EVENTS MAX_TCP_SOCKET_BUFFERS +
MAX_UDP_SOCKET_BUFFERS + 2 + z
The constant “2” is included for the two global locks used by TCP/IP, and “z” is the number of

OS_EVENTS (semaphores, queues, mailboxes, event flags, or mutexes) required by the program.

If either MAX_TCP_SOCKET_BUFFERS or MAX_UDP_SOCKET_BUFFERS is not defined by the appli-
cation program prior to the #use statements for ucos. 1 ib and dcrtcp. b, default values will be
assigned.

80 rabbit.com Multitasking with Dynamic C

http://www.rabbit.com

If MAX_TCP_SOCKET_BUFFERS is not defined in the application program, it will be defined as
MAX_SOCKETS. If, however, MAX_SOCKETS is not defined in the application program,
MAX_TCP_SOCKET_BUFFERS will be 4.

If MAX_UDP_SOCKET_BUFFERS is not defined in the application program, it will be defined as 1 if
USE_DHCP is defined, or 0 otherwise.

For more information about TCP/IP, please see the Dynamic C TCP/IP User’s Manual, Volumes 1 and 2,
available online at rabbit.com.

5.10.6 Debugging Tips

Single stepping may be limited to the currently running task by using the F8 key (Step over). If the task is
suspended, single stepping will also be suspended. When the task is put back in a running state, single
stepping will continue at the statement following the statement that suspended execution of the task.

Pressing the F7 key (Trace into) at a statement that suspends execution of the current task will cause the
program to step into the next active task that has debug information. It may be useful to put a watch on the
global variable OSPrioCur to see which task is currently running.

For example, if the current task is going to call 0SSemPend () on a semaphore that is not in the signaled
state, the task will be suspended and other tasks will run. If F8 is pressed at the statement that calls
0SSemPend(), the debugger will not single step in the other running tasks that have debug information;
single stepping will continue at the statement following the call to 0SSemPend (). If F7 is pressed at the
statement that calls 0SSemPend () instead of F8, the debugger will single step in the next task with
debug information that is put into the running state.

5.11 Summary

Although multitasking may actually decrease processor throughput slightly, it is an important concept. A
controller is often connected to more than one external device. A multitasking approach makes it possible
to write a program controlling multiple devices without having to think about all the devices at the same
time. In other words, multitasking is an easier way to think about the system.

Dynamic C User’s Manuall rabbit.com 81

http://www.rabbit.com
http://www.rabbitsemiconductor.com/products/dc/docs.shtml

82

rabbit.com

Multitasking with Dynamic C

http://www.rabbit.com

| RABEIT-stg= PRODUCT MANUAL

6. DEBUGGING WITH DYNAMIC C

This chapter is intended for anyone debugging Dynamic C programs. For the person with little to no expe-
rience, we offer general debugging strategies in Section 6.5. Both experienced and inexperienced Dynamic
C users can refer to Section 6.3 to see the full set of tools, programs and functions available for debugging
Dynamic C programs. Section 6.4 consolidates the information found in the GUI chapter regarding debug-
ging features into an quicker-to-read table of GUI options. And lastly, Section 6.6 gives some good refer-
ences for further study.

Dynamic C comes with robust capabilities to make debugging faster and easier. The debugger is highly
configurable; it is easy to enable or disable the debugger features using the Project Options dialog.

6.1 Debugging Features Prior to Dynamic C 9

The following features are available prior to Dynamic C 9. They are summarized here, with links to more
detailed descriptions.

printf() - Display messages to the Stdio window (default) or redirect to a serial port. May also write to a
file.

= Software Breakpoints - Stop execution, allow the available debug windows to be examined: Stack,
Assembly, Dump and Register windows are always available.

= Single Stepping - Execute one C statement or one assembly statement. This is an extension of break-
points, so again, the Stack, Assembly, Dump and Register windows are always available.

= Watch Expressions - Keep running track of any valid C expression in the application. Fly-over hints
evaluate any watchable statement.

* Memory Dump - Displays blocks of raw values and their ASCII representation at any memory location
(can also be sent to a file).

= MAP File - Shows a global view of the program: memory usage, mapping of functions, global/static
data, parameters and local auto variables, macro listing and a function call graph.

= Assert Macro - This is a preventative measure, a kind of defensive programming that can be used to
check assumptions before they are used in the code. This was introduced in Dynamic C 8.51.

= Blinking Lights - LEDs can be toggled to indicate a variety of conditions. This requires a signal line
connected to an LED on the board.

Dynamic C User’s Manuall rabbit.com 83

http://www.rabbit.com

6.2 Debugging Features Introduced in Dynamic C 9

Dynamic C 9 contains all the previous debugging tools and the additional ones listed here.

Execution Trace - Traces at each statement, each function, or customer inserted points. Displays results
in the Trace window. The options for execution tracing are configurable. This feature is disabled by
default.

Symbolic Stack Trace - Helps customers find out the path of the program at each single step or break
point. By looking through the stack, it is possible to reconstruct the path and allow the customer to eas-
ily move backwards in the current call tree to get a better feeling for the current debugging context.

Persistent Breakpoints - Persistent breakpoints mean the information is retained when transitioning
back and forth from edit mode to debug mode and when a file is closed and re-opened.

Enhanced Watch Expressions - The Watches window is now a tree structure capable of showing struct
members. That is, all members of a structure become viewable as watch expressions when a structure is

added, without having to add them each separately.

Enhanced Memory Dumps - Changed data in the Memory Dump window is highlighted in reverse
video or in customizable colors every time you single step in either C or assembly.

Enhanced Mode Switching - Debug mode can be entered without a recompile and download. If the
contents of the debugged program are edited, Dynamic C prompts for a recompile.

Enhanced Stdio Window - The Stdio window is directly searchable.

Execution tracing is available with Dynamic C version 9. For more information on this debugging feature
please see technical note TN253 “Execution Tracing.” All technical notes are available at rabbit.com.

84

.rabbit.com Debugging with Dynamic C

http://www.rabbitsemiconductor.com/support/techNotes_whitePapers.shtml
http://www.rabbit.com

6.3 Debugging Tools

This section describes the different tools available for debugging, including their pros and cons, as well as
when you might want to use them, how to use them and an example of using them. The examples are sug-
gestions and are not meant to be restrictive. While there may be some collaboration, bug hunting is largely
a solitary sport, with different people using different tools and methods to solve the same problem.

6.3.1 printf()

The printf() function has always been available in Dynamic C, with output going to the Stdio window
by default, and optionally to a file (by configuring the Stdio window contents to log to a file). The ability
to redirect output to any one of the serial ports A, B, C or D was introduced in Dynamic C 7.25. In DC
8.51, serial ports E and F were added for the Rabbit 3000. See Samples\stdio_serial .c for
instructions on how to use the serial port redirect. This feature is intended for debug purposes only.

The syntax for printf() is explained in detail in the Dynamic C Function Reference Manual, including
a listing of allowable conversion characters.

Pros A printf() statement is quick, easy and sometimes all that is needed to nail
down a problem.

You can use #1FdeT directives to create levels of debugging information that
can be conditionally compiled using macro definitions. This is a technique used
by Rabbit engineers when developing Dynamic C libraries. In the library code
you will see statements such as:

#ifdef LIBNAME_DEBUG
printf(“Insert information here.\n”);

#endif
#ifdef LIBNAME_VERBOSE
printf(““Insert more information.\n);

#endi T
By defining the above mentioned macro(s) you include thecorresponding printf
statements.

Cons The printf () function is so easy to use, it iseasy to overuse. This can lead to
a shortage of root memory. A solution to this that allows you to still have lots of
printf strings is to place the strings in extended memory (xmem) using the key-
word xdata and then call printF() with the conversion character “%ls.” An
overuse of printf statements can also affect execution time.

Uses Use to check a program’s flow without stopping its execution.

Dynamic C User’s Manuall rabbit.com 85

http://www.rabbit.com

Example There are numerous examples ofusing printf() in the programs providedin
the Samples folder where you installed Dynamic C.

To display a string to the Stdio window place the following line of code in your
application:

printf(""Entering my_ function()-\n"");

To do the same thing, but without using root memory:

xdata entering {“Entering my_function().”’};
printf("%Is\n", entering);

6.3.2 Software Breakpoints

Software breakpoints have always been available in Dynamic C. They have been improved over several
versions: the “Clear All Breakpoints” command was introduced in DC 7.10; the ability to set breakpoints
in ISRs was introduced in DC 7.30; DC 9 introduces persistent breakpoints and the ability to set break-
points in edit mode.

Pros Software breakpoints can be set on any C statement unless it is marked “node-
bug” and in any “#asm debug” assembly block. Breakpoints let you run a pro-
gram at full speed until the specified stopping point is reached. You can set
multiple breakpoints ina program or evenon the same line. They are easy to tog-
gle on and off individually and can all be cleared with one command. You can
choose whether to leave interrupts turned on (soft breakpoint) or not (hard
breakpoint).

When stopped at a breakpoint, you can examine up-to-date contents in debug
windows and choose other debugging features to employ, such as single step-
ping, dumping memory, fly-over watch expressions.

Cons To support large sector flash, breakpoint internals require that breakpoint over-
head remain, even when the breakpoint ha been toggled off. Recompile the pro-
gram to remove this overhead.

When the debug keyword is added to anassembly block, relative jumps (which
are limited to 128 bytes) may go out of range. If this happens, change the JR in-
struction to a JP instruction. Another solution is to embed a null C statement in
the assembly code like so:

#asm
c // Set a breakpoint on the semicolon
#endasm
Uses Use software breakpoints when you need to stop at a specified location to begin
single stepping or to examine variables, memory locations or register values.

86 .rabbit.com Debugging with Dynamic C

http://www.rabbit.com

Example Open Samples\Demol.c. If you are using DC 9, place the cursor on the
word “for,” then press F2 to insert a breakpoint. Otherwise, press F5 to compile
the program before setting the breakpoint. Now press F9. Every time you press
F9 program execution will stop when it hits the start of the for loop. From here
you can single step or look at a variety of information through debug windows.

For example, let us say there is a problem when you get to the limit of a for
loop. You can use the Evaluate Expressions dialog to set the looping variable to
a value that brings program execution to the exact spot that you want, as shown
in this screenshot:

Figure 6.1 Altering the looping variable when stopped at a breakpoint

HDYNAMIC C 9, SAMPLES \DEMOL.C

9 main()] {
10
11 int i, 3:
1z
3 TeieEs Besut [i=19933 int 19393 (D+4ETF)
14
15 while (1) { Evaluate I Llose | Help |
16 i44:
17
15 Bor (3=0: 3<20000: ++): J
19
z0 printf("i = sdin™, ij:
71 1 had
| | LA

Dynamic C User’s Manuall rabbit.com

87

http://www.rabbit.com

6.3.3 Single Stepping
Single stepping has always been available in Dynamic C. In version 7.10, the ability to single step on C
statements with the Assembly window open was added.

Pros Single stepping allows you to closelysupervise program execution at the source
code level, either by C statement or assembly statement. This helps intracing the
logic of the program. You can single step any debuggable statement. Even Dy-
namic C library functions can be stepped into as long as they are not flagged as
not available with the keyword nodebug.

Cons Single stepping is of limited use if interaction with an external device is being
examined; an external device does not stop whatever it is doing just because the
execution of the application has been restrained.

Also, single stepping can be very tediow if stepping through many instructions.
Well-placed breakpoints might serve you better.

Uses Single stepping is typically used when you have isolated the problem and have
stopped at the area of interest using a breakpoint.

Example To single step through a program instead of running at full execution speed, you
must either set a breakpoint while in edit mode (if you have DC 9) or compile
the program without running it.

To compile the program with-
out running it, use the Com-
pile menu option, the

% Dynamic C Dist. 9,00
File Edit | Compile Run Inspect Options Window

keyboard shortcut F5 or the “ N = T Compile F&

toolbar menu button (pictured
to the left of the Compile
menu option).

& Compile ko Target b
4 Compile to . bin File *

F7. F8. Al+F7 and AI-F8 are ,Es Reset Target [Compile BIOS CheldY

the keyboard shortcuts for

stepping through code. Use F7 if you want to step at the C statement level, but
want to step into calls to debuggable functions. Use F8 instead if you want to
step over function calls.

If the Assembly window is open, the stepping will be done by assembly instruc-
tion instead of by C statenent if the feature “Enéable instruction level single step-
ping” is checked on the Debugger tab of the Project Options dialog; otherwise,
stepping is done by C statement regardless of the status of the Assembly win-
dow. If you have checked “Enable instruction level single stepping” but wish to
continue to step by C satement when the Assembly window is open, use Alt+F7
or Alt+F8 instead of F7 or F8.

88 .rabbit.com Debugging with Dynamic C

http://www.rabbit.com

6.3.4 Watch Expressions

Like many other debugging features, watch expressions have been around since the beginning and have
improved over time. Dynamic C 8.01 introduced the ability to evaluate watchable expressions using fly-
over hints. (The highlighted expression does not need to be set as a watch expression for evaluation in a

flyover hint.) Dynamic C 9 introduced a new way of handling structures as watch expressions. Previously

when you set a watch on a struct, its members had to be added separately and deliberately. Now they are

set as watch expressions automatically with the addition of the struct.

Pros

Cons

Uses

Example

Any valid C expression can be watched. Multiple expressions can be watched
simultaneously. Once a watch is set on an expression, its value is updated in the
Watches window whenever program execution is stopped.

The Watches window may be updated while the program is running
Q¥ (which will affect timing) by issuing the “Update Watch Window” com-
mand: use the Inspect menu, Ctrl+U or the toolbar menu button shown
hereto update the Watches window.

You can use flyover hints to find out the value of any highlighted C expression
when the program is stopped.

The scope of variables in watch expressions affects the value thatis displayed in
the Watches window. If the variable goes out of scope, its true value will not be
displayed until it comes back into scope.

Keep in mind two additional things, which are not bad per se,but could be if they
are used carelessly: Assignment statements in a watch expression will change
the value of a variable every time watches are evaluated. Similarly, when a func-
tion call is in a watch expression, the function will run every time watches are
evaluated.

Use a watch expression when the value of the expression is important to the be-
havior of the part of the program you are analyzing.

Watch expressions can be used to evaluate complicated conditionals. A quick
way to see this is to run the program Samp les\pong. cC. Set a breakpoint at
this line

if (nx <= x1]| nx >= xh)
within the function pong (). While the program is stopped, highlight the sec-
tion of the expression you want evaluated. Use the watches flyover hint by hov-
ering the cursor over the highlighted expression. It will be evaluated and the

result displayed. You can see the values of, e.g., nX or X1 or the result of the
conditional expression NX <= X1, depending on what you highlight.

Keep in mind that when single stepping in assembly, the value of the watch ex-
pression may not be valid for variables located on the stack (all auto variables).
This is because the debug kernel does nat keep track of the pushesand pops that
occur on the stack, and since watches of stack variables only make sense in the
context of the pushes and pops that have happened, they will not always be ac-
curate when assembly code is being single stepped.

Dynamic C User’s Manuall rabbit.com

89

http://www.rabbit.com

6.3.5 Evaluate Expressions

The evaluate expression functionality was separated out from watch expressions in Dynamic C 8.01. It is a
special case of a watch expression evaluation in that the evaluation takes place once, when the Evaluate but-
ton is clicked, not every time the Watches window is updated.

Pros Like watches, you can use the Evaluate Expression feature on any valid C ex-
pression. Multiple Evaluate Expression dialogs can be opened simultaneously.

Cons Can alter program data adversely if the change being made is not thought out
properly
Uses This feature can be used to quicklyand easily explore a variant of program flow

Example Say youhave an application that is supposed to treat the 100th iteration of a loop
as a special case,but it does not. You do not want to seta breakpoint on the loop-
ing statement and hit F9 that many times, so instead you force the loop variable
to equal 99 usingthe evaluate expression dalog. To do thiscompile the program
without running it. Set a breakpoint at the start of the loop and then single step
to get past the loop variable initialization. Open the Inspect menu and choose
Evaluate Expression. Type in “j=99” and click on the Evaluate button. Now you
are ready to start examining the program’s behavior.

90 .rabbit.com Debugging with Dynamic C

http://www.rabbit.com

6.3.6 Memory Dump

The Dump window was improved in Dynamic C 8.01 in several ways. For example, multiple dump win-
dows can be active simultaneously, flyover hints make it easier to see the correct address, and three differ-
ent types of dumps are allowed. Read the section titled, “Dump at Address,” for more information on these
and the other improvements made in version 8.01. In Dynamic C 9, dump windows were improved again.
One improvement is that values that have changed are shown highlighted in reverse video or in customiz-
able colors. Another improvement is that the value entered in the Memory Dump Setup dialog is the first
address shown in the dump window. E.g., if you type in a logical address such as 74ec (all addresses are in
hexadecimal), that will be the first address shown. Earlier versions of Dynamic C took a zero-based
approach, meaning that the first address would be 74¢0.

Pros

Cons

Uses

Example

Dump windows allow access to any memory location, beginning at any address.
There are alignment options; the data can be viewed as bytes, words or double-
words using a right-click menu.

The Dump window does not contain symbolic information, which makes some
information harder to decipher. There is the potential for increased debugging
overhead if you open multiple dump windows and make them large.

Use a dump window when you suspect memory is being corrupted. Or to watch
string or numerical data manipulation proceed. String manipulation can easily
cause memory corruption if you are not careful.

Consider the following code:

char my array[10];

for (i=0; i<=10; i++){
my_array[i] = Oxff;

}

If you do not have run-time checking of array indices enabled, thiscode will cor-
rupt whatever is immediately following my_array in memory.

There isno run-time checking for stringmanipulation, so ifyou wrote something
like the following inyour application, memory would be corrupted whenthe null
terminator for the string “1234” was written.

void foo O {
int x;
char str[4];
X = OxFfff;
strcpy(str,”12347);
}
Watching changes in a dump window will make the mistake more obvious in
both of these situations, though in the former, turning on run-time checking for
array indices in the Compiler tab of the Project Options dialog is easier.

Dynamic C User’s Manuall rabbit.com 91

http://www.rabbit.com

6.3.7 MAP File

Map files have been generated for compiled programs since Dynamic C 7.02.

Pros

Cons

Uses

Example

The map file is full of useful information. It contains,

* location and size of code and data segments
* a list of all symbols used, their location, size and their file of origin

» a list of all macros used, their file of origin and the line number wthin that file

where the macro is defined
* function call graph

A valid map file is produced after a successful compile, so it is available when
a program crashes.

If the compile was not successful, for example you get a message that says you
ran out of root code space, the map file will still be created, but will contain in-
complete and possibly incorrect information.

Map files are useful when you want to gather more data or are trying to get a
comprehensive overview of the program. A map file can help you make better
use of memory in cases where you are running short or are experiencing stack
overflow problems.

Say you are pushing the limits of memory in your application and want to see
where you can shave bytes. The map file contains sizes for all the data used in
your program.The screen shot below shows some code and part of its map file.
Maybe you meant to type “200” asthe size for my_array and added azero on
the end by mistake. (This is a good place to mention that using hard-coded val-
ues is more prone to error than defining and using constants.)

¥ C:\DYNAMIC C 9\SAMPLES\DEMO1.C =10] x|
maini) { ;l

int i, 3:
int my_array[2000];
i-v
f
% C:\ DYNAMIC C 9%, 5AMPLES',DEMO1.MAP i 1ol xi
// Parameter and local auto symbol mapping and source reference.;l
fi0ff=zert Rel. to Size Symbol File
4002 3P 2 main: i Y DEM
4000 3P Z main:j WDEM 4
u} 3P 4000 waRinimy array Y DEM
2 SP 2 printf: fut Y STD
z 3P z _gead:c Y STD
4 sp 2 qe2: printfhuf \S'flll
ol | v s

Scanning the size column, the mistake jumps out at you more readily than look-
ing at the code, maybe because you expect to see “200” and so your brain filters
out the extra zero. For whatever reason, looking atthe same information in a dif-
ferent format allows you to see more.

The size value for functions might not beaccurate because it measures code dis-
tance. In other words, if a function spans a gap created with a follows action, the
size reported for the function will be much greater than the actual number of

92

.rabbit.com Debugging with Dynamic C

http://www.rabbit.com

bytes added to the program. The follows action is an advanced topic related to
the subject of origin directives. See the Rabbit 3000 Designer’s Handbook for a
discussion of origin directives and action qualifiers.

The map file provides the logical and physical addresses of the program and its
data. The screen shot below shows a small section of demol.map. The left-
most column shows line nunbers, with addresses to their immediate right. Using
the addresses we can reproduce the actions taken by the Memory Management
Unit (MMU) of the Rabbit. Addresses with four-digits are both the logical and
the physical address. Thatis because in the logical address space they are in the
base segment, which always starts at zew in thephysical address space. You can
see this foryourself by openingtwo dump windows: one with afour-digit logical
address and thesecond with that samefour-digit number but with a lading zero,
making it a physical address. The contents of the dump windows will be the
same.

% C:\DYNAMIC C 9'5AMPLESY DEMO1.MAP =] 5
179 Zfa:eicco * dkCheckEntry ‘-.DKCORE;!
150 farezd? % dkZetSingle3tepHook % DEENTER
151 fa:rez2df & dkZetEpilogHook % DEENTER
182
183
184 // Global/static data sywbol mapping and source reference.
185 // Addr Gize Sywbol File
156 Z2oho 129 _ctype table W STRING
1587 zf0ad 10 _tens WETDIO.!
1588 3308 44 _ ltens WISTDIC.:
159 3523 32 pflec:round YSTDIO.:
150 3eB3 4 _ froa:lg 2 10 Y STDIO.!
191 462k 3z _ T divxmemwrapper:_ divtable " MUTILF:
192 b1l:c387 4 __initial stack W PROGRA
193 bl:c383 4 freedtacks WETACK.!
194 40el 10 stackiizes WETACKE. |

« | ﬁ

The addresses in the format xx:yyyy are physical addresses. For code xx is the
XPC value, for data it is the value of DATASEG:; yyyy is the PC value for both
code and data. In the abovemap file you can see examples of bah code and data
addresses. Addresses in the format xx:yyyy are transformed by the MMU into a
5-digit physical address.

We will use the address fa:e64c to explain the actions of the MMU. It is really
very simple if you can dohex arithmetic in your head or have a decent calculator.
The MMU takes the XPC or DATASEG value, appends three zeros to it, then
adds it to the PC value, like so:

fa000 + e64c = 10864c

A sixth digit in the result is ignored, leaving us with the value 0x0864c. This is
the physical address. Again, you can checkthis in a couple of dump windows by
typing in the 5-digit physical address for one window and the XPC:offset into
another and seeing that the contents are the same.

Dynamic C User’s Manuall rabbit.com

93

http://www.rabbit.com

6.3.8 Execution Trace

Execution tracing was introduced in Dynamic C 9. The program Samples\demo4 . ¢ demonstrates its
use. Go to Section 3.4 for a full description of demo4 . C.

There are basically three ways to toggle tracing during program execution. Two of them are similar: they
require that tracing be enabled in the Debugger tab of the Project Options dialog and they do not trace in
nodebug functions.

= GUI options: Opening the Inspect menu, you will see the “Stop Execution Tracing” and the “Start Exe-
cution Tracing” commands, along with their keyboard shortcuts and toolbar buttons. Use any of these
methods to start and stop execution tracing while the program is running or while stopped at a break-
point.

* TRACEON and _ TRACEOFF: Macros that are the equal to the GUI options

The third way does not require tracing to be enabled and it can be done in nodebug functions.

= TRACE: A macro that causes itself, and only itself, to be traced.

Note that execution tracing is intrusive, slightly more so when the Trace window is open.

Pros The large amount of tracing information that may be saved on the host PC is
available even if the program crashes. Tracing information fields can be turned
on and off by the user on the Debugger tab of the Project Options dialog. The
size ofthe trace buffer, which determines the number of trace entries, and wheth-
er to save the buffer to a file on program termination are also decided on the De-
bugger tab.

Cons Execution tracing alters the timing of a program because tracing information is
inserted between every source statement that is executed. Therefore, execution
tracing may not be useful in tracking down a timing related problem... it might
even cause one.

Uses A good data gathering tool to use when you are not sure what is happening.

Example Say you have an application in which program flow deviates at some unknown
point that is too tedious to detect by stepping. With execution tracing enabled,
compile the program and click “Trace On” in the Inspect menu. Run the program
and stop when the deviation is known or suspected to have occurred. Open the
Trace window. You can now follow the execution at any point in the trace by
double-clicking to source, or save to a file and grep for pertinent function calls
or lines executed.

94 .rabbit.com Debugging with Dynamic C

http://www.rabbit.com

6.3.9 Symbolic Stack Trace

Dynamic C has always had the Stack window, but the Stack Trace window is new in Dynamic C 9. The old
Stack window is still available to any compiled program, and being able to view the top 32 bytes of the
stack could still be useful.

The Stack Trace window lets you see where you are and how you got there. It keeps a running depth value,
telling you how many bytes have been pushed on the stack in the current program instance, or since the
depth value reset button was clicked. The Stack Trace window only tracks stack-based variables, i.e., auto
variables. The storage class for local variables can be either auto or static, specified through a modifier
when the variable is declared or globally via the #class directive. Whatever the means, if a local variable is
marked static it will not appear in the Stack Trace window.

Pros Provides a concise history ofthe call sequence and values of local variables and
function arguments that led to the currentbreakpoint, all for a very small costin
execution time and BIOS memory.

Cons Currently, the Stack Trace window can not trace the parameters and local vari-
ables in cofunctions. Also the contents of the window can not be saved after a
program crash.

Uses Use stack tracing to capture the call sequence leading to abreakpoint and to see
the values of functions arguments and local variables.

Example Say you have a function that is behaving badly. You can set a breakpoint in the
function and use the Stack Trace window to examine the function call sequence.
Examining the call sequence and the paameters being passedmight give enough
information to solve the problem.

The following screenshot shows an instance of qsortdemo . ¢ and the Stack
Trace window. Note that the call to memcpy () is not represented on the stack.
The reason? Its stack activity had completed and program execution had re-
turned to main() when the stack was traced at the breakpoint in the function
mycmp().

Figure 6.2 Using Stack Trace

% C:\DYNAMIC C 9,5AMPLES,QSORTDEMO.C

S user defined compare must be supplied for gsort
int mwyowp (int *p,int o)

!eturn R TH T e
i

woid maing)
{
int i;

A4 copy initialized data to RAM
wemchy (p, 2, sizeof (Q))

A4 sort it
gsort (p, ARRAY ELEMENT COUNT, Z,myewmp) ;

4 |
,’-:T'E?-,-Stack Trace i] 4|

wycup (p=0xC377, g=0xC37F)
gsort (base=, n=0xk, s=0x&, cmp=0x1D34) i=0x0, j=0x9, piv=0x4, lo=0x0, hi=0x3,6 pivot=(0xC37F; "O"
wmaini) i=0x1DEE

| | i
4

[pepth: 35 Max Depth: 35

Dynamic C User’s Manuall rabbit.com 95

http://www.rabbit.com

6.3.10 Assert Macro

The assert macro was introduced in Dynamic C 8.51. The Dynamic C implementation of assert follows the
ANSI standard for the NDEBUG macro, but differs in what the macro is defined to be so as to save code
space (ANSI specifies that assert is defined as ((void)0) when NDEBUG is defined, but this generates a
NOP in Dynamic C, so it is defined to be nothing).

Pros The assert macro is self-checking software. It lets you explicitly state something
is true, and if it turns out to be false, the program terminates with an error mes-
sage. At the time of this writing, this link contained an excellent write-up on the
assert macro:

http://www.embedded.com/story/0OEG20010311S0021

Cons Side effects can occur if the assert macro is not coded properly, e.g.,
assert(i=1)
will never trigger the assertand will change the value ofthe variable i; it should
be coded as:

assert(i==1)
Uses Use the assert macro when you must make sure your assumption is accurate.

Example Check for a NULL pointer before using it.

void my function (int * ptr){
assert(ptr);

}

6.3.11 Miscellaneous Debugging Tools

Noted here are a number of other debugging tools to consider.

General Debug Windows

In addition to the debug windows we have discussed already, there are three other windows that are avail-
able when a program is compiled: the Assembly, Register and Stack windows. They are described in detail
in Chapter 14, in the sections titled, Assembly (F10), Register Window and Stack (F12), respectively.

96 .rabbit.com Debugging with Dynamic C

http://www.rabbit.com

xalloc_stats()

Prints a table of physical addresses that are available for allocation in xmem via Xal loc () calls. To dis-
play this information in the Stdio window, execute the statement:

xalloc_stats(0);

in your application or use Inspect | Evaluate Expression. The Stdio window will display something similar
to the following:

i =10 %]
Auailable #allocl) regions: 2
Fegiont Low addre High adde Size Auvail Tupe j
2 = durmy
2 = durry

1 Eodz88 43055 Z22dvas 2176288 normal
OrEEEENEEE OxBEEbedf f DxBEEEIGeEE OuAEHISEER

a rasd3z 1843575 2oz2144 262144 normal

BrBRRCAREN D:OE0FFFFF 200040088 B:a8648888

-

Al AW

A region is a contiguous piece of memory. Theoretically, up to four regions can exist; a region that is
marked “dummy” is a region that does not exist. Each region is identified as “normal” or “BB RAM,”
which refers to memory that is battery-backed.

SeriallO.exe

The utility serial 10._exe is located in \Diagnostics\Serial_10. It is also in the file
Serial10_1.zip, available for download at the Rabbit website. This utility is a specialized terminal
emulator program and comes with several diagnostic programs. The diagnostic programs test a variety of
functionality, and allow the user to simulate some of the behavior of the Dynamic C download process.

The utility has a Help button that gives complete instructions for its use. The Rabbit 3000 Designer’s
Handbook in the chapter titled “Troubleshooting Tips for New Rabbit-Based Systems” explains some of
the diagnostic programs that come with the seriallO utility. Understanding the information in this chapter
will allow you to write your own diagnostic programs for the seriallO utility.

reset_demo.c

The sample program Samp les\reset_demo . ¢ demonstrates using the functions that check the reason
for a reset: hard reset (power failure or pressing the reset button), soft reset (initiated by software), or a
watchdog timeout.

Error Logging

Chapter 8, “Run-Time Errors,” describes the exception handling routine for run-time errors that is supplied
with Dynamic C. The default handler may be replaced with a user-defined handler. Also error logging can
be enabled by setting ENABLE_ERROR_LOGGING to 1 in the BIOS (prior to Dynamic C version 9.30) or
in ERRLOGCONF 1G. LB (starting with DC 9.30). See Chapter 8 for more information.

Dynamic C User’s Manuall rabbit.com 97

http://www.rabbitsemiconductor.com/support/downloads/
http://www.rabbit.com

Watchdogs

Ten virtual watchdogs are provided, in addition to the hardware watchdog(s) of the processor. Watchdogs,
whether hardware or software, limit the amount of time a system is in an unknown state.

Virtual watchdogs are maintained by the Virtual Driver and described in Section 7.4.2. The sample pro-
gram Samp les\VDRIVER\VIRT_WD . C demonstrates the use of a virtual watchdog.

Compiler Options

The Compiler tab of the Project Options dialog contains several options that assist debugging. They are
summarized here and fully documented starting on “Compiler Tab”.

= List Files - When enabled, this option generates an assembly list file for each compile. The list file con-
tains the same information and is in the same format as the contents of the Assembly window. List files
can be very large.

* Run-Time Checking - Run-time checking of array indices and pointers are enabled by default.

* Type Checking - Compile-time checking of type options are enabled by default. There are three type
checking options, labeled as: Prototype, Demotion and Pointer. Checking prototypes means that argu-
ments passed in function calls are checked against the function prototype. Demotion checking means
that the automatic conversion of a type to a smaller or less complex type is noted. Pointer checking
refers to making sure pointers of different types being intermixed are cast properly.

See the section titled, “Type Checking” on page 273 for more information.

Blinking Lights

Debugging software by toggling LEDs on and off might seem like a strange way to approach the problem,
but there are a number of situations that might call for it. Maybe you just want to exercise the board hard-
ware. Or, let us say you need to see if a certain piece of code was executed, but the board is disconnected
from your computer and so you have no way of viewing printf output or using the other debugging tools.
Or, maybe timing is an issue and directly toggling an LED with a call to WrPortE() or
BitWrPortE() gives you the information you need without as much affect on timing.

The sample program \Samp les\LP3500\power . c demonstrates how to use LEDs to communicate
information.

98 .rabbit.com Debugging with Dynamic C

http://www.rabbit.com

6.4 Where to Look for Debugger Features

Debugger features are accessed from several different Dynamic C menus. The menu to look in depends on
whether you want to enable, configure, view or use the debugger feature. This section identifies the vari-
ous menus that deal with debugging. Table 6-1 summarizes the menus and debugging tools.

Table 6-1. Summary of Debug Tools and Menus

Where Feature is

Name of Feature Whert:z Feature 1s Where Feature is Enabled
Configured Toggled?®
Environment Options,
Del?ug Wlnfiows tab . ' Tnspect Menu
Execution Trace Project Options, Project Options, Proeramaticallv with
Debugger tab Debugger tab g y
Right-click menu in the macros
Trace window
Symbolic Stack Environment Options, Project Options, .
Trace Debug Windows tab Debugger tab Windows Menu
Software Project Options, Project Options,
Breakpoints Debugger tab Debugger tab Run Menu
« . Run menu’s “Add/Edit In Add.' E,,d lt. Hardware
Hardware Add | Edit Hardware . breakpoint” dialog,
. ey 1 Hardware Breakpoints
Breakpoints breakpoint” dialog option change check box, then
p click “Update” button
Single Stepping No configuration options | Always enabled Run Menu
Instruction Level . . Project Options,
Single Stepping No configuration options Debugger tab Run Menu
Environment Options,
. Debug Windows tab Project Options
tch E . . ’ I t M
Wateh Expressions Project Options, Debugger tab fspect vienu
Debugger tab
Evaluate No confieuration options This feature is enabled when Inspect Menu
Expression & p Watch Expressions is enabled. P
Map File No configuration options | Always enabled Automatl.cally generated
for compiled programs
Memory Dum Environment Options, Always enabled Inspect Menu
y p Debug Windows tab Y P
Disassemble Code Environm_ent Options, Always enabled Inspect Menu
Debug Windows tab
Assert Macro Programatically Programatically Programatically
printf() Programatically Programatically Programatically
Dynamic C User’s Manuall rabbit.com 99

http://www.rabbit.com

Table 6-1. Summary of Debug Tools and Menus

i Wh Feat i
Name of Feature Wherg Feature is Where Feature is Enabled ere reature 1s
Configured Toggled?®
Stdio, Stack and Environment Options, .
Register windows | Debug Windows tab Always enabled Windows Menu

a. Keyboard shortcuts and toolbar menu buttons are shown in the dropdown menus, along with their corre-
sponding menu commands.

6.4.1 Run and Inspect Menus

The Run and Inspect menus are covered in detail in Section 14.2.5 and Section 14.2.6, respectively. These
menus are where you can enable the use of several debugger features. The Run menu has options for tog-
gling breakpoints and for single stepping. The Inspect menu has options for manipulating watch expres-
sions, disassembling code and for dumping memory. For the most part, a debugger feature must be enabled
before it can be selected in the Run or Inspect menus (or by its keyboard shortcut or toolbar menu button).
Most debugger features are enabled by default in the Project Options dialog. The disassembled code and
memory dump options are the exception, as they are always available to a compiled program.

6.4.2 Options Menu
From the Options menu in Dynamic C you can select Environment Options, Project Options or Toolbars,
where you configure debug windows, enable debug tools or customize your toolbar buttons, respectively.

The Environment Options dialog has a tab labeled “Debug Windows.” There are a number of configura-
tion options available there. You can choose to have all or certain debug windows open automatically
when a program compiles. You can choose font and color schemes for any debug window. More important
than fonts and colors, you can configure most of the debug windows in ways specific to that window. For
example, for the Assembly window you can alter which information fields are visible. See the section
titled, “Debug Windows Tab” on page 262 for complete information on the specific options available for
each window.

The Project Options dialog has a tab labeled “Debugger.” This is where symbolic stack tracing, break-
points, watch expressions and instruction level single stepping are enabled. These debugging tools must be
enabled before they can be used. Some configuration options are also set on the Debugger tab. See the sec-
tion titled, “Debugger Tab” on page 278, for complete information on the configuration options available
on the Debugger tab.

The final menu selection on the Options menu is labeled, “Toolbars.” This is where you choose the tool-
bars and the menu buttons that appear on the control bar See the section titled, “Toolbars” on page 285, for
instructions on customizing this area. Placing the menu buttons you use the most on the control bar is not
really a debugging tool, but may make the task easier by offering some convenience.

6.4.3 Window Menu

The Window menu is where you can toggle display of debug windows. See Section 14.2.8 for more infor-
mation. Another selection available from the Window menu is the Information window, which contains
memory information and the status of the last compile. See “Information” on page 290 for full details.

100 .rabbit.com Debugging with Dynamic C

http://www.rabbit.com

6.5 Debug Strategies

Since bug-free code is a trade-off with time and money, we know that software has bugsi. This section dis-
cusses ways to minimize the occurrence of bugs and gives you some strategies for finding and eliminating
them when they do occur.

6.5.1 Good Programming Practices

There is a big difference between “buggy code” and code that runs with near flawless precision. The latter
program may have a bug, but it may be a relatively minor problem that only appears under abnormal cir-
cumstances. (This touches on the subject of testing, which are the actions taken specifically to find bugs, a
larger discussion that is beyond the scope of this chapter.) This section discusses some time-tested methods
that may improve your ability to write software with fewer bugs.

= The Design: The design is the solution to the problem that a program or function is supposed to solve.
At a high level, the designis independent of the language that will be used in the implementation. Many
questions must be asked and answered. What are the requirements, the boundaries, the special cases?
These things are all captured in a well thought out design document. The design, written down, not just
an idea floating in your head, should be rigorous, complete and detailed. There should be agreement and
sign-off on the design before any coding takes place. The design underlies the code—it must come first.
This is also the first part of creating full documentation.

= Documentation: Other documentation includes code comments and function description headers,
which are specially formatted comments. Function description headers allow functions from libraries
listed in Fib_dir to be displayed in the Function Lookup option in Dynamic C’s Help menu (or by
using the keyboard shortcut Ctrl+H). See Section 4.24 for details on creating function description head-
ers for user-defined library functions.

Another way to comment code is by making the code self-documenting: Always choose
descriptive names for functions, variables and macros. The brain only has so much memory
capacity, why waste it up by requiring yourself to remember that cwl() is the function to call
when you want to check the water level in yourfish tank; chk h20 level(), for example, makes
it easier to remember the function’s purpose. Of course, you get very familiar with code while
it is in development and so your brain transforms the letters “cwl” quite easily to the words
“check water level.” But years later when some esoteric bug appears and you have to dig into
old code, you might be glad you took the time to type out some longer function names.

= Modular Code: If you have a function that checks the water level in the fish tank, don’t have the same
function check the temperature. Keep functions focused and as simple as possible.

i. For an account of what can happen when time and money constraints all but disappear, read
“They Write the Right Stuff” by Charles Fishman.

Dynamic C User’s Manuall rabbit.com 101

http://www.fastcompany.com/magazine/06/writestuff.html
http://www.rabbit.com

= Coding Standards: The use of coding standards increases maintainability, portability and re-use of
code. In Dynamic C libraries and sample programsi some of the standards are as follows:
- Macros names are capitalized with an underscore separating words, e.g., MY_MACRO.

- Function names start with a lowercase letter with an underscore or a capital letter separating
words, e.g., my_function() or myFunction().

- Use parenthesis. Do not assume everyone has memorized the rules of precedence. E.g.,

y
y

a*b<<c; // this is legal
(a * b) << c; // butthis is more clear

- Use consistent indenting. This increases readability of the code. Look in the Editor tab in the
Environment Options dialog to turn on a feature that makes this automatic.

- Use block comments (/*...*/) only for multiple line comments on the global level and line
comments (/) inside functions, unless you really need to insert a long, multiple line comment.
The reason for this is it is difficult to temporarily comment out sections of code using /*...*/
when debugging if the section being commented out has block comments, since block com-
ments are not nestable.

- Use Dynamic C code templates to minimize syntax errors and some typos. Look in the Code
Templates tab in the Environment Options dialog to modify existing templates or create you
own. Right click in an editor window and select Insert Code Template from the popup menu.
This will bring up a scroll box containing all the available templates from which to choose.

= Syntax Highlighting: Many syntactic elements are visually enhanced with color or other text attributes
by default. These elements are user-configurable from the Syntax Colors tab of the Environment
Options dialog. This is more than mere lipstick. The visual representation of material can aid in or
detract from understanding it, especially when the material is complex.

= Revision Control System: If your company has a code revision control systems in place, use it. In addi-
tion, when in development or testing stages, keep a known good copy of your program close at hand.
That is, a compiles-and-runs-without-crashing copy of your program. Then if you make changes,
improvements or whatever and then can’t compile, you can go back to the known good copy.

6.5.2 Finding the Bug

When a program does not compile, or compiles, but when running behaves in unexpected ways, orperhaps
worse, runs and then crashes, what do you do?

Compilation failures are caused by syntax errors. The compiler will generate messages to help you fix the
problem. There may be a list of compiler error messages in the window that pops up. Fix the first one, then
recompile. The other compile errors may disappear if they were not true syntax errors, but just the com-
piler being confused from the first syntax error.

During development, verify code as you progress. Develop code one function at a time. Do not wait until
you are finished with your implementation before you attempt to compile and run it, unless it is a very
short application. After a program is compiled, other types of bugs have a chance to reveal themselves.
The rest of this section concentrates on how to find a bug.

i. Older libraries may not adhere strictly to these standards.

102 .rabbit.com Debugging with Dynamic C

http://www.rabbit.com

6.5.2.1 Reproduce the Problem

Keep an open mind. It might not be a bug in the software: you might have a bad cable connection, or
something along those lines. Check and eliminate the easy things first. If you are reasonably sure that your
hardware is in good working order, then it is time to debug the software.

Some bugs are consistent and are easy to reproduce, which means it will be easier to gather the informa-
tion needed to solve the problem. Other bugs are more elusive. They might seem random, happening only
on Wednesdays, or some other seemingly bizarre behavior. There are a number of reasons why a bug may
be intermittent. Here are some common one:

= Memory corruption
- uninitialized or incorrectly initialized pointers

- buffer overflow

- Stack overflow/underflow

ISR modifying but not saving infrequently used register

Interrupt latency

Other borderline timing issues

e EMI

One of the difficulties of debugging is that the source of a bug and its effect may not appear closely related
in the code. For example, if an array goes out of bounds and corrupts memory, it may not be a problem
until much later when the corrupted memory is accessed.

6.5.2.2 Minimize the Failure Scenario

After you can reproduce the bug, create the shortest program possible that demonstrates the problem.
Whatever the size of the code you are debugging, one way to minimize the failure scenario is a method
called “binary search.” Basically, comment out half the code (more or less) and see which half of the pro-
gram the bug is in. Repeat until the problem is isolated.

Dynamic C User’s Manuall rabbit.com 103

http://www.rabbit.com

6.5.2.3 Other Things to Try

Get out of your cubicle. It is a well-known fact that there are times when simply walking over to a co-
worker and explaining your problem can result in a solution. Probably because it is a form of data gather-
ing. The more data you gather (up to a point), the more you know, and the more you know, the more your
chances of figuring out the problem increase.

Stay in your cubicle. Log on and get involved in one of the online communities. There is a great Yahoo E-
group dedicated to Rabbit and Dynamic C. Although Rabbit engineers will answer questions there, it is
mostly the members of this group that solve problems for each other. To join this group go to:

http://tech.groups.yahoo.com/group/rabbit-semi/

Another good online source of information and help is the Rabbit bulletin board. Go to:

www . rabbit.com/support/bb/

If you are having trouble figuring out what is happening, remember to analyze the bug under various con-
ditions. For example, run the program without the programming cable attached. Change the baud rate.
Change the processor speed. Do bug symptoms change? If they do, you have more clues.

6.6 Reference to Other Debugging Information

There are many good references available. Here are a few of them:
= Debugging Embedded Microprocessor Systems, Stuart Ball
= Writing Solid Code, by Steve Macquire

= Websites: google, search on debugging software

At the time of this writing the following links provided some good information:
= http://www.embeddedstar.com/technicalpapers/content/d/embedded 1494.html

* “They Write the Right Stuff” by Charles Fishman
http://www.fastcompany.com/magazine/06/writestuff.html

104 .rabbit.com Debugging with Dynamic C

http://www.rabbit.com/support/bb/
http://www.embeddedstar.com/technicalpapers/content/d/embedded1494.html
http://www.fastcompany.com/magazine/06/writestuff.html
http://www.rabbit.com
http://tech.groups.yahoo.com/group/rabbit-semi/

| RABBIT-seag= PRODUCT MANUAL

/. THE VIRTUAL DRIVER

Virtual Driver is the name given to some initialization services and a group of services performed by a
periodic interrupt. These services are:

Initialization Services
e Call _GLOBAL_INITQO
* Initialize the global timer variables

* Start the Virtual Driver periodic interrupt

Periodic Interrupt Services

* Decrement software (virtual) watchdog timers
« Hitting the hardware watchdog timer

* Increment the global timer variables

* Drive uC/OS-II preemptive multitasking

= Drive slice statement preemptive multitasking

7.1 Default Operation

The user should be aware that by default the Virtual Driver starts and runs in a Dynamic C program with-
out the user doing anything. This happens because before main() is called, a function called
premain() is called by the Rabbit kernel (BIOS) that actually calls main(). Before premain() calls
main(), it calls a function named VdInit() that performs the initialization services, including start-
ing the periodic interrupt. If the user were to disable the Virtual Driver by commenting out the call to
VdInit() in premain(), then none of the services performed by the periodic interrupt would be
available. Unless the Virtual Driver is incompatible with some very tight timing requirements of a program
and none of the services performed by the Virtual Driver are needed, it is recommended that the user not
disable it.

7.2 Calling _GLOBAL_INIT()

VdInit() calls the function chain _GLOBAL__INIT() which runs all #GLOBAL__INIT sections in a
program. _GLOBAL__INIT() also initializes all of the CoData structures needed by costatements and
cofunctions. If VA Init() is not called, users could still use costatements and cofunctions if the call to
VdInit() was replaced by a call to _GLOBAL__INIT(), but the DelaySec() and DelayMs()
functions often used with costatements and cofunctions in wai tfor statements would not work because
those functions depend on timer variables which are maintained by the periodic interrupt.

Dynamic C User’s Manuall rabbit.com 105

http://www.rabbit.com

7.3 Global Timer Variables

SEC_TIMER, MS_TIMER and TICK_TIMER are global variables defined as shared unsigned
long. These variables should never be changed by an application program. Among other things, the
TCP/IP stack depends on the validity of the timer variables.

On initialization, SEC_T IMER is synchronized with the real-time clock. The date and time can be
accessed more quickly by reading SEC_ T IMER than by reading the real-time clock.

The periodic interrupt updates SEC_ T IMER every second, MS_TIMER every millisecond, and
TICK_TIMER 1024 times per second (the frequency of the periodic interrupt). These variables are used
by the DelaySec, DelayMS and DelayT i cks functions, but are also convenient for application pro-
grams to use for timing purposes.

7.3.1 Example: Timing Loop

The following sample shows the use of MS_TIMER to measure the execution time in microseconds of a
Dynamic C integer add. The work is done in a nodebug function so that debugging does not affect tim-
ing.

#define N 10000

mainQ{ timeit(); }

nodebug timeit(){
unsigned long int TO;
float T2,T1;
int x,y;
int i;
TO = MS_TIMER;
for(i=0;i<N;i++) { }

// TI gives empty loop time
T1=(MS_TIMER-TO);

TO = MS_TIMER;
Ffor(i=0;i<N;i++){ x+y;}
// T2 gives test code execution time

T2=(MS_TIMER-TO);

// subtract empty loop time and convert to time for single pass
T2=(T2-T1)/(float)N;

// multiply by 1000 to convert milliseconds to microseconds.
printf("'time to execute test code = %f us\n'",T2*1000.0);

106 rabbit.com The Virtual Driver

http://www.rabbit.com

7.3.2 Example: Delay Loop
An important detail about MS_ T IMER is that it overflows (“rolls over”) approximately every 49 days, 17
hours. This behavior causes the following delay loop code to fail:

/* THIS CODE WILL FAIL!! */

endtime = MS_TIMER + delay;

whille (MS_TIMER < endtime) {
//do something

}

If “MS_TIMER + delay” overflows, this returns immediately. The correct way to code the delay loop so
that an overflow of MS_ T IMER does not break it, is this:

endtime = MS_TIMER + delay;
while ((long)MS TIMER - endtime < 0) {
//do something

}

The interval defined by the subtraction is always correct. This is true because the value of the interval is
based on the values of MS_TIMER and “endtime” relative to one another, so the actual value of these vari-
able does not matter.

One way to conceptualize why the second code snippet is always correct is to consider a number circle like
the one in Figure 7.1. In this example, delay=5. Notice that the value chosen for MS_TIMER will “roll
over” but that it is only when MS_ T IMER equals or is greater than “endtime” that the while loop will eval-
uate to false.

Figure 7.1 “delay=5"

MS_TIMER
14 2 endtime
13 3/
12 4
11
10 6
9
8 7

Another important point to consider is that the interval is cast to a signed number, which means that any
number with the high bit set is negative. This is necessary in order for the interval to be less than zero
when MS_TIMER is a large number.

Dynamic C User’s Manuall rabbit.com 107

http://www.rabbit.com

7.4 Watchdog Timers

Watchdog timers limit the amount of time your system will be in an unknown state.

7.4.1 Hardware Watchdog

The Rabbit CPU has one built-in hardware watchdog timer'. The Virtual Driver hits the watchdog timer
(WDT) periodically. The following code fragment could be used to disable this WDT:

#asm
Id a,0x51
ioi Id (WDTTR),a
Id a,0x54
ioi Id (WDTTR),a
#endasm

However, it is recommended that the watchdog not be disabled. The watchdog prevents the target from
entering an endless loop in software due to coding errors or hardware problems. If the Virtual Driver is not
used, the user code should periodically call hitwd ().

When debugging a program, if the program is stopped at a breakpoint because the breakpoint was explic-
itly set, or because the user is single stepping, then the debug kernel hits the hardware watchdog periodi-
cally.

7.4.2 Virtual Watchdogs

There are 10 virtual WDTs available; they are maintained by the Virtual Driver. Virtual watchdogs, like
the hardware watchdog, limit the amount of time a system is in an unknown state. They also narrow down
the problem area to assist in debugging.

The function VdGetFreeWd(count) allocates and initializes a virtual watchdog. The return value of
this function is the ID of the virtual watchdog. If an attempt is made to allocate more than 10 virtual
WDTs, a fatal error occurs. In debug mode, this fatal error will cause the program to return with error code
250. The default run-time error behavior is to reset the board.

The ID returned by VdGetFreeWd () is used as the argument when calling VdH 1 €tWd (1D) to hit a vir-
tual watchdog or VdRe leaseWd (ID) to deallocate it.

The Virtual Driver counts down watchdogs every 62.5 ms. If a virtual watchdog reaches 0, this is fatal
error code 247. Once a virtual watchdog is active, it should be reset periodically with a call to
VdHitWd (1D) to prevent this. If count = 2 for a particular WDT, then VAHItWd (1D) will need to be
called within 62.5 ms for that WDT. If count = 255, VAH i tWd (1D) will need to be called within 15.94
seconds.

The Virtual Driver does not count down any virtual WDTs if the user is debugging with Dynamic C and
stopped at a breakpoint.

i. Starting with the Rabbit 3000A, Rabbit microprocessors have secondary hardware watchdog timers. See
the user’s manual for your Rabbit processor for details, e.g., the Rabbit 3000 Microprocessor User’s
Manual.

108 rabbit.com The Virtual Driver

http://www.rabbit.com

7.5 Preemptive Multitasking Drivers

A simple scheduler for Dynamic C’s preemptive slice statement is serviced by the Virtual Driver. The
scheduling for uC/OS-I1, a more traditional full-featured real-time kernel, is also done by the Virtual
Driver.

These two scheduling methods are mutually exclusive—slicing and pC/OS-11 must not be used in
the same program.

Dynamic C User’s Manuall rabbit.com 109

http://www.rabbit.com

110 rabbit.com The Virtual Driver

http://www.rabbit.com

| RABBIT-seag= PRODUCT MANUAL

8. RUN-TIME ERRORS

Compiled code generated by Dynamic C calls an exception handling routine for run-time errors. The
exception handler supplied with Dynamic C prints internally defined error messages to a Windows mes-
sage box when run-time errors are detected during a debugging session. When software runs stand-alone
(disconnected from Dynamic C), such a run-time error will cause a watchdog timeout and reset. Run-time
error logging is available for Rabbit-based target systems with battery-backed RAM.

8.1 Run-Time Error Handling

When a run-time error occurs, a call is made to exception(). The run-time error type is passed to
exception(), which then pushes various parameters on the stack, and calls the installed error handler.
The default error handler places information on the stack, disables interrupts, and enters an endless loop by
calling the _xeXx1t function in the BIOS. Dynamic C notices this and halts execution, reporting a run-
time error to the user.

8.1.1 Error Code Ranges

The table below shows the range of error codes used by Dynamic C and the range available for a custom
error handler to use. Table 8-1 is valid prior to Dynamic C version 9.30. Starting with DC 9.30, the file
errmsg. ini located in the root directory of Dynamic C can be edited to add descriptions for user-
defined run-time errors that will be displayed by Dynamic C should the error occur.

For example, if the following entry is made in errmsg. ini:
// My custom errors
800=My own run-time error message

Calling “exit(-800)” in an application or library will cause Dynamic C to report “My own run-time error
message” in a message box.

Table 8-1. Dynamic C Error Types Ranges (prior to DC 9.30)

Error Type Meaning
0-127 Reserved for user-defined error codes.
128-255 Reserved for use by Dynamic C.

Please see Section 8.2 for information on replacing the default error handler with a custom one.

Dynamic C User’s Manuall rabbit.com 111

http://www.rabbit.com

8.1.2 Fatal Error Codes

This table lists the fatal errors generated by Dynamic C.

Table 8-2. Dynamic C Fatal Errors

Error Type Meaning
127 - 227 not used
228 Pointer store out of bounds
229 Array index out of bounds
230 - 233 not used
234 Domain error (for example, acos(2))
235 Range error (for example, tan(pi/2))
236 Floating point overflow
237 Long divide by zero
238 Long modulus, modulus zero
239 not used
240 Integer divide by zero
241 Unexpected interrupt
242 not used
243 Codata structure corrupted
244 Virtual watchdog timeout
245 XMEM allocation failed (xalloc call)
246 Stack allocation failed
247 Stack deallocation failed
248 not used
249 Xmem allocation initialization failed
250 No virtual watchdog timers available
251 No valid MAC address for board
252 Invalid cofunction instance
253 Socket passed as auto variable while running pC/OS-II
254
not used
255

112

rabbit.com

Run-Time Errors

http://www.rabbit.com

8.2 User-Defined Error Handler

Dynamic C allows replacement of the default error handler with a custom error handler. This is needed to
add run-time error handling that would require treatment not supported by the default handler.

A custom error handler can also be used to change how existing run-time errors are handled. For example,
the floating-point math libraries included with Dynamic C are written to allow for execution to continue
after a domain or range error, but the default error handler halts with a run-time error if that state occurs. If
continued execution is desired (the function in question would return a value of INF or whatever value is
appropriate), then a simple error handler could be written to pass execution back to the program when a
domain or range error occurs, and pass any other run-time errors to Dynamic C.

8.2.1 Replacing the Default Handler

To tell the BIOS to use a custom error handler, call this function:
void defineErrorHandler(void *errfcn)
This function sets the BIOS function pointer for run-time errors to the one passed to it.

When a run-time error occurs, exception() pushes onto the stack the information detailed in the table
below.

Table 8-3. Stack setLip for run-time errors

Address Data at address
SP+0 Return address for error handler
SP+2 Error code
SP+4 Additional data (user-defined)
SP+6 XPC when exception() was called (upper
byte)
SP+8 Address where exception() was called from

Then exception() calls the installed error handler. If the error handler passes the run-time error to
Dynamic C (i.e. it is a fatal error and the system needs to be halted or reset), then registers must be loaded
appropriately before calling the _XxeX it function.

Dynamic C expects the following values to be loaded:

Table 8-4. Register contents loaded by error handler before passing
the error to Dynamic C

Register Expected Value
H XPC when exception() was called
L Run-time error code
HL” Address where exception() was called from

Dynamic C User’s Manuall rabbit.com 113

http://www.rabbit.com

8.3 Run-Time Error Logging

Error logging is available as a BIOS enhancement for storing run-time exception history. It can be useful
diagnosing problems in deployed Rabbit targets. To support error logging, the target must have battery-
backed RAM. The wide range of error logs available with RabbitSys obviates the need for the default error
logging described here.

8.3.1 Error Log Buffer

A circular buffer in extended RAM will be filled with the following information for each run-time error
that occurs:

® The value of SEC_TIMER at the time of the error. This variable contains the number of seconds since
00:00:00 on January 1st 1980 if the real-time clock has been set correctly. This variable is updated by
the periodic timer which is enabled by default. Rabbit sets the real-time clock in the factory. When the
BIOS starts on boards with batteries, it initializes SEC_ T IMER to the value in the real-time clock.

= The address where the exception was called from. This can be traced to a particular function using the
MAP file generated when a Dynamic C program is compiled.

* The exception type. Please see Table 8-2 on page 112 for a list of exception types.

= The value of all registers. This includes alternate registers, SP and XPC. This is a global option that is
enabled by default.

* An 8-byte message. This is a global option that is disabled by default. The default error handler does
nothing with this.

= A user-definable length of stack dump. This is a global option that is enabled by default.

= A one byte checksum of the entry.

The size of the error log buffer is determined by the number of entries, the size of an entry, and the header
information at the beginning of the buffer. The number of entries is determined by the macro
ERRLOG_NUM_ENTRIES (default is 78). The size of each entryis dependent on the settings of the global
options for stack dump, register dump and error message. The default size of the buffer is about 4K in
extended RAM.

114 rabbit.com Run-Time Errors

http://www.rabbit.com

8.3.2 Initialization and Defaults

An initialization of the error log occurs when the BIOS is compiled, when cloning takes place or when the
BIOS is loaded via the Rabbit Field Utility (RFU). By default, error logging is disabled.

The error log buffer contains header information as well as an entry for each run-time error. A debug start-
up will zero out this header structure, but the run-time error entries can still be examined from Dynamic C
using the static information in flash. The header is at the start of the error log buffer and contains:

* A status byte

® The number of errors since deployment

* The index of the last error

* The number of hardware resets since deployment

* The number of watchdog time-outs since deployment

* The number of software resets since deployment

* A checksum byte.

“Deployment” is defined as the first power up without the programming cable attached. Reprogramming
the board using the programming cable, the RFU, or a RabbitLink board and starting the program again
without the programming cable attached is a new deployment.

8.3.3 Configuration Macros

The macros listed below are defined at the top of Bios/RabbitBi0s. c prior to Dynamic C version
9.30 and in Lib\. .\BIOSLIB\errlogconfig. lib thereafter. To change from the defaults you
must edit the #define statement either in the BIOS or the configuration library, depending on your version
of Dynamic C.

ENABLE_ERROR_LOGGING
Default: 0. Disables error logging. Changing this to “1” enables error logging.

ERRLOG_USE_REG_DUMP
Default: 1. Include a register dump in log entries. Changing this to zero excludes the register
dump in log entries.

ERRLOG_STACKDUMP_SIZE
Default: 16. Include a stack dump of size ERRLOG_STACKDUMP_SI1ZE in log entries. Chang-
ing this to zero excludes the stack dump in log entries.

ERRLOG_NUM_ENTRIES
Default: 78. This is the number of entries allowed in the log buffer.

ERRLOG_USE_MESSAGE
Default: 0. Exclude error messages from log entries. Changing this to “1”” includes 8 byte
error messages in log entries The default error handler makes no use of this feature.

Dynamic C User’s Manuall rabbit.com 115

http://www.rabbit.com

8.3.4 Error Logging Functions
The run-time error logging API consists of the following functions:

errlogGetHeaderInfo Reads error log header and formats output.

errlogGetNthEntry Loads errLogEntry structure with the Nth entry
from the error log buffer. errLogEntry is a pre-allo-
cated global structure.

errlogGetMessage Returns a NULL-terminated string containing the 8 byte
error message in errLogEntry.

errlogFormatEntry Returns a NULL-terminated string containing basic
information in errLogEntry.

errlogFormatRegDump Returns a NULL-terminated string containing the regis-
ter dump in errLogEntry.

errlogFormatStackDump Returns a NULL-terminated string containing the stack
dump in errLogEntry

errlogReadHeader Reads error log header into the structure
errloginfo.

ResetErrorLog Resets the exception and restart type counts in the error
log buffer header.

8.3.5 Examples of Error Log Use
To try error logging, follow the instructions at the top of the sample programs:

samples\ErrorHandling\Generate_runtime_errors.c
and

samples\ErrorHandling\Display errorlog.c

116 rabbit.com Run-Time Errors

http://www.rabbit.com

| RABEIT-stg= PRODUCT MANUAL

9. MEMORY MANAGEMENT

Processor instructions can specify 16-bit addresses, giving a logical address space of 64K (65,536 bytes).
Dynamic C supports a physical address space of 1 MB on all Rabbit-based boards. Dynamic C has been
verified to work with Rabbit-based boards with 4.5 MB of memory.

An on-chip memory management unit (MMU) translates 16-bit addresses to 20-bit memory addresses for
Rabbit 2000- and 3000-based boards. Four MMU registers (SEGSIZE, STACKSEG, DATASEG and
XPC) divide and maintain the logical sections and map each section onto physical memory.

Any memory beyond the 16-bit address capability of the processor, whether flash or RAM, is called xmem
and requires memory management techniques for access.

9.1 Memory Map

A typical Dynamic C memory mapping of logical and physical address space is shown in the figure below.
The actual layout may be different depending on the Rabbit processor used, the board type and which
compilation options are selected. For example, enabling separate I&D space will affect the memory map.

Figure 9.1 Dynamic C Memory Mapping with a Rabbit 2000- or 3000-Based Board

OXFFFFF
OXFFFF K
Xmem Segment
0xBEQO
0xE000
Root Data
Stack Segment Interrupt Vectors, RAM

0xD000 < 0xDO Watch Code

External Interrupt *. . of 0xB1000

Veotors -1 0xCCO0 et T 0xA9000
PRIl Stack

P Data Segment XA

R (Root Data) W\

'{-?;?5;2?4 interrupt, - .- 6x80000
OXCEQQ |+« + /e Tt

RRIIRPRIIE xmem Code

I (from Xmem Segment) Flash

-Watch Gode .-+

''''''''''''''''''''''' Base Segment Memory

RITIER IO (Root Code)

e Root Code
0xCCOO L™ttty 0x0000 0x00009

Logical Address Space Physical Address Space

Figure 9.1 illustrates how the logical address space is divided and where code resides in physical memory.
Both the static RAM and the flash memory are 128K in the diagram. Physical memory starts at address
0x00000 and flash memory is usually mapped to the same address. SRAM typically begins at address
0x80000.

Dynamic C User’s Manuall rabbit.com 117

http://www.rabbit.com

If BIOS code runs from flash memory, the BIOS code starts in the root code section at address 0x00000
and fills upward. The rest of the root code will continue to fill upward immediately following the BIOS
code. If the BIOS code runs from SRAM, the root code section, along with root data and stack sections,
will start at address 0x80000.

9.1.1 Memory Mapping Control

The advanced user of Dynamic C can control how Dynamic C allocates and maps memory. For details on
memory mapping, refer to any of the Rabbit microprocessor user’s manuals or designer’s handbooks. You
can also refer to one of our technical notes: TN202, “Rabbit Memory Management in a Nutshell.” All of
these documents are available at:

www . rabbitsemiconductor.com/docs/

9.1.2 Macro to Use Second Flash for Code

The macro USE_2NDFLASH_CODE can be uncommented in the file sysconfig. 11b to cause the
compiler to use a second available flash for xmem code.

9.2 Extended Memory Functions

A program can use many pages of extended memory (xmem). Under normal execution, code in xmem
maps to the logical address region 0XxE000 to OxFFFF. Use the Dynamic C functions root2xmem(),
xmem2root() and xmem2xmem()to move blocks of data between logical memory and physical mem-

ory.

9.3 Code Placement in Memory

Code runs just as quickly in extended memory as it does in root memory, but calls to and returns from the
functions in extended memory take a few extra machine cycles. Code placement in memory can be
changed by the keywords xmem and root, depending on the type of code:

Pure Assembly Routines
Pure assembly functions may be placed in root memory or extended memory. Prior to Dynamic C version
7.10, pure assembly routines had to be in root memory.

C Functions

C functions may be placed in root memory or extended memory. Access to variables in C statements is not
affected by the placement of the function. Dynamic C will automatically place C functions in extended
memory as root memory fills. Short, frequently used functions may be declared with the root keyword to
force Dynamic C to load them in root memory.

118 rabbit.com Memory Management

http://www.rabbitsemiconductor.com/docs/
http://www.rabbit.com

Inline Assembly in C Functions
Inline assembly code may be written in any C function, regardless of whether it is compiled to extended
memory or root memory.

All static variables, even those local to extended memory functions, are placed in root memory. Keep this
in mind if the functions have many variables or large arrays. Root memory can fill up quickly.

9.4 Dynamic Memory Allocation

Dynamic C 9 introduces the ability for an application to allocate a pool of memory at compile time for
dynamic allocation and deallocation of fixed-size blocks at run time. A pool can be located in root or
extended memory. Descriptions for all API functions for dynamic memory allocation are in the Dynamic C
Function Reference Manual. Or use Function Lookup from the Help menu (or Ctrl+H) to gain quick
access to the function descriptions from within Dynamic C.

Read the comments at the top of \LIB\ . .\POOL . L IB for a description of how to use dynamic memory
allocation in Dynamic C.

Dynamic C User’s Manuall rabbit.com 119

http://www.rabbit.com

120 rabbit.com Memory Management

http://www.rabbit.com

| RABBIT-seag= PRODUCT MANUAL

10. FILE SYSTEMS

This chapter describes two separate file systems that can be used on Rabbit-based systems. The file system
described in Section 10.1 works with all versions of Dynamic C for the Rabbit 2000 and 3000 micropro-
cessors. The FAT file system described in Section 10.2 requires Dynamic C 8.51 or later. There have been
several updates to the FAT file system to include additional flash devices.

FAT version 1.02 supports SPI-based serial flash devices. FAT versions 2.01 and 2.05 also support SPI-
based serial flash devices and require Dynamic C 9.01 or later. FAT version 2.05 introduces support for
NAND flash devices. FAT version 2.10 extends pC/OS-II compatibility to make the FAT API reentrant
from multiple tasks. FAT version 2.13 adds support for SD cards and requires Dynamic C 10.21 or later. In
all versions of the FAT, a battery-backed write-back cache reduces wear on the flash device and a round-
robin cluster assignment helps spread the wear over its surface.

10.1 FS2

The Dynamic C file system, known as the filesystem mk II or simply as FS2, was designed to be used with
a second flash memory or in SRAM on Rabbit 2000- or 3000-based boards.

FS2 allows:

= the ability to overwrite parts of a file

= the simultaneous use of multiple device types

« the ability to partition devices

= cfficient support for byte-writable devices

* better performance tuning

= ahigh degree of backwards compatibility with its predecessor

* all necessary run-time data to be reconstructed on power up

NOTE: Dynamic C’s low-level flash memory access functions should not be used in the
same area of the flash where the flash file system exists.

10.1.1 General Usage

The recommended use of a flash file system is for infrequently changing data or data rates that have writes

on the order of tens of minutes instead of seconds. Rapidly writing data to the flash! could result in using
up its write cycles too quickly. For example, consider a 256K flash with 64 blocks of 4K each. Using a
flash with a maximum recommendation of 10,000 write cycles means a limit of 640,000 writes to the file
system. If you are performing one write to the flash per second, in a little over a week you will use up its
recommended lifetime.

i. All other code, including ISRs, is suspended while writing to flash.

Dynamic C User’s Manuall rabbit.com 121

http://www.rabbit.com

Increase the useful lifetime and performance of the flash by buffering data before writing it to the flash.
Accumulating 1000 single byte writes into one multi-byte write can extend the life of the flash by an aver-
age of 750 times. FS2 does not currently perform any in-memory buffering. If you write a single byte to a
file, that byte will cause write activity on the device. This ensures that data is written to non-volatile stor-
age as soon as possible. Buffering may be implemented within the application if possible loss of data is
tolerable.

10.1.1.1 Maximum File Size

The maximum file size for an individual file depends on the total file system size and the number of files
present. Each file requires at least two sectors: at least one for data and always one for metadata (for infor-
mation used internally). There also needs to be two free sectors per file to allow for moving data around.

Here is a formula you can use to determine how many bytes to allocate for the total file system (assuming
all files are the same size):

Bytes = (Nbr_of _files * Tile_size * 1.14) + (Nbr_of _files * 128) +
(2 * 128)

FS2 supports a total of 255 files, but storing a large number of small files is not recommended. It is much
more efficient to have a few large ones.

10.1.1.2 Two Flash Boards

By default, when a board has two flash devices, Dynamic C will use only the first flash for code. The sec-
ond flash is available for the file system unless the macro USE_2NDFLASH_CODE is defined in the appli-
cation by adding it to the Defines tab of the Project Options dialog box (for instructions see “Defines Tab”
on page 281). This macro allocates the second flash to hold program code. The use of
USE_2NDFLASH_CODE is not compatible with FS2,

10.1.1.3 Using SRAM

The flash file system can be used with battery-backed SRAM. Internally, RAM is treated like a flash
device, except that there is no write-cycle limitation, and access is much faster. The file system will work
without the battery backup, but would, of course, lose all data when the power went off.

Currently, the maximum size file system supported in RAM is about 200k. This limitation holds true even
on boards with a 512k RAM chip. The limitation involves the placement of BIOS control blocks in the
upper part of the lower 256k portion of RAM.

To obtain more RAM memory, Xal loc () may be used. If xal loc () is called first thing in the pro-
gram, the same memory addresses will always be returned. This can be used to store non-volatile data is so
desired (if the RAM is battery-backed), however, it is not possible to manage this area using the file sys-
tem.

Using FS2 increases flexibility, with its capacity to use multiple device types simultaneously. Since RAM
is usually a scarce resource, it can be used together with flash memory devices to obtain the best balance of
speed, performance and capacity.

122 rabbit.com File Systems

http://www.rabbit.com

10.1.1.4 Wear Leveling

The current code has a rudimentary form of wear leveling. When you write into an existing block it selects
a free block with the least number of writes. The filesystem routines copy the old block into the new block
adding in the user’s new data. This has the effect of evening the wear if there is a reasonable turnover in
the flash files. This goes for the data as well as the metadata.

10.1.1.5 Low-Level Implementation

For information on the low-level implementation of the flash file system, refer to the beginning of the
library file FS2.LIB.

10.1.1.6 Multitasking and FS2

The file system is not re-entrant. If using preemptive multitasking, ensure that only one thread performs
calls to the file system, or implement locking around each call.

When using pC/OS-II, FS2 must be initialized first; that is, fs_in1t() must be called before
OSInit() in the application code.

10.1.2 Application Requirements
Application requirements for using FS2 are covered in this section, including:

which library to use

which drivers to use

defaults and descriptions for configuration macros

detailed instructions for using the first flash

10.1.2.1 Library Requirements
The file system library must be compiled with the application:

#use “FS2_LIB”

For the simplest applications, this is all that is necessary for configuration. For more complex applications,
there are several other macro definitions that may be used before the inclusion of FS2 . L 1B. These are:

#define FS_MAX_DEVICES 3
#define FS_MAX_LX 4
#define FS_MAX_FILES 10

These specify certain static array sizes that allow control over the amount of root data space taken by FS2.
If you are using only one flash device (and possibly battery-backed RAM), and are not using partitions,
then there is no need to set FS_MAX_DEVICES or FS_MAX_LX.

For more information on partitioning, please see Section 10.1.4 “Setting up and Partitioning the File Sys-

b3

tem™.

Dynamic C User’s Manuall rabbit.com 123

http://www.rabbit.com

10.1.2.2 FS2 Configuration Macros

FS_MAX_DEVICES

This macro defines the maximum physical media. If it is not defined in the program code,
FS_MAX_DEVICES will default to 1, 2, or 3, depending on the values of
FS2_USE_PROGRAM_FLASH, XMEM_RESERVE_SIZE and FS2_RAM_RESERVE.

FS MAX LX
This macro defines the maximum logical extents. You must increase this value by 1 for each new partition

your application creates. It this is not defined in the program code it will default to FS_MAX_DEVICES.

For a description of logical extents please see Section 10.1.4.2.

FS_MAX_FILES

This macro is used to specify the maximum number of files allowed to coexist in the entire file system.
Most applications will have a fixed number of files defined, so this parameter can be set to that number to
avoid wasting root data memory. The default is 6 files. The maximum value for this parameter is 255.

FS2_DISALLOW_GENERIC_FLASH

This macro is used to prevent FS2 from mistakenly attempting to recover a nonexistent file system on the
“generic” (second) flash, or to prevent RAM corruption caused by _GetFlash1D() when flash is not
mapped into memory at all.

FS2_DISALLOW_PROGRAM_FLASH

This macro is used to prevent FS2 from mistakenly attempting to recover a nonexistent file system on the
“program” (first) flash, or to prevent RAM corruption caused by _GetFlashlD() when flash is not
mapped into memory at all.

FS2_RAM_RESERVE

This macro determines the amount of space used for FS2 in RAM. If some battery-backed RAM is to be
used by FS2, then this macro must be modified to specify the amount of RAM to reserve. The memory is
reserved near the top of RAM. Note that this RAM will be reserved whether or not the application actually
uses FS2.

Prior to Dynamic C 7.06 this macro was defined as the number of bytes to reserve and had to be a multiple
of 4096. It is now defined as the number of blocks to reserve, with each block being 4096 bytes.

This macro is defined in the BIOS prior to Dynamic C version 9.30 and in memconfig. I ib thereafter.

FS2_SHIFT_DOESNT_UPDATE_FPOS

If this macro is defined before the #use Fs2. 11b statement in an application, multiple file descriptors
can be opened, but their current position will not be updated if Fshift () is used.

124 rabbit.com File Systems

http://www.rabbit.com

FS2_USE_PROGRAM_FLASH

The number of kilobytes reserved in the first flash for use by FS2. If not defined in an application, it
defaults to zero, meaning that the first flash is not used by FS2. The actual amount of flash used by FS2 is
determined by the minimum of this macro and XMEM_RESERVE_SI1ZE.

XMEM_RESERVE_SI1ZE

This macro is the number of bytes (which must be a multiple of 4096) reserved in the first flash for use by
FS2 and possibly other customer-defined purposes. This is defined as 0x0000. Memory set aside with
XMEM_RESERVE_SI1ZE will NOT be available for xmem code.

This macro is defined in the BIOS prior to Dynamic C version 9.30 and in memconfig. I ib thereafter.

10.1.2.3 FS2 and Use of the First Flash
To use the first flash in FS2, follow these steps:

1. Define XMEM_RESERVE_SI1ZE (currently set to 0x0000) to the number of bytes to allocate in the first
flash for the file system.

2. Define FS2_USE_PROGRAM_FLASH to the number of KB (1024 bytes) to allocate in the first flash
for the file system. Do this in the application code before #use ""fs2_1ib".

3. Obtain the LX! number of the first flash: Call fs_get_other_1x()when there are two flash memo-
ries; call Fs_get_ Flash_Ix() when there is only one.

4. If desired, create additional logical extents by calling the FS2 function fs_setup () to further parti-
tion the device. This function can also change the logical sector sizes of an extent. Please see the func-
tion description for fs_setup() in the Dynamic C Function Reference Manual for more
information.

Example Code Using First Flash in FS2

If the target board has two flash memories, the following code will cause the file system to use the first
flash:

FSLXnum flashl; // logical extent number
File T; // struct for file information

flashl = fs_get_other_Ix();

if (flashl) {
fs_set_Ix(flashl, flashl);
fcreate(&f, 10);

}

To obtain the logical extent number for a one flash board, fs_get_Fflash_Ix() must be called instead
of fs_get_other_Ix().

i. For a description of logical extents please see Section 10.1.4.2, “Logical Extents (LX),” on
page 128.

Dynamic C User’s Manuall rabbit.com 125

http://www.rabbit.com

10.1.3 File System API Functions

These functions are defined in FS2 . L 1 B. For more information please see the Dynamic C Function
Reference Manual or from within Dynamic C you can use the Function Lookup feature, with its conve-
nient Ctrl+H shortcut that will take you directly to a function’s description if the cursor is on its name in
the active edit window.

Table 10-1. FS2 API

Command Description
fs _setup (FS2) Alters the initial default configuration.
fs_init (FS2) Initialize the internal data structures for the file system.
fs format (FS2) Initialize flash and the internal data structures.
Ix_format Formats a specified logical extent (LX).
fs_set_Ix (FS2) Sets the default LX numbers for file creation.
fs_get_Ix (FS2) Returns the current LX number for file creation.
fcreate (FS2) Creates a file and open it for writing.
fcreate _unused (FS2) Creates a file with an unused file number.
fopen_rd (FS2) Opens a file for reading.
fopen_wr (FS2) Opens a file for writing (and reading).
fshift Removes specified number of bytes from beginning of file.
fwrite (FS2) Writes to a file starting at “current position.”
fread (FS2) Reads from the current file pointer.
fseek (FS2) Moves the read/write pointer.
ftell (FS2) Returns the current offset of the file pointer.

Flushes any buffers retained in RAM to the underlying

fs_sync (FS2) hardware device.

Flushes buffers retained in RAM and associated with the

Fflush (FS2) specified file to the underlying hardware device.

Returns the LX number of the preferred flash device (the

Ts_get_Tlash_Ix (FS2) 1, i fash if available).

fs get Ix size (FS2) Returns the number of bytes of the specified LX.

fs_get_other Ix (FS2) Returns LX # of the non-preferred flash (usually the first

flash).
fs_get_ram_Ix (FS2) Return the LX number of the RAM file system device.
fclose Closes a file.
fdelete (FS2) Deletes a file.

126 rabbit.com File Systems

http://www.rabbit.com

10.1.3.1 FS2 API Error Codes

The library ERRNO . L 1 B contains a list of all possible error codes returnable by the FS2 API. These error
codes mostly conform to POSIX standards. If the return value indicates an error, then the global variable
errno may be examined to determine a more specific reason for the failure. The possible errno codes
returned from each function are documented with the function.

10.1.4 Setting up and Partitioning the File System

This step merits some thought before plowing ahead. The context within which the file system will be used
should be considered. For example, if the target board contains both battery-backed SRAM and a second
flash chip, then both types of storage may be used for their respective advantages. The SRAM might be
used for a small application configuration file that changes frequently, and the flash used for a large log
file.

FS2 automatically detects the second flash device (if any) and will also use any SRAM set aside for the
file system (if FS2_RAM_RESERVE is set).

10.1.4.1 Initial Formatting

The filesystem must be formatted when it is first used. The only exception is when a flash memory device
is known to be completely erased, which is the normal condition on receipt from the factory. If the device
contains random data, then formatting is required to avoid the possibility of some sectors being perma-
nently locked out of use.

Formatting is also required if any of the logical extent parameters are changed, such as changing the logi-
cal sector size or re-partitioning. This would normally happen only during application development.

The question for application developers is how to code the application so that it formats the filesystem
only the first time it is run. There are several approaches that may be taken:

= A special program that is loaded and run once in the factory, before the application is loaded. The spe-
cial program prepares the filesystem and formats it. The application never formats; it expects the file-
system to be in a proper state.

* The application can perform some sort of consistency check. If it determines an inconsistency, it calls
format. The consistency check could include testing for a file that should exist, or by checking some
sort of "signature" that would be unlikely to occur by chance.

* Have the application prompt the end-user, if some form of interaction is possible.
* A combination of one or more of the above.

= Rely on a flash device being erased. This would be OK for a production run, but not suitable if battery-
backed SRAM was being used for part of the filesystem.

Dynamic C User’s Manuall rabbit.com 127

http://www.rabbit.com

10.1.4.2 Logical Extents (LX)

The presence of both “devices” causes an initial default configuration of two logical extents (a.k.a., LXs)
to be set up. An LX is analogous to disk partitions used in other operating systems. It represents a contigu-
ous area of the device set aside for file system operations. An LX contains sectors that are all the same
size, and all contiguously addressable within the one device. Thus a flash device with three different sector
sizes would necessitate at least three logical extents, and more if the same-sized sectors were not adjacent.

Files stored by the file system are comprised of two parts: one part contains the actual application data, and
the other is a fixed size area controlled by the file system containing data that tracks the file status. This
second area, called metadata, is analogous to a “directory entry” of other operating systems. The metadata
consumes one sector per file.

The data and metadata for a file are usually stored in the same LX, however they may be separated for per-
formance reasons. Since the metadata needs to be updated for each write operation, it is often advanta-
geous to store the metadata in battery-backed SRAM with the bulk of the data on a flash device.

Specifying Logical Extents

When a file is created, the logical extent(s) to use for the file are defined. This association remains until the
file is deleted. The default LX for both data and metadata is the flash device (LX #1) if it exists; otherwise
the RAM LX. If both flash and RAM are available, LX #]1 is the flash device and LX #2 is the RAM.

When creating a file, the associated logical extents for the data and the metadata can be changed from the
default by calling fs_set_Ix (). This functions takes two parameters, one to specify the LX for the
metadata and the other to specify the LX for the data. Thereafter, all created files are associated with the
specified LXs until a new call to fs_set_ 1x() is made. Typically, there will be a call to
Ts_set_Ix() before each file is created; doing so ensures that the new file gets created with the desired
associations. The file creation function, fcreate (), may be used to specify the LX for the metadata by
providing a valid LX number in the high byte of the function’s second parameter. This will override any
LX number set for the metadata in fs_set_Ix().

Further Partitioning

The initial default logical extents can be divided further. This must be done before calling fs_init().
The function to create sub-partitions is called ¥s_setup(). This function takes an existing LX number,
divides that LX according to the given parameters, and returns a newly created LX number. The original
partition still exists, but is smaller because of the division. For example, in a system with LX#1 as a flash
device of 256K and LX#2 as 4K of RAM, an initial call to fs_setup () might be made to partition
LX#1 into two equal sized extents of 128K each. LX#1 would then be 128K (the first half of the flash) and
LX#3 would be 128K (the other half). LX#2 is untouched.

Having partitioned once, fs_setup() may be called again to perform further subdivision. This may be
done on any of the original or new extents. Each call to fs_setup() in partitioning mode increases the
total number of logical extents. You will need to make sure that FS_MAX_LX is defined to a high enough
value that the LX array size is not exceeded.

While developing an application, you might need to adjust partitioning parameters. If any parameter is
changed, FS2 will probably not recognize data written using the previous parameters. This problem is
common to most operating systems. The “solution” is to save any desired files to outside the file system
before changing its organization; then after the change, force a format of the file system.

128 rabbit.com File Systems

http://www.rabbit.com

10.1.4.3 Logical Sector Size

Ts_setup() can also be used to specify non-default logical sector (LS) sizes and other parameters. FS2
allows any logical sector size between 64 and 8192 bytes, providing the LS size is an exact power of 2.
Each logical extent, including sub-partitions, can have a different LS size. This allows some performance
optimization. Small LSs are better for a RAM LX, since it minimizes wasted space without incurring a
performance penalty. Larger LSs are better for bulk data such as logs. If the flash physical sector size (i.e.
the actual hardware sector size) is large, it is better to use a correspondingly large LS size. This is espe-
cially the case for byte-writable devices. Large LSs should also be used for large LXs. This minimizes the
amount of time needed to initialize the file system and access large files. As a rule of thumb, there should
be no more than 1024 LSs in any LX. The ideal LS size for RAM (which is the default) is 128 bytes. 256
or 512 can also be reasonable values for some applications that have a lot of spare RAM.

Sector-writable flash devices require: LS size > PS size. Byte-writable devices, however, may use any
allowable logical sector size, regardless of the physical sector size.

Sample program Samp les\Fi leSystem\FS2DEMO2 illustrates use of fs_setup (). This sample
also allows you to experiment with various file system settings to obtain the best performance.

FS2 has been designed to be extensible so it will work with future flash and other non-volatile storage
devices. Writing and installing custom low-level device drivers is beyond the scope of this document,
however see FS2_.L 1B and FS_DEV . L 1B for hints.

10.1.5 File Identifiers
There are two ways to identify a particular file in the file system: file numbers and file names.

10.1.5.1 File Numbers

The file number uniquely identifies a file within a logical extent. File numbers must be unique within the
entire file system. FS2 accepts file numbers in word format:

typedef word FileNumber

The low-order byte specifies the file number and the high-order byte specifies the LX number of the meta-
data (1 through number of LXs). If the high-order byte is zero, then a suitable “default” LX will be located
by the file system. The default LX will default to 1, but will be settable via a #define, for file creation.
For existing files, a high-order byte of zero will cause the file system to search for the LX that contains the
file. This will require no or minimal changes to existing customer code.

Only the metadata LX may be specified in the file number. This is called a “fully-qualified” file number
(FQFN). The LX number always applies to the file metadata. The data can reside on a different LX, how-
ever this is always determined by FS2 once the file has been created.

10.1.5.2 File Names

There are several functions in ZSERVER . L 1 B that can be used to associate a descriptive name with a file.
The file must exist in the flash file system before using the auxiliary functions listed in the following table.
These functions were originally intended for use with an HTTP or FTP server, so some of them take a
parameter called servermask. To use these functions for file naming purposes only, this parameter
should be SERVER_USER.

For a detailed description of these functions please refer to the Dynamic C TCP/IP User’s Manual, Vol 2,
or use keyboard shortcut Ctrl+H in Dynamic C to use the Library Lookup feature.

Dynamic C User’s Manuall rabbit.com 129

http://www.rabbit.com

Table 10-2. Flash File System Auxiliary Functions

Command

Description

sspec_addfsfile

Associate a name with the flash file system file number. The return
value is an index into an array of structures associated with the
named files.

sspec_readfile

Read a file represented by the return value of
sspec_addfsfFile into a buffer.

sspec_getlength

Get the length (number of bytes) of the file.

sspec_getfileloc

Get the file system file number (1- 255). Cast return value to
FILENUMBER.

sspec_Ffindname

Find the index into the array of structures associated with named
files of the file that has the specified name.

sspec_getfiletype

Get file type. For flash file system files this value will be
SSPEC_FSFILE.

sspec_findnextfile

Find the next named file in the flash file system, at or following the
specified index, and return the index of the file.

sspec_remove

Remove the file name association.

sspec_save

Saves to the flash file system the array of structures that reference
the named files in the flash file system.

sspec_restore

Restores the array of structures that reference the named files in the
flash file system.

130

rabbit.com

File Systems

http://www.rabbit.com

10.1.6 Skeleton Program Using FS2

The following program uses some of the FS2 API. It writes several strings into a file, reads the file back
and prints the contents to the Stdio window.

#use "FS2.LIB"
#define TESTFILE 1

main()

{

}

File file;
static char buffer[256];

fs 1nit(0, 0);

if (Ifcreate(&file, TESTFILE) && fopen_ wr(&File, TESTFILE))
{

printf(*'error opening TESTFILE %d\n", errno);

return -1;

}

fseek(&file, 0, SEEK END);
fwrite(&file,"hello™,6);
fwrite(&file,"12345",6);
fwrite(&file,"67890",6);
fseek(&file, 0, SEEK SET);

while(fread(&file,buffer,6)>0) {
printf(C'%s\n"",buffer) ;

}
fclose(&file);

For a more robust program, more error checking should be included. See the sample programs in the
Samples\FILESYSTEM folder for more complex examples, including error checking, formatting, parti-
tioning and other new features.

Dynamic C User’s Manual rabbit.com 131

http://www.rabbit.com

10.2 FAT File System

Dynamic C 8.51 introduced a FAT (File Allocation Table) file system. The small footprint of this well-
defined industry-standard file system makes it ideal for embedded systems. The Dynamic C implementa-
tion of FAT has a directory structure that can be accessed with either Unix or DOS style paths. The stan-
dard directory structure allows monitoring, logging, Web browsing, and FTP updates of files.

The FAT filesystem is included with Dynamic C starting with version 9.60. In earlier versions of
Dynamic C, FAT was sold separately.

FAT version 1.02 supports SPI-based serial flash devices. FAT versions 2.01 and 2.05 also support SPI-
based serial flash devices and require Dynamic C 9.01 or later. FAT version 2.05 introduces support for
NAND flash devices. FAT version 2.10 extends wC/OS-II compatibility to make the FAT API reentrant
from multiple tasks. FAT version 2.13 adds support for SD cards and requires Dynamic C 9.60 or later. In
all versions of the FAT, a battery-backed write-back cache reduces wear on the flash device and a round-
robin cluster assignment helps spread the wear over its surface.

Please be sure check the Rabbit website for software patches and updates to Dynamic C, the FAT filessy-
tem, and for your specific hardware:

www . rabbit.com/support/downloads/

The FAT library can be used in either blocking or non-blocking mode and supports both FAT12 and FAT16.
(See Section 10.2.5.3.1 for more information on these FAT types.)

Let’s define some terms before continuing.

= A device is a single physical hardware item such as a hard drive, a serial flash or a NAND flash. E.g.,
one serial flash is a single device. The device, in turn, can host one to four partitions.

= A partition is a range of logical sectors on a device. A real-world example of a partition is what is com-
monly known as the C drive on a PC.

= A driver is the software interface that handles the hardware-specific aspects of any communication to
or from the device.

= Blocking is a term that describes a function’s behavior in regards to completion of the requested task. A
blocking function will not return until it has completely finished its task. In contrast, a non-blocking
function will return to its calling function before the task is finished if it is waiting for something. A
non-blocking function can return a code that indicates it is not finished and should be called again.
Used in conjunction with cooperative multitasking, non-blocking functions allow other processes to
proceed while waiting for hardware resources to finish or become available.

Operations performed by the Dynamic C FAT implementation are:

= Formatting and partitioning of devices
* Formatting partitions
= File operations: create, open, close, delete, seek, read and write

= Directory' operations: create, read and delete

Labels: create and delete

i. We use the terms directory and subdirectory somewhat interchangeably. The exception is the
root directory—it is never called a subdirectory. Any directory below the root directory may be
referred to as a directory or a subdirectory.

132 rabbit.com File Systems

http://www.rabbit.com
http://www.rabbitsemiconductor.com/support/downloads/

10.2.1 Overview of FAT Documentation

A sample program is reviewed in Section 10.2.2. Two additional sample programs, one for use with the
blocking mode of the FAT and the other for use with the non-blocking mode are described in

Section 10.2.3. Then Section 10.2.4 gives detailed descriptions of the various FAT file system functions
(formatting, opening, reading, writing, and closing). Short, focused examples accompany each description.
There is some general information about FAT file systems and also some web links for further study in
Section 10.2.5.

NOTE: All error codes returned from the Dynamic C FAT file system are defined in
LIB/.../FILESYSTEM/ERRNO.LIB.

10.2.2 Running Your First FAT Sample Program

To run FAT samples, you need a Rabbit-based board with a supported flash type, such as the SPI-based
serial flash device available on the RCM3300 or the RCM3700. FAT versions 2.01 and 2.05 require
Dynamic C 9.01 or later. FAT version 2.05 extends the list of supported flash types to include NAND flash
devices, such as those on the RCM3360 and 3370. FAT version 2.13 requires Dynamic C 9.60 or later and
adds support for SD cards, available on the RCM3900 and 3910.

The board must be powered up and connected to a serial port on your PC through the programming cable
to download a sample program.

In this section we look at Fat_create . c, which demonstrate the basic use of the FAT file system. If
you are using a serial or NAND flash device that has not been formatted or a removable device that was
not formatted using Dynamic C, you must run Samples\Fi leSystem\Fmt_Device. c before you
can run any other sample FAT program. The program, Fmt_Device.c, creates the default configuration
of one partition that takes up the entire device.

If you are using an SD card, run Fmt_Device.c to remove the factory FAT32 partition and create a
FAT16 partition. Be aware that although multiple partitions are possible on removable cards, most PC’s
will not support cards formatted in this fashion.

If you are using a removable NAND flash (XD cards), running Fmt_Device. c causes the device to no
longer be usable without the Rabbit-based board or the Rabbit USB Reader for XD cards. Insert the
NAND flash device into a USB-based flash card reader and format it to regain this usability. Note that this
will only work if you have not defined the macro NFLASH_CANERASEBADBLOCKS. Defining this
macro in a running application destroys proprietary information on the first block of the device, making it
difficult to regain the usability of the NAND device when used without the Rabbit-based board.

If you are using FAT version 2.01 or later, you do not have to run Fmt_Device.c if you initialize the
FAT file system with a call to Fat_AutoMount() instead of Fat_Init(). The function
Ffat_AutoMount() can optionally format the device if it is unformatted; however,
Tfat_AutoMount() will not erase and overwrite a factory-formatted removable device such as an SD
card. If you are using an SD card, run Fmt_Device.c or erase the first three pages with the appropriate
flash utitity (sdflash_inspect.c or nflash_inspect.c).

After the device has been formatted, open Samples\Fi leSystem\fat_create.c. Compile and run
the program by pressing function key F9.

In a nutshell, Fat_create. c initializes FAT, then creates a file, writes “Hello world!” to it, and then
closes the file. The file is re-opened and the file is read, which displays “Hello world!” in the Dynamic C
Stdio window. Understanding this sample will make writing your own FAT application easier.

Dynamic C User’s Manuall rabbit.com 133

http://www.rabbit.com

The sample program has been broken into two functional parts for the purpose of discussion. The first part
deals with getting the file system up and running. The second part is a description of writing and reading
files.

10.2.2.1 Bringing Up the File System
We will look at the first part of the code as a whole, and then explain some of its details.

File Name: Samples\FileSystem\fat_create.c

#define FAT_BLOCK // use blocking mode
#use "'"fat.lib" // of FAT library
FATFfile my_ Ffile; // get file handle
char buf[128]; // 128 byte buffer for read/write of file
int main(){
int 1;
int rc; // Check return codes from FAT API
long prealloc; // Used if the file needs to be created.
fat_part *first_part; // Use the first mounted FAT partition.

rc = fat_AutoMount(FDDF_USE_DEFAULT);

first_part = NULL;
for(i=0;i < num_fat devices * FAT _MAX PARTITIONS; ++i)

{ // Find the first mounted partition
it ((first_part = fat part _mounted[i]) != NULL) {
break; // Found mounted partition, so use it
}
}
it (first_part == NULL) { // Check if mounted partition was found
rc = (rc < 0) ? rc : -ENOPART; // None found, set rc to a FAT error code
} else{
printf('fat_AutoMount() succeeded with return code %d.\n", rc);
rc = 0; // Found partition; ignore error, if any
}
it (rc < 0){ // negative values indicate error
if (rc == -EUNFORMAT)
printf(*'Device not Formatted, Please run Fmt_Device.c\n');
else
printf('fat_AutoMount() failed with return code %d.\n", rc);
exit(l);

} 7/ OK, file system exists and is ready to access. Let's create a file.

134 rabbit.com File Systems

http://www.rabbit.com

The first two statements:

#define FAT_BLOCK
#use ""fat.lib"

cause the FAT library to be used in blocking mode.

FAT version 2.01 introduces a configuration library that chooses initialization settings based on the board
type.The statement #use ““Fat.1ib” brings in this configuration library, which in turn brings in the
appropriate device driver library. The following table lists the device drivers that are available in the differ-
ent FAT versions.

Table 11.

FAT Version Device Driver

1.02, 2.01 sflash_fat.lib
sflash_fat._lib

2.05 nflash_fat.lib
sflash_fat.lib
2.13 nflash_fat.lib

SD_fat. lib

Defining the macro _DRIVER_CUSTOM notifies fat_config. lib that a custom driver or hardware
configuration is being used. For more information on how this works, see Section 10.2.5

Next some static variables are declared: a file structure to be used as a handle to the file hat will be created
and a buffer that will be used for reading and writing the file.

Now we are in main(). First there are some variable declarations: the integer rc is for the code returned
by the FAT API functions. This code should always be checked, and must be checked if the non-blocking
mode of the FAT is used. The descriptions for each function list possible return codes.

The variable preal loc stores the number of bytes to reserve on the device for use by a specific file.
These clusters are attached to the file and are not available for use by any other files. This has some advan-
tages and disadvantages. The obvious disadvantage is that it uses up space on the device. Some advantages
are that having space reserved means that a log file, for instance, could have a portion of the drive set aside
for its use only. Another advantage is that if you are transferring a known amount of information to a file,
pre-allocation not only sets aside the space so you know you will not get half way through and run out, but
it also makes the writing process a little faster as the allocation of clusters has already been dealt with so
there is no need to spend time getting another cluster.

This feature should be used with care as pre-allocated clusters do not show up on directory listings until
data is actually written to them, even though they have locked up space on the device. The only way to get
unused pre-allocated clusters back is to delete the file to which they are attached, or use the
fat_truncate() or fat_spl1t() functions to trim or split the file. In the case of Fat_split(),
the pre-allocated space is not freed, but rather attached to the new file created in the split.

Dynamic C User’s Manuall rabbit.com 135

http://www.rabbit.com

Lastly, a pointer to a partition structure is declared with the statement:
fat_part *first_part;

This pointer will be used as a handle to an active partition. (The Fat_part structure and other data struc-
tures needed by the FAT file system are discussed in fat_AutoMount().) The partition pointer will be
passed to API functions, such as Fat_open().

Now a call is made to Fat_AutoMount(). This function was introduced in FAT version 2.01 as a
replacement for fat_Init(). Whereas fat_Init() can do all the things necessary to ready the first
partition on the first device for use, it is limited to that. The function fat_AutoMount() is more flexi-
ble because it uses data from the configuration file fat_config. 1 ib to identify FAT partitions and to
optionally ready them for use, depending on the flags parameter that is passed to it. The flags parameter is
described in the function description for fat_AutoMount().

For this sample program, we are interested in the first usable FAT partition. The For loop after the call to
fat_AutoMount() finds the partition, if one is available.

The For loop allows us to check every possible partition by using num_fat_devices, which is the
number of configured devices, and then multiplying the configured devices by the maximum number of
allowable partitions on a device, which is four. The For loop also makes use of fat_part_mounted,
an array of pointers to partition structures that is populated by the fat_autoMount() call.

136 rabbit.com File Systems

http://www.rabbit.com

10.2.2.2 Using the File System

The rest of Fat_create . c demonstrates how to use the file system once it is up and running.
File Name: Samples\FileSystem\fat_create.c

prealloc = O;

rc = fat _Open(first_part, "HELLO.TXT", FAT_FILE, FAT_CREATE,
&my File, &prealloc);

if (rc <0) {
printf(**fat_Open() failed with return code %d\n', rc);
exit(l);

}
rc = fat Write(&my_Ffile, "Hello, world!\r\n", 15);

if (rc <0) {
printf('fat Write() failed with return code %d\n", rc);
exit(l);

}
rc = fat_Close(&my_file);
if (rc <0) {
printf(*'fat_Close() failed with return code %d\n", rc);
}
rc = fat Open(first _part, "HELLO.TXT",FAT FILE, 0, &my File,

NULL);

if (rc <0) {
printf('fat_Open() (for read) failed, return code %d\n", rc);
exit(l);

}
rc = fat Read(&my Ffile, buf, sizeof(buf));
if (rc <0) {
printf(*'fat_Read() failed with return code %d\n", rc);
}
else {
printf("'Read %d bytes:\n", rc);
printf('%*.*s", rc, rc, buf); // Printa string which is not NULL terminated
printf(''\n"");
by

fat_UnmountDevice(first_part->dev);
printf(""AlIl OK.\n");
return O;

Dynamic C User’s Manual rabbit.com 137

http://www.rabbit.com

The call to Fat_Open() creates a file in the root directory and names it HELLO . TXT. A file must be
opened before you can write or read it.

rc

= fat_Open(first_part, "HELLO.TXT", FAT_FILE, FAT_CREATE,
&my File, &prealloc);

The parameters are as follows:

Tirst_part points to the partition structure initialized by fat_AutoMount().

"HELLO.TXT" is the file name, and is always an absolute path name relative to the root directory. All
paths in Dynamic C must specify the full directory path explicitly.

FAT_FILE identifies the type of object, in this case a file. Use FAT_DIR to open a directory.

FAT_CREATE creates the file if it does not exist. If the file does exist, it will be opened, and the posi-
tion pointer will be set to the start of the file. If you write to the file without moving the position
pointer, you will overwrite existing data.

Use FAT_OPEN instead of FAT_CREATE if the file or directory should already exist. If the file does
not exist, you will get an —-ENOENT error.

Use FAT_MUST_CREATE if you know the file does not exist. This is a fail-safe way to avoid opening
and overwriting an existing file since an ~-EEXIST error is returned if you attempt to create a file that
already exists.

&my_TFile is a file handle that points to an available file structure. It will be used for this file until the
file is closed.

&preal loc points to the number of bytes to allocate for the file. You do not want to pre-allocate any
more than the minimum number of bytes necessary for storage, and so preal loc was set to 0. You
could also use NULL instead of preal loc and prealloc = 0.

Next, the sample program writes the data "Hello, world!\r\n" to the file.
fat_Write(&my_file, "Hello, world!\r\n", 15);

The parameters are as follows:

&my_fFile is a pointer to the file handle opened by Fat_Open().

“Hello, world!\r\n” is the data written to the file. Note that \r\n (carriage return, line feed)
appears at the end of the string in the call. This is essentially a FAT (or really, DOS) convention for text
files. It is good practice to use the standard line-end conventions. (If you just use \n, the file will read
just fine on Unix systems, but some DOS-based programs may have difficulties.)

15 is the number of characters to write. Be sure to select this number with care since a value that is too
small will result in your data being truncated, and a value that is too large will append any data that
already exists beyond your new data.

138 rabbit.com File Systems

http://www.rabbit.com

The file is closed to release the file handle to allow it to be used to identify a different file.
rc = fat Close(&my_Ffile);

The parameter &my_Fi le is a handle to the file to be closed. Remember to check for any return code
from Fat_Close() since an error return code may indicate the loss of data.

The file must be opened for any further work, even though &my_ ¥ le may still reference the desired file.
The file must be open to be active, so we call Fat_Open() again. Now the file can be read.

rc = fat Read(&my_ Tile, buf, sizeof(buf));

The function Fat_Read () returns the number of characters actually read. The parameters are as follows:
e &my Tile is ahandle to the file to be read.

= Dbuf is a buffer for reading/writing the file that was defined at the beginning of the program.

= sizeof(buf) is the number of bytes to be read into butT. It does not have to be the full size of the
buffer

Characters are read beginning at the current position of the file. (The file position can be changed with the
fat_Seek() function.) If the file contains fewer than sizeof(buf) characters from the current posi-
tion to the end-of-file marker (EOF), the transfer will stop at the EOF. If the file position is already at EOF,
0 is returned. The maximum number of characters read is 32767 bytes per call.

The file can now be closed. Call fat_UnmountDevice () rather than simply calling Fat_Close() to
ensure that any data stored in cache will be written to the device. With a write-back cache, writes are
delayed until either:

* all cache buffers are full and a new FAT read request requires a “dirty” cache buffer to be written out
before the read can take place, or

= cache buffers for a partition or a device are being flushed due to an unmount call or explicit flush call.

Calling fat_UnmountDevice() will close all open files and unmount all mounted FAT partitions. This
is the safest way to shut down a device. The parameter First_part->dev is a handle to the device to
be unmounted.

fat_UnmountDevice(fTirst_part->dev);

NOTE: A removable device must be unmounted in order to flush its data before removal.
Failure to unmount any partition on a device that has been written to could corrupt the file
system.

i. Call fat_ UnmountPartition() when using a FAT version prior to v2.06.

Dynamic C User’s Manuall rabbit.com 139

http://www.rabbit.com

10.2.3 More Sample Programs
This section studies blocking sample FAT_SHELL . C and non-blocking sample FAT _NB_Costate.c

More sample programs are in the Dynamic C folder Samples\Fi leSystem\FAT. For example, there
is udppages - c, an application that shows how to combine HTTP, FTP and zserver functionality to cre-
ate web content than can be updated via FTP.

As described in Section 10.2.2, you will need a target board or core module with a supported flash device,
powered up and connected to a serial port on your PC through the programming cable.

10.2.3.1 Blocking Sample
The sample program Samples\FileSystem\FAT_SHELL.C allows you to use the FAT library by

entering DOS-like or Unix-like commands. To run this sample, open Dynamic C, then open

FAT_SHELL .C. Compile and run FAT_SHELL . C by pressing F9. If the flash device has not been for-
matted and partitioned, FAT_SHELL . C will format and partition the flash device, and then you will be
prompted to run FAT_SHELL . C again (just press F9 when prompted). A display similar to the one shown
in Figure 1 will open in the Dynamic C Stdio window.

Optional parameters are denoted by the square braces [and] following the command name. The [alc] after
“touch” and “mtouch” indicates an optional allocation amount in bytes. The square braces in the descrip-
tion indicate the default value that will be used if the optional parameter is not given.

Figure 1. List of Shell Commands

e

B Sidin

=63

tat_HutoMount sucoceeded with return code H.

FAT_Shell commands:
p:

ls
cd [dirname]

=1}
touch filepame Lalcl
mtouch n filename [alc]
wr filename [bytesl]
rmwr n filename [butes]
ap filename [bytesl]
map n filenams [butes]

mikdir dirname

mikdir n dirname

d filename [bytes]
split filename newfile
trunc filenams [butes]
del filename

rrdic dirname
taLl filename [bytes]

Fat €5§artﬁ Lendx]]
stat filenams
format [pl

hClelpl

EHit

Fartition A is mounted.
A

Set partition where p is parctition id
List current directory

Change directory Lrookl

Print current directory

Create file [1 cluster alloc]

Create n files [1 cluster eachl

rite to file [1k]

Write ton files [1k =achl

Hppend to file [1

Hppend to n files [1k eachl

Create directory

Create n directories

Read from file [first 1k maxl

Split excess allocation to newfile
Truncate file [lengthl (Free Prealloc.)
Oelete the file

Remowes the directory [(must be emphyl
Fead last bytes From file [last 1k ran 1
Print pactition info

Print FHT table [E L5411

Print filesdirectory info

Erase partition or device a,bpe.cas@yuas
Print this help message

Exit this program

You can type “h” and press enter at any time to display the FAT shell commands.

In the following examples the commands that you enter are shown in boldface type. The response from the
shell program is shown in regular typeface.

140

rabbit.com

File Systems

http://www.rabbit.com

> Is
Listing """ (dir length 16384)

hello.txt rhsvdA len=15 clust=2
>

This shows the HELLO . TXT file that was created using the FAT_CREATE . C sample program. The file
length is 15 bytes. Cluster 2 has been allocated for this file. The “ls” command will display up to the first
six clusters allocated to a file.

The flag, rhsvdA, displays the file or directory attributes, with upper case indicating that the attribute is
turned on and lower case indicating that the attribute is turned off. In this example, the archive bit is turned
on and all other attributes are turned off.

These are the six attributes:

r - read-only V - volume label
h - hidden file d - directory
S - system a - archive

To create a directory named DIR1, do the following:

> mkdir dirl
Directory "/dirl" created with 1024 bytes
>

This shows that DIR1 was created, and is 1024 bytes (size may vary by flash type).
Now, select DIR1:

> cd dirl
PWD = *"/dirl*®
>

Add a new file called RABBIT.TXT:

> touch rabbit.txt
File "/dirl/rabbit.txt" created with 1024 bytes
>

Note that the file name was appended to the current directory. Now we can write to RABBIT . TXT. The
shell program has predetermined characters to write, and does not allow you to enter your own data.

> wr rabbit.txt
File "/dirl/rabbit.txt" written with 1024 bytes out of 1024
>

Dynamic C User’s Manuall rabbit.com 141

http://www.rabbit.com

To see what was written, use the “rd” command.

> rd rabbit.txt

rabbit.txt 1024 The quick brown fox jumps over the lazy dog
rabbit.txt 1024 The quick brown fox jumps over the lazy dog

rab

Read 1024 bytes out of 1024
>

10.2.3.2 Non-Blocking Sample
To use the FAT file system in non-blocking mode, do not include the statement #define FAT_BLOCK

in your application. The program interface to the library is the same as the blocking version, with the
exception of the return code ~-EBUSY from many of the API functions.

The sample program Fat_NB_Costate.c in the Samples\FileSystem folder is an example of a
non-blocking application. To view the code in its entirety, open it in Dynamic C. The following discussion
will not examine every line of code, but will focus on what shows the non-blocking nature of the FAT
library and how the application takes advantage of it.

Run Fat NB_Costate.c and after 10 seconds the Stdio window will show something similar to the fol-
lowing:

Figure 2. Screen Shot of Fat_NB_Costate.c Running

=101 %]
fat_BAutofount (] sycceeded with return code @, -
Fat_ME_Costate Log —— Press any kew to edit.
BE:EE:al — 1.522
AR AE: A2 — .39
AR AE: A3 —— 132,194
AR A A4 —— 15,972
gasegras —— 4,801
B B3 B —— 24, 306
AR AE: A7 —— 21,522
AR AE: A2 — .39
AR EE: A% —— 132,195
i
1| I Ll

Each line is an entry into a file that is stored in the FAT file system. The file is appended once every second
and read and displayed once every ten seconds. In addition to the file system use and the screen output, if
you are using an RCM3300, RCM3700 or PowerCore FLEX development board, the application blinks
the LED on your board.

The code preceding main() brings in the required library and declares the file structure. And, as expected,
there is no #deFfine for the macro FAT_BLOCK. At the start of main() some system variable are cre-
ated and initialized. This is followed by the code to bring up the FAT file system, which is similar to what
we examined in Section 10.2.2.1 when looking at Fat_create. c, with two essential differences. One,
since we have initialized the FAT to be in non-blocking and we are making some calls to FAT functions
that must return before we can continue, we must wait for the return.

142 rabbit.com File Systems

http://www.rabbit.com

A whi le loop accomplishes our goal of blocking on the function call until it returns something other than
busy.

whille ((rc = fat_Open(Ffirst_part, name, FAT_FILE, FAT_MUST_ CREATE,
&fFile, &alloc)) == -EBUSY);

The second difference from our earlier sample is the statement right before fat_Open():
file.state = O;

This is required before opening a file when using non-blocking mode in order to indicate that the file is not
in use. Only do this once. After you have opened the file, do not alter the contents of the file structure.

If fat_Open() succeeds we can go into the non-blocking section of the program: three costatements
inside an endless whi Ie loop. The benefit of using the non-blocking mode of the FAT file system is real-
ized when using costatements, an extension of Dynamic C that implements cooperative multitasking.
Instead of waiting while a function finishes its execution, the application can accomplish other tasks.

10.2.3.2.1 Costatement that Writes a File

The first costate is named putdata. It waits for one second and then creates a string to timestamp the
entry of a randomly generated number that is then appended to a file.

while (1){
costate putdata always_on

{

waitfor (DelaySec(1l)); // Wait for one second to elapse

Note that the always_on keyword is used. This is required when using a named costatement to force it

to execute every time it is encountered in the execution thread (unless it is made inactive by a call to
CoPause()).

It is easy to suspend execution within a costate by using the wai tfor keyword. The costate will relin-
quish control if the argument to wai tfor (in this case a call to De laySec()) evaluates to FALSE. The
next time the execution thread reaches putdata, waitfor will be called again. This will go on until
DelaySec() returns TRUE, i.e., when one second has elapsed from the time De laySec () was first
called from within waitfor.

After the one second delay, the string to write to the file is placed in a buffer and a looping variable and
position pointer are initialized.

sprintf(obuf, "%02d:%02d:%02d —-- %6.3Ff \n"*, h, m, s, (25.0 * rand(Q)));
ocount = 0;
optr = obuf;

Before the buffer contents can be written to a file in the FAT file system, we must ensure that no collisions
occur since there is another costate that will attempt to read the file every ten seconds. A file can not be
read from and written to at the same time. In the following code the waitfor keyword is used with the
global variable Fi lestate (defined at the top of the application) to implement a locking mechanism. As
soon as the file becomes available for putdata, it is marked unavailable for showdata.

Dynamic C User’s Manuall rabbit.com 143

http://www.rabbit.com

waitfor (filestate == 0); // Wait until file is available
filestate = 1; // Show file is being updated

The next block of code appends the latest entry into the file that was opened at the start of the application.

while (ocount < REC_LEN){ 7/ Loop until entire record is written
waitfor((rc=fat_Write(&file, optr, REC_LEN - ocount))!= -EBUSY);

if (rc < 0){
printf(*"fat Write: rc = %d\n',rc);
while ((rc = fat_UnmountDevice(first part->dev)) == -EBUSY);
return rc;
}
optr += rc; // Move output pointer
ocount += rc; // Add number of characters written
by
filestate = 0; // Show file is idle

}

Again, waitfor is used to voluntarily relinquish control, this time while waiting for the write function to
complete. If an error occurs during the write operation the device is unmounted and the application exits.
Otherwise the loop counter and the buffer position pointer are advanced by the number of bytes actually
written. Since this can be less than the requested number of bytes, it is best to check in a loop such as the
whi le loop shown in putdata.

The last action taken by putdata is to reset ¥i lestate, indicating that the open file is available.

10.2.3.2.2 Costatement that Reads and Displays a File

The costatement named showdata waits for ten seconds. Then it waits for the open file to be available,
and when it is, immediately marks it as unavailable.

costate showdata always_on{
waitfor (DelaySec(10));
waitfor (Filestate == 0);
filestate = 2;

The next statement modifies the internal file position pointer. The first time this costate runs, readto is
zero, meaning the position pointer is at the first byte of the file. The variable readto is incremented
every time a record is read from the file, allowing showdata to always know where to seek to next.

waitfor (fat Seek(&file, readto, SEEK SET) !'= -EBUSY);

The rest of showdata is awhi le loop inside of a whi Ie loop. The inner whi le loop is where each
record is read from the file into the buffer and then displayed in the Stdio window with the printf()
call. Since fat_Read() may return less than the requested number of bytes, the whi le loop is needed
to make sure that the function will be called repeatedly until all bytes have been read. When the full record
has been read, it will then be displayed to the Stdio window.

144 rabbit.com File Systems

http://www.rabbit.com

The outer wh i le loop controls when to stop reading records from the file. After the last record is read, the
Tat_Read() function is called once more, returning an end-of-file error. This causes the 1T statements
that are checking for this error to return TRUE, which resets Fi lestate to zero, breaking out of the
outer whi le loop and freeing the lock for the putdata costatement to use.

whille (Filestate){
icount = 0;
iptr = ibuf;
whille (icount < REC LEN) {
waitfor((rc = fat_Read(&fFile, iptr, REC LEN-icount)) = -EBUSY);
if (rc < 0)
{
if (rc == -EEOF)
{
filestate = 0O;
break;
he
printf(""fat_Read: rc = %d\n",rc);

while ((rc=fat_UnmountDevice(first_part->dev)) == -EBUSY);
return rc;

h
iptr += rc;

icount += rc;
} // end of inner while loop
it (filestate)
{

printf("'%s", ibuf);

readto += REC LEN;
be

} // end of outer while loop

The other costatement in the endless whi le loop is the one that blinks the LED. It illustrates that while
using the file system in non-blocking mode, there is still plenty of time for other tasks.

Dynamic C User’s Manuall rabbit.com 145

http://www.rabbit.com

10.2.4 FAT Operations

There are some basic groups of operations involved in using the Dynamic C FAT library. These are
described at length in the following sections.

Section 10.2.4.1 “Format and Partition the Device”
® Default Partitioning
* Creating Multiple FAT Partitions

* Preserving Existing Partitions

Section 10.2.4.2 “File and Directory Operations”
= Open and Close Operations
* Read and Write Operations
* (Going to a Specified Position in a File
* Creating Files and Subdirectories
* Reading Directories

* Deleting Files and Directories

10.2.4.1 Format and Partition the Device

The flash device must be formatted before its first use. Formatting it after its first use may destroy infor-
mation previously placed on it.

10.2.4.1.1 Default Partitioning

As a convenience, Samples/FileSystem/Fmt_Device. c is provided to format the flash device.
This program can format individual FAT 12/16 partitions, or can format all FAT 12/16 partitions found on
a device. If no FAT 12/16 partitions are found, it offers the option of erasing the entire device and format-
ting it with a single FAT 16 partition. Be aware that this will destroy any data on the device, including that
contained on FAT 32 partitions. This is an easy way to format new media that may contain an empty
FAT32 partition spanning the entire device, such as a new SD or XD card.

After the device has been formatted with Fmt_Device.c, an application that wants to use the FAT file
system just has to call the function Fat_Init() (replaced in FAT version 2.01) or
fat_AutoMount(). If you are calling Fat_AutoMount() refer to Section 10.2.2.1 for an example
of its use. Note that if you call Fat_AutoMount() using the configuration flag FDDF _DEV_FORMAT,
you may not need to run Fmt_Device.c.

10.2.4.1.2 Creating Multiple Partitions

To create multiple partitions on the flash device use the sample program FAT_Write_MBR . c, which will
allow you to easily create as many as four partitions. This program does require that the device be “erased”
before being run. This can be done with the appropriate sample program: sdflash_inspect.c,
sftlash_inspect.c or nflash_inspect.c. You only need to clear the first three pages on SD
cards or serial flash, or the first page on NAND flash or XD cards. Once this is done, run

FAT Write MBR and it will display the total size of the device in MegaBytes and allow you to specify the
size of each partition until all the space is used. If you specify an amount larger than the space remaining,
then all remaining space will be used for that partition. Once all space is specified, it will ask approval to
write the new partition structure. This utility does not format the partitions, it merely creates their defini-
tions. Run Fmt_device. c afterwards and use the 0 or 1 option to format the full device and all parti-

146 rabbit.com File Systems

http://www.rabbit.com

tions will be formatted. Be forewarned that on removable media, using multiple partitions will typically
make the device unusable with PC readers.

The sample program FAT_Write_MBR. c is distributed with FAT version 2.13. It is also compatible with
FAT versions 2.01, 2.05 and 2.10. If you have one of these earlier versions of the FAT and would like a
copy of FAT_Write_MBR.c, please contact Technical Support either by email to
support@rabbitsemiconductor.com or using the online form available on the Rabbit website:
www.rabbitsemiconductor.com/support/questionSubmit.shtml.

There is a way to create multiple partitions without using the utility FAT_Write_MBR. c; this auxiliary
method is explained in Section 10.2.5.3.5.

10.2.4.1.3 Preserving Existing Partitions
If the flash device already has a valid partition that you want to keep, you must know where it is so you
can fit the FAT partition onto the device. This requires searching the partition table for both available parti-
tions and available space. An available partition has the partsecsize field of its mbr_part entry
equal to zero.

Look in lib/. . ./RCM3300/RemoteApplicationUpdate/downloadmanager . 1ib for the
function dIm_initserialflash() for an example of searching through the partition table for avail-
able partitions and space. See the next section for more information on the download manager (DLM) and
how to set up coexisting partitions.

10.2.4.1.4 FAT and DLM Partitions
The RabbitCore RCM3300 comes with a download manager utility that creates a partition on a serial flash

device, which is then used by the utility to remotely update an application. You can set up a device to have
both a DLM partition and a FAT partition.

Run the program Samples/RCM3300/RemoteApplicationUpdate/DLM_FAT_FORMAT.C.
This program must be run on an unformatted serial flash, i.e., a flash with no MBR. To remove an existing
MBR, first run the program Samples/RCM3300/SerialFlash/SFLASH_INSPECT.C to clear the
first three pages.

The program DLM_FAT_FORMAT . C will set aside space for the DLM partition and use the rest of the
device to create a FAT partition. Then, when you run the DLM software, it will be able to find space for its
partition and will coexist with the FAT partition. This shows the advantage to partitions: Partitions set hard
boundaries on the allocation of space on a device, thus neither FAT nor the DLM software can take space
from the other.

Dynamic C User’s Manuall rabbit.com 147

http://www.rabbit.com
http://www.rabbitsemiconductor.com/support/questionSubmit.shtml

10.2.4.2 File and Directory Operations

The Dynamic C FAT implementation supports the basic set of file and directory operations. Remember
that a partition must be mounted before it can be used with any of the file, directory or status operations.

10.2.4.2.1 Open and Close Operations

The Fat_Open() function opens a file or a directory. It can also be used to create a file or a directory.
When using the non-blocking FAT, check the return code and call it again with the same arguments until it
returns something other than —EBUSY..

rc = fat Open(my_part, "DIR\\FILE.TXT", FAT_FILE, FAT_CREATE,
&my File, &prealloc);

The first parameter, my_part, points to a partition structure. This pointer must point to a mounted parti-
tion. Some of the sample programs, like Fat_create. c, declare a local pointer and then search for a
partition pointer in the global array Fat_part_mounted[]. Other sample programs, like
Tat_shell _c, define an integer to be used as an index into Fat_part_mounted[]. Both methods
accomplish the same goal of gaining access to a partition pointer.

The second parameter contains the file name, including the directory (if applicable) relative to the root
directory. All paths in Dynamic C must specify the full directory path explicitly, e.g., DIRIN\FILE . EXT
or DIR1/FILE_EXT. The direction of the slash in the pathname is a backslash by default. If you use the
default backslash for the path separator, you must always precede it with another backslash, as shown in
the above call to Fat_Open(). This is because the backslash is an escape character in a Dynamic C
string. To use the forward slash as the path separator, define the macro FAT_USE__FORWARDSLASH in
your application (or in FAT . L 1B to make it the system default).

The third parameter determines whether a file or directory is opened (FAT_FILE or FAT_DIR).

The fourth parameter is a flag that limits Fat_Open() to the action specified. FAT_CREATE creates the
file (or directory) if it does not exist. If the file does exist, it will be opened, and the position pointer will be
set to the start of the file. If you write to the file without moving the position pointer, you will overwrite
existing data. Use FAT_MUST_CREATE if you know the file does not exist; this last option is also a fail-
safe way to avoid opening and overwriting an existing file since an —EEX1ST error message will be
returned if you attempt to create a file that already exists.

The fifth parameter, &my_Fi e, is an available file handle. After a file or directory is opened, its handle is
used to identify it when using other API functions, so be wary of using local variables as your file handle.

The final parameter is an initial byte count if the object needs to be created. It is only used if the
FAT_CREATE or FAT_MUST_CREATE flag is used and the file or directory does not already exist. The
byte count is rounded up to the nearest whole number of clusters greater than or equal to 1. On return, the
variable preal loc is updated to the number of bytes allocated. Pre-allocation is used to set aside space
for a file, or to speed up writing a large amount of data as the space allocation is handled once.

Pass NULL as the final parameter to indicate that you are opening the file for reading or that a minimum
number of bytes needs to be allocated to the file at this time. If the file does not exist and you pass NULL,
the file will be created with the minimum one cluster allocation.

Once you are finished with the file, you must close it to release its handle so that it can be reused the next
time a file is created or opened.

148 rabbit.com File Systems

http://www.rabbit.com

rc = fat Close(&my_ file);

Remember to check the return code from Fat_Close() since an error return code may indicate the loss
of data. Once you are completely finished, call fat_UnmountDevice() to make sure any data stored
in the cache is written to the flash device.

10.2.4.2.2 Read and Write Operations
Use fat_Read() to read a file.

rc = fat Read(&my_fFfile, buf, sizeof(buf));

The first parameter, &my_Fi le, is a pointer to the file handle already opened by Fat_Open(). The
parameter buf points to a buffer for reading the file. The sizeof(buf) parameter is the number of
bytes to be read into the buffer. It does not have to be the full size of the buffer. If the file contains fewer
than sizeoF(buf) characters from the current position to the end-of-file marker (EOF), the transfer will
stop at the EOF. If the file position is already at the EOF, 0 is returned. The maximum number of charac-
ters read is 32767 bytes per call.

The function returns the number of characters read or an error code. Characters are read beginning at the
current position of the file. If you have just written to the file that is being read, the file position pointer
will be where the write left off. If this is the end of the file and you want to read from the beginning of the
file you must change the file position pointer. This can be done by closing the file and reopening it, thus
moving the position pointer to the start of the file. Another way to change the position pointer is to use the
Tat_Seek() function. This function is explained in Section 10.2.4.2.3.

Use fat_ReadDir () to read a directory. This function is explained in Section 10.2.4.2.5.

Use fat_Write() or Fat_xWrite() to write to a file. The difference between the two functions is
that Fat_xWrite() copies characters from a string stored in extended memory.

rc = fat_Write(&my_file, "Write data\r\n", 12);

The first parameter, &my_File, is a pointer to the file handle already opened by Fat_Open(). Because
Fat_Open() sets the position pointer to the start of the file, you will overwrite any data already in the
file. You will need to call Fat_Seek() if you want to start the write at a position other than the start of
the file (see Section 10.2.4.2.3).

The second parameter contains the data to write to the file. Note that \Ir\n (carriage return, line feed)
appear at the end of'the string in the function. This is essentially a FAT (or really, DOS) convention for text
files. Tt is good practice to use these standard line-end conventions. (If you only use \n, the file will read
just fine on Unix systems, but some DOS-based programs may have difficulties.) The third parameter
specifies the number of characters to write. Select this number with care since a value that is too small will
result in your data being truncated, and a value that is too large will append any data that already exists
beyond your new data.

Remember that once you are finished with a file you must close it to release its handle. You can call the
fat_Close() function, or, if you are finished using the file system on a particular partition, call
fat_UnmountPartition(), which will close any open files and then unmount the partition. If you
are finished using the device, it is best to call Fat_UnmountDevice(), which will close any open FAT

Dynamic C User’s Manuall rabbit.com 149

http://www.rabbit.com

files on the device and unmount all mounted FAT partitions. Unmounting the device is the safest method
for shutting down after using the device.

10.2.4.2.3 Going to a Specified Position in a File

The position pointer is at the start of the file when it is first opened. Two API functions, fat_Tell1 ()
and Fat_Seek(), are available to help you with the position pointer.

fat Tell(&my Ffile, &pos);
fat_Seek(&my_ file, pos, SEEK SET);

The fat_Tel 1 () function does not change the position pointer, but reads its value (which is the number
of bytes from the beginning of the file) into the variable pointed to by &p0sS. Zero indicates that the posi-
tion pointer is at the start of the file. The first parameter, &my_Fi le, is the file handle already opened by
fat_Open().

The Fat_Seek() function changes the position pointer. Clusters are allocated to the file if necessary, but
the position pointer will not go beyond the original end of file (EOF) unless doing a SEEK_RAW. In all
other cases, extending the pointer past the original EOF will preallocate the space that would be needed to
position the pointer as requested, but the pointer will be left at the original EOF and the file length will not
be changed. If this occurs, the error code —~EEOF is returned to indicate the space was allocated but the
pointer was left at the EOF. If the position requires allocating more space than is available on the device,
the error code ~ENOSPC is returned.

The first parameter passed to Fat_Seek() is the file handle that was passed to fat_Open(). The sec-
ond parameter, POS, is a long integer that may be positive or negative. It is interpreted according to the
value of the third parameter. The third parameter must be one of the following:

e SEEK_SET - pos is the byte position to seek, where 0 is the first byte of the file. If pos is less than 0,
the position pointer is set to 0 and no error code is returned. If pos is greater than the length of the file,
the position pointer is set to EOF and error code —EEOF is returned.

e SEEK_CUR - seek pos bytes from the current position. If pos is less than 0 the seek is towards the
start of the file. If this goes past the start of the file, the position pointer is set to 0 and no error code is
returned. If pos is greater than 0 the seek is towards EOF. If this goes past EOF the position pointer is
set to EOF and error code —EEOF is returned.

= SEEK_END - seek to pos bytes from the end of the file. That is, for a file that is x bytes long, the state-
ment:

fat_Seek (&my file, -1, SEEK _END);

will cause the position pointer to be set at x-1 no matter its value prior to the seek call. If the value of
pos would move the position pointer past the start of the file, the position pointer is set to O (the start of
the file) and no error code is returned. If pOS is greater than or equal to 0, the position pointer is set to
EOF and error code —-EEOF is returned.

e SEEK_RAW - is similar to SEEK_SET, but if pos goes beyond EOF, using SEEK_RAW will set the file
length and the position pointer to pOs. This adds whatever data exists on the allocated space onto the
end of the file..

150 rabbit.com File Systems

http://www.rabbit.com

10.2.4.2.4 Creating Files and Subdirectories

While the fat_Open() function is versatile enough to not only open a file but also create a file or a sub-
directory, there are API functions specific to the tasks of creating files and subdirectories.

The fat_CreateDir () function is used to create a subdirectory one level at a time.

rc = fat_CreateDir(my_part, "DIR1™);

The first parameter, my_part, points to a partition structure. This pointer must point to a mounted parti-
tion. Some of the sample programs, like fat_create.c, declare a local pointer and then search for a
partition pointer in the global array fat_part_mounted[]. Other sample programs, like
fat_shell .c, define an integer to be used as an index into fat_part_mounted[]. Both methods
accomplish the same goal of gaining access to a partition pointer.

The second parameter contains the directory or subdirectory name relative to the root directory. If you are
creating a subdirectory, the parent directory must already exist.

Once DIR1 is created as the parent directory, a subdirectory may be created, and so on.

rc = fat_CreateDir(my_part, "DIR1/SUBDIR™);

Note that a forward slash is used in the pathname instead of a backslash. Either convention may be used.
The backslash is used by default. To use a forward slash instead, define FAT _USE_FORWARDSLASH in
your application or in FAT L 1B.

A file can be created using the Fat_CreateFile() function. All directories in the path must already
exist.

rc = fat_CreateFile(my_part, "DIR1/SUBDIR/FILE.TXT', &prealloc,
&my_file);

The first parameter, my_part, points to the static partition structure set up by fat_AutoMount().

The second parameter contains the file name, including the directories (if applicable) relative to the root
directory. All paths in the FAT library are specified relative to the root directory.

The third parameter indicates the initial number of bytes to pre-allocate. At least one cluster will be allo-
cated. If there is not enough space beyond the first cluster for the requested allocation amount, the file will
be allocated with whatever space is available on the partition, but no error code will be returned. If no clus-
ters can be allocated, the —-ENOSPC error code will return. Use NULL to indicate that no bytes need to be
allocated for the file at this time. Remember that pre-allocating more than the minimum number of bytes
necessary for storage will reduce the available space on the device.

The final parameter, &my_File, is a file handle that points to an available file structure. If NULL is
entered, the file will be closed after it is created.

Dynamic C User’s Manuall rabbit.com 151

http://www.rabbit.com

10.2.4.2.5 Reading Directories
The fat_ReadDir () function reads the next directory entry from the specified directory. A directory
entry can be a file, directory or a label. A directory is treated just like a file.

fat ReadDir(&dir, &dirent, mode);

The first parameter specifies the directory; &d i r is an open file handle. A directory is opened by a call to
fat_OpenDir() or by passing FAT_DIR in a call to fat_Open(). The second parameter, &dirent,
is a pointer to a directory entry structure to fill in. The directory entry structure must be declared in your
application, for example:

fat _dirent dirent;

Search Conditions

The last parameter, mode, determines which directory entry is being requested, a choice that is built from
a combination of the macros described below. To understand the possible values for mode, the first thing
to know is that a directory entry can be in one of three states: empty, active or deleted. This means you
must choose one of the default flags described below, or one or more of the following macros:

e FAT_INC_ACTIVE - include active entries. This is the default setting if other FAT_INC_* macros
are not specified; i.e., active files are included unless FAT_INC_DELETED, FAT _INC_EMPTY, or
FAT_INC_LNAME is set.

e FAT_INC_DELETED - include deleted entries
e FAT_INC_EMPTY - include empty entries

e FAT_INC_LNAME - include long name entries (this is included for completeness, but is not used since
long file names are not supported)

The above macros narrow the search to only those directory entries in the requested state. The search is
then refined further by identifying particular attributes of the requested entry. This is done by choosing one
or more of the following macros:

e FATATTR_READ_ONLY - include read-only entries

* FATATTR_HIDDEN - include hidden entries

* FATATTR_SYSTEM - include system entries

e FATATTR_VOLUME_ID - include label entries

e FATATTR_DIRECTORY - include directory entries

e FATATTR_ARCHIVE - include modified entries

Including a FATATTR_* macro means you do not care whether the corresponding attribute is turned on or
off. Not including a FATATTR_* macro means you only want an entry with that particular attribute turned
off. Note that the FAT system sets the archive bit on all new files as well as those written to, so including
FATATTR_ARCHIVE in your mode setting is a good idea.

For example, if mode is (FAT_INC_ACTIVE) then the next directory entry that has all of its attributes
turned off will be selected; i.e., an entry that is not read only, not hidden, not a system file, not a directory
or a label, and not archived. In other words, the next writable file that is not hidden, system or already
archived is selected.

152 rabbit.com File Systems

http://www.rabbit.com

But, if you want the next active file and do not care about the file’s other attributes, mode should be
(FAT_INC_ACTIVE | FATATTR_READ ONLY | FATATTR_HIDDEN | FATATTR_SYSTEM |
FATATTR_ARCHIVE). This search would only exclude directory and label entries.

Now suppose you want only the next active read-only file, leaving out hidden or system files. The next
group of macros allows this search by filtering on whether the requested attribute is set. The filter macros
are:

e FAT_FIL_RD_ONLY - filter on read-only attribute

e FAT_FIL_HIDDEN - filter on hidden attribute

e FAT_FIL_SYSTEM - filter on system attribute

e FAT_FIL_LABEL - filter on label attribute

e FAT_FIL_DIR - filter on directory attribute

e FAT_FIL_ARCHIVE - filter on modified attribute

If you set mode to (FAT_INC_ACTIVE | FATATTR_READ_ONLY | FAT_FIL_RD_ONLY |
FATATTR_ARCHIVE), the result will be the next active file that has its read-only attribute set (and has
the archive attribute in either state).

NOTE: If you have FAT version 2.05 or earlier, you do not have access to the
FAT_FIL_* macros.

Default Search Flags

To make things easier, there are two predefined mode flags. Each one may be used alone or in combination
with the macros already described.

e FAT _INC_ALL - selects any directory entry of any type.

= FAT_INC_DEF - selects the next active file or directory entry, including read-only or archived files.
No hidden, system, label, deleted, or empty directories or files will be selected. This is typically what
you see when you do a directory listing on your PC.

Search Flag Examples
Here are some more examples of how the flags work.

1. If you want the next hidden file or directory:

Start with the FAT_INC_DEF macro default flag. This flag does not allow hidden files, so we
need FATATTR_HIDDEN. Then to narrow the search to consider only a hidden file or directory,
we need the macro FAT_FIL_HIDDEN to filter on files or directories that have the hidden
attribute set. That is, mode is set to:

FAT_INC_DEF | FATATTR_HIDDEN | FAT_FIL_HIDDEN

Dynamic C User’s Manuall rabbit.com 153

http://www.rabbit.com

2. If you want the next hidden directory:

Start with the FAT_INC_DEF macro default flag. To narrow the search to directories only, we
want entries with their directory attribute set; therefore, OR the macros FATATTR_DIRECTORY
and FAT_FIL_DIR. Then OR the macros FATATTR_HIDDEN and FAT_FIL_HIDDEN to search
only for directories with their hidden attribute set. Set mode to:

FAT_INC_DEF | FATATTR_DIRECTORY | FAT_FIL_DIR | FATATTR_HIDDEN |
FAT_FIL_HIDDEN

3. If you want the next hidden file (no directories):

Start with the predefined flag, FAT_INC_DEF. This flag allows directories, which we do not want, so
we do an AND NOT of the FATATTR_DIRECTORY macro.

Next we want to narrow the search to only entries that have their hidden attribute set. The default flag
does not allow hidden flags, so we need to OR the macros FATTR_HIDDEN and FAT_FI1L_HIDDEN.

That is, set mode to:
FAT_INC_DEF & ~FATATTR_DIRECTORY | FATATTR_HIDDEN | FAT_FIL_HIDDEN

4. If you want the next non-hidden file (no directories):

First, select the FAT__INC_DEF filter default flag. This flag allows directories, which we do not want,
so we do an AND NOT ofthe FATATTR_DIRECTORY macro. The default flag already does not allow
hidden files, so we are done. That is, set mode to:

FAT_INC_DEF & ~FATATTR_DIRECTORY

5. Finally let’s see how to get the next non-empty entry of any type.

Start with the predefined flag, FAT _INC_ALL. This flag selects any directory entry of any type. Since
we do not want empty entries, we have to remove that search condition from the flag, so we do an AND
NOT for the FAT_INC_EMPTY macro to filter out the empty entries. That means mode is the bitwise
combination of the macros:

mode = FAT_INC_ALL & ~FAT_INC_EMPTY

10.2.4.2.6 Deleting Files and Directories

The Ffat_Delete() function is used to delete a file or directory. The second parameter sets whether a
file or directory is being deleted. Only one file or directory may be deleted at any one time—this means
that you must call Fat_Delete() at least twice to delete a file and its associated directory (if the direc-
tory has no other files or subdirectories since a directory must be empty to be deleted).

fat_Delete(my_part, FAT_FILE, "DIR/FILE.TXT");

The first parameter, my_part, points to the static partition structure that was populated by
fat_AutoMount(). The second parameter is the file type, FAT _FILE or FAT_DIR, depending on
whether a file or a directory is to be deleted. The third parameter contains the file name, including the
directory (if applicable) relative to the directory root. All paths in the FAT library are specified relative to
the root directory.

154 rabbit.com File Systems

http://www.rabbit.com

10.2.4.3 Error Handling

Most routines in the FAT library return an int value error code indicating the status of the requested opera-
tion. Table 12 contains a list of error codes specific to the FAT file system. Most of these codes, along
with some other error codes, are defined in /Lib/ . ./ERRNO.LIB.

Table 12. FAT-Specific Error Codes

Code Value Description
EOF 231 End of File Encountered
EEOF 41 End-of-file marker reached
ETYPE 232 Incorrect Type
EPATHSTR 233 Invalid Path String
EROOTFULL 234 Root Directory is Full
EUNFORMAT 235 Unformatted Volume
EBADPART 236 Invalid Partition
ENOPART 237 Unpartitioned / Unformatted Media
ENOTEMPTY 238 Open Files in Partition / Directory to be Deleted
EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
EIO 5 1/O error
EBUSY 16 Device or resource busy
EEXIST 17 File exists
ENODEV 19 No such device
ENOSPC 28 No space left on device
ENOTEMPTY 39 Directory is not empty
ENOMEDIUM 123 No medium found

Dynamic C User’s Manuall rabbit.com 155

http://www.rabbit.com

10.2.5 More FAT Information

The FAT file system stores and organizes files on a storage device such as a hard drive or a memory
device.

10.2.5.1 Clusters and Sectors

Every file is stored on one or more clusters. A cluster is made up of a contiguous number of bytes called
sectors and is the smallest unit of allocation for files. The Dynamic C FAT implementation supports a sec-
tor size of 512 bytes. Cluster sizes depend on the media. The table below gives the cluster sizes used for
some of our RabbitCore modules.

Table 13. Cluster Sizes on Flash Devices

RabbitCore Model Flash Device Nun;)k;?rézisacrtors
RCM 3700 1 MB Serial Flash 1
RCM 3300 4 and 8 MB Serial Flash 2
RCM3360/70 NAND Flash 32

The cluster size for a NAND device corresponds to its page size. Note that a file or directory takes at mini-
mum one cluster. On a NAND device the page size is 16K bytes; therefore, while it is allowable to write
very small files to the FAT file system on a NAND device, it is not space efficient. Even the smallest file
takes at least 16,000 bytes of storage. Cluster sizes for SD cards vary with the size of the card inserted. To
determine the number of sectors per cluster on an SD card, divide the size of the card by 32MB.

10.2.5.2 The Master Boot Record

The master boot record (MBR) is located on one or more sectors at the physical start of the device. Its
basic structure is illustrated in Figure 3. The boot region of the MBR contains DOS boot loader code,
which is written when the device is formatted (but is not otherwise used by the Dynamic C FAT file sys-
tem). The partition table follows the boot region. It contains four 16-byte entries, which allows up to four
partitions on the device. Partition table entries contain some critical information: the partition type
(Dynamic C FAT recognizes partition types FAT12 and FAT16) and the partition’s starting and ending sec-
tor numbers. There is also a field denoting the total number of sectors in the partition. If this number is
zero, the corresponding partition is empty and available.

156 rabbit.com File Systems

http://www.rabbit.com

Figure 3. High-Level View of an MBR

Master Boot Record (MBR)
Entry__, 4000
Boot Region
Ox1BE Partition 0 "%
Ox1CE Partition 1 '(—:
Ox1DE Partition 2 é
Ox1EE Partition 3 "5.“
OX1FE Signature

NOTE: Some devices are formatted without an MBR and, therefore, have no partition
table. This configuration is not currently supported in the Dynamic C FAT file system.

10.2.5.3 FAT Partitions
The first sector of a valid FAT file system partition contains the BIOS parameter block (BPB); this is fol-

lowed by the file allocation table (FAT), and then the root directory. The figure below shows a device with
two FAT partitions.

Figure 4. Two FAT Partitions on a Device

of Device of Partiton 1 Cluster 2

10.2.5.3.1 BPB
The fields of the BPB contain information describing the partition:

the number of bytes per sector

the number of sectors per cluster (see Table 13)

the total count of sectors on the partition

the number of root directory entries

plus additional information not mentioned here

Partition O Partition 1
N N
BPB BPB N
MBR FAT | Data Area FAT . Data Area
ROOT ROOT 1
\ A —
Sector 0 First Sector Start of First Sector Start of

of Partition 2 Cluster 2

Dynamic C User’s Manual

rabbit.com

157

http://www.rabbit.com

The FAT type (FAT12 or FAT16) is determined by the count of clusters on the partition. The “12” and “16”
refer to the number of bits used to hold the cluster number. The FAT type is calculated using information
found in the BPB. Information from a BPB on a mounted partition is stored in the partition structure (of
type Fat_part) populated by Fat_AutoMount().

Partitions greater than or equal to 2 MB will be FAT16. Smaller partitions will be FAT12. To save code
space, you can compile out support for either FAT type. Find the lines

#define FAT_FAT12 // comment out to disable FAT12 support
#define FAT_FAT16 // comment out to disable FAT16 support

in LIB/ . ./FAT.LIB, make your change, and then recompile your application.

10.2.5.3.2 FAT
The file allocation table is the structure that gives the FAT file system its name. The FAT stores informa-

tion about cluster assignments. A cluster is either assigned to a file, is available for use, or is marked as
bad. A second copy of the FAT immediately follows the first.

10.2.5.3.3 Root Directory

The root directory has a predefined location and size. It has 512 entries of 32 bytes each. An entry in the
root directory is either empty or contains a file or subdirectory name (in 8.3 format), file size, date and
time of last revision and the starting cluster number for the file or subdirectory.

10.2.5.3.4 Data Area

The data area takes up most of the partition. It contains file data and subdirectories. Note that the data area
of a partition must, by convention, start at cluster 2.

10.2.5.3.5 Creating Multiple FAT Partitions

FAT version 2.13 introduces FAT_Write_MBR.c, a utility that simplifies the creation of multiple parti-
tions. It is distributed with FAT version 2.13. It is also compatible with FAT versions 2.01, 2.05 and 2.10. If
you have one of these earlier versions of the FAT and would like a copy of FAT_Write_ MBR.c, please
contact Technical Support either by email to support@rabbitsemiconductor.com or by using the online
form available on the Rabbit website: www.rabbitsemiconductor.com/support/questionSubmit.shtml. See
Section 10.2.4.1.2 for information on running this utility.

Without the use of FAT_Write_MBR. c, creating multiple FAT partitions on the flash device requires a
little more effort than the default partitioning. If the flash device does not contain an MBR, i.e., the device
is not formatted, both fat_Init() and Fat_AutoMount() return an error code (-EUNFORMAT)
indicating this fact. So the next task is to write the MBR to the device. This is done with a call to
fat_FormatDevice(). Since we want more than one partition on the flash device,
fat_FormatDevice() must be called with a mode parameter of zero.

Before calling fat_FormatDevice(), partition specific information must be set in the mbr_part
entries for each partition you are creating. The following code shows possible information for partition 0
where MY_PARTITION_SIZE is equal to the size of the desired partition in bytes, 512 is the flash sector
size, and devV points to the mbr_part structure.

158 rabbit.com File Systems

http://www.rabbit.com
http://www.rabbitsemiconductor.com/support/questionSubmit.shtml

memset(dev->part, 0, sizeof(mbr_part));

dev->part[0].-starthead = OXFE;

dev->part[0].endhead = OXFE;

dev->part[0].startsector = 1;

dev->part[0].partsecsize = (MY_PARTITION_SIZE / 512) + 1;
dev->part[0].parttype = (dev->part[0].partsecsize < SEC_2MB) ? 1: 6;

The memset () function is used to initialize the entry to zero. The values for starthead and endhead
should be OxFE to indicate that the media uses LBA (Logical Block Addressing) instead of head and cylin-
der addressing. The FAT library uses LBA internally. The values for the startsector, partsecsize
and parttype fields determine where the partition starts, how many sectors it contains and what parti-
tion type it is. The number of sectors in the partition is calculated by dividing the number of raw bytes in
the partition by the sector size of the flash. The number of raw bytes in the partition includes not only
bytes for file storage, but also the space needed by the BPB and the root directory. One is added to dev-
>partsecsize to ensure an extra sector is assigned if MY _PARTITION_SIZE is not evenly divisible
by the size of a flash sector. The partition type (- parttype) is determined by the partition size: 1 indi-
cates FAT12 and 6 indicates FAT16. Fill in an mbr_part structure for each partition you are creating.
The remaining entries should be zeroed out.

When laying out partitions, there are three basic checks to make sure the partitions fit in the available
device space and do not overlap.

1. No partition can start on a sector less than 1.

2. Each partition resides on sectors from startsector through startsector+partsecsize-1.
No other partition can have a Startsector value within that range.

3. No partition ending sector (Startsector+partsecsize-1) can be greater than or equal to the
total sectors on the device.

The partition boundaries are validated in the call to Fat_FormatDevice() and the function will return

an error if any of the partition boundaries are invalid. If fat_FormatDevice() returns success, then

call fat_AutoMount() with flags of FDDF_COND_PART_FORMAT | FDDF_MOUNT_DEV_# |

FDDF_MOUNT_PART_ALL; where # is the device number for the device being partitioned. This will for-

mat and mount the newly created partitions.

10.2.5.4 Directory and File Names

File and directory names are limited to 8 characters followed by an optional period (.) and an extension of
up to 3 characters. The characters may be any combination of letters, digits, or characters with code point
values greater than 127. The following special characters are also allowed:

$% " -_0~"V"(){}rrr#&
File names passed to the file system are always converted to upper case; the original case value is lost.

The maximum size of a directory is limited by the available space. It is recommended that no more than
ten layers of directories be used with the Dynamic C FAT file system.

Dynamic C User’s Manuall rabbit.com 159

http://www.rabbit.com

10.2.5.5 pC/OS-Il and FAT Compatibility

Versions of the FAT file system prior to version 2.10 are compatible with nC/OS-II only if FAT API calls
are confined to one uC/OS-II task. To make the FAT API reentrant from multiple tasks, you must do the
following:

* Use FAT version 2.10
e f#define FAT_USE_UCOS_MUTEX before #use'ing FAT.L1B

e (all the function fat_InitUCOSMutex(priority) after calling OSInit() and before calling
FAT APIs or beginning multitasking; the parameter “priority” MUST be a higher priority than all tasks
using FAT APIs

* C(Call only high-level fat APIs with names that begin with “fat_”

See the function description for fat_InitUCOSMutex() for more details, and the sample program
Samples/FileSystem/FAT_UCOS.C for a demonstration of using FAT with uC/OS-II.

10.2.5.6 SF1000 and FAT Compatibility

There are two macros that need to be defined for the FAT to work with the SF1000 Serial Flash Expansion
Board.

#define SF_SPI_DIVISOR 5
#define SF_SPI_INVERT_RX

10.2.5.7 Hot-Swapping an xD Card

Hot-swapping is currently supported on the RCM3365 and the RCM3375. FAT version 2.10 or later is
required. Two sample programs are provided in Samples/Fi leSystem to demonstrate this feature:
FAT_HOT_SWAP.C and FAT_HOT_SWAP_3365_75.C. The samples are mostly identical: they both
test for a keyboard hit to determine if the user wants to hot-swap the xD card, but, in addition, the sample
program FAT_HOT_SWAP_3365_75.C also checks for a switch press and indicates a ready-to-mount
condition with an LED.

After unmounting the xD card call _fat_config_init(). This disconnects drive and device struc-
tures from internal tables to work around a potential problem swapping from smaller to larger removable
devices.

As demonstrated in the sample programs, an xD card should only be removed after it has unmounted with
fat_UnmountDevice() and no operations are happening on the device.

Only fat_AutoMount() should be used to remount XD cards. In addition, the function
nt_XD_Detect() should be called to verify xD card presence before attempting to remount an xD card.

xD cards formatted with versions of the FAT prior to 2.10 did not have unique volume labels. If there is a
chance that two such cards may be swapped, call fat_autoMount() with the FDDF_NO_RECOVERY
flag set. This means that if there is a write cache entry to be written, it will not be written. The function
Tfat_UnmountDevice() flushes the cache (i.e., writes all cache entries to the device) before unmount-
ing, so this should not generally be a problem if the device was properly unmounted.

160 rabbit.com File Systems

http://www.rabbit.com

10.2.5.8 Hot-Swapping an SD Card

Hot-swapping is currently supported on the RCM3900 and the RCM3910. FAT version 2.14 or later is
required. A sample program is provided in Samples/Fi leSystem to demonstrate this feature:
FAT_HOT_SWAP_SD.C. The sample tests for a keyboard hit to determine if the user wants to hot-swap
the SD card.

Hot-swapping an SD card requires that you unmount the device before removal, as the FAT filesystem
employs a cache system that may not have written all information to the device unless unmounted.

As demonstrated in the sample program, the SD card should only be removed after it has unmounted with
fat_UnmountDevice() and no operations are happening on the device. Only fat_AutoMount()
should be used to remount SD cards. In addition, the function sdspi_debounce () should be called to
verify SD card presence before attempting to remount an SD card.

10.2.5.9 Unsupported FAT Features

At this time, the Dynamic C FAT file system does not support the following.
= Single-volume drives (they do not have an MBR)

* FAT32 or long file or directory names

= Sector sizes other than 512 bytes

* Direct parsing of relative paths

= Direct support of a “working directory”

* Drive letters (the FAT file system is not DOS)

10.2.5.10 References

There are a number of good references regarding FAT file systems available on the Internet. Any reason-
able search engine will bring up many hits if you type in relevant terms, such as “FAT,” “file system,” “file
allocation table,” or something along those lines. At the time of this writing, the following links provided
useful information.

1. This link is to Microsoft’s “FAT32 File System Specification,” which is also applicable to FAT12 and
FAT16.

www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx

2. This article gives a brief history of FAT.
http://en.wikipedia.org/wiki/File Allocation_Table

3. These tutorials give lots of details plus links to more information.
www.serverwatch.com/tutorials/article.php/2239651

www.pcguide.com/ref/hdd/file/fat.htm

Dynamic C User’s Manuall rabbit.com 161

http://www.rabbit.com
http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
http://en.wikipedia.org/wiki/File_Allocation_Table
http://www.serverwatch.com/tutorials/article.php/2239651
http://www.pcguide.com/ref/hdd/file/fat.htm

162 rabbit.com File Systems

http://www.rabbit.com

| RABBIT. o PRODUCT MANUAL

11. USING ASSEMBLY LANGUAGE

This chapter gives the rules for mixing assembly language with Dynamic C code. A reference guide to the
Rabbit Instruction Set is available from the Help menu of Dynamic C and is also documented in the Rabbit
Microprocessor Instruction Reference Manual available on the Rabbit website:

www . rabbitsemiconductor.com/docs/

11.1 Mixing Assembly and C

Dynamic C permits assembly language statements to be embedded in C functions and/or entire functions
to be written in assembly language. C statements may also be embedded in assembly code. C-language
variables may be accessed by the assembly code.

11.1.1 Embedded Assembly Syntax

Use the #asm and #endasm directives to place assembly code in Dynamic C programs. For example, the
following function will add two 64-bit numbers together. The same program could be written in C, but it
would be many times slower because C does not provide an add-with-carry operation (adc).

void eightadd(char *chl, char *ch2){

#asm
id hl, (sp+@SP+ch?2) ; get source pointer
ex de,hl ; save in register DE
id hl, (sp+@SP+chl) ; get destination pointer
id b,8 ; number of bytes
Xor a ; clear carry
loop:
id a, (de) ; ch2 source byte
adc a,(hl) ; add chl byte
id (hl),a ; store result to chl address
inc hl ; increment chl pointer
inc de ; increment ch2 pointer
djnz loop ; do 8 bytes
; chl now points to 64 bit result

#endasm

}

The keywords debug and nodebug can be placed on the same line as #asm. Assembly code blocks are
nodebug by default. This saves space and unnecessary calls to the debugger kernel.

All blocks of assembly code within a C function are assembled in nodebug mode. The only exception to
this is when a block of assembly code is explicitly marked with debug. Any blocks marked debug will
be assembled in debug mode even if the enclosing C function is marked nodebug.

Dynamic C User’s Manuall rabbit.com 163

http://www.rabbitsemiconductor.com/docs/
http://www.rabbit.com

11.1.2 Embedded C Syntax

A C statement may be placed within assembly code by placing a “’c” in column 1. Note that the registers
used in the embedded C statement will be changed.

#asm

InitValues::

c start_time = 0;

c counter = 256;
ret

#endasm

11.1.3 Setting Breakpoints in Assembly

There are two ways to enable software breakpoint support in assembly code.

One way is to explicitly mark the assembly block as debug (the default condition is nodebug). This
causes the insertion of RST 0x28 instructions between each assembly instruction. These RST 0x28
instructions may cause jump relative (i.e., J) instructions to go out of range, but this problem can be
solved by changing the relative jump (J) to an absolute jump (Jp). Below is an example.

#asm debug
function::

ret
#endasm
The other way to enable breakpoint support in a block of assembly code is to add a C statement before the

desired assembly instruction. Note that the assembly code must be contained in a debug C function to
enable C code debugging. Below is an example.

debug dummyfunction() {
#asm
function::

iéBel:

C ; // add line of C code to permit a breakpoint before jump relative
jr nc, label

ret

#endasm

}

Note: Single stepping through assembly code is always allowed if the assembly window is
open.

164 rabbit.com Using Assembly Language

http://www.rabbit.com

11.2 Assembler and Preprocessor

The assembler parses most C language constant expressions. A C language constant expression is one whose
value is known at compile time. All operators except the following are supported:

Table 11-1. Operators Not Supported By The Assembler

Operator Symbol Operator Description
?: conditional
dot
-> points to
* dereference

11.2.1 Comments
C-style comments are allowed in embedded assembly code. The assembler will ignore comments begin-
ning with:

; text from the semicolon to the end of line is ignored.
// text from the double forward slashes to the end of line is ignored.
/7 text between slash-asterisk and asterisk-slash is ignored */

11.2.2 Defining Constants
Constants may be created and defined in assembly code with the assembly language keyword db (define
byte). db should be followed immediately by numerical values and strings separated by commas. For
example, each of the following lines define the string “ABC”.

db *A", "B", "C-

db "ABC"

db 0x41, 0x42, 0x43

The numerical values and characters in strings are used to initialize sequential byte locations.

If separate I&D space is enabled, assembly constants should either be put in their own assembly block
with the const keyword or be done in C.

#asm const
myrootconstants::
db 0x40, 0x41, 0x42

#endasm

or

const char myrootconstants[] = {“\x40”, “\x417, “\x42°}

Dynamic C User’s Manuall rabbit.com 165

http://www.rabbit.com

If separate I&D space is enabled, db places bytes in the base segment of the data space when it is used
with const. If the const keyword is absent, i.e.,

#asm
myrootconstants::
db 0x40, 0x41, 0x42
#endasm

the bytes are placed somewhere in the instruction space. If separate 1&D space is disabled (the default con-
dition), the bytes are placed in the base segment (aka, root segment) interspersed with code.

Therefore, so that data will be treated as data when referenced in assembly code, the const keyword
must be used when separate [&D space is enabled. For example, this won't work correctly without const:

#asm const
label::

db Ox5a
#endasm

main(){

#asm
1d a, (label) // 1d Ox5ato reg a
#endasm

}

The assembly language keyword dw defines 16-bit words, least significant byte first. The keyword dw
should be followed immediately by numerical values:

dw 0x0123, OxXFFFF, xyz

This example defines three constants. The first two constants are literals, and the third constant is the
address of variable Xyz.

The numerical values initialize sequential word locations, starting at the current code address.

166 rabbit.com Using Assembly Language

http://www.rabbit.com

11.2.3 Multiline Macros

The Dynamic C preprocessor has a special feature to allow multiline macros in assembly code. The pre-
processor expands macros before the assembler parses any text. Putting a $\ at the end of a line inserts a
new line in the text. This only works in assembly code. Labels and comments are not allowed in multiline
macros.

#define SAVEFLAG $\
Id a,b $\
push af $\
pop bc

Hasm
Id b,0x32
SAVEFLAG

#endasm

11.2.4 Labels

A label is a name followed by one or two colons. A label followed by a single colon is local, whereas one
followed by two colons is global. A local label is not visible to the code out of the current embedded
assembly segment (i.e., code before the #asm or after the #endasm directive is outside of that embbeded
assembly segment).

Unless it is followed immediately by the assembly language keyword equ, the label identifies the current
code segment address. If the label is followed by equ, the label “equates” to the value of the expression
after the keyword equ.

Because C preprocessor macros are expanded in embedded assembly code, Rabbit recommends that pre-
processor macros be used instead of equ whenever possible.

11.2.5 Special Symbols

This table lists special symbols that can be used in an assembly language expression.

Table 11-2. Special Assembly Language Symbols

Symbol Description

Indicates the amount of stack space (in bytes) used for stack-based
@sP . . .

variables. This does not include arguments.

Constant for the current code location. For example:
aPC Id hl, @PC

loads the code address of the instruction. 1d hl,@PC+3 loads the address
after the instruction since it is a 3 byte instruction.

Evaluates the offset from the frame reference point to the stack space
@RETVAL reserved for the struct function returns. See Section 11.4.1.2 for
more information on the frame reference point.

@LENGTH Determines the next reference address of a variable plus its size.

Dynamic C User’s Manuall rabbit.com 167

http://www.rabbit.com

11.2.6 C Variables

C variable names may be used in assembly language. What a variable name represents (the value associ-

ated with the name) depends on the variable. For a global or static local variable, the name represents the
address of the variable in root memory. For an auto variable or formal argument, the variable name rep-
resents its own offset from the frame reference point.

The following list of processor register names are reserved and may not be used as C variable names in
assembly: A, B, C, D, E, F, H, L, AF, HL, DE, BC, IX, 1Y, SP, PC, XPC, IP, IIR and EIR.

The name of a structure element represents the offset of the element from the beginning of the structure. In
the following structure, for example, for the following structure

struct s {
int X;
int y;
int z;
}:
the embedded assembly expression S+X evaluates to 0, S+Yy evaluates to 2, and S+z evaluates to 4,
regardless of where structure “s” may be.

In nested structures, offsets can be composite, as shown here.

struct s{ // offsetinto s
int x; // 0
struct a { // 2(i.e, sizeof(x))
int b; // 2, offsetis 0 relative to a
int c; // 4, offset is 2 relative to a

¥

Just like in the first definition of structure “s”, the assembly expression s+x evaluates to 0; s+a evaluates to
2 and s+b evaluates to 2 (both expressions evaluate to the same value because both “a” and “b” are offset
“0” from “a”); and finally, s+c evaluates to 4 because s+a evaluates to 2 and a+c evaluates to 2.

168 rabbit.com Using Assembly Language

http://www.rabbit.com

11.3 Stand-Alone Assembly Code

A stand-alone assembly function is one that is defined outside the context of a C language function.

A stand-alone assembly function has no auto variables and no formal parameters. It can, however, have
arguments passed to it by the calling function. When a program calls a function from C, it puts the first
argument into a primary register. If the first argument has one or two bytes (int, unsigned int,
char, pointer), the primary register is HL (with register H containing the most significant byte). If
the first argument has four bytes (long, unsigned long, Tloat), the primary register is BC:DE
(with register B containing the most significant byte). Assembly-language code can use the first argument
very efficiently. Only the first argument is put into the primary register while all arguments—including the
first, pushed last—are pushed on the stack.

C function values return in the primary register, if they have four or fewer bytes, either in HL. or BC:DE.

Assembly language allows assumptions to be made about arguments passed on the stack, and auto vari-
ables can be defined by reserving locations on the stack for them. However, the offsets of such implicit
arguments and variables must be kept track of. If a function expects arguments or needs to use stack-based
variables, Rabbit recommends using the embedded assembly techniques described in the next section.

11.3.1 Stand-Alone Assembly Code in Extended Memory

Stand-alone assembly functions may be placed in extended memory by adding the Xmem keyword as a
qualifier to #asm, as shown below. Care needs be taken so that branch instructions do not jump beyond
the current xmem window. To help prevent such bad jumps, the compiler limits xmem assembly blocks to
4096 bytes. Code that branches to other assembly blocks in xmem should always use 1 jp or Icall.

#asm xmem

main::

Icall fcn_in_xmem
Iret

#endasm

#asm xmem
fcn_In_xmem: :
Iret

#endasm

Dynamic C User’s Manuall rabbit.com 169

http://www.rabbit.com

11.3.2 Example of Stand-Alone Assembly Code
The stand-alone assembly function Foo () can be called from a Dynamic C function.

int foo (Int); // A function prototype can be declared for stand-alone
// assembly functions, which will cause the compiler
// to perform the appropriate type-checking.

main(){
int i,j;
i=1;
Jj=foo(i);
}

Hasm

foo::

Id hl,2 // The return value expected by main() is put
ret // in HL just before foo() returns

#endasm

The entire program can be written in assembly.

#asm
main::

ret
#endasm

11.4 Embedded Assembly Code

When embedded in a C function, assembly code can access arguments and local variables (either auto or
static) by name. Furthermore, the assembly code does not need to manipulate the stack because the
functions prolog and epi log already do so.

11.4.1 The Stack Frame

The purpose and structure of a stack frame should be understood before writing embedded assembly code.
A stack frame is a run-time structure on the stack that provides the storage for all auto variables, function
arguments and the return address for a particular function. If the IX register is used for a frame reference
pointer, the previous value of IX is also kept in the stack frame.

170 rabbit.com Using Assembly Language

http://www.rabbit.com

11.4.1.1 Stack Frame Diagram
Figure 11.1 shows the general appearance of a stack frame.

Figure 11.1 Assembly Code Stack Frame

Stack Frame

= Last Auto Variable -
o
Optional — °
| , -
— First Auto Variable —
< Frame Reference
Point

Optional — - IX Register -

Return Address

First Parameter
— (pushed last) -
: L o i
Optional .

- o -
— Last Parameter - (stack grows down)
(pushed first)

Lower Addresses

: | Structure Return
Optional B Space _ Higher Addresses

The return address is always necessary. The presence of auto variables depends on the function definition.
The presence of arguments and structure return space depends on the function call. (The stack pointer may
actually point lower than the indicated mark temporarily because of temporary information pushed on the
stack.)

The shaded area in the stack frame is the stack storage allocated for auto variables. The assembler sym-
bol @SP represents the size of this area.

11.4.1.2 The Frame Reference Point

The frame reference point is a location in the stack frame that immediately follows the function’s return
address. The IX register may be used as a pointer to this location by putting the keyword use 1 X before
the function, or the request can be specified globally by the compiler directive #use 1 X. The default is
#nouseiX. If the IX register is used as a frame reference pointer, its previous value is pushed on the
stack after the function’s return address. The frame reference point moves to encompass the saved X
value.

Dynamic C User’s Manuall rabbit.com 171

http://www.rabbit.com

11.4.2 Embedded Assembly Example

The purpose of the following sample program, asml.c, is to show the different ways to access stack-

based variables from assembly code.

172

void func(char ch, int i, long 1g);

main(Q{

char ch;
int i;
long Ig;
ch = 0x11;
1 = 0x2233;
Ig = 0x44556677L;
func(ch,i,lg);
+
void func(char ch, int i, long Ig){

auto Int Xx;
auto Int z;

X = 0x8888;
z = 0x9999;
#asm

// This is equivalent to the C statement: x = 0x8888
Id hl, 0x8888
Id (sp+@SP+x), hl

// This is equivalent to the C statement: z = 0x9999
Id hl, 0x9999
Id (sp+@SP+z), hl

// @SP+i gives the offset of i from the stack frame on entry.
// On the Rabbit, this is how HL is loaded with the value in i.
Id hl,(sp+@SP+i)

// This works if func() is useix; however, if the IX register
// has been changed by the user code, this code will fail.
id hl, (ix+i)

// This method works in either case because the assembler adjusts the
// constant @SP, so changing the function to nouseix with the keyword
// nouseix, or the compiler directive #nouseix will not break the code.
// But, if SP has been changed by user code, (e.g., a push) it won't work.
Id hl, (sp+@SP+1g+2)
Id b,h
Id c,L
Id hl, (sp+@SP+1g)
ex de,hl

#endasm

}

rabbit.com

Using Assembly Language

http://www.rabbit.com

11.4.3 The Disassembled Code Window

A program may be debugged at the assembly level by opening the Disassembled Code window (aka, the
Assembly window). Single stepping and breakpoints are supported in this window. When the “Disassem-
bled Code” window is open, single stepping occurs instruction by instruction rather than statement by
statement. The figure below shows the “Disassembled Code” window for the example code, asml.c.

Figure 11.2 Disassembled Code Window

Dynamic C Dist. 10.21 O] =|
File Edit Campile Run Inspect Options ‘Window Help

”Dri"rl | @] & G2 aa B M i(lae] % ([0 m|[|A S R GSLT
=lol x|

210600 ld hl, O=x0006
k3= add hl, s=p
3611 1d (hl), 0Oxil
3E11 1d a, Oxil
aF 1d 1, a
EF rst Ox:zZ85
[asml.c(V1]: 1 = 0x2233;
1h3e 213322 1d hl, OxZ2233
1ha1 D404 1d i(sp + 0O=x04), hl
143 EF rst Ox24
[asml.ciS)]: lg = O0x44556677L;
134 117766 1d de, O0x6677
1ha7 015544 1d bo, O0x4455
1bhas LDEFOO 1d (sp + O0x00), hcode
1bad EF rst Ox25
[aswl.c(21]: funcich, i, lg) !
1kbde DDFS push hcode
150 C405 1d hl, (sp + 0Ox035)
152 ES push hl
153 C400c 1d hl, (sp + 0Ox0C)
155 2600 1d h, O=x00
157 ES push hl
155 CDhEe71lE call func
1bSh oo nop
1bSc 270s add =p, o
1k5e EF rst Ox:ZS

| Selected Clock Cycles Surm: v

The Disassembled Code window shows the memory address on the far left, followed by the opcode bytes,
followed by the mnemonics for the instruction. The last column shows the number of cycles for the
instruction, assuming no wait states. The total cycle time for a block of instructions will be shown at the
bottom of the window when the block is selected. The total assumes one execution per instruction, so the
user must take looping and branching into consideration when evaluating execution times.

Dynamic C User’s Manuall rabbit.com 173

http://www.rabbit.com

11.4.4 Local Variable Access
Accessing static local variables is simple because the symbol evaluates to the address directly. The follow-
ing code shows, for example, how to load static variable Yy into HL.

1d hl, (y) ; load hl with contents of y

11.4.4.1 Using the IX Register as a Frame Pointer
Using IX as a frame pointer is a convenient way to access stack variables in assembly. Using SP requires
extra bookkeeping when values are pushed on or popped off the stack.

Now, access to stack variables is easier. Consider, for example, how to load ch into register A.

Id a, (ix+ch) ;a<--ch

The [X+offset load instruction takes 9 clock cycles and opcode is three bytes. If the program needs to load
a four-byte variable such as 1g, the [X+offset instructions are as follows.

Id hl, (ix+1g+2) ; load LSB oflg

Id b,h ; longs are normally stored in BC:DE
Id c,L

Id hl, (ix+1g) ; load MSB of g

ex de,hl

This takes a total of 24 cycles.

The offset from IX is a signed 8-bit integer. To use [X+offset, the variable must be within +127 or —128
bytes of the frame reference point. The @SP method is the only method for accessing variables out of this
range. The @SP symbol may be used even if IX is the frame reference pointer.

11.4.4.2 Using Index Registers as Pointers to Aggregate Types
The members of Dynamic C aggregate types (structures and unions) can be accessed from within an
assembly block of code using any of the index registers: IX, 1Y, SP.

The library pool . 11b has code that illustrates using an index register in assembly to access the member
of a structure that was defined in Dynamic C. Refer to the function pal loc_fast().

Here is another example:

typedef struct{
int X;
int y;
long time;
}TStruct;

void func(int x, int y, TStruct *s){
#asm

Id ix, (sp+@SP+s)

Id hl, (ix+[TStruct]+y)

#endasm

}

174 rabbit.com Using Assembly Language

http://www.rabbit.com

11.4.4.3 Functions in Extended Memory
If the xmem keyword is present, Dynamic C compiles the function to extended memory. Otherwise, Dynamic C
determines where to compile the function. Functions compiled to extended memory have a 3-byte return address
instead of a 2-byte return address.

Because the compiler maintains the offsets automatically, there is no need to worry about the change of
offsets. The @SP approach discussed previously as a means of accessing stack-based variables works
whether a function is compiled to extended memory or not, as long as the C-language names of local vari-
ables and arguments are used.

A function compiled to extended memory can use IX as a frame reference pointer as well. This adds an
additional two bytes to argument offsets because of the saved X value. Again, the IX+offset approach dis-
cussed previously can be used because the compiler maintains the offsets automatically.

11.5 C Calling Assembly

Dynamic C does not assume that registers are preserved in function calls. In other words, the function
being called need not save and restore registers.

11.5.1 Passing Parameters

When a program calls a function from C, it puts the first argument into HL (if it has one or two bytes) with
register H containing the most significant byte. If the first argument has four bytes, it goes in BC:DE (with
register B containing the most significant byte). Only the first argument is put into the primary register,
while all arguments—including the first, pushed last—are pushed on the stack.

11.5.2 Location of Return Results

If a C-callable assembly function is expected to return a result (of primitive type), the function must pass
the result in the “primary register.” If the result is an int, unsigned iInt, char, or a pointer, return
the result in HL (register H contains the most significant byte). If the resultis a long, unsigned
long, or Float, return the result in BCDE (register B contains the most significant byte). A C function
containing embedded assembly code may, of course, use a C return statement to return a value. A
stand-alone assembly routine, however, must load the primary register with the return value before the
ret instruction.

11.5.3 Returning a Structure

In contrast, if a function returns a structure (of any size), the calling function reserves space on the stack
for the return value before pushing the last argument (if any). Dynamic C functions containing embedded
assembly code may use a C return statement to return a value. A stand-alone assembly routine, how-
ever, must store the return value in the structure return space on the stack before returning.

Inline assembly code may access the stack area reserved for structure return values by the symbol
@RETVAL, which is an offset from the frame reference point.

Dynamic C User’s Manuall rabbit.com 175

http://www.rabbit.com

The following code shows how to clear field F1 of a structure (as a returned value) of type Struct s.

typedef struct ss {

int fO; // Airst field
char f1; // second field
> xyz;

Xyz my_struct;

my_struct = func(Q);

xyz func(Q{

Hasm
Xor a ; clear register A.
Id hl,@SP+@RETVAL+ss+¥1 ; hl <- the offset from SP to f1 field of returned struct
add hl,sp 5 hl now points to fl.
Id (hl),a ; load a (now 0) to f1.
#endasm
}

It is crucial that @SP be added to @RETVAL because @RETVAL is an offset from the frame reference
point, not from the current SP.

176 rabbit.com Using Assembly Language

http://www.rabbit.com

11.6 Assembly Calling C

A program may call a C function from assembly code. To make this happen, set up part of the stack frame
prior to the call and “unwind” the stack after the call. The procedure to set up the stack frame is described
here.

1. Save all registers that the calling function wants to preserve. A called C function may change the value
of any register. (Pushing registers values on the stack is a good way to save their values.)

2. If the function return is a SEruct, reserve space on the stack for the returned structure. Most functions
do not return structures.

. Compute and push the last argument, if any.
. Compute and push the second to last argument, if any.

. Continue to push arguments, if there are more.

AN N A~ W

. Compute and push the first argument, if any. Also load the first argument into the primary register (HL
for int, unsigned int, char, and pointers, or BCDE for long, unsigned long, and
Float) if it is of a primitive type.

7. Issue the call instruction.

The caller must unwind the stack after the function returns.

1. Recover the stack storage allocated to arguments. With no more than 6 bytes of arguments, the program
may pop data (2 bytes at time) from the stack. Otherwise, it is more efficient to compute a new SP
instead. The following code demonstrates how to unwind arguments totaling 36 bytes of stack storage.

; Note that HL is changed by this code!
; Use “ex de,hl” to save HL if HL has the return value
;5 sex de,hl ; save HL (if required)

1d hl,36 ; Wwant to pop 36 bytes

add hl,sp ; compute new SP value

Id sp,hl ; put value back to SP
;::;ex de,hl ; restore HL (if required)

2. If the function returns a Struct, unload the returned structure.
3. Restore registers previously saved. Pop them off if they were stored on the stack.

4. If the function return was not a Struct, obtain the returned value from HL or BCDE.

Dynamic C User’s Manuall rabbit.com 177

http://www.rabbit.com

11.7 Interrupt Routines in Assembly

Interrupt Service Routines (ISRs) may be written in Dynamic C (declared with the keyword interrupt). But
since an assembly routine may be more efficient than the equivalent C function, assembly is more suitable
for an ISR. Even if the execution time of an ISR is not critical, the latency of one ISR may affect the
latency of other ISRs.

Either stand-alone assembly code or embedded assembly code may be used for ISRs. The benefit of
embedding assembly code in a C-language ISR is that there is no need to worry about saving and restoring
registers or reenabling interrupts. The drawback is that the C interrupt function does save all registers,
which takes some amount of time. A stand-alone assembly routine needs to save and restore only the regis-
ters it uses.

11.7.1 Steps Followed by an ISR

The CPU loads the Interrupt Priority register (IP) with the priority of the interrupt before the ISR is called.
This effectively turns off interrupts that are of the same or lower priority. Generally, the ISR performs the
following actions:

1. Save all registers that will be used, i.e., push them on the stack. Interrupt routines written in C save all
registers automatically. Stand-alone assembly routines must push the registers explicitly.

2. Push and pop the LXPC as a defensive programming strategy to avoid corrupting large memory support.
For example, the LCALL instruction clears the LXPC so it is essential that this register is saved before
issuing an LCALL and restored after the LRET.

3. Determine the cause of the interrupt. Some devices map multiple causes to the same interrupt vector. An
interrupt handler must determine what actually caused the interrupt.

4. Remove the cause of the interrupt.

5. If an interrupt has more than one possible cause, check for all the causes and remove all the causes at the
same time.

6. When finished, restore registers saved on the stack. Naturally, this code must match the code that saved
the registers. Interrupt routines written in C perform this automatically. Stand-alone assembly routines
must pop the registers explicitly.

7. Restore the interrupt priority level so that other interrupts can get the attention of the CPU. ISRs written
in C restore the interrupt priority level automatically when the function returns. However, stand-alone
assembly ISRs must restore the interrupt priority level explicitly by calling ipres.

The interrupt priority level must be restored immediately before the return instructions ret or
reti. If the interrupts are enabled earlier, the system can stack up the interrupts. This may or
may not be acceptable because there is the potential to overflow the stack.

8. Return. There are two types of interrupt returns: ret and reti.

The value in IP is shown in the status bar at the bottom of the Dynamic C window. If a breakpoint is
encountered, the IP value shown on the status bar reflects the saved context of IP from just before the
breakpoint.

178 rabbit.com Using Assembly Language

http://www.rabbit.com

11.7.2 Modifying Interrupt Vectors

Prior to Dynamic C 7.30, interrupt vector code could be modified directly. By reading the internal and
external interrupt registers, IIR and EIR, the location of the vector could be calculated and then written to
because it was located in RAM. This method will not work if separate 1&D space is enabled because the
vectors must be located in flash. To accommodate separate I&D space, the way interrupt vectors are set up
and modified has changed slightly. Please see the designer’s handbook for your Rabbit microprocessor
(e.g., the Rabbit 3000 Designer’s Handbook) for detailed information about how the interrupt vectors are
set up. This section will discuss how to modify the interrupt vectors after they have been set up.

For backwards compatibility, “modifiable” vector relays are provided in RAM. In C, they can be accessed
through the SetVectIntern and SetVectExtern functions. In assembly, they are accessed through
INTVEC_BASE + <vector offset> or XINTVEC_BASE + <vector offset>. The values for <vector offset>
are defined in 1ib\. .\bioslib\sysio. lib, and are listed here for convenience.

Table 11-3. Internal Interrupts and their Offset from INTVEC_BASE

PERIODIC_OFS SERA_OFS
RST10_OFS SERB_OFS
RST18_OFS SERC_OFS
RST20_OFS SERD_OFS
RST28_OFS SERE_OFS
RST38_OFS SERF_OFS
SLAVE_OFS QUAD_OFS
TIMERA_OFS INPUTCAP_OFS
TIMERB_OFS

Table 11-4. External Interrupts and their
Offset from XINTVEC_BASE

EXTO_OFS
EXT1 OFS

Dynamic C User’s Manuall rabbit.com 179

http://www.rabbit.com

The following example from RS232 . L I B illustrates the new 1&D space compatible way of modifying
interrupt vectors.

The following code fragment to set up the interrupt sewvice routine for the periodic interrupt from Dynamic
C 7.25 is not compatible with separate I&D space:

#asm xmem

;*** Old method ***
Id a,iir ; get the offset of interrupt table
Id h,a
Id 1,0x00
Id iy,hl
Id (iy),0c3h ; Jp instruction entry
inc iy
Id hl,periodic_isr ; set service routine
Id (iy),hl
#endasm

The following code fragment shows an I&D space compatible method for setting up the ISR for the peri-
odic interrupt in Dynamic C 7.30:

#asm xmem
;*** New method ***
Id a, Oxc3 ;jp instruction entry
Id hl, periodic_isr ; set service routine

Id (INTVEC _BASE+PERIODIC_OFS), a ;write to the interrupt table
Id (INTVEC_BASE+PERIODIC_OFS+1), hl
#endasm

When separate 1&D space is enabled, INTVEC_BASE points to a proxy interrupt vector table in RAM
that is modifiable. The code above assumes that the actual interrupt vector table pointed to by the IIR is set
up to point to the proxy vector. When separate 1&D space is disabled, INTVEC_BASE and the IIR point to
the same location. The code above is an example only, the default configuration for the periodic interrupt
is not modifiable.

180 rabbit.com Using Assembly Language

http://www.rabbit.com

The following example from RS232 . L I B illustrates the new 1&D space compatible way of modifying
interrupt vectors.

The following function serAclose() from Dynamic C 7.25, is not compatible with separate I&D
space:

#asm xmem

serAclose::
Id a,iir ; hl=spaisr_start, de={iir,0xe0}
Id h,a
Id 1,0xc0
Id a,0xc9 ; retin first byte
ipset 1
Id (hl),a
Id a,0x00 ; disable interrupts for port
Id (SACRShadow), a
ioi Id (SACR), a
ipres
Iret

#endasm

This version of serAclose() in Dynamic C 7.30 is compatible with separate I&D space:
#asm xmem

serAclose::
Id a, Oxc9
ipset 1
Id (INTVEC _BASE + SERA OFS), a ; retin first byte of spaisr_start
Id a, 0x00 ; disable interrupts for port
Id (SACRShadow),a
ioi Id (SACR),a
ipres
Iret

#endasm

Dynamic C User’s Manuall rabbit.com 181

http://www.rabbit.com

If separate I&D space is enabled, using the modifiable interrupt vector proxy in RAM adds about 80 clock
cycles of overhead to the execution time of the ISR. To avoid that, the preferred way to set up interrupt
vectors is to use the new keyword, interrupt_vector, to set up the vector location at compile time.

When compiling with separate 1&D space, modify applications that use SetVectintern(),
SetVectExtern2000() or SetVectExtern3000() to use interrupt_vector instead.

The following code, from /Samples/TIMERB/TIMER_B.C, illustrates the change that should be
made.

void main()

{

#if _ SEPARATE_INST_DATA

interrupt_vector timerb_intvec timerb_1isr;
#else

SetVectintern(0Ox0B, timerb_isr); // setup ISR
#endif

}

If interrupt_vector is used multiple times for the same interrupt vector, the last one encountered by
the compiler will override all previous ones.

interrupt_vector is syntactic sugar for using the origin directives and assembly code. For example,
the line:

interrupt_vector timerb_intvec timerb_isr;

is equivalent to:
#rcodorg timerb_intvec apply

#asm
Jjp timerb_isr
#endasm

#rcodorg rootcode resume

182 rabbit.com Using Assembly Language

http://www.rabbit.com

Table 11-5 lists the defined interrupt vector names that may be used with interrupt_vector, along

with their ISRs.

Table 11-5. Interrupt Vector and ISR Names

Interrupt Vector Name

ISR Name

Default Condition

periodic_intvec

periodic_isr

Fast and nonmodifiable

rstl0_intvec

User defined name

User defined

rstl8_intvec

rst20_intvec

rst28_intvec

These interrupt vectors and their ISRs should never be altered
by the user because they are reserved for the debug kernel.

rst38_intvec User defined name User defined
slave_intvec slave_isr Fast and nonmodifiable
timera_intvec User defined name User defined
timerb_intvec User defined name User defined

sera_intvec?

DevMateSerial ISR

Fast and nonmodifiable

inputcap_intvec

User defined name

quad_intvec

qd_isr

extO_intvec

User defined name

extl intvec

User defined name

spa_isr User defined
serb_intvec spb_isr
serc_intvec spc_isr
serd_intvec spd_isr
sere_intvec spe_isr
serf_intvec spf_isr User defined

a. Please note that this ISR shares the same interrupt vector as DevMateSerial 1 SR. Using
spa_ iSr precludes Dynamic C from communicating with the target.

Dynamic C User’s Manual

rabbit.com

183

http://www.rabbit.com

11.8 Common Problems

If you have problems with your assembly code, consider the possibility of any of the following situations:

= Unbalanced stack.
Ensure the stack is “balanced” when a routine returns. In other words, the SP must be same on

exit as it was on entry. From the caller’s point of view, the SP register must be identical before
and after the call instruction.

= Using the @SP approach after pushing temporary information on the stack.
The @SP approach for inline assembly code assumes that SP points to the low boundary of the
stack frame. This might not be the case if the routine pushes temporary information onto the
stack. The space taken by temporary information on the stack must be compensated for.

The following code illustrates the concept.

5 SP still points to the low boundary of the call frame
push hl ; save HL

5 SP now two bytes below the stack frame!

Id hl,@SP+x+2 ; Add 2 to compensate for altered SP
add hl,sp ; compute as normal

Id a,(hl) ; get the content

pop hl ; restore HL

5 SP again points to the low boundary of the call frame

= Registers not preserved.

In Dynamic C, the caller is responsible for saving and restonng all registers. An assembly rou-
tine that calls a C function must assume that all registers will be changed.

Unpreserved registers in interrupt routines cause unpredictable and unrepeatable problems. In
contrast to normal functions, interrupt functions are responsible for saving and restoring all
registers themselves.

= Relocatable code.
Jump relative (JR) instructions allow easier code relocation because the jump is relative to the
current program counter. For example, RAM functons are usually writtenin assembly and are
relocated to RAM from flash. A jump (JP) instruction would not work in this case because the

jump would be to a flash location and not the intended RAM location. Using JR instead of JP
will jump to the intended RAM location.

184 rabbit.com Using Assembly Language

http://www.rabbit.com

| RABEIT-stg= PRODUCT MANUAL

12. KEYWORDS

A keyword is a reserved word in C that represents a basic C construct. It cannot be used for any other pur-
pose.

abandon

Used in single-user cofunctions, abandon{} must be the first statement in the body of the cofunction.
The statements inside the curly braces will be executed only if the cofunction is forcibly abandoned and if
a call to loophead() is made in main() before calling the single-user cofunction. See
Samples\Cofunc\Cofaband. c for an example of abandonment handling.

abort

Jumps out of a costatement.
for(;;){
costate {

iT(condition) abort;

}

Dynamic C User’s Manuall rabbit.com 185

http://www.rabbit.com

align

Used in assembly blocks, the al 1gn keyword outputs a padding of nops so that the next instruction to be
compiled is placed at the boundary based on VALUE.

#asm
align <VALUE>
#endasm
VALUE can have any (positive) integer expression or the special operands even and odd. The operand

even aligns the instruction on an even address, and odd on an odd address. Integer expressions align on
multiples of the value of the expression.

Some examples:

align odd ; This aligns on the next odd address

align 2 ; Aligns on a 16-bit (2-byte) boundary

align 4 ; Aligns on a 32-bit (4-byte) boundary

align 100h > Aligns the code to the next address that is evenly divisible by 0x100

align sizeof(int)+4 ; Complex expression, involving sizeof and integer constant

Note that integer expressions are treated the same way as operand expressions for other asm operators, so
variable labels are resolved to their addresses, not their values.

always_on

The costatement is always active. Unnamed costatements are always on.

anymem

Allows the compiler to determine in which part of memory a function will be placed.

anymem int func(){

}

#memmap anymem
#asm anymem

#endasm

186 rabbit.com Keywords

http://www.rabbit.com

asm

Use in Dynamic C code to insert one assembly language instruction. If more than one assembly instruction
is desired use the compiler directive #asm instead.

int funcQ {
int x,y,zZ;

asm Id hl,0x3333

auto

A functions’s local variable is located on the system stack and exists as long as the function call does.

int func(Q{
auto float x;

bbram

IMPORTANT: bbram does not provide data integrity; instead, use the keyword protected to ensure integ-
rity of data across power failures.

Identifies a variable to be placed into a second root data area with global extent/scope reserved for battery-
backed RAM on boards with more than one RAM device. Generally, the battery-backed RAM is attached
to CS1 due to the low-power requirements. Other than its assigned root data location, a bbram variable is
identical to a normal root variable. In the case of a reset or power failure, the value of a bbram variable is
preserved, but not atomically like with protected variables. No software check is possible to ensure that the
RAM is battery-backed. This requirement must be enforced by the user. Note that bbram variables must
have either static or global storage.

For boards that utilize fast SRAM in addition to a battery-backed SRAM, like the RCM3200, the size of
the battery-backed root data space is specified by a BIOS macro called BBROOTDATASIZE. In version
Dynamic C 9.50 and earlier, the default value for this is 4K. Note that this macro is defined to zero for
boards with only a single SRAM.

See the Rabbit 2000 Microprocessor Designer’s Handbook or the Rabbit 3000 Microprocessor Designer’s
Handbook for information on how the second data area is reserved.

On boards with a single RAM, bbram variables will be treated the same as normal root variables. No warn-
ing will be given; the bbram keyword is simply ignored when compiling to boards with a single RAM with
the assumption that the RAM is battery-backed. Please refer to _xalloc for information on how to access
battery-backed data in xmem.

Dynamic C User’s Manuall rabbit.com 187

http://www.rabbit.com

break

Jumps out of a loop, I F, or case statement.

while(expression){

if(condition) break;

}
switch(expression){
case 3:
break;

C

Use in assembly block to insert one Dynamic C instruction.

#asm

InitvValues::

c start_time = 0;

c counter = 256;
1d hl,0xa0;
ret

#endasm

case

Identifies the next case in a switch statement.

switch(expression){
case constant:

case constant:

case constant:

188 rabbit.com

Keywords

http://www.rabbit.com

char

Declares a variable or array element as an unsigned 8-bit character.

char c, x, *string = "hello";

int 1;

c = (char)i; // type casting operator
cofunc

Indicates the beginning of a cofunction.

cofunc]scofunc type [name][[dim]]([type argl, ..., type argN])
{ [statement | yield; | abort; | waitfor(expression);]... ¥

}

cofunc, scofunc

The keywords cofunc or scofunc (a single-user cofunction) identify the statements enclosed in curly
braces that follow as a cofunction.

type
Whichever keyword (cofunc or scofunc) is used is followed by the data type returned (void, int,
etc.).

name

A name can be any valid C name not previously used. This results in the creation of a structure of type
CoData of the same name.

dim
The cofunction name may be followed by a dimension if an indexed cofunction is being defined.

cofunction arguments (argl, . . ., argN)

As with other Dynamic C functions, cofunction arguments are passed by value.

cofunction body

A cofunction can have as many C statements, including abort, yield, waitfor, and waitfordone
statements, as needed. Cofunctions can contain calls to other cofunctions.

Dynamic C User’s Manuall rabbit.com 189

http://www.rabbit.com

const

This keyword declares that a value will be stored in flash, thus making it unavailable for modification.
const is a type qualifier and may be used with any static or global type specifier (Char, int, struct,
etc.). The const qualifier appears before the type unless it is modifying a pointer. When modifying a
pointer, the const keyword appears after the “*.”

In each of the following examples, if cOnst was missing the compiler would generate a trivial warning.
Warnings for const can be turned off by changing the compiler options to report serious warnings only.
The use of const is not currently permitted with return types, auto variables or parameters in a function
prototype.

Example 1:

// ptr to x is a constant pointer to an integer
int x;

int * const cptr_to x = &x;

Example 2:

// cptr to iis a constant pointer to a constant integer
const Int 1 = 3;
const int * const cptr_to_i = &i

Example 3:

// axis a constant 2 dimensional integer array
const int ax[2][2] = {{2.3}, {1.2}};

Example 4:

struct rec {
int a;
char b[10];
}:
// zed is a constant struct
const struct rec zed = {5, “abc’};

Example 5:

// cptr is a constant pointer to an integer
typedef int * ptr_to_int;
const ptr_to_int cptr = &i;

// this declaration is equivalent to the previous one
int * const cptr = &i;

NOTE: The default storage class is auto, so the above code would have to be outside of a
function or would have to be explicitly set to static.

190 rabbit.com Keywords

http://www.rabbit.com

continue

Skip to the next iteration of a loop.

while(expression){
iT(nothing to do) continue;

costate

Indicates the beginning of a costatement.
costate [name [state]] {

}

Name can be absent. If name is present, State can be always_on or init_on. If state is absent,
the costatement is initially off.

debug

Indicates a function is to be compiled in debug mode. This is the default case for Dynamic C functions
with the exception of pure assembly language functions.

Library functions compiled in debug mode can be single stepped into, and breakpoints can be set in them.
debug int func({

}
#asm debug

#endasm
The debug keyword in combination with the norst keyword will give you run-time checking without
debug. For example,

debug norst foo() {
}

will perform run-time checking if enabled, but will not have rst instructions.

Dynamic C User’s Manuall rabbit.com 191

http://www.rabbit.com

default

Identifies the default case in a switch statement. The default case is optional. It executes only when the

switch expression does not match any other case.

switch(expression){
case constl:
case const2:

default:

do

Indicates the beginning of a do loop. A do loops tests at the end and executes at least once.
do

while(expression);

The statement must have a semicolon at the end.

else
The false branch of an I T statement.
iT(expression)
statement // “statement” executes when “expression” is true
else
statement // “statement” executes when “expression” is false
192 rabbit.com Keywords

http://www.rabbit.com

enum

Defines a list of named integer constants:

enum foo {

white, // default is O for the first item
black, // willbel
brown, // will be 2
spotted = -2, // will be -2
striped, // will be -3

} 3

An enum can be declared in local or global scope. The tag FOO is optional; but it allows further declara-
tions:

enum foo rabbits;

To see a colorful sample of the enum keyword, run /samples/enum.c.

extern

Indicates that a variable is defined in the BIOS, later in a library file, or in another library file. Its main use
is in module headers.

/*** BeginHeader ..., var */
extern iInt var;
/*** EndHeader */
int var;

Dynamic C User’s Manuall rabbit.com 193

http://www.rabbit.com

firsttime

The keyword Firsttime in front of a function body declares the function to have an implicit *CoData
parameter as the first parameter. This parameter should not be specified in the call or the prototype, but
only in the function body parameter list. The compiler generates the code to automatically pass the pointer
to the CoData structure associated with the costatement from which the call is made. A Firstime
function can only be called from inside of a costatement, cofunction, or slice statement. The DellayTick

function from COSTATE . LB below is an example of a Firsttime function.
Ffirsttime nodebug int DelayTicks(CoData *pfb, unsigned int ticks)

{

if(ticks==0) return 1;

iT(pfb->Firsttime){
fb->Firsttime=0;

/> save current ticker */

fb->content.ul=Cunsigned long)TICK_TIMER;

}

else 1f (TICK_TIMER - pfb->content.ul >= ticks)

return 1;
return O;

float

Declares variables, function return values, or arrays, as 32-bit IEEE floating point.

int func({
float x, y, *p;
float Pl = 3.14159265;

}
float func(float par){

}

194

rabbit.com

Keywords

http://www.rabbit.com

for

Indicates the beginning of a For loop. A For loop has an initializing expression, a limiting expression
and a stepping expression. Each expression can be empty.

for(;;) { // an endless loop

}

for(1 =0; 1 <n; i++) { // counting loop

}

2

goto

Causes a program to go to a labeled section of code.

if(condition) goto RED;

RED:

Use goto to jump forward or backward in a program. Never use goto to jump into a loop body or a
switch case. The results are unpredictable. However, it is possible to jump out of a loop body or
switch case.

Dynamic C User’s Manuall rabbit.com

195

http://www.rabbit.com

if

Indicates the beginning of an 1T statement.
if(tank_full) shut_off _water();

iT(expression){
statements

}else 1T(expression){
statements

}else 1f(expression){
statements

}else 1f(expression){
statements

}else{
statements

}

If one of the expressions is true (they are evaluated in order), the statements controlled by that expression
are executed. An i F statement can have zero or more else ¥ parts. The el se is optional and executes
only when none of the I ¥ or else 1T expressions are true (non-zero).

init on

The costatement is initially on and will automatically execute the first time it is encountered in the execu-
tion thread. The costatement becomes inactive after it completes (or aborts).

196 rabbit.com Keywords

http://www.rabbit.com

int

Declares variables, function return values, or array elements to be 16-bit integers. If nothing else is speci-
fied, int implies a 16-bit signed integer.

int i, j, *Kk; // 16-bit signed
unsigned int x; // 16-bit unsigned
long int z; // 32-bit signed
unsigned long int w; // 32-bit unsigned

int funct (int arg){

}

interrupt

Indicates that a function is an interrupt service routine (ISR). All registers, including alternates, are saved
when an interrupt function is called and restored when the interrupt function returns. Writing ISRs in C is

never recommended, especially when timing is critical.

interrupt isr (O{

}

An interrupt service routine returns no value and takes no arguments.

Dynamic C User’s Manuall rabbit.com 197

http://www.rabbit.com

interrupt_vector

This keyword, intended for use with separate 1&D space, sets up an interrupt vector at compile time. This
is its syntax:

interrupt_vector <INT_VECTOR_NAME> <ISR_NAME>
Interrupt vector names and ISR names are found in Table 11-5 on page 183. The following code fragment
illustrates how interrupt_vector is used.

// Setup an Interrupt Service Routine for Timer B
#asm

timerb_1isr::

; ISR code

ret
#endasm

main() {
// Variables

// Setup ISR
interrupt_vector timerb_intvec timerb_isr; // Compile time setup

// Code

}

interrupt_vector overrides run time setup. For run time setup, you would replace the
interrupt_vector statement above with:

#rcodorg <INT_VEC_NAME> apply

#asm
INTVEC_RELAY_SETUP(timerb_intvec + TIMERB_OFS)

#endasm
#rcodorg rootcode resume

This results in a slower interrupt (80 clock cycles are added), but an interrupt vector that can be modified
at run time. Interrupt vectors that are set up using interrupt_vector are fast, but can’t be modified
at run time since they are set at compile time.

If you are using Dynamic C 9.30 or later, the _RK_FIXED_VECTORS macro must be used to condition-
ally compile code containing the interrupt_vector keyword. For Rabbit 3000A and later CPUs,
Dynamic C makes use of the new RAMSR capability to make in-RAM interrupt table access fast. The fol-
lowing code demonstrates the correct way to use _RK_FIXED_VECTORS so as to eliminate errors
regarding undefined interrupt vectors.

198 rabbit.com Keywords

http://www.rabbit.com

interrupt_vector (cont’d)

As demonstrated in DC 9.52's standard samples that conditionally use the interrupt_vector key-
word, the correct usage is as follows:

nodebug root interrupt void pwm_isr(){
// example code does not do anything

}

nodebug root interrupt void ic_isr(){
// example code does not do anything

}

main(){
#i1T _ SEPARATE_INST_DATA___ && (_RK_FIXED_VECTORS)

interrupt_vector inputcap_intvec ic_Iisr;
interrupt_vector pwm_intvec pwm_isr;
#else
SetVectlntern(0Ox1A, ic_isr); // set up ISR
SetVectIntern(0x17, pwm_isr); // set up ISR
#endif

printfF(""ISR"s setup correctly\n™);
}

Dynamic C User’s Manuall rabbit.com 199

http://www.rabbit.com

__lcall__

When used in a function definition, the ___Ical I___ function prefix forces long call and return (Icall and
Iret) instructions to be generated for that function, even if the function is in root. This allows root functions
to be safely called from xmem. In addition to root functions, this prefix also works with function pointers.
The __lcall___ prefix works safely with xmem functions, but has no effect on code generation. Its use
with cofunctions is prohibited and will generate an error if attempted.

root _ _lIcall__ int foo(void) {

return 10; // Generates an Iret instruction, even though we are in root
}
main() {
foo(); // This now generates an Icall instruction
}
long

Declares variables, function return values, or array elements to be 32-bit integers. If nothing else is speci-
fied, long implies a signed integer.

long 1, j, *k; // 32-bit signed

unsigned long int w; // 32-bit unsigned

long funct (long arg){

}

main

Identifies the main function. All programs start at the beginning of the main function. (main is actu-
ally not a keyword, but is a function name.)

200 rabbit.com Keywords

http://www.rabbit.com

nodebug

Indicates a function is not compiled in debug mode. This is the default for assembly blocks.
nodebug int func(){

}

#asm nodebug

#endasm

See also ““debug’ and directives “#debug #nodebug”.

norst

Indicates that a function does not use the RST instruction for breakpoints.

norst void func(Q{

}

The norst keyword in combination with the debug keyword will give you run-time checking without
debug. For example,

debug norst foo() {
}

will perform runtime-checking if enabled, but will not have rst instructions.

nouseix

Indicates a function does not use the IX register as a stack frame reference pointer. This is the default case.

nouseix void func({

}

NULL

The null pointer. (This is actually a macro, not a keyword.) Same as (void *)O0.

Dynamic C User’s Manuall rabbit.com 201

http://www.rabbit.com

protected

An important feature of Dynamic C is the ability to declare variables as protected. Such a variable is pro-
tected against loss in case of a power failure or other system reset because the compiler generates code that
creates a backup copy of a protected variable before the variable is modified. If the system resets while the
protected variable is being modified, the variable’s value can be restored when the system restarts. This
operation requires battery-backed RAM and the use of the main system clock. If you are using the 32 kHz
clock you must switch back to the main system clock to use protected variables because the atomicity of
the write cannot be ensured when using the 32 kHz clock.

main(){
protected int statel, state2, state3;

_syslsSoftReset(); // restore any protected variables
¥

The call to _syslIsSoftReset checks to see if the previous board reset was due to the compiler restart-
ing the program (i.e., a soft reset). If so, then it initializes the protected variable flags and calls
sysResetChain(), a function chain that can be used to initialize any protected variables or do other
initialization. If the reset was due to a power failure or watchdog time-out, then any protected variables
that were being written when the reset occurred are restored.

A system that shares data among different tasks or among interrupt routines can find its shared data cor-
rupted if an interrupt occurs in the middle of a write to a multi-byte variable (such as type int or Float).
The variable might be only partially written at its next use. Declaring a multi-byte variable shared means
that changes to the variable are atomic, i.e., interrupts are disabled while the variable is being changed.
You may declare a multi-byte variable as both shared and protected.

register

The register keyword is not currently implemented in Dynamic C, but is reserved for possible future
implementation. It is currently synonymous with the keyword auto.

202 rabbit.com Keywords

http://www.rabbit.com

return

Explicit return from a function. For functions that return values, this will return the function result.

void func (Q{
iT(expression) return;

}
float func (int x){

float temp;

return (temp * 10 + 1);
}

root

Indicates a function is to be placed in root memory. This keyword is semantically meaningful in function
prototypes and produces more efficient code when used. Its use must be consistent between the prototype
and the function definition.

root int func(){

}

#memmap root
#asm root

#endasm

scofunc

Indicates the beginning of a single-user cofunction. See cofunc on page 189.

Dynamic C User’s Manuall rabbit.com 203

http://www.rabbit.com

segchain

Identifies a function chain segment (within a function).

int func (int arg){
int vec[10];

segchain _GLOBAL_INIT{
for(1 = 0; i<10; i++){ vec[i] = 0; }
}

}

This example adds a segment to the function chain _GLOBAL_INIT. Using segchain is equivalent to
using the #GLOBAL_INIT directive. When this function chain executes, this and perhaps other segments
elsewhere execute. The effect in this example is to reinitialize vec|[].

shared

Indicates that changes to a multi-byte variable (such as a Float) are atomic. Interrupts are disabled when
the variable is being changed. Local variables cannot be shared. Note that you must be running off the
main system clock to use shared variables. This is because the atomicity of the write cannot be ensured
when running off the 32 kHz clock.

shared float x, y, z;
shared int j;

maihk}{
) -

If ¥ is a shared variable, expressions of the form i++ (or I = ¥+ 1) constitute two atomic references to
variable 1, a read and a write. Be careful because 1++ is not an atomic operation.

204 rabbit.com Keywords

http://www.rabbit.com

short

Declares that a variable or array is short integer (16 bits). If nothing else is specified, short implies a 16-bit
signed integer.

short i1, j, *k; // 16-bit, signed

unsigned short Int w; // 16-bit, unsigned

short funct (short arg){

}

size

Declares a function to be optimized for size (as opposed to speed).

size int func OQ{

}

sizeof

A built-in function that returns the size in bytes of a variable, array, structure, union, or of a data type.
sizeof () can be used inside of assembly blocks.

int list[] = { 10, 99, 33, 2, -7, 63, 217 };

X = sizeof(list); // x will be assigned 14

speed

Declares a function to be optimized for speed (as opposed to size).
speed int func (Q{

}

Dynamic C User’s Manuall rabbit.com 205

http://www.rabbit.com

static

Declares a local variable to have a permanent fixed location in memory, as opposed to auto, where the
variable exists on the system stack. Global variables are by definition sStatic. Local variables are auto

by default.
int func OQ{

int i; // auto by default

static float x; // explicitly static
}
struct

This keyword introduces a structure declaration, which defines a type.
struct {
int x;
int y;
int z;
} thingl; // defines the variable thing] to be a struct

struct speed{
int x;
int y;
int z;
}; // declares a struct type named speed

struct speed thing2; // defines variable thing?2 to be of type speed

Structure declarations can be nested.

struct {
struct speed slow;
struct speed slower;
} tortoise; // defines the variable tortoise to be a nested struct

struct rabbit {
struct speed fast;
struct speed faster;
}; // declares a nested struct type named rabbit

struct rabbit chips; // defines the variable chips to be of type rabbit

206 rabbit.com

Keywords

http://www.rabbit.com

switch

Indicates the start of a switch statement.

switch(expression){

case constl:
break;

case const2:
break;

case const3:
break

default :

}

The swi tch statement may contain any number of cases. The constants of the case statements are com-
pared with expression. If there is a match, the statements for that case execute. The defaul t case, if
it is present, executes if none of the constants of the case statements match expression.

If the statements for a case do not include a break, return, continue, or some means of exiting
the switch statement, the cases following the selected case will also execute, regardless of whether their
constants match the switch expression.

typedef

This keyword provides a way to create new names for existing data types.

typedef struct {

int X;

int y;
} xyz; // defines a struct type...
Xyz thing; // ...and a thing of type xyz
typedef uint node; // meaningful type name

node master, slavel, slave2;

Dynamic C User’s Manuall rabbit.com 207

http://www.rabbit.com

union

Identifies a variable that can contain objects of different types and sizes at different times. Items in a
union have the same address. The size of a union is that of its largest member.

union {
int x;
float y;
} abc; // overlays a float and an Iint

unsigned

Declares a variable or array to be unsigned. If nothing else is specified in a declaration, unsigned means
16-bit unsigned integer.

unsigned i, j, *Kk; // 16-bit, unsigned
unsigned int x; // 16-bit, unsigned
unsigned long w; // 32-bit, unsigned

unsigned funct (unsigned arg){

}

Values in a 16-bit unsigned integer range from 0 to 65,535 instead of —32768 to +32767. Values in an
unsigned long integer range from 0 to 232-1.

useix

Indicates that a function uses the IX register as a stack frame pointer.

useix void func(Q{

}

See also ““nouseil X’ and directives ““#useix #nouseix”

208 rabbit.com Keywords

http://www.rabbit.com

void

This keyword conforms to ANSI C. Thus, it can be used in three different ways.

1. Parameter List - used to identify an empty parameter list (a.k.a., argument list). An empty parameter list
can also be identified by having nothing in it. The following two statements are functionally identical:

int functionName(void);
int functionName();

2. Pointer to Void - used to declare a pointer that points to something that has no type.

void *ptr_to_anything;

3. Return Type - used to state that no value is returned.
void functionName(paraml, param2);

volatile

Reserved for future use.

wairtfor

Used in a costatement or cofunction, this keyword identifies a point of suspension pending the outcome of
a condition, completion of an event, or some other delay.

for(;;){
costate {
waitfor (input(l) == HIGH);

Dynamic C User’s Manuall rabbit.com 209

http://www.rabbit.com

waitfordone
(wfd)

The waitfordone keyword can be abbreviated as wFd. It is part of Dynamic C’s cooperative multitask-
ing constructs. Used inside a costatement or a cofunction, it executes cofunctions and Firsttime func-
tions. When all the cofunctions and Firsttime functions in the wfd statement are complete, or one of
them aborts, execution proceeds to the statement following wfd. Otherwise a jump is made to the ending
brace of the costatement or cofunction where thew¥d statement appears; when the execution thread comes
around again, control is given back to the wfd statement.

The wfd statements below are from Samples\cofunc\cofterm.c

x = wfd login(Q); // wfd with one cofunction
wfd { // witd with several cofunctions
clrscr(Q);

putat(5,5,"name:"");
putat(5,6,"password:");
echoon();

}

wfd may return a value. In the example above, the variable X is set to 1 if login() completes execution
normally and set to -1 if it aborts. This scheme is extended when there are multiple cofunctions inside the
wTd: if no abort has taken place in any cofunction, wFd returns 1, 2, ..., n to indicate which cofunction
inside the braces finished executing last. If an abort takes place, wfd returns -1, -2, ..., -n to indicate which
cofunction caused the abort.

while

Identifies the beginning of a while loop. A while loop tests at the beginning and may execute zero
or more times.

while(expression){

}

210 rabbit.com Keywords

http://www.rabbit.com

xdata

Declares a block of data in extended flash memory.

xdata name { value_1, ... value_n };

The 20-bit physical address of the block is assigned to name by the compiler as an unsigned long variable.
The amount of memory allocated depends on the data type. Each char is allocated one byte, and each
int is allocated two bytes. If an integer fits into one byte, it is still allocated two bytes. Each Float and
long cause four bytes to be allocated.

The value list may include constant expressions of type int, float, unsigned int, long,
unsigned long, char, and (quoted) strings. For example:
xdata namel {"\x46","\x47","\x48%,"\x49", "\x4A", "\x20", "\x20"};
xdata name2 {"R*,"a","b","b","i","t"};
xdata name3 {" Rules! "};
xdata name4 {1.0,2.0,(float)3,40e-01,5e00, .6el};

The data can be viewed directly in the dump window by doing a physical memory dump using the 20-bit
address of the xdata block. See Samp les\Xmem\xdata . ¢ for more information.

Dynamic C User’s Manuall rabbit.com 211

http://www.rabbit.com

xmem

Indicates that a function is to be placed in extended memory. This keyword is semantically meaningful in
function prototypes. Good programing style dictates its use be consistent between the prototype and the
function definition. That is, if a function is defined as:

xmem int funcQOQ{}

the function prototype should be:
xmem int func(Q);

Any of the following will put the function in xmem:

xmem int func();
xmem int funcQ{}

or

xmem int func();
int funcQ{}

or

int func(Q);
xmem int funcQ{}

In addition to flagging individual functions, the xmem keyword can be used with the compiler directive
#memmap to send all functions not declared as root to extended memory.

#memmap Xmem

This construct is helpful if an application is running out of root code space. Another strategy is to use sepa-
rate [&D space. Using both #memmap xmem and separate 1&D space might cause an application to run
out of xmem, depending on the size of the application and the size of the flash. If this occurs, the program-
mer should consider using only one of the #memmap xmem or separate I&D space options. If the applica-
tion is extremely tight for xmem code memory but has root code memory to spare, the programmer may
also consider explicitly tagging some xmem or anymem functions with the root keyword.

xstring

Declares a table of strings in extended memory. The strings are allocated in flash memory at compile time
which means they can not be rewritten directly.

The table entries are 20-bit physical addresses. The hame of the table represents the 20-bit physical
address of the table; this address is assigned to name by the compiler.

xstring name { “string 1”7, . . . “string_n” };

212 rabbit.com Keywords

http://www.rabbit.com

yield

Used in a costatement, this keyword causes the costatement to pause temporarily, allowing other costate-
ments to execute. The yield statement does not alter program logic, but merely postpones it.

for(;){
costate {
yield;
, -
. -

Dynamic C User’s Manuall rabbit.com 213

http://www.rabbit.com

12.1 Compiler Directives

Compiler directives are special keywords prefixed with the symbol #. They tell the compiler how to pro-
ceed. Only one directive per line is allowed, but a directive may span more than one line if a backslash (\)
is placed at the end of the line(s).

There are some compiler directives used to decide where to place code and data in memory. They are
called origin directives and include #rcodorg, #rvarorg and #xcodorg. A detailed description of
origin directives may be found in the Rabbit 3000 Designer’s Handbook (look in the index under “origin
directives™).

#asm

Syntax: #asm options
Begins a block of assembly code. The available options are:

= const: When seperate [&D space is enabled, assembly constants should be placed in their own assem-
bly block (or done in C). For more information, see Section 11.2.2, “Defining Constants.”

= debug: Enables debug code during assembly.

= nodebug: Disables debug code during assembly. This is the default condition. It is still possible to
single step through assembly code as long as the assembly window is open.

= xmem: Places a block of code into extended memory, overriding any previous memory directives. The
block is limited to 4KB.

If the #asm block is unmarked, it will be compiled to root.

#class

Syntax: #class options
Controls the storage class for local variables. The available options are:

e auto: Place local variables on the stack.

= static: Place local variables in permanent, fixed storage.

The default storage class is auto.

214 rabbit.com Keywords

http://www.rabbit.com

#debug
#nodebug

Enables or disables debug code compilation. #debug is the default condition. A function's local debug
or nodebug keyword overrides the global #debug or #nodebug directive. In other words, if a func-
tion does not have a local debug or nodebug keyword, the #debug or #nodebug directive would
apply.

#nodebug prevents RST 28h instructions from being inserted between C statements and assembly
instructions.

NOTE: These directives do nothing if they are inside of a function. This is by design. They
are meant to be used at the top of an application file.

#define

Syntax: #define name text or #define name (parameters . . .) text

Defines a macro with or without parameters according to ANSI standard. A macro without parameters
may be considered a symbolic constant. Supports the # and ## macro operators. Macros can have up to 32
parameters and can be nested to 126 levels.

#endasm

Ends a block of assembly code.

#fatal

Syntax: #fatal “...”

Instructs the compiler to act as if a fatal error. The string in quotes following the directive is the message to
be printed

Dynamic C User’s Manuall rabbit.com 215

http://www.rabbit.com

#GLOBAL_INIT

Syntax: #GLOBAL__INIT { variables }

#GLOBAL_INIT sections are blocks of code that are run once before main() is called. They should
appear in functions after variable declarations and before the first executable code. If a local static variable
must be initialized once only before the program runs, it should be done in a #GLOBAL_INIT section,
but other inititialization may also be done. For example:

// This function outputs and returns the number of times it has been called.
int foo(){

char count;

#GLOBAL_INIT{

// initialize count
count = 1;

// make port A output
WrPortl (SPCR, SPCRShadow,0x84) ;

}

// output count
WrPortl (PADR,NULL ,count) ;

// increment and return count
return ++count;

#error

Syntax: #error "..."

Instructs the compiler to act as if an error was issued. The string in quotes following the directive is the
message to be printed

#Ffuncchain

Syntax: #funcchain chainname name

Adds a function, or another function chain, to a function chain.

216 rabbit.com Keywords

http://www.rabbit.com

#if
#elif
#else

#endif

Syntax: #1 T constant_expression
#el 1T constant_expression
#else
#endif

These directives control conditional compilation. Combined, they form a multiple-choice 1 f. When the
condition of one of the choices is met, the Dynamic C code selected by the choice is compiled. Code
belonging to the other choices is ignored.

main(Q){
#iT BOARD_TYPE == 1

#define product "Ferrari™

#elif BOARD TYPE ==
#define product "Maserati"

#elif BOARD TYPE ==

#define product "Lamborghini
#else

#define product "Chevy"

#endif

}

The #e 11T and #el se directives are optional. Any code between an #e lse and an #end i F is com-
piled if all values for constant_expression are false.

#ifdef

Syntax: #1fdef name

This directive enables code compilation if name has been defined with a #define directive. This direc-
tive must have a matching #endi f.

Dynamic C User’s Manual rabbit.com 217

http://www.rabbit.com

#i1fndef

Syntax: #i fndef name

This directive enables code compilation if name has not been defined with a #define directive. This
directive must have a matching #endif.

#interleave
#nointerleave

Controls whether Dynamic C will intersperse library functions with the program’s functions during compi-
lation together, separately from the library functions.

#nointerleave forces the user-written functions to be compiled first. The #nointerleave direc-
tive, when placed at the top of application code, tells Dynamic C to compile all of the application code first
and then to compile library codecalled by the application code afterward, and then to compile other library
code called by the initial library code following that, and so on until finished.

Note that the #nointer leave directive can be placed anywhere in source code, with the effect of stop-
ping interleaved compilation of functions from that point on. If #nointerleave is placed in library
code, it will effectively cause the user-written functions to be compiled together starting at the statement
following the library call that invoked #nointerleave.

#makechain

Syntax: #makechain chainname

Creates a function chain. When a program executes the function chain named in this directive, all of the
functions or segments belonging to the function chain execute.

218 rabbit.com Keywords

http://www.rabbit.com

#memmap

Syntax: #memmap options
Controls the default memory area for functions. The following options are available.

= anymem NNNN: When code comes within NNNN bytes of the end of root code space, start putting it
in xmem. Default memory usage is #memmap anymem 0x2000.

e root: All functions not declared as Xmem go to root memory.

= xmem: C functions not declared as root go to extended memory. Assembly blocks not marked as
Xmem go to root memory. See the description for Xmem for more information on this keyword.

#pragma

Syntax: #pragma nowarn [warnt]warns]

Trivial warnings (warnt) or trivial and serious warnings (warns) for the next physical line of code are
not displayed in the Compiler Messages window. The argument is optional; default behavior is warnt.

Syntax: #pragma nowarn [warnt]warns] start

Trivial warnings (warnt) or trivial and serious warnings (warns) are not displayed in the Compiler Mes-
sages window until the #pragma nowarn end statement is encountered. The argument is optional;
default behavior is warnt. #pragma nowarn cannot be nested.

Dynamic C User’s Manuall rabbit.com 219

http://www.rabbit.com

#precompile

Allows library functions in a comma separated list to be compiled immediately after the BIOS.

The #precompi le directive is useful for decreasing the download time when developing your program.
Precompiled functions will be compiled and downloaded with the BIOS, instead of each time you compile
and download your program. The following limitations exist:

* Precompile functions must be defined nodebug.

* Any functions to be precompiled must be in a library, and that library must be included either in the
BIOS using a #use, or recursively included by those libraries.

* [Internal BIOS functions will precompile, but will not result in any improvement.

« Libraries that require the user to define parameters before being used can only be precompiled if those
parameters are defined before the #precompi le statement. An example of this is included in
precompile.lib.

= Function chains and functions using segment chains cannot be precompiled.
* Precompiled functions will be placed in extended memory, unless specifically marked root.

= All dependencies must be resolved (Macros, variables, other functions, etc.) before a function can be
precompiled. This may require precompiling other functions first.

See precompi le . 1 i1b for more information and examples.

#undef

Syntax: #undef identifier

Removes (undefines) a defined macro.

#use

Syntax: #use pathname

Activates a library named in LIB _DIR so modules in the library can be linked with the application pro-
gram. This directive immediately reads in all the headers in the library unless they have already been read.

220 rabbit.com Keywords

http://www.rabbit.com

#Huseix
#nouseix

Controls whether functions use the IX register as a stack frame reference pointer or the SP (stack pointer)
register. #nouse i X is the default.

Note that when the IX register is used as a stack frame reference pointer, it is corrupted when any stack-
variable using function is called from within a cofunction, or if a stack-variable using function contains a
call to a cofunction.

#warns

Syntax: #warns “...”

Instructs the compiler to act as if a serious warning was issued. The string in quotes following the directive
is the message to be printed.

#warnt

Syntax: #warnt “..”

Instructs the compiler to act as if a trivial warning was issued. The string in quotes following the directive
is the message to be printed.

#ximport

Syntax: #ximport “filename” symbol

This compiler directive places the length of filename (stored as a long) and its binary contents at the next
available place in xmem flash. filename is assumed to be either relative to the Dynamic C installation
directory or a fully qualified path. symbol is a compiler generated macro that gives the physical address
where the length and contents were stored.

The sample program Ximport. c illustrates the use of this compiler directive.

Dynamic C User’s Manuall rabbit.com 221

http://www.rabbit.com

#zimport

Syntax: #z import “filename” symbol

This compiler directive extends the functionality of #Ximport to include file compression by an external
utility. filename is the input file (and must be relative to the Dynamic C installation directory or be a fully
qualified path) and symbol represents the 20-bit physical address of the downloaded file.

The external utility supplied with Dynamic C is zcompress . exe. It outputs the compressed file to the
same directory as the input file, appending the extension .DCZ. E.g., if the input file is named

test. txt, the output file will be named test. txt.dcz. The first 32 bits of the output file contains
the length (in bytes) of the file, followed by its binary contents. The most significant bit of the length is set
to one to indicate that the file is compressed.

The sample program z import. c illustrates the use of this compiler directive. Please see Appendix C.2.2
for further information regarding file compression and decompression.

222 rabbit.com Keywords

http://www.rabbit.com

| RABBIT-seag= PRODUCT MANUAL

13. OPERATORS

An operator is a symbol such as +, —, or & that expresses some kind of operation on data. Most operators
are binary—they have two operands.

a + 10 // two operands with binary operator "add"

Some operators are unary—they have a single operand,

-amount // single operand with unary “minus”

although, like the minus sign, some unary operators can also be used for binary operations.

There are many kinds of operators with operator precedence. Precedence governs which operations
are performed before other operations, when there is a choice.

For example, given the expression

a=>b+c* 10;
will the + or the * be performed first? Since * has higher precedence than +, it will be performed first.
The expression is equivalent to

a=b+ (c * 10);

Parentheses can be used to force any order of evaluation. The expression

a=(b +c) * 10;

uses parentheses to circumvent the normal order of evaluation.

Associativity governs the execution order of operators of equal precedence. Again, parentheses can cir-
cumvent the normal associativity of operators. For example,

a=>b+c+ d; // (b+c) performed first

a=b+ (c +d); // now c+d is performed first

int *aQ); // function returning a pointer to an integer
int (a)(); // pointer to a function returning an integer

Unary operators and assignment operators associate from right to left. Most other operators associate from
left to right.

Dynamic C User’s Manuall rabbit.com 223

http://www.rabbit.com

Certain operators, namely *, &, (), [], -> and . (dot), can be used on the left side of an assign-
ment to construct what is called an lvalue. For example,

float Xx;
(char)é&x = 0x17; // low byte of x gets value

When the data types for an operation are mixed, the resulting type is the more precise.

float x, y, z;

int i, j, k;

char c;

z =i/ X; // same as (float)i / x
J =k + c; // same as k + (int)c

By placing a type name in parentheses in front of a variable, the program will perform type casting or type
conversion. In the example above, the term (Float) 1 means the “the value of 1 converted to floating
point.”

The operators are summarized in the following pages.

13.1 Arithmetic Operators

+

Unary plus, or binary addition. (Standard C does not have unary plus.) Unary plus does not really do any-
thing.

a b + 10.5; // Dbinary addition
Z = +y; // just for emphasis!

Unary minus, or binary subtraction.

a=>b - 10.5; // Dbinary subtraction
Z = -y; // 7z gets the negative of y

224 rabbit.com Operators

http://www.rabbit.com

Indirection, or multiplication. As a unary operator, it indicates indirection. When used in a declaration, *
indicates that the following item is a pointer. When used as an indirection operator in an expression, * pro-
vides the value at the address specified by a pointer.

int *p; // pis apointer to an integer
const int j = 45;
p = &j; // p now points to j.
k = *p; // X gets the value to which
// p points, namely 45.
*p = 25; // The integer to which p points gets 25.

// Same as j =25, since p points to j.

Beware of using uninitialized pointers. Also, the indirection operator can be used in
complex ways.

int *list[10] // array of 10 pointers to integers
int (*list)[10] // pointer to array of 10 integers
float** y; // pointer to a pointer to a float
z = **y; // z gets the value of y
typedef char **stp;

stp my_stuff; // my stuffis typed char**

As a binary operator, the * indicates multiplication.

a=>b*c; // a gets the product of b and ¢

/

Divide is a binary operator. Integer division truncates; floating-point division does not.

const int i = 18, const j = 7, k; float Xx;

k=1/7]J; // resultis?2;
X (float)i 7/ j; // resultis 2.591...

Dynamic C User’s Manuall rabbit.com 225

http://www.rabbit.com

++

Pre- or post-increment is a unary operator designed primarily for convenience. If the ++ precedes an oper-
and, the operand is incremented before use. If the ++ operator follows an operand, the operand is incre-
mented after use.

int 1, a[l12];

i =0;

q = a[i++]; // q gets a[0], then i becomes 1
r = afi++]; // rgets a[1], then i becomes 2
S ++1 ; // ibecomes 3, thens=1
i++; // ibecomes 4

If the ++ operator is used with a pointer, the value of the pointer increments by the size of the object (in
bytes) to which it points. With operands other than pointers, the value increments by 1.

Pre- or post-decrement. If the — precedes an operand, the operand is decremented before use. If the —
operator follows an operand, the operand is decremented after use.

int j, a[12];

J = 12;
q = al—ijl; // jbecomes 11, then q gets a[11]
r = a[—jl; // jbecomes 10, then r gets a[10]
s = jJ—; // s=10, then j becomes 9
Jj—; // jbecomes 8
Ifthe — operator is used with a pointer, the value of the pointer decrements by the size of the object (in

bytes) to which it points. With operands other than pointers, the value decrements by 1.

%

Modulus. This is a binary operator. The result is the remainder of the left-hand operand divided by the
right-hand operand.

const int 1 = 13;
J =1 % 10; // jgetsimod 10 or 3
const Iint k = -11;
J=k®n7; // jgetskmod7 or-4

226 rabbit.com Operators

http://www.rabbit.com

13.2 Assignment Operators

Assignment. This binary operator causes the value of the right operand to be assigned to the left operand.
Assignments can be “cascaded” as shown in this example.

a=10 * b + c;

0;

D
1
(o
1

// a gets the result of the calculation

// bgets0anda gets 0

+=

Addition assignment.

a += 5;

// Add5toa. Sameasa=a+5

Subtraction assignment.

a -=>5;

// Subtract 5 froma. Sameasa=a-5

e

Multiplication assignment.

a *= 5; // Multiply aby 5. Sameasa=a* 5
/=
Division assignment.
a /= 5; // Divideaby 5. Sameasa=a/5
0=

Modulo assignment.

a %= 5;

// amod5.Sameasa=a%>5

<<=

Left shift assignment.

a <<= 5;

// Shift aleft 5 bits. Same asa=a<<5

Dynamic C User’s Manual

rabbit.com 227

http://www.rabbit.com

>>=

Right shift assignment.
a >>= 5; // Shift aright 5 bits. Same asa=a>>5

&=

Bitwise AND assignment.

a &= b; // ANDawithb. Sameasa=a &b

N—

Bitwise XOR assignment.

a = b; // XOR awithb. Sameasa=a”b

Bitwise OR assignment.

a |= b; // ORawithb. Sameasa=a|b

13.3 Bitwise Operators

<<

Shift left. This is a binary operator. The result is the value of the left operand shifted by the number of bits
specified by the right operand.

int 1 = OxFOOF;

J =1 << 4; /7 j gets 0x00F0

The most significant bits of the operand are lost; the vacated bits become zero.

>>

Shift right. This is a binary operator. The result is the value of the left operand shifted by the number of
bits specified by the right operand:

int 1 = OxFOOF;
J =1 > 4; // j gets OxFF00

The least significant bits of the operand are lost; the vacated bits become zero for unsigned variables and
are sign-extended for signed variables.

228 rabbit.com Operators

http://www.rabbit.com

&

Address operator, or bitwise AND. As a unary operator, this provides the address of a variable:

int x;
Z = &X; // 7z gets the address of x

As a binary operator, this performs the bitwise AND of two integer (Char, Int, or long) values.

int i = OXFFFO;
int J = OxXOFFF;
z=1&]; // 1z gets 0xOFF0

N\

Bitwise exclusive OR. A binary operator, this performs the bitwise XOR of two integer (8-bit, 16-bit or
32-bit) values.

int 1 = OxXFFFO;
int j OXOFFF;
z=1"]; // z gets OxFOOF

Bitwise inclusive OR. A binary operator, this performs the bitwise OR of two integer (8-bit, 16-bit or 32-
bit) values.

int i = OxFFOO;
int j = OxOFFO;
z=11] 13; // 7z gets OxFFFO

~

Bitwise complement. This is a unary operator. Bits in a char, int, or long value are inverted:

int switches;
switches = OxFFFO;
J = ~switches; // jbecomes 0x000F

Dynamic C User’s Manuall rabbit.com 229

http://www.rabbit.com

13.4 Relational Operators

<

Less than. This binary (relational) operator yields a Boolean value. The result is 1 if the left operand is less
than the right operand, and 0 otherwise.

if(i <j){
body // executesifi<j
}
OK = a < b; // true whena<b
<=

Less than or equal. This binary (relational) operator yields a boolean value. The result is 1 if the left oper-
and is less than or equal to the right operand, and 0 otherwise.

ifC 1 <=j){
body // executes if i <=j
}
OK = a <= b; // true whena<=b
>

Greater than. This binary (relational) operator yields a Boolean value. The result is 1 if the left operand is
greater than the right operand, and 0 otherwise.

ifCi >){
body // executes ifi>]
¥
OK = a > b; // true whena>b
>=

Greater than or equal. This binary (relational) operator yields a Boolean value. The result is 1 if the left
operand is greater than or equal to the right operand, and 0 otherwise.

ifC 1 >=j){

body // executes if i >=j
¥
OK = a >= b; // true whena>=b

230 rabbit.com Operators

http://www.rabbit.com

13.5 Equality Operators

Equal. This binary (relational) operator yields a Boolean value. The result is 1 ifthe left operand equals the
right operand, and 0 otherwise.

iIfC i == 73){

body // executesifi=]j
}
OK = a == b; // true whena=>

Note that the == operator is not the same as the assignment operator (=). A common mistake is to write

iIfCi =3){
body
}

Here, 1 gets the value of J, and the 1T condition is true when 1 is non-zero, not when 1 equals j.

Not equal. This binary (relational) operator yields a Boolean value. The result is 1 if the left operand is not
equal to the right operand, and 0 otherwise.

ifC i 1= j){

body // executes ifi =]
3
OK = a !'= b; // true whena!=b

13.6 Logical Operators

&&

Logical AND. This is a binary operator that performs the Boolean AND of two values. If either operand is
0, the result is 0 (FALSE). Otherwise, the result is 1 (TRUE).

Logical OR. This is a binary operator that performs the Boolean OR of two values. If either operand is
non-zero, the result is 1 (TRUE). Otherwise, the result is 0 (FALSE).

Dynamic C User’s Manuall rabbit.com 231

http://www.rabbit.com

Logical NOT. This is a unary operator. Observe that C does not provide a Boolean data type. In C, logical
false is equivalent to 0. Logical true is equivalent to non-zero. The NOT operator result is 1 if the operand
is 0. The result is 0 otherwise.

test = get_input(...);
if(Ttest){

}

13.7 Postfix Expressions

)

Grouping. Expressions enclosed in parentheses are performed first. Parentheses also enclose function
arguments. In the expression

a=(b+c) * 10;

theterm b + c is evaluated first.

[]

Array subscripts or dimension. All array subscripts count from 0.

int a[12]; // array dimension is 12
Jj = al[i]; // references the ith element
- (dot)

The dot operator joins structure (or union) names and subnames in a reference to a structure (or union) ele-
ment.

struct {
int X;
int y;

} coord;

m = coord.Xx;

232 rabbit.com Operators

http://www.rabbit.com

->

Right arrow. Used with pointers to structures and unions, instead of the dot operator.

typedef struct{

int x;
int y;
} coord;
coord *p; // pis apointer to structure
m = p->X; // reference to structure element

13.8 Reference/Dereference Operators

&
Address operator, or bitwise AND. As a unary operator, this provides the address of a variable:
int x;
Z = &X; // 7z gets the address of x

As a binary operator, this performs the bitwise AND of two integer (Char, int, or long) values.

int 1 = OXFFFO;

int j = OxXOFFF;

z=1&]; // 1z gets 0xOFFO
*

Indirection, or multiplication. As a unary operator, it indicates indirection. When used in a declaration, *
indicates that the following item is a pointer. When used as an indirection operator in an expression, * pro-
vides the value at the address specified by a pointer.

int *p; // pis apointer to an integer

int j = 45;

p = &j; // p now points to j.

k = *p; // X gets the value to which p points, namely 45.
*p = 25; // The integer to which p points gets 25.

// Same as j = 25, since p points to j.

Dynamic C User’s Manuall rabbit.com 233

http://www.rabbit.com

Beware of using uninitialized pointers. Also, the indirection operator can be used in
complex ways.

int *list[10] // array of 10 ptrs to int
int (*list)[10] // ptrto array of 10 ints
float** y; // ptrto aptrto a float

z = **y; // 7z gets the value of y
typedef char **stp;

stp my_stuff; // my stuffis typed char**

As a binary operator, the * indicates multiplication.

a=>b*c; // a gets the product of b and ¢

13.9 Conditional Operators

Conditional operators are a three-part operation unique to the C language. The operation has three oper-
ands and the two operator symbols ? and :.

2 =

If the first operand evaluates true (non-zero), then the result of the operation is the second operand. Other-
wise, the result is the third operand.

int i, j, k;
i = J <k?]j:Kk;

The ? : operator is for convenience. The above statement is equivalent to the following.

if(j <k)
1 =];
else
i = k;

If the second and third operands are of different type, the result of this operation is returned at the higher
precision.

234 rabbit.com Operators

http://www.rabbit.com

13.10 Other Operators

(type)

The cast operator converts one data type to another. A floating-point value is truncated when converted
to integer. The bit patterns of character and integer data are not changed with the cast operator, although
high-order bits will be lost if the receiving value is not large enough to hold the converted value.

unsigned i; float x = 10.5; char c;

i = (unsigned)x; // igets 10;

c = *(char*)é&x; // c gets the low byte of x
typedef ... typeA;

typedef ... typeB;

typeA iteml;
typeB item2;

item2 = (typeB)iteml; // forces iteml1 to be treated as a typeB

sizeof

The sizeoF operator is a unary operator that returns the size (in bytes) of a variable, structure, array, or
union. It operates at compile time as if it were a built-in function, taking an object or a type as a parameter.

typedef struct{
int x;
char vy;
float z;

} record;

record array[100];

int a, b, c, d;

char cc[] = "Fourscore and seven';

char *list[] = { "ABC", "DEFG', "HI"™ };

#define array_size sizeof(record)*100 // number of bytes in array

a = sizeof(record); /7 7
b = array_size; // 700
c = sizeof(co); // 20
d = sizeof(list); // 6

Why is sizeof(list) equal to 6? Iist is an array of 3 pointers (to char) and pointers have two
bytes.

Why is sizeoF(cc) equal to 20 and not 19? C strings have a terminating null byte appended by the
compiler.

Dynamic C User’s Manuall rabbit.com 235

http://www.rabbit.com

Comma operator. This operator, unique to the C language, is a convenience. It takes two operands: the left
operand—typically an expression—is evaluated, producing some effect, and then discarded. The right-
hand expression is then evaluated and becomes the result of the operation.

This example shows somewhat complex initialization and stepping in a FOr statement.

for(1=0,j=strlen(s)-1;

i<j; i++,J-){

Because of the comma operator, the initialization has two parts: (1) set I to 0 and (2) get the length of
string S. The stepping expression also has two parts: increment 1 and decrement j.

The comma operator exists to allow multiple expressions in loop or i F conditions.

The table below shows the operator precedence, from highest to lowest. All operators grouped together
have equal precedence.

Table 13-1. Operator Precedence

Operators Associativity Function
O 0 - left to right member
I~ ++ - .
(type) * & sizeof right to left unary
*> /% left to right multiplicative
+ - left to right additive
<< >> left to right bitwise
< <= > >= left to right relational
= 1= left to right equality
& left to right bitwise
n left to right bitwise
| left to right bitwise
&& left to right logical
11 left to right logical
? right to left conditional
= *= /= %= += -= . .
<<= >>= g= A= |= right to left assignment
, (comma) left to right series
236 rabbit.com Operators

http://www.rabbit.com

| RABBIT-seag= PRODUCT MANUAL

14. GRAPHICAL USER INTERFACE

Dynamic C can be used to edit source files, compile and run programs, and choose options for these activi-
ties using pull-down menus or keyboard shortcuts. There are two modes: edit mode and run mode (run
mode is also known as debug mode). Various debugging windows can be viewed in run mode. Programs
can compile directly to a target controller for debugging in RAM or Flash. Programs can also be compiled
to a . bin file, with or without a controller connected to the PC.

To debug a program, a controller must be connected to the PC, either directly via a programming cable or
indirectly via an Ethernet connection while using either a RabbitLink board or a RabbitSys-enabled board.

Multiple instances of Dynamic C can run simultaneously. This means multiple debugging sessions are
possible over different serial ports. This is useful for debugging boards that are communicating among
themselves.

14.1 Editing

A file is displayed in a text window when it is opened or created. More than one text window may be open.
If the same file is in multiple windows, any changes made to the file in one window will be reflected in all
text windows that display that file. Dynamic C supports normal Windows text editing operations.

A mouse (or other pointing device) may be used to position the text cursor, select text, or extend a text
selection. The keyboard may be used to do these same things. Text may be scrolled using the arrow keys,
the PageUp and PageDown keys, and the Home and End keys. The up, down, left and right arrow keys
move the cursor in the corresponding directions.

The Home key may be used alone or with other keys.

Home Move to beginning of line.
Ctrl+Home Move to beginning of file.
Shift+Home Select to beginning of line.
Shift+Ctrl+Home | Select to beginning of file.

The End key may be used alone or with other keys.

End Move to end of line.
Ctrl+End Move to end of file.
Shift+End Select to end of line.

Shift+Ctrl+End Select to end of file.

Dynamic C User’s Manuall rabbit.com 237

http://www.rabbit.com

The Ctrl key works in conjunction with the arrow keys:

Ctrl+Left Move cursor to previous word.
Ctrl+Right Move cursor to next word.
Ctri+U Move editor window up, text moves down one line. Cursor is
P not moved.
Move editor window down, text moves up one line. Cursor is
Ctrl+Down

not moved.

The Ctrl key also works in conjunction with “[”” for delimiter matching. Place the cursor before the delim-
iter you are attempting to match and press “Ctrl+[”. The cursor will move to just before the matching
delimiter.

Note that delimiters in comments are also matched. For example, in the following code, <Ctrl+[> counts
commented-out braces in the matching, giving a false indication that the main function has balanced curly
braces when in fact it does not.

main(Q)
{
{
/7%
/*
3
*/

14.2 Menus

Dynamic C’s main menu has eight command menus, as well as the standard Windows system menus.

_ An available command can be executed from a
"% Dynamic C Dist. 9.60 menu by either clicking the menu and then
" File Edit Compile Rum Imspect Options ‘Window Help clicking the command, or by pressing the Alt
key to activate the menu bar, using the left and
right arrow keys to select a menu, and then using the up or down arrow keys to select a command before
pressing the Enter key.

14.2.1 Using Keyboard Shortcuts

For some of us it is easier to type keyboard

shortcuts than to use a mouse. A menu can be "% Dynamic C Dist. 9.60

activated by pressing the Alt key while press- |File Edt Compile Run Inspect Options Window Help
ing the underlined letter of the menu name. This

is the de facto standard, as it is used in numerous commercial software products. Pressing the Alt key
allows you to see which character in the menu name is underlined, as shown in this second screenshot of
Dynamic C’s main menu. All the keyboard shortcuts on the main menu use the first letter of the menu
name in the shortcut. Some keyboard shortcuts have this obvious connection while others do not. See the
Editor Tab screenshot in Section 14.2.7 for some examples of not so obvious keyboard shortcuts. A key-
board shortcut that is not menu specific is the Esc key, which will make any visible menu disappear.

238 rabbit.com Graphical User Interface

http://www.rabbit.com

14.2.2 File Menu

To

select the File menu: click on its name in Dynamic C’s main menu or press <Alt+F>.
New <Ctrl+N>

Sl

=% Dynamic C Dist. 9.60 Creates a blank, untitled program in a new window,

| File Edit Compie PRun Inspeck Options ‘Window called the text window or the editor window. If you

1 Mew Chrl+M oMM ‘ right click anywhere in the text window a popup menu
= open... Chl+0 . will appear. It is available as a convenience for access-
B save CHrl+5 ing some frequently used commands.

Lok S5 650 Open <Ctrl+0>

el save Al shifthCirles Presents a dialog box to specify the name of a file to
B Close Chrl+F4 open. To select afile, type in the file name (pathnames

Fraject M o create, may be entered), or browse and select it. Unless there

Print Setup

Prink Preview ot
O Cave As
& Print el

B0 open,.. is a problem, Dynamic C will present the contents of
B0 Save Crr+alt+s the file in a text window. The program can then be
edited or compiled. Multiple files can be selected by
either holding down <Ctrl> then clicking the left

E Close

WL Exit Alt+F4 _ mouse on each filename you want to open, or by drag-
ging the selection rectangle over multiple filenames.

Save <Ctrl+S>

The Save command updates an open file to reflect changes made since the last time the file was saved.
If the file has not been saved before (i.e., the file is a new untitled file), the Save As dialog will appear
to prompt for a name. Use the Save command often while editing to protect against loss during power
failures or system crashes.

Save As

Presents a dialog box to save the file under a new name. To select a file name, type it in the File name
field. The file will be saved in the folder displayed in the Save in field. You may, of course, browse to
another location. You may also select an existing file. Dynamic C will ask you if you wish to replace
the existing file with the new one.

Save All <Shift+Ctrl+S>

This command saves all modified files that are currently open.

Close <Ctrl+F4>

Closes the active editor window. If there is an attempt to close a modified file, Dynamic C will ask you
if you wish to save the changes. The file is saved when Yes is clicked or “y” is typed. If the file is unti-
tled, there will be a prompt for a file name in the Save As dialog. Any changes to the document will be
discarded if No is clicked or “n” is typed. Choosing Cancel results in a return to Dynamic C with no
action taken.

Project

Allows a project file to be created, opened, saved, saved as a different name and closed. See
Chapter 16, “Project Files.” for all the details on project files.

Dynamic C User’s Manuall rabbit.com 239

http://www.rabbit.com

Print Setup
Displays the Page Setup dialog box. Margins, page orientation, page numbers and header and footer

properties are all chosen here.

The “Printer Setup” button is in the bottom left of the dialog box. It brings up the Print Setup dialog
box, which allows a printer to be selected. The “Network’ button allows printers to be added or
removed from the list of printers.

Print Preview
Displays whichever file is in the active editor window in the Preview Form window, showing how the
text will look when it is printed. You can search and navigate through the printable pages and bring up
the Print dialog box.

Print
Brings up the Print dialog box, which allows you to choose a printer. Only text in an editor window can
be printed. To print the contents of debug windows the text must be copied and pasted to an editor win-
dow. (The Stdio window is an exception; its contents may be automatically written to a file, which may
then be printed.) As many copies of the text as needed may be printed. If more than one copy is
requested, the pages may be collated or uncollated.

Exit <Alt+F4>
Close Dynamic C after prompting to save any unsaved changes to open files.

240 rabbit.com Graphical User Interface

http://www.rabbit.com

14.2.3 Edit Menu

Click the menu title or press <Alt+E> to select the EDIT menu.

" Dynamic C Dist. 9.60

File | Edit Compile Run Inspect Options Y

IE 7 Undo Chrl+2
74 Redn ShifE+Chr 2
X ocut Chrl+
Copy Chrl+C
& Pasts Chrl+y

Insert Code Template. ..
@ Toogle Bookmark
b Go to Bookmark

&% Find Chrl+F
ﬂ Replace Fa
M Find pet F3
ﬂ Reverse Find Mext Alt+F3
Cy Find in Files (Grep)... ShiFt+CE4+F
¥/=] Go to Line Mumber, .. Chrl4G
"E Prewicus Errar: ZErl -l
il ret Error ChplHAlE+
ab| Edit Mode F4

Undo <Ctrl+Z>

This option undoes recent changes in the active edit win-
dow. The command may be repeated several times to undo
multiple changes. Undo operations have unlimited depth.
Two types of undo are supported—applied to a single oper-
ation and applied to a group of the same operations (2 con-
tinuous deletes are considered a single operation.

Dynamic C only discards undo information if the “Undo
after save” option is unchecked in the Editor dialog under
Environment Options.

Redo <Shift+Ctrl+Z>
Redoes changes recently undone. This command only
works immediately after one or more Undo operations.

Cut <Ctrl+X>
Removes selected text and saves to the clipboard.

Copy <Ctrl+C>
Makes a copy of text selected in a file or in a debug win-
dow. The text is saved on the clipboard.

Paste <Ctrl+V>

Pastes text from the clipboard to the current insertion point.
Nothing can be pasted in a debugging window. The contents
of the clipboard may be pasted virtually anywhere, repeat-

edly (as long as nothing new is cut or copied into the clipboard), in the same or other source files, or
even in word processing or graphics program documents.

Insert Code Template <Ctrl+J>
Opens the code template list at the current cursor location. Clicking on a list entry or pressing <Enter>
inserts the selected template at the cursor location in the active edit window. The arrow keys may be
used to scroll the list. Pressing the first letter of the name of a code template selects the first template
whose name starts with that letter. Pressing the same letter again will go to the next template whose
name starts with that letter. Continuing to press the same letter cycles through all the templates whose

name starts with that letter.

To create, edit or remove templates from the code template list, go to Environment Options and click
on the Code Templates tab.

Toggle Bookmark

Toggle one of ten bookmarks in the active edit window.

Go to Bookmark

Go to one of ten bookmarks in the active edit window. Executing this command again will take you
back to the location you were at before going to the bookmarked location.

Dynamic C User’s Manual

rabbit.com 241

http://www.rabbit.com

Find <Ctrl F>

Finds first occurrence of specified text. Text may be specified by selecting it prior to opening the Find
dialog box if the option “Find text at cursor” is checked in the Editor dialog under Environment
Options. Only one word may be selected; if more than one word is selected, the last word selected
appears as the entry for the search text. More than one word of text may be specified by typing it in or
selecting it from the available history of search text.

There are several ways tonarrow or broaden the search criteria using the Find dialog box. For example,
if Case sensitive is unchecked, then “Switch” and “SWITCH” would match the search text “switch.”
If Whole words only is checked, then the search text “switch” would not match “switches.” Selecting
Entire scope will cause the whole document to be searched. If Selected text is chosen and the Persis-
tent blocks option was checked in the Editor tab in Environment Options, the search will take place
only in the selected text.

Replace <F6>

Finds and replaces the specified text. Text may be specified by selecting it prior to opening theReplace
Text dialog box. Only one word may be selected; if more than one word is selected, the last word
selected appears as the entry for the search text. Morethan one word of text may be specified by typing
it in or selecting it from the available history of search text. The replacement text is typed or selected
from the available history of replacement text.

As with the Find dialog box, there are several ways to narrow or broaden the search criteria. An impor-
tant option is Prompt on replace. If this is unchecked, Dynamic C will not prompt before making the
replacement, which could be dangerous in combination with the choice to Replace All.

Find Next <F3>

Once search text has been specified with the Find or Replace commands, the Find Next command will
find the next occurrence of the same text, searching forward or in reverse, case sensitive or not, as
specified with the previous Find or Replace command. If the previous command was Replace, the
operation will be a replace.

Reverse Find Next <Alt+F3>

Behaves the same as Find Next except in the opposite direction. If Find Next is searching forward in
the file, Reverse Find Next will search backwards, and vice versa.

242

rabbit.com Graphical User Interface

http://www.rabbit.com

Find in Files (Grep)... <Shift+Ctrl+F>
This option searches for text in the
currently open file(s) or in any direc-
tory (optionally including subdirecto-
ries) specified. Standard Unix-style
regular expressions are used.

A window with the search results is
displayed with an entryfor each match
found. Double-clicking on an entry
will open the corresponding file and
place the cursor on the search string in
that file. Multiple file types can be
separated by semicolons. For @ample,
entering the following search criteria:
C:\mydirectory*_lib;*_c
will search all . 1'ib and . c files in
mydirectory.

Find Text

— Find in Files
Text ta Find:

Ifn:nr

[T Caze zenshive
[T whole words only

" Search in open files

{* Search in directories

Directary Searching Options
File M azk:

|I::HDE_EIEEIH*.|:

v Include subdirectories

=1 L

ok Cancel |

Help

Starting with Dynamic C 9.60, the “Search Results” window has a right-click menu that allows you to
view source files, as well as copy or delete selected entries.

Go to Line Number

Positions the insertion point at the beginning of the specified line.

Previous Error <Ctrl+Alt+P>

Locates the previous compilation error in the source code. Any error messages will be displayed in a
list in the Compiler Messages window after a program is compiled. Dynamic C selects the previous
error in the list and displays the offending line of code in the text window.

Next Error <Ctrl+Alt+N>

Locates the next compilation error in the source code. Any error messages will be displayed in a list in
the Compiler Messages window after a program is compiled. Dynamic C selects the next error in the
list and displays the offending line of code in the text window.

Edit Mode <F4>

Switches to edit mode from run, also known as debug, mode. After successful compilation or execu-
tion, no changes to the file are allowed unless in edit mode. If the compilation fails or a runtime error
occurs, Dynamic C comes back already in edit mode.

Dynamic C User’s Manual

rabbit.com

243

http://www.rabbit.com

Editor Window Popup Menu

Right click anywhere in the editor window and a popup menu will appear. All of the menu options, with
the exception of Open File at Cursor, are available from the main menu, e.g., New is an option in the File
menu and was described earlier with the other options for that menu.

% Dynamic C Dist. 9.60 =10/ x|

File Edit Compile Run Inspect Options Window Help

D=l & =enmnd ||
e o a lE || A 5 R 51T
.‘.I
Mt CEFl4+R
main () { Open File ak Cursor Ctrl4+-Enker
Close Chrl+F4
int i, 1
mt L. d Insert Code Template. ..
N Toggle Bookmark »
* ’ i50 ko Bookmark 3
while (1] { ik Chrl 43
i++: oy CEr| 1T
Paste ZEE Y
for (j=0:; j<2Z0000; j+ Find Chrl+F
Edit Made F4
rintf("i = sdyn™, i
} F : N) ettt CErl 4
H Read Cnly
v Use Syntax Highlighting
Opkions. ..
-
Kl | B
|DreF it Lime: 7 |Col: 33 Inserk | ,y:

Open File at Cursor <Ctrl+Enter>
Attempts to open the file whose name is under the cursor. The file will be opened in a new editor win-
dow, if the file name is listed in the “lib.dir” file as either an absolute path or a path relative to the
Dynamic C root directory or if the file is in Dynamic C’s root directory. As a last resort, an Open dialog
box will appear so that the file may be manually chosen.

244 rabbit.com Graphical User Interface

http://www.rabbit.com

14.2.4 Compile Menu
Click the menu title or press <Alt+C> to select the Compile menu.

ynamic C Diskt. 9.60
File Edit | Compile Run Inspect Options ‘Window Help

=

E Zompile ko Target 1; Compile ko Flash
wE?]' Compile to ,bin File g } Compile ko RAM
|'E Compile ka Flash, Run in RAM

Reload RabhitSys binaty
g Reset Target | Compile BIOS Chrl+Y _
Compile <F5>

Compiles a program and loads it to the target or to a .bin file. When you press <F5> or select Compile
from the Compile menu, the active file will be compiled according to the current compiler options.
Compiler options are set in the Compiler tab of the Project Options dialog. When compiling directly to
the target, Dynamic C queries the attached target for board information and creates macros to automat-
ically configure the BIOS and libraries.

Any compilation errors are listed in the automatically activated Compiler Messages window. Press
<F1> to obtain more information for any error message that is highlighted in this window.

Compile to Target
Expands to one of three choices. They override any BIOS Memory Setting choice made in the Com-

piler tab of the Project Options dialog.

* Compile to Flash
* Compile to RAM
* Compile to Flash, Run in RAM

Starting with Dynamic C9,

the compiler will show _) =
board type and other board E 4D CinProgtbioshA abbithioz. o
. . . . Board: 021200 - 22MHz RCM3E00, 512K SRAM, 512K Flazh
specific information while 1570 lines compiled
doing a compile to target.
The information shown S
will be identical to what

the compiler already shows
when compiling to a . bin file.

Dynamic C User’s Manuall rabbit.com 245

http://www.rabbit.com

Compile to .bin File
Compiles a program and writes the image to a - bin file. There are two choices available with this

option, “Compile to Flash” and “Compile to Flash, Run in Ram.”

The target configuration used in the compile is determined in the Compiler tab of the Project Options
dialog. From there, under “Default Compile Mode” you can choose to use the attached target or a
defined target configuration. The defined target configuration is accessed by clicking on the Targetless
tab which will reveal three additional tabs: RTI File, Specify Parameters and Board Selection. To learn
more about these tabs see “Targetless Tab” on page 283.

The - bin file may be used with a device programmer to program multiple targets; or the Rabbit Field
Utility (RFU) can be used to load the . bin file to the target.

If you are creating special a program such as a cold loader that starts at address 0x0000 you can
exclude the BIOS from being compiled into the . bin file by unchecking the option to include it. This
is done by choosing Options | Project Options | Compiler and clicking on the “Advanced...” button.

In addition to the .bin file, several other files are generated with this compile option. For example, if
you compile demol.c to a -bin file, the following files will be in the same folder as demol.c:

= DEMOL1.bak - backup of the application source file (made at compile time, when this option is
enabled).

e demol.bdl - binary image download file (used when loading the application to a connected
target).

* DEMO1.brk - debugger breakpoint information.

e demol.hdl - no longer used.

e demol.hex - simple Intel HEX format output image file; the serial DLM samples download
a DLP's HEX file and load the image to Flash.

= DEMO1.map - the application's code/data map file (RabbitBios.map is also generated,
separately). For more information on the map file, see Appendix B, "Map File Generation."

* DEMO1.rom- ROM "output" file, containing redundant addresses (due to fixups); it's used to
generate the BDL, BIN, HEX, and HDL files.

Reload RabhbitSys binary
This option executes the command line RFU to reload the RabbitSys binary. You must have a target
board with preloaded drivers to run RabbitSys.

Reset Target/Compile BIOS <Ctrl+Y>
This option reloads the BIOS to RAM or Flash, depending on the choice made under BIOS Memory
Setting in the Compiler dialog (viewable from Options | Project Options).

The following message will appear upon successful compilation and loading of BIOS code.

BIOS Successfully Compiled
Heady to Compile User Programs

246 rabbit.com Graphical User Interface

http://www.rabbit.com

14.2.5 Run Menu
Click the menu title or press <Alt+R> to select the RUN menu.

Run Inspect Options Window Help

B R F3 Run <F9>
Hn Starts program execution from the current breakpoint. Registers are
W stop (ZErlH-G) }
B - witio Poli Aero restored, including interrupt status, before execution begins. If in
e s Edit mode, the program is compiled and downloaded.
¢ Step Into F7
n ot po - Stop <Ctrl+Q>
.E) =R E The “Stop” command stops the program at the current point of exe-
) Source Trace Into alk+F7 . e
I cution. Usually, the debugger cannot stop within nodebug code. On
() Source Step Over Alt+Fs the other hand, the target can be stopped at an RST 028h instruction
%5 Toagle Breakpaint Fz if an RST 028h assembly code is inserted as inline assembly code
75 Togdle Hard Breakpoint Alb+F2 in nodebug code. However, the debugger will never be able to
i Clear All Breakpoints Chrl+4 find and place the execution cursor in nodebug code.
= Poll Target Chrl+L Run w/ No Polling <Alt+F9>
= This command is identical to the “Run” command, with one excep-
Reset Program Ckrl+F2 .
_ tion. The PC polls the target every three seconds by default to
@ Debug Made = . . .
@ Close C . determine if the target has crashed. When debugging via Rab-
05 Lonnection - . . R . .
bitLink, polling is used to make the RabbitLink keep its connection

to the PC open. Polling does have some overhead, but it is very
minimal. If debugging ISRs, it may be helpful to disable polling.

Step Into <F7>
Executes one C statement (or one assembly language instruction if the assembly window is displayed)

with descent into functions. If nodebug is in effect and the Assembly window is closed, execution
continues until code compiled without the nodebug keyword is encountered.

Step Over <F8>
Executes one C statement (or one assembly language instruction if the assembly window is displayed)

without descending into functions.

Source Step Into <Alt+F7>
Executes one C statement with descent into functions when the assembly window is open. If

nodebug is in effect, execution continues until code compiled without the nodebug keyword is
encountered.

Source Step Over <Alt+F8>
Executes one C statement without descending into functions when the assembly window is open.

Toggle Breakpoint <F2>
Toggles a soft breakpoint at the current cursor location. Soft breakpoints do not affect the interrupt

state at the time the breakpoint is encountered, whereas hard breakpoints and hardware breakpoints do.

Starting with Dynamic C 9, breakpoints can be toggled in edit mode as well as in debug mode. Break-
point information is not only retained when going back and forth from edit mode to debug mode, it is
stored when a file is closed and restored when the file is reopened.

Dynamic C User’s Manuall rabbit.com 247

http://www.rabbit.com

Toggle Hard Breakpoint <Alt+F2>

Toggles a hard breakpoint at the current cursor location. A hard breakpoint differs from a soft break-
point in that interrupts are disabled when the hard breakpoint is reached.

Starting with Dynamic C 9, breakpoints can be toggled in edit mode as well as in debug mode. Break-
point information is not only retained when going back and forth from edit mode to debug mode, it is
stored when a file is closed and restored when the file is reopened.

Clear All Breakpoints <Ctrl+A>

Clears all software breakpoints.

Poll Target <Ctrl+L>

A check mark means that Dynamic C will poll the target. The absence of a check mark means that
Dynamic C will not poll the target. Prior to Dynamic C 7.30, this option was named “Toggle Polling;”
however, now Dynamic C will not restart polling without the user explicitly requesting it.

If “Poll Target” is selected, Dynamic C sends a message to the target every three seconds and expects a
response. If no response is received, Dynamic C ends the debugging session. Several things can be
responsible for the target not replying to a polling message, such as loss of power, running in a loop
with interrupts disabled, leaving interrupts disabled long enough to disrupt the serial port A ISR, or
overwriting serial port A configuration, among other things. Polling does introduce overhead, but it is
minimal since it only occurs every three seconds. Without polling turned on, Dynamic C will only
notice an unresponsive target when the user attempts to do some other sort of debugging such as stop-
ping the target, setting a breakpoint, single stepping, setting or evaluating a watch, etc.

Reset Program <Ctrl+F2>

Resets program to its initial state. The execution cursor is positioned at the start of the main function,
prior to any global initialization and variable initialization. (Memory locations not covered by normal
program initialization may not be reset.)

The initial state includes only the execution point (program counter), memory map registers, and the
stack pointer. The “Reset Program” command will not reload the program if the previous execution
overwrites the code segment. That is, if your code is corrupted, the reset will not be enough; you will
have to reload the program to the target.

Debug Mode <Shift+F5>

Dynamic C 9 introduces the ability

to switch back to debug mode from =
edit mode without having to
recompile the program. If the
source file has been modified while Yes | | Mo I
in edit mode, a popup dialog lets
you choose whether to run the non-
modified code or to go ahead and recompile and download again.

Source code has been modified - continue with switch to debug mode?

Close Connection

If using a serial connection, disconnects the programming serial port between PC and target so that the
target serial port and the PC serial port are both accessible to other applications.

If using a TCP/IP connection, closes the socket between the PC and the RabbitLink or between the PC
and the RabbitSys-enabled board.

248

rabbit.com Graphical User Interface

http://www.rabbit.com

14.2.6 Inspect Menu
Click the menu title or press <Alt+|> to open the Inspect menu.

The Inspect menu provides commands to manipulate watch

| Inspect Options Window Help expressions, view disassembled code, and produce hexadeci-
a* add watch, .. iZhrl+ mal memory dumps. The Inspect menu commands and their
i@ Delete Wakch functions are described here.

i Delete All Watches

Add Watch <Ctrl+W>

L1 .
Update Wakch Window CErl+L . . . g

q\, Ep ke B _ CHlsEy This command displays the “Add Watch Expression” dialog.

Q Evaluate Expression ' Enter watch expressions with this dialog box.

I n

:’E Disassemble at Cursar Cirk+F10 A watch expression may be any valid C expression, including

y[i] Disassemble at Address. .. alk+F10 . .
] assignments, function calls, and preprocessor macros. (Do not
i I Dump At Address. .. Chrl+D

include a semicolon at the end of the expression.) If the watch
| 5top Execution Tracing ChrH-AIET expression is successfully compiled, it and its outcome will
. U] start Execution Tracing Shift-+CEr+T appear in the Watches window.

(30 ko execution poink Ckrl+E
ﬂ
If the cursor in the active window is O
“Watch Espression |I++ LI

positioned over a variable or function
name, that name will appear in the Add | | 0K l | Cancel I Help |
Watch Expression text box when the
Add Watch Expression dialog box
appears. Clicking the Add button will add the given watch expression to the watch list, and will leave
the Add Watch Expression dialog open so that more watches can be added. Clicking the “OK” button
will add the given watch expression to the watch list, and close the Add Watch Expression dialog.

To add a local variable to the Watch window, the target controller’s program counter (PC) must point to
the function where the local variable is defined. If the PC points outside the function, an error message
will display when “Add” or “OK” is pressed, stating that the variable is out of scope or not declared.

An example of the results displayed in the Watches window appears below.

*%wWatches M=l E3
E' int 47 (0x00ZFy

i
) int 136 (0x0088)

If the evaluation of a watch expression causes a run-time exception, the exception will be ignored and
the value displayed in the Watches window for the watch expression will be undefined.

Starting with Dynamic C 9, structure members are displayed whenever a watch expression is set on a
struct. Prior to Dynamic C 9, separate watch expressions had to be added for each member. Introduced
in Dynamic C 8.01, the Debug Windows tab of the Environment Options menu lets you set flyover hint
evaluation of any expression that can be watched without having to explicitly set the watch expression.
See “Watch” on page 286 and “Watch Window” on page 268 for more details.

Dynamic C User’s Manuall rabbit.com 249

http://www.rabbit.com

Delete Watch
Removes highlighted entry from the Watches window.

Delete All Watches
Removes all entries from the Watches window.

Update Watch Window <Ctrl+U>
Forces expressions in the Watches window to be evaluated. If the target is running nodebug code, the
Watches window will not be updated, and the PC will lose communication with the target. Inserting an
RST 028h instruction into frequently executed nodebug code will allow the Watches window to be
updated while running in nodebug code. Normally the Watches window is updated every time the exe-
cution cursor is changed, that is, when a single step, a breakpoint, or a stop occurs in the program.

Evaluate Expression
Brings up the Evaluate Expression dialog where you can enter a single expression in the Expression
dialog. The result is displayed in the Result text box when Evaluate is clicked. Multiple Evaluate
Expression dialogs can be active at the same time.

Disassemble at Cursor <Ctrl+F10>
Loads, disassembles and displays the codeat the current editor cursor location. This command does not
work in user application code declared as nodebug. Also, this command does not stop the execution
on the target.

Disassemble at Address <Alt+F10>
Brings up the Disassemble at Address dialog where you can enter an address at which to begin disas-

sembly. The format of the address is either the logical address specified as a hex number (Oxnnnn or
just nnnn) or as an xpc:offset pair separated by a colon (nn:mmmm).

The Disassembled Code window displays the result. See “Assembly (F10)” on page 287 for details
about this window.

Dump at Address <Ctrl+D>
Allows blocks of raw values in any memory location to be displayed. Values are displayed on the

screen or written to a file. If separate I&D space is enabled, you can choose which logical space to
examine: instruction space or data space.

Dynamic C 9 introduced differences highlighting when displaying to the screen: each time you single
step in C or assembly changed data is highlighted in reverse video inthe Memory Dump window. (This
is also true for the Stack and Register windows.)

When writing to a file, the option Save to file
requires a file pathname and the number of bytes
to dump. The option Save entire flash to file — temory Dump
requires a file pathname. If you are running in Dump Address ||:|;.;|:||:||:||:| j
RAM, then it will be RAM that is saved to a file,
not Flash, because this option simply starts
dumping physical memory at address zero.

Memory Dump Setup

Mumber of bytes I

When displaying on a screen, a Memory Dump File name I _I
window is opened. A typical screen display
appears below. Although the cursor is not visible oK | Cancel Help |

in this screen capture, it is hovering over logical

250 rabbit.com Graphical User Interface

http://www.rabbit.com

memory location 0x0022, which has a value of OxFF. This information is given in the fly-over text and
also in the titlebar. Either or both of these options may be disabled by right clicking in the Memory
Dump window or in the Options | Environment Options, Debug Windows tab, under Specific Prefer-
ences for the Memory Dump window.

EMemnw Dump - 00022 : FF

TUpdate button ||IJ:420 IE?&

0oo hd
oooooo C3 72 oo 77 1D 00 00 12 FF FF FF FF FF FF FF FF i w ﬂ
oooolo FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

aoooozo FF FF FF FF FF FF FF FF C7 00 E1 F2 CF 4% E4 F& E
ooooz0 Cr 1F 1D CF E1 EE F2 C3 ZC 00 EIr 5E CF EBA EZ F&2 P
oooo040 EDR 46 3E 20 3F 44 Ce CF F& E1 F2 C3 77 1D FD £1 F= 27 L
000050 11 c2 100022 FF|oo CE 7F 22 05 CI» BES 11 18 12 CE H

ooooe0 &F 22 05 CDr 74 14 12 OF 34 3B C2 BY 22 08 CD 74 {1 ¢ - [S
oooo70 14 12 04 D3 3F C3 00 C9 ED 76 FE 02 F5 ED 77 FE z w o
oooos0 C5 DE ES DD ES FDr ES D3 CH DE ES CDr 4E 00 E1 Dl N
oooo20 C1 09 F©r E1 DI E1 E1 D1 C1 F1 EDI &7 F1 02 F1 ED o
0000a0 7E ED ED» C2 D3 3234 C3 00 CE 7F C2 D3 24 CO 00 C9 ~ H H
oooob0 2E O7 D2 32 C2 00 C2 D3 34 C3 00 CE EF CO 79 D3 = 2 H _ 7
oo00e0 3E CO OO0 C2 44 79 6E &1 6D &% 43 55 BE 69 76 65 2 Dynami Clinive
oooodo 7E 73 61 6C Z0 B2 Bl &E 6Z &5 74 20 42 49 4F &3 rsal Babbhit BIOS
0000e0 Z0 L& &5 72 73 69 &F &E 20 37 ZE 323 32 3B ED &4 WVersion 7.32; T
oooof0 &F 7C ED &7 YD ED E4 33 33 C9 F& 2E EA D3 3Z 08 ol o} T332 =2 E
ooolo0 00 F1 C2 CF &2 EA F2 C9 FL 32 E4 CE CE E7 CE EF h H

0oollo 3 E4 CL 32 ES CE CE 27 CEB EF CE C7 32 EE CE 3E & - z >LI

Memory Dump windows may be scrolled. Scrolling causes the contents of other memory addresses to
appear in the window. Hotkeys ArrowUp, ArrowDown, PageUp, PageDown are active in the Memory
Dump window. The window always displays as many lines of 16 bytes and their ASCII equivalent as

will fit in the window.

Values in the Dump window are updated automatically when Dynamic C stops or comes to a break-
point. Updates only occur if the window is updateable. This can be set either by right clicking in the
Memory Dump window and toggling the updateable menu item, or by clicking on the Debug Windows
tab in Options | Environment Options. Select Memory Dump under Specific Preferences, then check
the option “Allow automatic updates.” The Memory Dump window can be updated at any time by
clicking the Update button on the tool bar or by right clicking and choosing Update from the popup
menu.

The Memory Dump window is capable of displaying three different types of dumps. A dump of a logi-
cal address ([0x]Jmmmm) will result in a 64k scrollable region (0x0000 - 0xffff). A dump of a physical
address ([0x]mmmmm) will result in a dump of a 1M region (0x00000 - Oxfftff). A dump of an
xpc:offset address (nn:mmmm) will result in either a 4k, 64k, or 1M dump range depending on the
option set on the Debug Windows tab under Options | Environment Options.

Note that adding a leading zero to a logical address makes it a physical address.

Any number of dump windows may be open at the same time. The type of dump or dump region for a
dump window can be changed by entering a new address in the toolbar’s text entry area. To the right of
the this area is a button that, when clicked, will cause the address in the text entry area to be the first
address in the Dump window. The toolbar for a dump window may be hidden or visible.

Dynamic C User’s Manuall rabbit.com 251

http://www.rabbit.com

Stop Execution Tracing <Ctrl+Alt+T>
This command causes the target to stop sending trace information to Dynamic C. You can also do this

from within your program with the _ TRACEOFF macro. The sample program Samples/Demo4.c
describes and uses this trace macro.

Start Execution Tracing <Shift+Ctrl+T>
This command causes the target to send execution tracing information to Dynamic C based on the trace

options you choose in the Debugger tab of the Project Options dialog. You can also do this from within
your program with the _TRACE and _ TRACEON macros. The sample program Samples/Demo4.c

describes and uses these trace macros.

Trace entries received are displayed in the Trace window (see Stack Trace (Ctrl+T)). This menu com-
mand is only available if tracing is enabled in Project Options and Dynamic C is in run mode.

Note that turning on tracing causes a performance hit to your program because of the extra communi-
cation required between Dynamic C and the target. If your program requires precise timing, tracing
may interfere.

Goto execution point <Ctrl+E>
When stopped in debug mode, this option places the cursor at the statement or instruction that will exe-

cute next.

252 rabbit.com Graphical User Interface

http://www.rabbit.com

14.2.7 Options Menu

Click the Options menu title or press <Alt+O> to select the Options menu.

Environment Options

Dynamic C comes with a built-in, full-featured text editor. It may be
customized to suit your style using the Environment Options dialog
box. The dialog box has tabs for various aspects of the editor. Note
that keyboard shortcuts for some of the options have no character to
underline, so the character is shown between brackets, thus, when
the Editor menu options are visible, Alt+Q is the keyboard shortcut
for toggling the option “Cursor through tabs”.

Editor Tab

Inspeck | Options Window Help

4 lﬂ Ervironment Opkions

] Project Cptions
. Toolbars

Click on the Editor tab to display the following dialog. Installation defaults are shown.

Environment Options

E ditar I Gutter & bargin I Dizplay I Syntax Colors I Code Templates I Debug Windows | Pnnt / Alerts

x|

— Editar aptions
Wi _
[~ Use previous indention
[~ Cursor through tabs (3]
[+ Backspace unindents

¥ Show line numbers

[~ Show line numbers an quiter
[~ Motepad style cursar [1]

|+ Curzor beyond EOF

[+ Cursor beyond EOL

|+ Selection beyond EOL

[~ Eeep hrailing blanks
[~ Persistent blocks

¥ Owenarite blocks

[~ Double click line

¥ Find text at cursar (2)
v Select found text

v Uz syntax highlight
[~ Block owensrite cursor
[~ Undo after save [£]
v Group undo

[~ Dizable dragaing
[~ Center Bookmarks (3]

Block. indent; Tab ztops: Keymapping: Syntax extenzions:
E E | Defaul x| [efibhhh
1 Hdefine N 1000 =
Z const fleat 3CRT PI = 1.77245385;)/ the sguare
3 char *const lakel = "The sguare root of pi is: ":
4q
S maini)
6 {
7 int i:
=] for (i = 0; i < MN; ++1)
9 { o
10 printf ("ss TfYvn", label, SQRT PI):
11 Y B _ILI
<| | 3
ok LCancel | Help |

The Editor options are detailed here. All actions taken are immediately reflected in the text area at
the bottom of the dialog, and in any open editor windows.

Auto indent mode

Checking this causes a new line to match the indentation of the previous line.

Dynamic C User’s Manual

rabbit.com

253

http://www.rabbit.com

Use previous indention
Uses the same characters for indentation that were used for the last indentation. If the last
indentations was 2 tabs and 4 spaces, the next indentation will use the same combination of
whitespace characters.

Cursor through tabs
With this option checked, the right and left arrow keys will move the cursor through the logi-
cal spaces of a tab character. If this is unchecked the cursor will move the entire length of the
tab character.

Backspace unindents
Check this to backspace through indentation levels. If this is unchecked, the backspace will
move one character at a time.

Show line numbers
Check this to display line numbers in the text window. This must be checked to activate the
option Show line numbers on gutter.

Show line numbers on gutter
If gutters are visible, check this to display line numbers in the gutter.

Notepad style cursor
Checking this causes the cursor to behave similar to Notepad.

Cursor beyond EOF
Check this option to move the cursor past the end of the file.

Cursor beyond EOL
Check this option to move the cursor past the end of the line.

Selection beyond EOL
Check this option to select text beyond the end of the line.

Keep trailing blanks
Check this option to keep extra spaces and tabs at the end of a line when a new line is started.

Persistent blocks
Check this option to keep selected text selected when you move the cursor using the arrow
keys. Using the mouse to move the cursor will deselect the block of text. Using menu
commands or keyboard shortcuts will affect the entire block of selected text. For example,
pressing <Ctrl+X> will cut the selected block. But pressing the delete key will only delete one
character to the right of the cursor. If this option was unchecked, pressing the delete key would
delete all the selected text.

If this option is checked and the Find or Replace dialog is opened with a piece of text selected
in the active edit window, the search scope will default to that bit of selected text only.

Overwrite blocks
Check this option to enable overwriting a selected block of text by pressing a key on the key-
board. The block of text may be overwritten with any character, including whitespaces or by
pressing delete or backspace.

254

rabbit.com Graphical User Interface

http://www.rabbit.com

Double click line
Check this option to allow an entire line to be selected when you double click at any position
in the line. When this option is unchecked, double clicking will select the closest word to the
left of the cursor.

Find text at cursor
When either the Search or Replace dialogs are opened, if this option is checked the word at the
cursor location in the active editor window will be placed into the “Text to Find” edit box. If
this option is unchecked, the edit box will contain the last search string.

Select found text
The color of found text can be set in Options | Environment Options, on the Syntax Colors
page. Select “Search Match” from the Element list box, then set the foreground and back-
ground colors.

If this box is unchecked the Search Match color scheme will be used when a match is found,

but the text will not be selected for copy or delete operations. If this option is checked, the
matched text will automatically be selected so that it may be copied or deleted.

Use syntax highlight
Check this option to enable the Display and Syntax Color choices to be active. When this
option is checked, the “Use Syntax Highlighting” in the edit window’s right-click menu
allows you to toggle the syntax highlighting in the active file.

Block overwrite cursor
Check this option to show the cursor as a block when an editor is placed in overwrite mode.

Undo after save
Check this option to enable undo operations after a file has been saved. With this option
unchecked, the undo list for a file is erased each time the file is saved.

Group undo
Check this option to undo changes one group at a time. With this option unchecked, each oper-
ation is undone individually.

Disable dragging
Checking this option disables drag and drop operations: i.e., the ability to move selected text
by pressing down the left mouse button and dragging the text to a new location.

Center Bookmarks
Check this option so that when you jump to a bookmark it is centered in the editor window.

Block indent
The number of spaces used when a selected block is indented using <Ctrl+k+i> or unindented
using <Ctrl+k+u>.

Tab stops
This is a comma separated list of numbers which indicate the number of spaces per tab stop. If
only one number is entered, say “3,” then the first tab stop is 3 spaces, as is each additional tab
stop. Every additional number in the list indicates the number of spaces for all subsequent

Dynamic C User’s Manuall rabbit.com 255

http://www.rabbit.com

tabs. E.g., if the list consists of “3,6,12” the first tab stop is 3 spaces, the second tab stop is 3
more spaces and all subsequent tab stops are 6 spaces.

Keymapping
The keyboard has five different default key mappings: Default, Classic, Brief, Epsilon and
Visual Studio. Change the keymapping with this pulldown menu.

Syntax extensions
Dynamic C will automatically syntax highlight the text in all files with the extensions listed
here. Syntax highlighting can also be enabled by right-clicking on an open file and selecting
the “Use Syntax Highlighting” menu item.

Gutter & Margin Tab
Click on the Gutter & Margin tab to display the following dialog.

Environment Options E3

Editar | Displa_l,ll Syritan Eulorsl Code Templatesl Debug Winduwsl F'rinta".ﬁ.lertsl
— Editor gutter — Editar margin

¥ Visible width: [32 2] % Visble widh [T 3]

: BtrFace -

Color: Il:' J @l Coler: I- GrayT ext j @I

7 Line Mumbers Calors | J
Syl -
Foregraund: I- Black j @l =¥
Background: || White =] @ Posiior: 30 %

#idefine N 1000 =~
const fleoat S0ORT PI = 1.77245355; 7 the sguare root
const char label = "The sguare root of pi is: ":
main ()
{
int i:
for (i = 0; 1 < N: ++1i)
{
printf ("%s %£%n", label, 3QRT PI):
H
'
-
4| I b
ok LCancel | Help |
256 rabbit.com Graphical User Interface

http://www.rabbit.com

Editor gutter
Check the Visible box to create a gutter in the far left side of the text window. Use the Width
scroll bar to set the width of the gutter in pixels. The button to the right updates the width
parameter. Changing the width and clicking on OK at the bottom of the dialog does not update
the gutter width; you must click on the button. Use the Color pulldown menu to set the color.
The button to the right brings up more color choices.

Editor margin
Check the Visible box to create a right-hand margin in the text window. Use the Width scroll
bar and the Color pulldown menu to set the like-named attributes of the margin line. The Style
pulldown menu displays the line choices available: a solid line and various dashed lines. The
Position scroll box is used to place the margin at the desire location in the text window.

Line Number Colors
If line numbers are set to visible and are notplaced on the gutter, the Foreground color will set
the color of the line numbers and the Background color will set the color on which the line
numbers appear.

Dynamic C User’s Manuall rabbit.com 257

http://www.rabbit.com

Display Tab
Click on the Display tab to display the following dialog.

flEn¥ironment Options 1[

— Editor Font — Background Caolors
Mame: W Usemonofont Size: Editor [E dit Mode]:

IEDurierNew j I'ID j IIZlWinEIW'I j @I

Editor [Debug Mode]:
' Special Symbols ||:| dindon j @I

[Usze Wiorkepace:

: G -
| EQL: (1 Sgace:l I- = J @I

— Fareground Calar [non-syntas)

EOE: I— Tat: I I- Fuchsia j @I

#define N 1000 -
const £loat SQRT_PI = 1.77245385; A7 the sguare root
char *consgt label = "The =dquare root of pi i=: ™)
Sini)
i

int i:

for (i = 0; i < N; ++i)
{
printf ("%= %fYn", lakel, IQRT_PI):

(1] Cancel | Help |

Editor Font

This area of the dialog box is for choosing the font style and size. Check Use mono font for
fixed spacing with each character; note that this option limits the available font styles.

Special Symbols
Check the box labeled “Use” to view end of line, end of file, space and/or tab symbols in the
editor window.

Background Colors
This area of the dialog box is for choosing background colors for editor windows and the main
Dynamic C workspace. The editor window can have a different background color in edit mode
than it does in run mode. Each pulldown menu has an icon to the right that brings up addi-
tional color choices.

258

rabbit.com Graphical User Interface

http://www.rabbit.com

Foreground Color (hon-syntax)

If syntax highlighting is not used, the color selected here will be the foreground color used in
the editor file.

Syntax Colors Tab
Click on the Syntax Colors tab to display the following dialog.

Environment Options E3

| Code Templates I Debug windows I Fririt # Alerts I

Element Earearaund|eolon Text attibutes
| I Black =l ™ Bold
String .
::Tmment EBackaraund coler ™ ltalic
nkeger :
FlaagtI ||:| Windiow j ™ UnderLine
Reserved waords

Defines Use defaults for

|dertifier ¥ Foreground Open
Delimiters

Assgmbler j ¥ Background Save |

-

#define M 1000
const fleoat SQRT PI = 1.772453853; /7 thke sguare root

const char label = "The square root of pi is: ™:
rain ()
{

int i:

for (i = 0; i « MN: ++1)
i

printf ("%s fWn", label, S0RT _PI):
H

Ok LCancel | Help |

Element
In this text box are the different elements that may be in a file (strings, comments, integers,
etc.). For each one you may choose a foreground and a background color. You may also opt to
use the default colors: black for foreground and white for background. In the Text attribues
area of the dialog box, you may set Bold, Italic and/or Underline for the any of the elements.

Open / Save Buttons
These buttons load and save color styles into files with a .rgb extension. Clicking the Open
button will bring up an Open File dialog box, where you choose a .rgb file that will set all of
the syntax colors. There is a subdirectory titled Schemes under the root Dynamic C directory
that has some predefined color schemes that can be used. Opening a .rgb file makes its colors
immediately active in all open editor windows. If you close the Environment Options window

Dynamic C User’s Manuall rabbit.com 259

http://www.rabbit.com

without saving the changes, the colors will go back to whatever they were before you opened
the .rgb file.

Code Templates Tab
Click the Code Template tab to display the following dialog.

Environment Options]
Editar | Gutter & Marginl Displayl Syntax Colors Code Templates | Debug Windu:uwsl Print f';‘-‘n.lertsl
Templates
Mame IDescriptiun | Edit |
forb for staternent
function function declaration Delete |
ffb ff ztatement Add..
ifeb if elze
shruct structure declaration
whileb while ztatement
libheader Library Header
libdescription Libramy Description
funcdescription Function Dezcription
h ain Main program
Code
switch (| |-
{
case : ;
break:;
case : ;
break:
default: :
H
|
ak. Cancel Help |

As you can see, there are several predefined templates. The Edit and Delete buttons allow the like-
named operations on existing templates. The Add button gives the ability to create custom tem-
plates.

To bring up the list of defined templates, Dynamic C must be in edit mode. Then you must do one
of the following: press <Ctrl+j> or right click in the editor window and choose “Insert Code Tem-
plate” from the popup menu or choose the Edit command menu and select “Insert Code Tem-
plate.” Clicking on the desired template name inserts that template at the cursor location.

260

rabbit.com Graphical User Interface

http://www.rabbit.com

Debug Windows Tab

Click on the Debug Windows tab to display the following dialog. Here is where you change the

behavior and appearance of Dynamic C debug windows.

— General Preferences

Environment Options

Editar I [utter & Marginl Displa_l,ll Syntax Eu:ulu:ursl Code Templates Debug *#indows | Print a’.ﬁ.lertsl

" Do not autarmatically open
% Open last uzed windows
= Dpen all debug windows

" Open zelected

W Zzsembly [| Stdio
[T Begisters [wiatch
B! Stack [T | Stack Trace

[T Execution Trace

Azzembly
Stack
Registers

i akich

Stack Trace

M (Sl m ok

— Specific Preferences
Debug Windows

b emory D ump

Execution Trace

— Fonts and Colaors

Foreground Color
[N lck - @]
Background Color
[T whi = @]

Font [~ Use fized pitch

ITerminaI j _l

_| &pply settings b all debug windows

— Optionz

[T Logto File

[Automatic open
v Automatic Yertical Scroll
[T Autornatic Horzontal 5ol

[T Append

Idn:. falll

]

Fiow: |1 Q0o

Colurnns:

1l

Spaces ln Tab: |2

ak |

Help |

Under General Preferences is where you decide which debug windows will be opened after a suc-
cessful compile. You may choose one of the radio buttons in this category. Selecting “Open last
used windows” makes Dynamic C 8 act like Dynamic C 7.x.

Under Specific Preferences is where you customize each window. Colors and fonts are chosen

here, as well as other options.

Stdio Window

The previous screen shows the options available for the Stdio window'. They are described

here. You may modify or check as many as you would like.

Dynamic C User’s Manual

rabbit.com

261

http://www.rabbit.com

Automatic open
Check this to open the Stdio window the first time printf() is encountered.

Automatic Vertical Scroll
Check this to force vertical scroll when text is displayed outside the view of the win-
dow. If this option is unchecked, the text display doesn’t change when the bottom of
the window is passed; you have to use the scroll bar to see text beyond the bottom of
the window.

Automatic Horizontal Scroll
Check this to force horizontal scroll when text is displayed outside the view of the
window.

Log to File
Check this to direct output to a file. If the file does not exist it will be created. If it
does exist it will be overwritten unless you also check the option to append the file.

Rows
Specifies the maximum number of rows that can hold Stdio data.

Columns
Specifies the maximum number of columns that can hold Stdio data. When the maxi-
mum column is reached, output automatically wraps to the next row.

Spaces In Tab
Tab stops display as the number of spaces specified here.

Starting with Dynamic C 9, the various Find commands available on the Edit menu can be
used directly in the Stdio window.

i. The macro STD10_DEBUG_SERIAL may be defined to redirect Stdio output to a designated

serial port—A, B, C or D. For more information, please see the sample program
Samples/STDIO_SERIAL.C.

262

rabbit.com Graphical User Interface

http://www.rabbit.com

Assembly Window
The Assembly window displays the disassembled code from the program just compiled. All
but the opcode information may be toggled off and on using the checkboxes shown below. For
more information about this window see Section 11.4.3.

— Specific Preferences
D ebug ‘Windows

— Fants and Calars
Earearound Eolar
| I Black =l |
Backgraund Calar
| white = @|
Watch
E:-:lzgutinn Trace Fiont [T e figed pitch
Stack T i - |
Mfimzce IEDurler = J

_| Apply zettings to all debug windows

Stack,
Registers
kdemornye Dump

— Optiohz
[v Show Addresses [¥ Usze Sprtax Highlighting
v Show OpCodes v Show Source
v Show Clock Cocles ¥ Show File Mame in Source Line

¥ Sum Clack Cycles

Show Addresses
Check this to show the logical address of the instruction in the far left column.

Show OpCodes
Check this to show the hexidecimal number corresponding to the opcode of the
instruction.

Show Clock Cycles
Check this to show the number of clock cycles needed to execute the instruction in the
far right column. Zero wait states is assumed. Two numbers are shown for conditional
return instructions. The first is the number of cycles if the return is executed, the sec-
ond is the number of cycles if the return is not executed.

Sum Clock Cycles
Check this to total the clock cycles for a block of instructions. The block of instruc-
tions must be selected and highlighted using the mouse. The total is displayed to the
right of the number of clock cycles of the last instruction in the block. This value
assumes one execution per instruction, so looping and branching must be considered
separately.

Use Syntax Highlighting
Toggle syntax highlighting. Click on the Syntax tab to set the different colors.

Show Source
Check this to display the Dynamic C statement corresponding to the assembly code.

Dynamic C User’s Manuall rabbit.com 263

http://www.rabbit.com

Show File Name in Source Line

Check this to prepend the file name to the Dynamic C statements corresponding to the

assembly code.

Register Window

For this window you must choose one of the following conditions: “Show register history” or
“Show registers as editable.” When the Register Contents window opens it will be in editable
mode by default. Selecting “Show Register history” will override the default setting.

Show register history

In this mode, a snapshot of the register values is displayed every time program execu-
tion stops. The line (L:) and column (C:) of the cursor is noted, followed by the regis-
ter and flag values. The window is scrollable and sections may be selected with the

mouse, then copied and pasted.

Starting with Dynamic C 9, each time you single step in C or assembly changed data
is highlighted in the Register window. (This is also true for the Stack and Memory

Dump windows.)

Register Conten

PCElbzd

Cx xxxd HPC E8
A an AF' 004 Change Register Maluels), ., Ckri+alk+R
EC 141C EC' 000R Copy

IE T8BC DE' EFCh
HL 0000 HL' DFF?
I¥ Ce20 IY 1B20
PC 1B24 ZP DFE®?

Switch to Editable Yiew

A click of the right mouse button brings up the menu pictured above. Choosing
Change Register Value(s)... brings up a dialog where you can enter new values for any

of the registers, except SP, PC and XPC.

264

rabbit.com

Graphical User Interface

http://www.rabbit.com

Show registers as editable
In this mode, you can increment or decrement most of the registers, all but the SP, PC
and XPC registers.

This screen shows the Register Contents window in editable mode. It is divided into
registers on the left and flags on the right.

7% Dynamic C Dist. 8.00

File Edit Comple Bun [nspect Options: Window Help

([e A [|

£ -
== Register Contents

A - 0OxF7 c: 1
BC : 0=x0o0z? x: 0O
DE : 0OxCEZzZ0 0o: o
HL : 0=xz7CC x: 0O
AF': 0=x5040 L
BC': 0=xooQo= x: 0O
LE': 0x0000 Z: 0
HL': 0x0000 51
I¥ : OxCEED

- 0OxCslo

&P : 0xDFFD

PC - 0wlEaZ Decrement Register Chrl+Alt+D

wEC- 00000 Increment R egister Chrlult+
Hew Register Walue... Chil+alt+H

Switch to History Wiew Chrl+alt+H

A click of the right mouse button on the register side will bring up the menu pictured
here. You can switch to history view or change register values for all but the SP, PC

and XPC registers.
The option New Register Value will
Enter new value for IY B3 bring up a dialog to enter the new reg-
New Fegister Value | ister value. Hex values must have “0x”
prepended to the value. Values without
K Lancel | a leading “0x” are treated as decimal.

A click of the right mouse button on the flags side of the window will bring up a menu
that lets you toggle the selected flag (Ctrl+Alt+T) or switch to history view
(Ctrl+Alt+H).

Dynamic C User’s Manuall rabbit.com 265

http://www.rabbit.com

Memory Dump Window
For more information on using the Memory Dump window go to the section titled, Dump at
Address <Ctrl+D>.

i Specific Preferences

— Fonts and Colors

Debug Windows
o Farearound Calor
[[u] .
Azzembly |- Black j @!
Eit:CiI::ters Background Color
[]'white ~| &
Wwhatch | - J _I
Erecution Trace Faont I™ Use figed pitch
Stack Trace i = |
St :I IEnurler MHew _I
_| Apply Settings to &l
— Options
v &pply changes to al W Show address while scralling S(Eumented Dump Fange : |
W Allow autornatic updates W Show current Bute in bint Bl
v Show taal bar v Show curent byte intitle bar | ¢ Full Range
[Enable difference highlighting: [Use reversed font colors
Cusztomized Colors
v Bold foregraund Fareground; I- Elack. j @l
¥ Use window background Backgroumd; ||:| White ;I)

The following are the options relevant to the Memory Dump window.

Apply changes to all
Changes made in this dialog will be applied to all memory dump windows.

Allow automatic updates
The memory dump window will be updated every time program execution stops
(breakpoint, single step, etc.). Starting with Dynamic C 9, each time you single step
changed data in the memory dump window is highlighted in reverse video.

Show tool bar
Each dump window has the option of a tool bar that has a button for updating the
dumped region and a text entry box to enter a new starting dump address.

Show address while scrolling
While using the scroll bar, a small popup box appears to the right of the scroll bar and
displays the address of the first byte in the window. This allows you to know exactly
where you are as you scroll.

Show current byte in hint
The address and value of the byte that is under the cursor is displayed in a small
popup box.

Show current byte in title bar
The address and value of the byte that is under the cursor is displayed in the title bar.

266

rabbit.com Graphical User Interface

http://www.rabbit.com

Segmented Dump Range
The memory dump window can display 3 different types of dumps. A dump of a logi-
cal address will result in a 64k scrollable region (0x0000 - 0xffff). A dump of a physi-
cal address will result in a dump of a 1M region (0x00000 - 0xfffff). A dump of an
xpc:offset address will result in either a 4k, 64k or IM dump range, depending on how
this option is set.
If a 4k or 64k range is selected, the dump window will dump a 4k or 64k chunk of
memory using the given xpc. If “Full Range” is selected, the window will dump
00:0000 - ff:ffff. To increment or decrement the xpc, use the “+’ and “-” buttons
located below and above the scroll bar. These buttons are visible only for an xpc:off-
set dump where the range is either 4k or 64k.

Watch Window
The Watches window configuration options, Enable watch expression evalution in flyover hint
and Show watch expression evaluation errors in flyover hint, do not actually affect the
Watches window. When checked, they allow you to use flyover hints in the source code win-
dow to see the value of watchable expressions.

Move the cursor over a variable to see its current value and over a function to see its logical
address or its return value. If you highlight the name of a function (e.g., my_Ffunction) you
will see the location of the code in memory. If you highlight the function call (e.g.,
my_Ffunction(my_parm)) the function will be called and you will see its return value. If
the cursor is over a structure member, the flyover hint will only contain information about the
structure, not the individual member.

Stack Trace Window
There are no configuration options for the Stack Trace window.

Dynamic C User’s Manuall rabbit.com 267

http://www.rabbit.com

Print/Alerts Tab

Click on the Print/Alerts tab to display the following dialog. You may access both the Page Setup
dialog and Print Preview from here.

Environment Options El

— Print Optionz

v Use Header [+ Usze Left Margin |1
I Use Eooter [+ Usze Right Margin |1—
v Mumber Pages

v Suntax Print ¥ Use Top Margin |1
[T whap Lines [+ Usze Battam Margin |1

—Print Fant

IEDurier Mew _l

Setup | Prewview

— Alerts
[Flash icon in tazkbar after cormpile and download when Dynaric C i in background

[T Beep after compile and download when Dynamic G is in background

v Detect changes made to open file outside of IDE and prompt far reload

v Confirm compilation of brary files

ak. LCancel Help

The Page Setup dialog works in conjunction with the Print/Alerts dialog. The Page Setup dialog is
where you define the attributes of headers, footers, page numbering and margins for the printed
page. The Print/Alerts dialog is where you enable and disable these settings. You may also change
the font family and font size that will be used by the printer. This does not apply to the fonts used
for headers and footers, those are defined in the Page Setup dialog.

There are four checkboxes in the Alerts area of this dialog. The first two signal a successful com-
pile and download, one with a visual signal, the other auditory. The third checkbox detects if a file
that is currently open in Dynamic C has been modified by an external source, i.e., a third-party

editor; and if checked, will bring up a dialog box asking if you want to reload the modified file so

268

rabbit.com Graphical User Interface

http://www.rabbit.com

that Dynamic C is working with the most current version. The last checkbox, if checked, causes
Dynamic C to query when an attempt is made to compile a library file to make sure that is what is
desired.

You may choose zero or more of these alerts.
Project Options
Settings used by Dynamic C to communicate with a target, and to compile and run programs are acces-

sible by using the Project Options dialog box. The dialog box has tabs for various aspects of communi-
cating with the target, the BIOS and the compiler.

Communications Tab

5
Comrunications | Compiler I Debugger I Defines I T argetless I
 Connection Tupe 1 Sernial Optionz
" Use Senial Connection Baud Rates
Debug Baud Rate [115200 =
iew Dovirload Baud Hate | 460800 2 |
[~ Dizable Baud i egotistion

Serial Fart ICUM5 'I Stop Bits |2 'I

[# Eriable Processor venfication: Wenfuithe processar,
[Ty dizablineg i o cant get

thie PL tofind the target
¥ Uze USE to Serial Converter ¥ il

% Use TCRAR Connection - TCRAR Options

{+ FabhitSyz Habbitlink

Metwork, Address ||

Control Port |32D23

User Mame I

Password I

ak I LCancel Help

Connection Type

Choose either a serial connection or a TCP/IP connection.

Dynamic C User’s Manuall rabbit.com 269

http://www.rabbit.com

Serial Options
This is where you setup for serial communication. The following options are available when
the Use Serial Connection radio button is selected.

Debug Baud Rate

This defaults to 115200 bps. It is the baud rate used for target communications after
the program has been downloaded.

Max Download Baud Rate

When baud negotiation is enabled, Dynamic C will start out at the selected baud rate
and work downwards until it reaches one both it and the target can handle.

Disable Baud Negotiation

Dynamic C negotiates a baud rate for program download. (This helps with USB or
anyone who happens to have a high-speed serial port.) This default behavior may be
disabled by checking the Disable Baud Negotiation checkbox. When baud negotiation
is disabled, the program will download at 115k baud or 56k baud only. When enabled,
it will download at speeds up to 460k baud, as specified by Max Download Baud
Rate.

Serial Port

This drop-down menu lists PC COM ports that may be connected to the Rabbit-based
target. The default is COM1. Starting with version 9.60, Dynamic C identifies which
ones are USB ports.

Stop Bits
The number of stop bits used by the serial drivers. Defaults to 2.

Enable Processor Verification

Processor detection is enabled by default. The connection is normally checked with a
test using the Data Set Ready (DSR) line of the PC serial connection. If the DSR line
is not used as expected, a false error message will be generated in response to the con-
nection check.

To bypass the connection check, uncheck the “Enable Processor Verification” check-
box. This allows custom designed systems to not connect the STATUS pin to the pro-
gramming port. Also, disabling the connection check allows non-standard PC ports or
USB converters that might not implement the DSR line to work.

Use USB to Serial Converter

Check this checkbox if a USB to serial converter cable is being used. Dynamic C will
then attempt to compensate for abnormalities in USB converter drivers. This mode
makes the communications more USB/RS232 converter friendly by allowing higher
download baud rates and introducing short delays at key points in the loading process.
Checking this box may also help non-standard PC ports to work properly with
Dynamic C.

270

rabbit.com Graphical User Interface

http://www.rabbit.com

TCP/IP Options

To program and debug a controller across a TCP/IP connection, the Network Address field
must have the IP address of either the RabbitLink board that is attached to the controller, or

the IP address of a RabbitSys-enabled controller.

To accept control commands from Dynamic C, the Control Port field must be set to the port
used by the Ethernet-enabled controller. The Controller Name is for informational purposes

only. The Discovery button makes Dynamic C broadcast a query to any RabbitLinks or Rab-
bitSys-enabled controllers attached to the network. Any such boards that respond to the broad-
cast can be selected and their information will be placed in the appropriate fields.

Compiler Tab

Click on the Compiler tab to display the following dialog.

Project Options

I Del:uuggerl Definesl Targetlessl

Communications

— Wwarming Reports

— Bun-Time Checking — Twpe Checking — Optimize For
v dray Indices v Protatype " Size
v Painters v Dematian {* Speed
[+ Painter
— BIOS kemary Setting — kax Shown

[T Generate assembly list file for each compile

Al (= Code and BIOS inFlash Enos: |10 3]

£ Serouz Only {~ Code and BIOS in RAM _

£ Nore ¢ Code and BIOS in Flash, Funinfand | | Wamings: [10 2]
— List Files Separate Inztruction & Data Space

[T Enable separate instruction and data spaces

— Default Compile Mode

% Compile ko attached target
" Compile defined target configuration to . bin file
" Compile ta . bin file uzing attached target

— Ireline 1/0

[¥ Inline builtin 1D functions

— RabbitSps

RabbitSys [0 Mode
[T Campile pragram in BabkitSys user mode = Frotected

+ [rpratected

Advanced...

LCancel

Help

Dynamic C User’s Manual

rabbit.com

271

http://www.rabbit.com

Run-Time Checking

These options, if checked, can allow a fatal error at run time. They also increase the amount of
code and cause slower execution, but they can be valuable debugging tools.

= Array Indices: Check array bounds. This feature adds code for every array reference.

= Pointers: Check for invalid pointer assignments. A pointer assignment is invalid if the
code attempts to write to a location marked as not writable. Locations marked not writ-
able include the entire root code segment. This feature adds code for every pointer ref-
erence.

Functions marked as nodebug disable the run-time checking options selected in the GUI.

Type Checking
This menu item allows the following choices:

* Prototypes—Performs strict type checking of arguments of function calls against the
function prototype. The number of arguments passed must match the number of param-
eters in the prototype. In addition, the types of arguments must match those defined in
the prototype. Rabbit recommends prototype checking because it identifies likely run-
time problems. To use this feature fully, all functions should have prototypes (including
functions implemented in assembly).

* Demotion—Detects demotion. A demotion automatically converts the value of a larger
or more complex type to the value of a smaller or less complex type. The increasing
order of complexity of scalar types is:

char

unsigned iInt
int

unsigned long
long

float

A demotion deserves a warning because information may be lost in theconversion. For
example, when a long variable whose value is 0x10000 is converted to an Int value,
the resulting value is 0. The high-order 16 bits are lost. An explicit type casting can
eliminate demotion warnings. All demotion warnings are considered non-serious as far
as warning reports are concerned.

* Pointer—Generates warnings if pointers to different types are intermixed without type
casting. While type casting has no effect in straightforward pointer assignments of dif-
ferent types, type casting does affect pointer arithmetic and pointer dereferences. All
pointer warnings are considered non-serious as far as warning reports are concerned.

Warning Reports
This tells the compiler whether to reportall warnings, no warnings or serious warnings only. It
is advisable to let the compiler report all warnings because each warning is a potential run-
time bug. Demotions (such as converting a long to an int) are considered non-serious with
regard to warning reports.

272 rabbit.com Graphical User Interface

http://www.rabbit.com

Optimize For
Allows for optimization of the program for sizeor speed. When the compiler knows more than
one sequence of instructions that perform the same action, it selects either the smallest or the
fastest sequence, depending on the programmer’s choice for optimization.

The difference made by this option is less obvious in the user application (where most code is
not marked nodebug). The speed gain by optimizing for speed is most obvious for functions
that are marked nodebug and have no auto local (stack-based) variables.

BIOS Memory Setting
A single, default BIOS source file that is defined in the system registry when installing
Dynamic C is used for both compiling to RAM and compiling to Flash. Dynamic C defines a
preprocessor macro, FLASH , RAM_ or _FAST_RAM_ depending on which of the fol-
lowing options is selected. This macro is used to determine the relevant sections of code to
compile for the corresponding memory type.

* Code and BIOS in Flash - If you select this option, the compiler will load the BIOS to
Flash when cold-booting, and will compile the user program to Flash where it will nor-
mally reside. Note that this option cannot work for boards with serial boot flashes.
These boards should use Code and BIOS in Flash, Run in RAM.

* Code and BIOS in RAM - If you select this option, the compiler will load the BIOS to
RAM on cold-booting and compile the user program to RAM. This option is useful if
you want to use breakpoints while you are debugging your application, but you don’t
want interrupts disabled while the debugger writes a breakpoint to Flash (this can take
10 ms to 20 ms or more, depending on the Flash type used). It is also possible to have
a target that only has RAM for use as a slave processor, but this requires more than
checking this option because hardware changes are necessary that in turn require a spe-
cial BIOS and coldloader.

* Code and BIOS in Flash, Run in RAM- If you select this option, the compiler will load
the BIOS to Flash when cold-booting, compile the user program to Flash, and then the
BIOS will copy the flash image to the fast RAM attached to CS2. This option supports
a CPU running at a high clock speed (anything above 29 MHz) and should be used for
Rabbit core modules with serial boot flash.

This is the same as the command line compiler -mFr option.

Max Shown
This limits the number of error and warning messages displayed after compilation.

List Files
Checking this option generates an assembly list file for each compile. A list file contains the
assembly code generated from the source file.

The list file is placed in the same directory as your program, with the name

<Program Name>_LST. The list file has the same format as the Disassembled Code win-
dow. Each C statement is followed by the generated assembly code. Each line of assembly
code is broken down into memory address, opcode, instruction and number of clock cycles.
See page 287 for a screen shot of the Disassembled Code window.

Dynamic C User’s Manuall rabbit.com 273

http://www.rabbit.com

Separate Instruction and Data Space
When checked, this option enables separate 1&D space, doubling the amount of root code and
root data space available.

Please note that if you are compiling to a 128K RAM, there is only about 12K available for
user code when separate 1&D space is enabled.

Default Compile Mode
One of the following options will be used when Compile | Compile is selected from the main
menu of Dynamic C or when the keyboard shortcut <F5> is used. The setting shown here may
be overridden by choosing a different option in the Compile menu. The setup for targetless
compile may differ for some board series. Please check your user manual for differences in
setup.

= Compile to attached target - a program is compiled and loaded to the attached target.

= Compile defined target configuration to .bin file - a program is compiled and the image
written to a .bin file. The target configuration used in the compile is taken from the
parameters specified in Options | Project Options. The Targetless tab allows you to
choose an already defined board type or you may define one of your own.

* Compile to .bin file using attached target - a program is compiled and he image written
to a . bin file using the parameters of the attached controller.

In-line I/O
If checked, the built-in I/0 functions (WrPortl (), RdPortl (), BitWrPortl () and
BitRdPortl ()) will have efficient inline code generated instead of function calls if all
arguments are constants, with the exception of the 3rd parameter of Bi tWrPortl () and
WrPortl (), which may be any valid expression.
If this box is checked, but a call to one of the aforementioned functions is made with non-

constant arguments, (with the exception of the 3rd parameter for the 2 write functions) then a
normal function call is generated.

RabbitSys
This option was added in Dynamic C 9.30. Checking it allows you to compile a program to
run on top of RabbitSys. The target board must be RabbitSys-enabled, which means that it has
the necessary preloaded drivers and the RabbitSys firmware.

For more information about RabbitSys, see the RabbitSys User’s Manual.

RabbitSys I/O Mode
The radio buttons labeled “Protected” and “Unprotected” choose between the available Rab-
bitSys I/O protection modes.

Advanced... Button
Click on this button to reveal the Advanced Compiler Options dialog. The options are:

Default Project Source File

Use this option to set a default source file for your project. If this box is checked, then
when you compile, the source file named here will be used and not the file that is in
the active editor window. If the file named here is not open, it will be opened into a
new editor window, which will be the new active editor window.

274

rabbit.com Graphical User Interface

http://www.rabbit.com

User Defined BIOS File

Use this option to change from the default BIOS to a user-specified file. Enter or
select the file using the browse button/text box underneath this option. The check box
labeled use must be selected or else the default file BIOS defined in the system regis-
try will be used. Note that a single BIOS file can be made for compiling both to RAM
and Flash by using the preprocessor macros _FLASH__or _RAM_. These two macros
are defined by the compiler based on the currently selected radio button in the BIOS
Memory Setting group box.

User Defined Lib Directory File (same as the command line compiler option “-1f”)
The Library Lookup information retrieved with <Ctrl+H> is parsed from the libraries
found in the “lib.dir” file, which is part of the Dynamic C installation. Checking the
Use box for User Defined Libraries File, allows the parsing of a user-defined replace-
ment for the “lib.dir” file. Library files must be listed in the “lib.dir” file (or its
replacement) to be available to a program.

If the function description headers are formatted correctly (See “Function Description
Headers” on page 44.), the functions in the libraries listed in the user-defined replace-
ment for the “lib.dir” file will be available with <Ctrl+H> just like the user-callable
functions that come with Dynamic C.

Watch Code

Allow any expressions in watch expressions
This option causes any compilation of a user program to pull in all the utility func-
tions used for expression evaluation.

Restricting watch expressions (May save root code space)

Choosing this option means only utility code already used in the application program
will be compiled.

Dynamic C User’s Manuall rabbit.com 275

http://www.rabbit.com

Debug Instructions and BIOS Inclusion

Include RST 28 instructions

If this is checked, the debug and nodebug keywords and compiler directives work as
normal. Debug code consists mainly of RST 28h instructions inserted after every C
statement. This option also controls the definition of a compiler-defined macro sym-
bol, DEBUG_RST. If the menu item is checked, then DEBUG_RST is set to one, other-
wise it is zero.

If the option is not checked, the compiler marks all code as nodebug and debugging is
not possible.

The only reason to check this option if debugging is finished and the program is ready
to be deployed, is to allow some current (or planned) diagnostic capability of the Rab-
bit Field Utility (RFU) to work in a deployed system. This option affects both code
compiled to .bin files and code compiled to the target. To run the program after com-
piling to the target with this option, disconnect the target from the programming port
and reset the target CPU.

Include BIOS

If this is checked, the BIOS, as well as the user program, will be included in the .bin
file. If you are creating a special program such as a cold loader that starts at address
0x0000, then this option should be unchecked.

When you are compiling a program to the attached target controller, the BIOS is
always included.

276

rabbit.com Graphical User Interface

http://www.rabbit.com

Debugger Tab
Click on the Debugger tab to display the following dialog. This is where you enable/disable
debugging tools. Disabling parts of the debug kernel saves room to fit tight code space require-
ments.

Project Options 5'

— Debugger Optionz
[+ Enable debug kemel

¥ | Enable instruction levelsingle stepping

¥ Enatile breakpaints tax breakpaints: |32 =

[¥ Enable watch expression: bax expressions; |9 = Shuct watch memony: |5'I2 |vl

[¥ Enatle stack tracing Stack trace Ql,ltes:l‘maﬁl vl

aFk. LCancel Help

Enable debug kernel
This option was added in Dynamic C 9.30. Leaving it unchecked allows you to compile your
application without the debug kernel. You must check this option to set any of the other debug

options.

Enable instruction level single stepping
If this is checked when the assembly window is open, single stepping will be by instruction
rather than by C statement. Unchecking this box will disable instruction level single stepping
on the target and, if the assembly window is open, the debug kernel will step by C statement.

Dynamic C User’s Manuall rabbit.com 277

http://www.rabbit.com

Enable breakpoints
If this box is checked, the debug kernel will be able to toggle breakpoints on and off and will
be able to stop at set breakpoints. This is where you set the maximum number of breakpoints
the debug kernel will support. The debug kernel uses a small amount of root RAM for each

breakpoint, so reducing the number of breakpoints will slightly reduce the amount of root
RAM used.

If this box is unchecked, the debug kernel will be compiled without breakpoint support and the
user will receive an error message if they attempt to add a breakpoint.

Enable watch expressions
If this box is checked, watch expressions will be enabled. This is where you set the maximum
number of watch expressions the debug kernel will support. The debug kernel uses a small
amount of root RAM for evaluating each watch expression, so reducing the number of
watches will slightly reduce the amount of root RAM used.

With the watch expression box unchecked, the debug kernel will be compiled without watch
expressions support and the user will receive an error message if they attempt to add a watch
expression.

With Dynamic C 9, watch expressions are enhanced to automatically include the addition of
structure members when a watch expression is set on a struct. Some extended memory is
reserved for handling watch expressions on structs. As shown in the above screen shot, 512
bytes of xmem is reserved by default. This can be changed to anything inthe range 32 to 4096.
Be aware that this watch memory is a tradeoff: not only does it dictate the number and com-
plexity of watched structs, but also impacts the amount of memory available for xal loc()
calls.

Enable stack tracing
Dynamic C 9 introduces stack tracing. If this box is checked the Stack Trace window is avail-
able to show the function call sequence leading to any point at which the program is stopped.
The Stack Trace window shows a concise history of the execution path and values of local
variables and function arguments that led to the current breakpoint, all for a very small cost in
execution time and BIOS memory.

To the right of the checkbox is a spin/edit box for entering the maximum number of bytes of
the current stack to transfer from the target at each breakpoint. The allowable range is 32 bytes
to 4096 bytes inclusive. The default is 4096 bytes. If the stack depth is smaller than the num-
ber in this spin/edit box, only the depth number of bytes is transferred.

With the “Enable stack tracing” box unchecked, the debug kernel and the user program will be
compiled without stack tracing support. Changing the status of the checkbox or the number of
stack trace bytes forces a recompilation of the BIOS the next time the user program is com-
piled.

See “Stack Trace (Ctrl+T)” on page 290 for details on using this debug window.

278 rabbit.com Graphical User Interface

http://www.rabbit.com

Enable execution tracing
If this is checked, the target will send trace information back to Dynamic C when you turn on
tracing by choosing Inspect | Start Execution Tracing or when your program does so by exe-
cuting a_ TRACE or _ TRACEON macro. Unchecking this box will disable the menu command
and macros.

Note that enabling tracing here will cause more code to be compiled into the BIOS, meaning
there is less memory available on the target for your program, so if you get insufficient mem-
ory errors with your program, disabling tracing might help. Also, when you turn on tracing
from the menu or a macro, your program will suffer a performance hit because of the extra
communication required between Dynamic C and the target.

Trace Buffer (PC)

The trace buffer allows you to specify how much memory is allocated on your computer (the
default is 64 megabytes) to hold trace entries received from the target. If you check the
"Wrap" box, new trace entries overwrite existing ones when the buffer fills up, starting with
the oldest. When "Wrap" is unchecked, any entries received after the buffer fills up are dis-
carded.

The number of entries displayed is the maximum number of trace entries the buffer will hold
given the size of the trace buffer you specify and the Trace window information fields you
select.

Trace Level

Choose which events will be captured by the trace. Full tracing captures all debuggable state-
ments plus function entries and exits. If you don't want to include all statements, you can
choose to capture each function entry and exit only.

Dynamic C statements are debuggable by default, while assembly code is not. You can toggle
this with the debug and nodebug keywords for Dynamic C functions, and with the debug and
nodebug options of the #asm compiler directive for blocks of assembly code.

Trace Window Fields to Trace

You can select the trace information captured from the target and displayed in the Trace win-
dow. You can include the function name, file name, and line and column where each trace
entry originated; the type of action being performed; the time stamp when the action was per-
formed; and the contents of the registers. The more fields you select to be displayed in the
Trace window, the larger each entry, and so the fewer entries the trace buffer can hold.

Saving Trace Window to a File

Checking the "Save on program termination" box will cause Dynamic C to write the contents
of the trace buffer to a file when your program terminates. When this box is checked, you
must specify the filename and location where you want to save.

Note that this feature saves the contents of the trace buffer at the time your program termi-
nates, so if the buffer fills up while your program is running not all trace entries received will
be written to the file. If you want to save trace entries before they are lost, you can do so at any
time from the Trace window. See Execution Trace (Alt+ F12) for details.

Dynamic C User’s Manuall rabbit.com 279

http://www.rabbit.com

Defines Tab
The Defines tab brings up a dialog box with a window for entering (or modifying) a list of defines
that are global to any source file programs that are compiled and run. The macros that are defined
here are seen by the BIOS during its compilation.

Syntax:

DEFINITION[DELIMETER DEFINITION[DELIMETER DEFINITION]J...]]]
DEFINITION: MACRONAME[[WS]=[WS]VALUE]

DELIMETER: ;' or 'newline'

MACRONAME: the same as for a macro name in a source file

WS: [SPACE[SPACE]...]]]

VALUE: CHR[CHRJ...]]

CHR: any character except the delimeter character ';', which is entered as the character pair

H\ ; n

Notes:

Do not continue a definition in this window with "\, simply continue typing as a long line will
wrap.

In this window hitting the Tab key will not enter a tab character (\'t), but will tab to the OK
button.

The command line compiler honors all macros defined in the project file that it is directed to
use with the project file switch, -pT, or default._dcp if —-pT is not used. See command line
compiler documentation.

A macro redefined on the command line will supersede the definition read from the project file.

280

rabbit.com Graphical User Interface

http://www.rabbit.com

Examples and File Equivalents:
Example:

DEF1;MAXN=10;DEF2
Equivalent:

#define DEF1
#define MAXN 10
#define DEF2

Example:

DEF1
MAXN = 10
DEF2

Equivalent:

#define DEF1
#define MAXN 10
#define DEF2

Example:
STATEMENT = A + B
Equivalent:

#define STATEMENT A + B = C;
#define DEF1 10

C\;;DEF1=10

Example:
STATEMENT = A + B = C\;
FORMATSTR = ""name = %s\n"
DEF1=10

Equivalent:
#define STATEMENT A + B = C;
#define FORMATSTR "‘name = %s\n"

#define DEF1 10

Dynamic C User’s Manuall rabbit.com 281

http://www.rabbit.com

Targetless Tab

Click on the Targetless tab to reveal three additional tabs: RTI File, Specify Parameters and Board
Selection. The setup for targetless compile may differ for some board series. Please check your

user manual for differences in setup.

RTI File

Click on this tab to open a Rabbit Target Information (RTI) file for viewing. The file is read-
only. You may not edit RTI files, but you may create one by selecting an entry in the Board
Selection list and clicking on the button Save as RTI. Or you may define a board configuration
in the Specify Parameters dialog and then save the information in an RTI file. Details follow.

Specify Parameters

This is where you may define the parameters of a controller for later use in targetless compila-

tions.

Project Options E |

En:nmmunin::atin:nnsl En:nmpilerl Del:nuggerl Defines Targetless |

RTIFile Specify Parameters | Board Selection |

Board Configuration

|0 Code [0«FFO0 - 0=FFFF]:
=F

Description:

CEU [revizion shown on chip);

|Hal:u|:uit 2000 revisian 134T

B aze Frequency [MHz]:

L

[11.0532 =]
BAK [EBytes]:
512 =]

Primary Flazh [KEyptes]:

|255

Kl

Update Board Selection | Save az RTI
0k Cancel Help
282 rabbit.com Graphical User Interface

http://www.rabbit.com

The term “Primary Flash” refers to the Flash device connected to /CS0, not the total amount of
Flash available on the board.

The result may be saved to a RTI file for later use, or the result may be saved to the list of
board configurations.

Board Selection
The list of board configurations is viewable from the Board Selection tab. The highlighted
entry in the list of board configurations is the one that will be used when the compilation uses
a defined target configuration, that is, when the Default Compile Mode on the Compiler tab is
set to “Compile defined target configuration to .bin file” and Compile or Compile to .bin file is
chosen from the Compile menu.

If you save to the list of board configurations by clicking on the button Update Board Selec-
tion, then you must fill in all fields of the dialog. The baud rate, calculated from the value in
the Base Frequency (MHz) field, only applies to debugging. The fastest baud rate for down-
loading is negotiated between the PC and the target.

To save to an RTI file only requires an entry in the CPU field. Please see Technical Note 231
for information on the specifics of the Rabbit CPU revisions.

The correct choice for the CPU field is found on the chip itself. The information is printed on
the third line from the top on the Rabbit 2000 and the second line from the top on the Rabbit
3000. The table below lists the possible values.

Rabbit Microprocessor non-RoHS RoHS
Rabbit 2000 1Q#T UQ#T
Rabbit 3000 IL#T or IZ#T |UL#T

Where “#” is the revision number and the letters are associated information.

YT IR]

v
ey
-
L)
—— 1
- - TM
-
-~

RABBIT 2000™

668-0003

R30 HO5T
820 RABBIT 3000™
A0D32

0234 ATS6CSSLIT

DOE4946AA
0209

il
e FrrTeeeny

Dynamic C User’s Manuall rabbit.com 283

http://www.rabbit.com

Toolbars

Selecting this menu item reveals alist of

all menu button groups, i.e., the groups
of icons that appear in toolbars beneath
the title bar and the main menu items
(File, Edit, ...). This area is called the
control bar. Uncheck View Menu But-
tons to remove the control bar from the
Dynamic C window. Any undocked
toolbars (i.e., toolbars floating off the
control bar) will still be visible. You
undock a toolbar by placing the cursor
on the 2 vertical lines on the left side of
the toolbar and dragging it off the con-
trol bar.

Each menu button group (File, Edit,
Compile, Run, Options, Watch, Debug
Window, WindowView and Help) has a
checkbox for choosing whether to make
its toolbar visible on the control bar.

[a[=ITeE wfindow Help
| & Environment Options
' FProject Options

.PIHASR

4 ’7 Wiew Menu Buttons

v File
|7 Frrint
\v Edt
|7 LCompile
’T Bun

Inzpect

Optionz

’7 Debug Windows
Window Vigws
Help
[Enrsalidated

Default Toolbars
Show All Buttons

Caonsolidate vizible buttons to one toolbar

Cuztomize Button Groups...

To quickly return to showing only the icons visible by default, select Default Toolbars.

Select the option, Consolidate visible buttons to one toolbar to do exactly that—create one toolbar con-
taining all visible icons. Doing that, enables the option Consolidated, which toggles the visibility of the
consolidated toolbar, even when it is undocked from the control bar.

Customize Menu Buttons

il [1 Create a new file

Print

Ed't " (= Openalfie

ompile

Run [H Save cumentfie

| t

Onlions G Save sl Edited Files

Debug ‘windows B

Window Wiew T

Help [0 Open Project...
E—E Save Project
.;E: Save Project Az...
1]

Create a new project with factary sett

" ull

Help | Close |

Select “Customize Button Groups” to bring
up the Customize Menu Buttons window.
This window allows you to change which
buttons are associated with which button
group on the toolbar. Choose a button group
on the left side of the window; this causes
the icons for the buttons in that group to dis-
play on the right side of the window. Click
and drag an icon from the right side of the
window to the desired button group on the
toolbar.

To remove an icon from its button group,
click and drag the icon off the toolbar or to
another button group on the toolbar. The

Customize Menu Buttons window must be open to change the position of an icon on the toolbar.

284

rabbit.com

Graphical User Interface

http://www.rabbit.com

14.2.8 Window Menu

Click the menu title or press <Alt+W> to display the Window menu.

Window Help

Restore

Close

B Cascade

= Tile Horizonkally
M Tile Wertically
B arrange Icons

Compiler Messages

3 wakch Chrh+Alt+4

i Information B ctdin
{ DEMOL.C A assembly F10
R Register F11
S Stack F12
Lﬂj] Execution Trace AlE+F12
38 Stack Trace Chrl4+T

- Nat o o 1 1] A

You can choose to minimize, restore or close all
open windows or just the open debug window or
just the open editor windows. The second group
of items is a set of standard Windows com-
mands that allow the application windows to be
arranged in an orderly way.

The Compiler Messages option is a toggle for
displaying that window. This is only available if
an error or warning occurred during compila-
tion.

The Debug Windows option opens a secondary
menu, whose items are toggles for displaying
the like-named debug windows. You can scroll
these windows to view larger portions of data,
or copy information from these windows and
paste the information as text anywhere. More
information is given below for each window.

At the bottom of the Window menu is a list of

current windows, including source code windows. Click on one of these items to bring its window to the

front, i.e., make it the active window.

Watch

Select Watch to activate or deactivate the Watches window. The Add Watch command on the Inspect
menu will do this too. The Watches window displays watch expressions whenever Dynamic C evalu-
ates watch expressions. Starting with Dynamic C 9, a watch expression for a structure will automati-
cally include all members of the structure. Previous versions of Dynamic C required each struct

member to be added as a separate watch expression.

™ Walches

it rd imt (%) () OxEFSl

E| reo struct tm 7 bytes
E----t,m_sec char VE (0x0C) (off=zet 0O)
E----t,m_min char 1o ioxE: (offser 1)
E----t,m_hour char "int (0x0A) (off=zet Z)
g----t,m_mday char "WxlF' (0x1F) (off=zet 3)
g----t,m_mon char hr0lt f0x0L1) (off=zet 4)
g----t,m_jrear char 'RPYOo0xs0) (off=zet &)
E----‘:,m_\to'n:].aa'_‘,r char haldt (0x04) (offzet &)

Keep in mind that when single stepping in assembly, the value of the watch expression may not be
valid for variables located on the stack (all auto variables). This is because the debug kernel does not
keep track of the pushes and pops that occur on the stack, and since watches of stack variables only
make sense in the context of the pushes and pops that have happened, they will not always be accurate

when assembly code is being single stepped.

Dynamic C User’s Manual

rabbit.com

285

http://www.rabbit.com

Stdio
Select this option to activate or deactivate the Stdio window. The Stdio window displays output from
calls to printf (). If the program calls printf(), Dynamic C will activate the Stdio window auto-
matically if it is not already open, unless “Automatic open” is unchecked in the Debug Windows dialog
in Options | Environment Options.

Starting with Dynamic C 9, the various Find commands available on the Edit menu can be used
directly in the Stdio window.

Assembly (F10)
Select this option to activate or deactivate to activate or deactivate the Disassembled Code window.
The Disassembled Code window (aka., the Assembly window) displays machine code generated by the
compiler in assembly language format.

The Disassemble at Cursor or Disassemble at Address commands from the Inspect menu also acti-
vate the Disassembled Code window.

% Disassembled Code =0 =]

Addrass | Opcode | Instruction | Cycles |
[DEMO1.C(159]: 1 = O; -
== 1h34 EBF clr hl 2

135 D402 1d (=p + O0x02), hl 11

137 EF rst 0OxZ5 10
[DEMO1.C(15)] : while (1) 4

138 oo nop 2

138 E7? rst O=xZzZ0 10 prons
[DEMO1.C(15)] : while (1) 4

1kh3a 2101040 1d hl, Ox0O001 =

1k3d CiC bhool hl

ib3e CATL1E jp =, Ox1E7L 7

141 EF rst OxZ85 10
[DEMOL1.C (167 3 i++:

1kb4z 40z 1d hl, (sp + Ox02) 9

144 23 inc hl 2

145 D40z 1d (sp + Ox02), hl 11

147 EF rst OxZ85 10
[DEMO1.C(181]: for (j=0; j<20000; ++):

145 EBF clr hl 2

149 D400 1d (sp + Ox00), hl 11

1b4db EF rst OxZ5 10 hd
| Selected Clock Cycles Sum: 21 L

The Disassembled Code window displays Dynamic C statements followed by the assembly instruc-
tions for that statement. Each instruction is represented by the memory address on the farleft, followed
by the opcode bytes, followed by the mnemonics for the instruction. The last column shows the num-
ber of cycles for the instruction, assuming no wait states. The total cycle time for a block of instruc-
tions will be shown at the lowest row in the block in the cycle-time column, if that blockis selected and
highlighted with the mouse. The total assumes one execution per instruction, so the user must take
looping and branching into consideration when evaluating execution times.

286 rabbit.com Graphical User Interface

http://www.rabbit.com

Use the mouse to select several lines in the Assembly window, and the total cycle time for the instruc-
tions that were selected will be displayed to the lower right of the selection. If the total includes an
asterisk, that means an instruction with an indeterminate cycle time was selected, such as Idir or

ret nz.
Right click anywhere in the Disassembled Code window to |
display the following popup menu: e Ctr+C
Save bo File CErl+5
Copy . Move to Address CErl+M
Copies selected text in the Disassembled | bl o e e el e Ctri+E
Code window to the clipboard. " aaleck Al Chrld,
I
Save to File ! w Show Source
Opens the Save As dialog to save text | v Show File Name in Source Line
selected in the Disassembled Code win- - v Show Addresses
dow to a file. If you do not specify an ' v Show OpCodes
extension, .dasm will be appended to the ¥ Shaw Clack Cycles
file name. . w Summ Clack Cycles
Move to Address i v Use Svntax Highlighting

Opens the Disassemble at Address dialog
so you can enter a new address.

Move to Execution Point

Highlights the assembly instruction that will execute next and displays it in the Disas-
sembled Code window.

Select ALL
Selects all text in the Disassembled Code window.

All but the last menu option of the remaining items in the popup menu toggle what is displayed in the
Disassembled Code window. The last menu option, Use Syntax Highlighting, displays the colors that
were set for the editor window in the Disassembled Code window.

To resize a column in the assembly window, move the mouse pointer to one of the vertical bars that is
between each of the column headers. For instance, if you move the mouse pointer between “Address”
and “Opcode” the pointer will change from an arrow to a vertical bar with arrows pointing to the right
and left. Hold the left mouse button down and drag to the right or left to grow or shrink the column.

Register (F11)
Select this option to activate or deactivate the Register window. This window displays the processor
register set, including the status register. Letter codes indicate the bits of the status register (also known
as the flags register). The window also shows the source-code line and column at which the snapshot of
the register was taken.

It is possible to scroll back to see the progression of successive register snapshots. Register values may
be changed when program execution is stopped Registers PC, XPC, and SP may not be edited as this
can adversely affect program flow and debugging.

See “Register Window” on page 265 for more details on this window.

Dynamic C User’s Manuall rabbit.com 287

http://www.rabbit.com

Stack (F12)
Select this option to activate or deactivate the Stack window. The Stack window
displays the top 32 bytes of the run-time stack. It also shows the line and column |L: 13 c:2

. . . DEF9: 3146
at which the stack “snapshot” was taken. It is possible to scroll back to see the |,rer. 1pes
progression of successive stack snapshots. DFFD: 45E7

DFFF: O0BE

Dynamic C 9 introduced differences highlighting: each time you single stepin C EEE;: 3'&'&:
or assembly, changed data can be highlighted in the Stack window. (This is also |gnos: rzo0
true for the Memory Dump and Register windows.) EQD= G100
E00S: FEO3

. EOOE: 864

Execution Tracg (Alt+ F12) _ . . e BOhe

Select Execution Trace to activate or deactivate the Execution Trace window. EOOF: FEGE
. . : : : : : E011: TED4
The ﬁelds dlspla}{ed in thls.wmdow were spegﬁed in the Debugger dlalog. box K=l deia
that is accessed via the Options | Project Options menu (see Enable execution E015: OOFF
traCing). E017: TEFEF
% C:\DC_960%,5AMPLES' DEMD4.C Trace -0 x|
Actian | Function | File M ame | Line/Cal Ex - 00 c: 1
Execute wmain C:\DC_960%SAMPLES\DEMO4.C 71,4 EC : 141C |[x: 0
Enter foo 0:\DC_960%SAMPLES\DEMO4.C 51,1 DE : AElS [V: O
Execute foo C:\DC_960%SAMPLES\DEMO4.C 5E,Z2 HL : 0000 |x: O
Execute foo C:\DC_S604SAMPLES\DEMO4.C 57,4 AF': 00A4 [x: O
Execute foo C:\DC_960%SAMPLES\DEMO4.C 58,4 EC': 000A& [x: 1
Execute foo 0:\DC_960%SAMPLES\DEMO4.C 59,4 DE': EATE [2: 1
Execute foo C:\DC_960%SAMPLES\DEMO4.C 61,2 HL': DFFE [2: O
Execute foo C:\DC_960%4SAMPLESA\DEMO4.C 62,2 IX : CEZD0
Execute foo C:\DC_960%SAMPLESA\DEMO4.C 63,1 IT : 1B76
Exit foo 0:\DC_960%SAMPLES\DEMO4.C 63,1 8P : DFFE
Execute main C:\DC_9604SAMPLES\DEMO4.C 72,4 PC : 1E7D
WPC: OOFE

The Trace window has a right-click pop-up menu. An option on this menu controls the display of an
additional column in the Trace window. If Group repeated statements is selected, the Show Repeat
Count may also be selected and will display in the rightmost column of the Trace window that comes
before the register contents column. A value displayed under Show Repeat Count is the number of
times the corresponding statement has been executed and, therefore, traced. The Timestamp column is
not updated for subsequent traces of a repeated statement.

The Group repeated statements option is useful when tracing statements inside a loop.

The rest of the pop-up menu options are more or less self-explanatory. You can choose to open the
source code for any function in the Trace window by selecting the function and choosing Open Source.
In the above screenshots, note that a trace statement for Kbhit () is selected in the Trace window.
Choosing Open Source in this situation would open a window for STD10 . L 1B, the library file that
contains the function kbhit().

You can also toggle auto scroll, a well as decide whether to display the complete path in the File Name
column. The last three menu options are for saving Trace window contents to another file. You can

select trace statements in the window and then using Copy selected traces or Copy with header you can
paste the selected traces anywhere you can perform a paste operation. You can also choose to copy the
entire contents of the current Trace window to a named file. This is similar to the option in the Debug-

288 rabbit.com Graphical User Interface

http://www.rabbit.com

ger tab of the Project Options dialog, which allows saving the Trace window to a file upon program ter-
mination.

Stack Trace (Ctrl+T)
The Stack Trace window displays the call sequence and the values of function arguments and local
variables of the currently running program. The screenshot shown here is the Stack Trace window
when Samples/Demo3. ¢ is running. The window contents tell us that the function main() has
been called and that it has one local variable named secs, which currently has a value of 0.

The Depth value along the bottom of the

d| Stack Trace window is the current number of
fuain() secs=0x0 ‘| bytes on the stack. The Max Depth value is
the maximum number of bytes pushed on the
stack at any one time for the current run of
the program or since the Max Depth value
was reset. The Max Depth value can be reset
by a right click in the Stack Trace window to
bring up some menu options. Along with resetting the Max Depth value back to zero (think of it like a
car trip odometer) you can use the right click menu to copy text from the Stack Trace window or to
cause the source code file to become the active window. The source code file could be a library fileif a
library function is executing at the time the menu option is requested.

H Stack Trace

\Depth: 4 ax Depth: 4 2

Information
Select this option to activate the Information window, which displays how the memory is partitioned
and how well the compilation went.

x

| Bam Top Size
|Roct code: o000 4CES ACEE |Totalcode sizer 29519 bytes
|><MEM code; 0E000 036EE 026RS |T|:uta| data zize: 2341 butes
[wiatch code: CCO0 CDFE OIFF |Lines compiled: 7747

|Stack: D000 DFFF 1000 |Compile time: 0 seconds
|F||:u:|t data: CEFF CZ2DB 0925 |E|:um|:|i|e zpeed: FE2000 hnesdminute
|F||:u:|t constants. Only in Separate [&D |E|:uar-:| 10 Q0700

Table 14-1. Information Window

Name of Field Description of Field

The begin (base), end (top) and size of the root code area,

Root code expressed in logical address format (16-bit).

Dynamic C User’s Manuall rabbit.com 289

http://www.rabbit.com

Table 14-1. Information Window

Name of Field

Description of Field

The begin, end and size of the XMEM code area, expressed in

XMEM code physical address format (20-bit).
The begin, end and size of the watch code area, expressed in
Watchcode logical address format (16-bit).
Stack The begin, end and size of the run-time stack, expressed in logical
address format (16-bit).
Root data The begin, end and size of the root data area, expressed in logical

address format (16-bit).

Root constants

The begin, end and size of the root constant area, expressed in
physical address format (20-bit).

Total code size

The number of code bytes (including both root and XMEM code
areas.

Total data size

The number of data bytes (including both root and XMEM data
areas

Lines compiled

The number of lines compiled, including lines from library files.

Compile time

The number of seconds taken to compile the program.

Compile speed

Average speed of compilation measured in lines compiled per
minute.

Board ID

A number identifying the board type. A list of board types is at
\Lib\default.h.

Note that some of the memory areas described here may be non-contiguous (e.g., 2 Flash compiles and the
XMEM code area with separate 1&D). If an application is large enough to span into the non-contiguous
part of an area, the values presented in the Information window for that area are not accurate.

290 rabbit.com Graphical User Interface

http://www.rabbit.com

14.2.9 Help Menu

Click the menu title or press <Alt+H> to select the HELP menu. The choices are given below:

Online Documentation
Opens a browser page and displays a file with linksto other manuals. When installing Dynamic C from
CD, this menu item points to the hard disk; after a Web upgrade of Dynamic C, this menu item option-
ally points to the Web.

Keywords
Opens a browser page and displays an HTML file of Dynamic C keywords, with links to their descrip-

tions in this manual.

Operators
Opens a browser page and displays an HTML file of Dynamic C operators, with links to their descrip-

tions in this manual.

HTML Function Reference
Opens a browser page and displays an HTML file tlat has two links, one to Dynamic C functions listed

alphabetically, the other to the functions listed by functional group. Each function listed is linked to its
description in the Dynamic C Function Reference Manual.

Function Lookup <Ctrl+H>
Displays descriptions for library functions. The keyboard shortcut is <Ctrl+H>.

ELihrauﬂ Function Lookup
Function Search:
[d
_glkenulnit in E:ADC BMLIBNDISPLAY S WGRAPHICWG LMEML.LIB ﬂ +- GPS.LIB ﬂ
_aMenukeppad in E:\DC 8YLIBADISPLAYSWGRAPHICAGLMENU.LIB | 4. GRaPHIC.LIE
gkenuShadow in EADC S8ALIBMDISPLAYSYGRAPHICAWGLMENL.LIE __ HDLC PACKET.LIE
ing in EADC SNLIBATCRIPSICHP.LIE : — : =
_prot_init in EADC SALIBASYS LIB - HTTP.LIE
_prot_recover in E:ADC 8sLIBNSYS.LIB - 12C.LIEB
_zend_ping in E:ADC BALIBATCRIPWCKP.LIB - 120 DEVICES.LIE
_spzleSoftReset in EXADC BMLIBNSYS.LIE El IEM_P' LIE
abz in E:ADC 8ALIBMMATH.LIB T .
acosin EADC BALIBSMATH.LIE - _chk_ping
acat in E:A\DC BALIBVMATH.LIE . e _ping
aczc in EADC 8ALIEMMATH.LIE e send_ping
ADSTEZ0Imt in E:ADC BMSAMPLESASPINVADSFE70LIB sl R b
AD5YEV0Read in EADC 8\SAMPLES SPINADS FEFOLIE j 1] | _h|J
Help | ok Cancel |

Choosing a function is done in one of several ways. You may type the function name in the Function
Search entry box. Notice how both scroll areas underneath the entry box display the first function that
matches what you type. The functions to the left are listed alphabetically, while those on the right are
arranged in a tree format, displaying the libraries alphabetically with their functions collapsed under-
neath. You may scroll either of these two areas and have whatever you select in one area reflected in
the other area and in the text entry box. Click OK or press <Enter> to bring up the Function Descrip-
tion window.

Dynamic C User’s Manuall rabbit.com 291

http://www.rabbit.com

If the cursor is on a function when Help | Function Lookup is selected (or when <Ctrl+H> is pressed)
then the Library Function Lookup dialog is skipped and the Function Description window appears

directly.

ping in E:ADC 85LIBATCPIPAMCHP.LIB

Function Description:

| ping

RETUEN WALUE: 0O successful

Exit

| STNTAZ: int ping(longword host,

<ICHMF.LIE>

JEETWORDS: topip, icmp, ping
DESCRIPTICON: generate an ICHMP request for host. NOTE:

which calls send ping

PARAMETERL: ip address to send ping
PALARAMETERZ : user defined sequence number

1 failed when sending packet
-1 failed because could not resolve host hardware address.

SEE AL3O: _chk ping, sSend ping, ping.e

Browsze

longword sequence nuwber |

thisz is a macro

Help LClose

If you click the Edit button, the Function Description window will close and the library that contains
the function that was in the window will open in an editor window. The cursor will be placed at the

function description of interest.

Clicking on the Browse button will open the Library Function Lookup window to allow you to search
for a new function description. Multiple Function Description windows may be open at the same time.

292

rabbit.com

Graphical User Interface

http://www.rabbit.com

Instruction Set Reference <Alt+F1>
Invokes an on-line help system and disdays the alphabetical list of instuctions for the Rabbit family of

Microprocessors.

I/0 Registers
Invokes an on-line help system that provides the bit values for all of the Rabbit 1/O registers.

Keystrokes
Invokes an on-line help system and displays the keystrokes page. Although a mouse or other pointing

device may be convenient, Dynamic C also supports operation entirely from the keyboard.

Contents
Invokes an on-line help system and displays the contents page. From here view explanations of various

features of Dynamic C.

Tech Support
Opens a browser window to the Rabbit Technical Support Center web page, which contains links to

user forums, downloads for Dynamic C and information about 3rd party software vendors and devel-
opers.

Register Dynamic C
Allows you to register your copy of Dynamic C. A dialog is opened for entering your Dynamic C serial

number. From there you will be guided through the very quick registration process.

Tip of the Day
Brings up a window displaying some useful information about Dynamic C. There is an option to scroll
to another screen of Dynamic C information and an option to disable the feature. This is the same win-
dow that is displayed when Dynamic C initializes.

About
The About command displays the Dynamic C version number and the registered serial number.

Dynamic C User’s Manuall rabbit.com 293

http://www.rabbit.com

294 rabbit.com Graphical User Interface

http://www.rabbit.com

| RABEIT-stg= PRODUCT MANUAL

15. COMMAND LINE INTERFACE

The Dynamic C command line compiler (dccl_cmp . exe) performs the same compilation and program
execution as its GUI counterpart (dcrabxx . exe), but is invoked as a console application from a DOS
window. It is called with a single source file program pathname as the first parameter, followed by optional
case-insensitive switches that alter the default conditions under which the program is run. The results of
the compilation and execution, all errors, warnings and program output, are directed to the console win-
dow and are optionally written or appended to a text file.

Note that the command line compiler resides in the directory where you installed Dynamic C. In the con-
sole window, you need to "cd" into the directory where the command line compiler resides. From
there you must type in the relative path of the sample you want to compile. Quotes are need if
there are spaces in the path. For example,

> c¢d c:\DCRabbit 9.24
> dccl_cmp samples\memory usage.c
> dccl cmp "c:\My Documents\my program.c"

15.1 Default States

The command line compiler uses the values of the environment variables that are in the project file indi-
cated by the -pf switch, or if the -pf switch is not used, the values are taken from default._dcp. For
more information, please see Chapter 16, “Project Files” on page 317.

The command line compiler will compile and run the specified source file. The exception to this is when
the project file “Default Compile Mode” is one of the options which compiles to a .bin file, in which case
the command line compiler will not run the program but will only compile the source to a .bin file. Com-
mand line help displayed to the console with

dccl_cmp
gives a summary of switches with defaults from the default project file, default.dcp, and
dccl_cmp -pf specified _project name.dcp

gives a summary of switches with defaults from the specified project file. All project options including the
default compile mode can be overridden with the switches described in Section 15.4.

15.2 User Input

Applications requiring user input must be called with the -i option:

dccl_cmp myProgram.c -1 myProgramlnputs.txt

where myProgramlnputs. txt is a text file containing the inputs as separate lines, in the order in
which myProgram. c expects them.

Dynamic C User’s Manuall rabbit.com 295

http://www.rabbit.com

15.3 Saving Output to a File

The output consists of all program printf’s as well as all error and warning messages.
Output to a file can be accomplished with the -0 option

dccl_cmp myProgram.c -i myProgramlnputs.txt -o myOutputs.txt
where myOutputs. txt is overwritten if it exists or is created if it does not exist.

If the -0a option is used, myOutputs.txt is appended if it exists or is created if it does not.

15.4 Command Line Switches

Each switch must be separated from the others on the command line with at least one space or tab. Extra
spaces or tabs are ignored. The parameter(s) required by some switches must be added as separate text
immediately following the switch. Any of the parameters requiring a pathname, including the source file
pathname, can have imbedded spaces by enclosing the pathname in quotes.

15.4.1 Switches Without Parameters

-b

Description: Use compile mode: Compile to .bin file using attached target.
Factory Default: Compile mode: Compile to attached target.

GUI Equivalent: Compile program (F5) with Default Compile Mode set to "Compile to .bin file
using attached target" in Compiler tab of Project Options dialog.

-bf-

Description: Undo user-defined BIOS file specification.
Factory Default: None.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Compiler tab of Project Options dialog. Uncheck the “User
Defined BIOS File” checkbox.

-br

Description: Use compile mode: Compile defined target configuration to .bin file
Factory Default: Compile mode: Compile to attached target.

GUI Equivalent: Compile program (F5) with Default Compile Mode set to "Compile defined target
configuration to .bin file" in Compiler tab of Project Options dialog.

296 rabbit.com Command Line Interface

http://www.rabbit.com

-h+

Description: Print program header information.
Factory Default: No header information will be printed.
GUI Equivalent: None.

Example: dccl_cmp samples\demol.c -h -o myoutputs.txt
Header text preceding output of program:
sk sfe sk sk sk sk sk sk ske sk st sk sie sk she sk sk sk sk sk sk sk sie sk sfe sk sk she sk sk sk sk st sk sk sk sk sfe sk sk ste sk sk sk sk sk skeoskeok skeoskokeoskeskok

4/5/01 2:47:16 PM

dccl cmp.exe, Version 7.10P - English
samples\demol.c

Options: -h+ -0 myoutputs.txt
Program outputs:

Note: Version information refers to dcwd . exe with the same compiler core.

-h-

Description: Disable printing of program header information.
Factory Default: No header information will be printed.

GUI Equivalent: None.

-id+
Description: Enable separate instruction and data space.

Factory Default: Separate I&D space is disabled.

GUI Equivalent: Check “Separate Instruction & Data Space” in Project Options | Compiler.

-id-
Description: Disable separate instruction and data space.

Factory Default: Separate I&D space is disabled.

GUI Equivalent: Uncheck “Separate Instruction & Data Space” in the Project Options | Compiler dia-
log box.

-ini

Dynamic C User’s Manuall rabbit.com 297

http://www.rabbit.com

Description:

Factory Default:

GUI Equivalent:

-If-

Description:

Factory Default:

GUI Equivalent:

-mf

Description:

Factory Default:

GUI Equivalent:

-mfr

Description:

Factory Default:
GUI Equivalent:

-mr

Description:

Factory Default:

GUI Equivalent:

Generates inline code for WrPortl1 (), RdPortl (), BitWrPortl () and
BitRdPortl () if all arguments are constants.

No inline code is generated for these functions.

Check “Inline builtin I/O functions” in the Project Options | Compiler dialog box.

Undo Library Directory file specification.
No Library Directory file is specified.

This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Uncheck “User Defined
Lib Directory File.”

Memory BIOS setting: Flash.
Memory BIOS setting: Flash.
Select “Code and BIOS in Flash” in the Project Options | Compiler dialog box.

The BIOS and code are compiled to flash, and then the BIOS copies the flash image
to RAM to run the code.

Memory BIOS setting: Flash

Select “Code and BIOS in Flash, Run in RAM” in the Project Options | Compiler
dialog box.

Memory BIOS setting: RAM.
Memory BIOS setting: Flash.
Select “Code and BIOS in RAM” in the Project Options | Compiler dialog box.

298

rabbit.com Command Line Interface

http://www.rabbit.com

Description:

Factory Default:
GUI Equivalent:

Description:

Factory Default:
GUI Equivalent:

-rb+

Description:

Factory Default:
GUI Equivalent:

-rb-

Description:

Factory Default:
GUI Equivalent:

-rd+

Description:

Factory Default:
GUI Equivalent:

Null compile for errors and warnings without running the program. The program
will be downloaded to the target.

Program is run.

Select Compile | Compile or use the keyboard shortcut <F5>.

Use compile mode: Compile to attached target.
Compile mode: Compile to attached target.

Run program (F9)

Include BIOS when compiling to a file.
BIOS is included if compiling to a file.

This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Check “Include BIOS.”

Do not include BIOS when compiling to a file.
BIOS is included if compiling to a file.

This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Uncheck “Include BIOS.”

Include debug code when compiling to a file.
RST 28 instructions are included

This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Check “Include RST 28
instructions.”

Dynamic C User’s Manual

rabbit.com 299

http://www.rabbit.com

-rd-

Description:

Factory Default:
GUI Equivalent:

-ri+

Description:

Factory Default:
GUI Equivalent:

-ri-

Description:

Factory Default:
GUI Equivalent:

-rp+

Description:

Factory Default:
GUI Equivalent:

rp

Description:

Factory Default:
GUI Equivalent:

Do not include debug code when compiling to a file. This option is ignored if not
compiling to a file.

RST 28 instructions are included.

This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Uncheck “Include RST 28
instructions.”

Enable runtime checking of array indices.
Runtime checking of array indices is performed.

Check “Array Indices” in the Project Options | Compiler dialog box.

Disable runtime checking of array indices.
Runtime checking of array indices is performed.

Uncheck “Array Indices” in the Project Options | Compiler dialog box.

Enable runtime checking of pointers.
Runtime checking of pointers is performed.

Check “Pointers” in the Project Options | Compiler dialog box.

Disable runtime checking of pointers.
Runtime checking of pointers is performed.

Uncheck “Pointers” in the Project Options | Compiler dialog box.

300

rabbit.com Command Line Interface

http://www.rabbit.com

-rw+

Description: Restrict watch expressions—may save root code space.
Factory Default: Allow any expressions in watch expressions.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Check “Restrict watch
expressions . . .”

rW

Description: Don’t restrict watch expressions.
Factory Default: Allow any expressions in watch expressions.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Check “Allow any expres-
sions in watch expressions”

_S p
Description: Optimize code generation for speed.
Factory Default: Optimize for speed.

GUI Equivalent: Choose “Speed” in the Project Options | Compiler dialog box.

-Sz

Description: Optimize code generation for size.
Factory Default: Optimize for speed.

GUI Equivalent: Choose “Size” in the Project Options | Compiler dialog box.

-td+

Description: Enable type demotion checking.
Factory Default: Type demotion checking is performed.

GUI Equivalent: Check “Demotion” in the Project Options | Compiler dialog box.

Dynamic C User’s Manuall rabbit.com 301

http://www.rabbit.com

-td-

Description:

Factory Default:
GUI Equivalent:

_tp-y

Description:

Factory Default:
GUI Equivalent:

tp

Description:

Factory Default:
GUI Equivalent:

-tt+

Description:

Factory Default:
GUI Equivalent:

-tt-

Description:

Factory Default:
GUI Equivalent:

Disable type demotion checking.

Type demotion checking is performed.

Uncheck “Demotion” in the Project Options | Compiler dialog box.

Enable type checking of pointers.
Type checking of pointers is performed.

Check “Pointer” in the Project Options | Compiler dialog box.

Disable type checking of pointers.
Type checking of pointers is performed.

Uncheck “Pointer” in the Project Options | Compiler dialog box.

Enable type checking of prototypes.
Type checking of prototypes is performed.

Check “Prototype” in the Project Options | Compiler dialog box.

Disable type checking of prototypes.
Type checking of prototypes is performed.

Uncheck “Prototype” in the Project Options | Compiler dialog box.

302

rabbit.com

Command Line Interface

http://www.rabbit.com

-vp+

Description:

Factory Default:
GUI Equivalent:

Vp
Description:

Factory Default:
GUI Equivalent:

-wa

Description:
Factory Default:
GUI Equivalent:

-wn

Description:
Factory Default:
GUI Equivalent:

-WSs

Description:
Factory Default:
GUI Equivalent:

Verify the processor by enabling a DSR check. This should be disabled if a check of
the DSR line is incompatible on your system for any reason.

Processor verification is enabled.

Check “Enable Processor verification” in the Project Options | Communications
dialog box.

Assume a valid processor is connected.
Processor verification is enabled.

Uncheck “Enable Processor verification” in the Project Options | Communications
dialog box.

Report all warnings.
All warnings reported.

Select “All” under “Warning Reports™ in the Project Options | Compiler dialog box.

Report no warnings.
All warnings reported.

Select “None” under “Warning Reports” in the Project Options | Compiler dialog
box.

Report only serious warnings.
All warnings reported.

Select “Serious Only” under “Warning Reports” in the Project Options | Compiler
dialog box.

Dynamic C User’s Manuall rabbit.com 303

http://www.rabbit.com

15.4.2 Switches Requiring a Parameter
The following switches require one or more parameters.

-bf BIOSFilePathname

Description: Compile using a BIOS file found in BIOSFi1 lePathname.
Factory Default: \Bios\RabbitBios.c

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio button at
the bottom of the Project Options | Compiler dialog box. Check the box under “User
Defined BIOS File” and then fill in the pathname for the new BIOS file.

Example: dccl_cmp myProgram.c -bf MyPath\MyBIOS.lib

-clf ColdLoaderFilePathname

Description: Compile using cold loader file found in ColdLoaderFilePathname.
Factory Default: \Bios\ColdLoad.bin

GUI Equivalent: None.
Example: dccl_cmp myProgram.c -clf MyPath\MyColdloader.bin

304 rabbit.com Command Line Interface

http://www.rabbit.com

-d MacroDefinition

Description: Define macros and optionally equate to values. The following rules apply
and are shown here with examples and equivalent #deftine form:

Separate macros with semicolons.

dccl_cmp myProgram.c -d DEF1;DEF2
#define DEF1
#define DEF2

A defined macro may be equated to text by separating the defined macro
from the text with an equal sign (=).

dccl_cmp myProgram.c -d DEF1=20;DEF2
#define DEF1 20
#define DEF2

Macro definitions enclosed in quotation marks will be interpreted as a sin-
gle command line parameter.
dccl_cmp myProgram.c -d “DEFl=text with spaces;DEF2”

#define DEF1l text with spaces
#define DEF2

A backslash preceding a character will be kept except for semicolon, quote
and backslash, which keep only the character following the backslash. An
escaped semicolon will not be interpreted as a macro separator and an
escaped quote will not be interpreted as the quote defining the end of a
command line parameter of text.

dccl_cmp myProgram.c -d DEFl=statement\;;ESCQUOTE=\\\"

#define DEF1l statement;

#define ESCQUOTE \~

dccl_cmp myProg.c -d “FSTR = \”Temp = %6.2F DEGREES C\n\””
#define FSTR “Temp = %6.2Ff degrees C\n”

Factory Default: None.

GUI Equivalent: Select the Defines tab from Project Options.

Dynamic C User’s Manuall rabbit.com 305

http://www.rabbit.com

-d- MacroToUndefine

Description: Undefines a macro that might have been defined in the project file. If a
macro is defined in the project file read by the command line compiler and
the same macro name is redefined on the command line, the command line
definition will generate a warning. A macro previously defined must be
undefined with the -d- switch before redefining it. Undefining a macro that
has not been defined has no consequence and so is always safe although
possibly unnecessary. In the example, all compilation settings are taken
from the project file specified except that now the macro MAXCHARS was
first undefined before being redefined.

Factory Default: None.
GUI Equivalent: None.

Example: dccl_cmp myProgram.c -pf myproject -d- MAXCHARS -d MAX-
CHARS=512

-eto EthernetResponseTimeout
Description: Time in milliseconds Dynamic C waits for a response from the target on
any retry while trying to establish Ethernet communication.
Factory Default: 8000 milliseconds.
GUI Equivalent: None.

Example: dccl_cmp myProgram.c -eto 6000

-i InputsFilePathname

Description: Execute a program that requires user input by supplying the input in a text
file. Each input required should be entered into the text file exactly as it
would be when entered into the Stdio Window in dcwd . exe. Extra input
is ignored and missing input causes dccl_cmp to wait for keyboard input
at the command line.

Factory Default: None.
GUI Equivalent: Using -1 is like entering inputs into the Stdio Window.

Example dccl_cmp myProgram.c -i Mylnputs.txt

306 rabbit.com Command Line Interface

http://www.rabbit.com

-If LibrariesFilePathname

Description: Compile using a file found in LibrariesFilePathname which lists all libraries
to be made available to your programs.

Factory Default: Lib.dir.

GUI Equivalent: This is an advanced setting, viewable by clicking on the “Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
the box under “User Defined Lib Directory File” and then fill in the path-
name for the new Lib.dir.

Example dccl_cmp myProgram.c -1 MyPath\MyLibs.txt

-ne maxNumberOfErrors

Description: Change the maximum number of errors reported.
Factory Default: A maximum of 10 errors are reported.

GUI Equivalent: Enter the maximum number of errors to report under “Max Shown” in the
Project Options | Compiler dialog box.

Example: Allows up to 25 errors to be reported:
dccl_cmp myProgram.c -ne 25

-nw maxNumberOfWarnings

Description: Change the maximum number of warnings reported.
Factory Default: A maximum of 10 warnings are reported.

GUI Equivalent: Enter the maximum number of warnings to report under “Max Shown” in
the Project Options | Compiler dialog box.

Example: Allows up to 50 warnings to be reported:

dccl_cmp myProgram.c -nw 50

Dynamic C User’s Manuall rabbit.com 307

http://www.rabbit.com

-0 OutputFilePathname

Description: Write header information (if specified with —h) and all program errors,
warnings and outputs to a text file. If the text file does not exist it will be
created, otherwise it will be overwritten.

Factory Default: None.

GUI Equivalent: Go to Option | Environment Options and select the Debug Windows tab.
Under “Specific Preferences” select “Stdio” and check “Log to File” under
“Options.”

Example dccl_cmp myProgram.c -o MyOutput.txt
dccl_cmp myProgram.c -o MyOutput.txt -h
dccl_cmp myProgram.c -h -o MyOutput.txt

-oa OutputFilePathname

Description: Append header information (if specified with —h) and all program errors,
warnings and outputs to a text file. If the text file does not exist it will be
created, otherwise it will be appended.

Factory Default: None.

GUI Equivalent: Go to Option | Environment Options and select the Debug Windows tab.
Under “Specific Preferences” select “Stdio” and check “Log to File” under
“Options,” then check “Append” and specify the filename.

Example dccl_cmp myProgram.c -oa MyOutput.txt

-pbf PilotBIOSFilePathname

Description: Compile using a pilot BIOS found in Pi lotBIOSFi lePathname.
Factory Default: \Bios\Pilot.bin

GUI Equivalent: None.

Example: dccl_cmp myProgram.c -pbf MyPath\MyPilot.bin

308 rabbit.com Command Line Interface

http://www.rabbit.com

-pf projectFilePathname

Description:

Factory Default:
GUI Equivalent:

Example

Specify a project file to read before the command line switches are read.
The environment settings are taken from the project file specified with -pf,
or default._dcp if no other project file is specified. Any switches on the
command line, regardless of their position relative to the -pf switch, will
override the settings from the project file.

The project file default._dcp.
Select File | Project | Open...

dccl_cmp myProgram.c -ne 25 -pf myProject.dcp
dccl_cmp myProgram.c -ne 25 -pf myProject

Note: The project file extension, . dcp, may be omitted.

-pw TCPPassPhrase

Description:

Factory Default:
GUI Equivalent:

Example:

-ret Retries

Description:

Factory Default:
GUI Equivalent:

Example:

Enter the passphrase required for your TCP/IP connection. If no passphrase
is required this option need not be used.

No passphrase.

Enter the passphrase required at the dialog prompt when compiling over a
TCP/IP connection

dccl_cmp myProgram.c -pw “My passphrase”

The number of times Dynamic C attempts to establish communication if the
given timeout period expires.

3
None.

dccl_cmp myProgram.c -ret 5

Dynamic C User’s Manuall rabbit.com

309

http://www.rabbit.com

-rf RTIFilePathname

Description: Compile to a .bin file using targetless compilation parameters found in RTIFilePath-
name. The resulting compiled file will have the same pathname as the source (- C)
file being compiled, but with a . bin extension.

Factory Default: None.
GUI Equivalent:

Example: dccl _cmp myProgram.c -rf MyTCparameters.rti
dccl_cmp myProgram.c -rf “My Long Pathname\MyTCparameters.rti”
ters.rti”

-rti BoardID:CpulD:CrystalSpeed:RAMSize:FlashSize

Description: Compile to a - bin file using parameters defined in a colon separated for-
mat of BoardID:CpulD:CrystalSpeed:RAMSize:FlashSize. The resulting
compiled file will have the same pathname as the source (- C) file being
compiled, but with a . bIn extension.

BoardID - Hex integer

CpulD - 2000r# or 3000r# where # is the revision number of the CPU.

2000r0: corresponds to IQ2T?
2000r1: corresponds to IQ3T
2000r2: corresponds to 1Q4T
2000r3: corresponds to IQ5T
3000r0: corresponds to IL1T or IZ1T
3000r1: corresponds to IL2T

For backward compatibility, we also support:
2000: corresponds to IQ2T

3000: corresponds to IL1T or IZIT
CrystalSpeed - Base frequency, decimal floating point, in MHz
RAMSize - Decimal, in KBytes
FlashSize - Primary flash, decimal, in KBytes.
Factory Default: None.

GUI Equivalent: Select Options | Project Options | Targetless | Board Selection and choose a
board from the list; then select Compile | Compile to .bin File | Compile to
Flash

Example: dccl_cmp myProgram.c -rti 0x0700:2000r3:11.0592:512:256

a. 1Q*, IL* and IZ* are explained on page 284.

310 rabbit.com Command Line Interface

http://www.rabbit.com

-s Port:Baud:Stopbits

Description:

Factory Default:
GUI Equivalent:

Example:

Use serial transmission with parameters defined in a colon separated format
of Port:Baud:Stopbits:Background Tx.

Port: 1,2,3,4,5,6,7, 8

Baud: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 12800, 14400,
19200, 28800, 38400, 57600, 115200, 128000, 230400, 256000

Stopbits: 1, 2
Include all serial parameters in the prescribed format even if only one is
being changed.

1:115200:1:0

Select the Communications tab of Project Options. Select the “Use Serial
Connection” radio button.

Changing port from default of 1 to 2:
dccl_cmp myProgram.c -s 2:115200:1:0

-sto SerialResponseTimeout

Description:

Factory Default:
GUI Equivalent:

Example:

Time in milliseconds Dynamic C waits for a response from the target on
any retry while trying to establish serial communication.

300 ms.
None.

dccl_cmp myProgram.c -sto 400

Dynamic C User’s Manuall rabbit.com

311

http://www.rabbit.com

-t NetAddress:TcpName:TcpPort

Description: Use TCP with parameters defined in a contiguous colon separated format of
NetAddress:TcpName:TcpPort. Include all parameters even if only one is
being changed.

netAddress: n.n.n.n
tcpName: Text name of TCP port
tepPort: decimal number of TCP port

Factory Default: None.

GUI Equivalent: Select the Communications tab of Project Options. Select the “Use TCP/IP
Connection” radio button.

Example: dccl_cmp myProgram.c -t 10.10.6.138:TCPName:4244

15.5 Examples

The following examples illustrate using multiple command line switches at the same time. If the switches
on the command line are contradictory, such as —mr and —-m¥, the last switch (read left to right) will be
used.

Example 1
In this example, all current settings of default.dcp are used for the compile.

dccl_cmp samples\timerb\timerb.c

Example 2
In this example, all settings of myproject.dcp are used, except timer_b.c is compiled to
timer_b.bin instead of to the target and warnings or errors are written to myouputs. txt.

dccl_cmp samples\timerb\timer_b.c -o myoutputs.txt -b -pf myproject

312 rabbit.com Command Line Interface

http://www.rabbit.com

Example 3

These examples will compile and run myProgram. c with the current settings in default._dcp but
using different defines, displaying up to 50 warnings and capture all output to one file with a header for
each run.

dccl_cmp myProgram.c -d MAXCOUNT=99 -nw 50 -h -0 myOutput.txt
dccl_cmp myProgram.c -d MAXCOUNT=15 -nw 50 -h -oa myOutput.txt
dccl_cmp myProgram.c -d MAXCOUNT=15 -d DEF1 -nw 50 -h -oa myOut-
put.txt

The first run could have used the —o0a option if myOutput. txt were known to not initially exist.
myProgram. c presumably uses a constant MAXCOUNT and contains one or more compiler directives
that react to whether or not DEF1 is defined.

15.6 Command Line RFU

There is also a command line version of the RFU. On the command line specify:

cIRFU SourceFilePathName [options]

where SourceFi lePathName is the path name of the .bin file to load to the connected target. The
options are as follows:

-cl ColdLoaderPathName

Description: Select a new initial loader.
Default: \bios\coldload.bin

RFU GUI From the Setup | Boot Strap Loaders dialog box, type in a pathname or click
Equivalent: on the ellipses radio button to browse for a file.

Example: cIRFU myProgram.bin -cl mylnitialLoader.bin

Dynamic C User’s Manuall rabbit.com 313

http://www.rabbit.com

Description: Run Ethernet discovery to find RabbitLink or RabbitSys-enabled boards on
a local area network (LAN). Don’t load the . bin file. This option is for
information gathering and must appear by itself with no other options and
no binary image file name.

RFU GUI From the Setup | Communications dialog box, click on the “Use TCP/IP
Equivalent: Connection” radio button, then on the “Discover” button.

Example: clRFU -d

-fi Flash.ini PathName

Description: Select a new file that Dynamic C will use to externally define flash.
Default: flash.ini

RFU GUI From the “Choose File Locations...” dialog box, visible by selecting Setup |
Equivalent: File Locations, type in a pathname or click on the ellipses radio button to
browse for a file.

Example: cIRFU myProgram.bin -fi myflash.ini

-pb PilotBiosPathName

Description: Select a new secondary loader.
Default: \bios\pilot.bin

RFU GUI From the Setup | Boot Strap Loaders dialog box, type in a pathname or click
Equivalent: on the ellipses radio button to browse for a file.

Example: cIRFU myProgram.bin -pb mySecondarylLoader.bin

_pW

Description: Passphrase for TCP/IP loader when using a RabbitLink.

Default: RabbitLink always prompts for a passphrase. Press “Enter” if no passphrase
has been set.

RFU GUI None.
Equivalent:

Example: cIRFU -pw mypassphrase

314 rabbit.com Command Line Interface

http://www.rabbit.com

Description:
Default:

RFU GUI
Equivalent:

Example:

Description:
Default:

RFU GUI
Equivalent:

Example:

Description:

Default:

RFU GUI
Equivalent:

Example:

_Vp+

Description:

Default:

RFU GUI
Equivalent:

Example:

-s port:baudrate

Select the comm port and baud rate for the serial connection.
COM1 and 115,200 bps

From the Setup | Communications dialog box, choose values from the Baud
Rate and Comm Port drop-down menus.

cIRFU myProgram.bin -s 2:115200

-t ipAddress:tcpPort

Select the IP address and port.
Serial Connection

From the Setup | Communications dialog box, click on “Use TCP/IP Con-
nection,” then type in the IP address and port for the controller that is
receiving the - bin file.

cIRFU myProgram.bin -t 10.10.1.100:4244

Causes the RFU version number and additional status information to be dis-
played.

Only error messages are displayed.

Status information is displayed by default and there is no option to turn it
off.

cIRFU myProgram.bin -v

Verify the presence of the processor by using the DSR line of the PC serial
connection.

The processor is verified.

From the “Communications Options” dialog box, visible by selecting Setup
| Communications, check the “Enable Processor Detection” option.

cIRFU myProgram.bin -vp+

Dynamic C User’s Manual

rabbit.com

315

http://www.rabbit.com

Vp

Description: Do not verify the presence of the processor.
Default: The processor is verified.
RFU GUI From the “Communications Options” dialog box, visible by selecting
Equivalent: Setup | Communications, uncheck the “Enable Processor Detection” option.
Example: cIRFU myProgram.bin -vp-

-usb+
Description: Enable use of USB to serial converter.
Default: The use of the USB to serial converter is disabled.
RFU GUI From the “Communications Options” dialog box, visible by selecting
Equivalent: Setup | Communications, check the “Use USB to Serial Converter” option.
Example: cIRFU myProgram.bin -usb+

-usb-
Description: Disable use of USB to serial converter.
Default: The use of the USB to serial converter is disabled.
RFU GUI From the “Communications Options” dialog box, visible by selecting
Equivalent: Setup | Communications, uncheck the “Use USB to Serial Converter”

option.

Example: clRFU myProgram.bin -usb-

316 rabbit.com Command Line Interface

http://www.rabbit.com

| RABEIT-stg= PRODUCT MANUAL

16. PROJECT FILES

In Dynamic C, a project is an environment that consists of opened source files, a BIOS file, available
libraries, and the conditions under which the source files will be compiled. Starting with Dynamic C 9.30,

the File Open directory last used will be stored in the project file'. Projects allow different compilation
environments to be separately maintained.

16.1 Project File Names

A project maintains a compilation environment in a file with the extension . dcp.

16.1.1 Factory.dcp

The environment originally shipped from the factory is kept in a project file named factory.dcp. If
Dynamic C cannot find this file, it will be recreated automatically in the Dynamic C exe path. The factory
project can be opened at any time and the environment changed and saved to another project name, but
factory.dcp will not be changed by Dynamic C.

16.1.2 Default.dcp

This default project file is originally a copy of Factory . dcp and will be automatically recreated as such
in the exe path if it cannot be found when Dynamic C opens. The default project will automatically
become the active project with File | Project... | Close.

The default project is special in that the command line compiler will use it for default values unless
another project file is specified with the -pf switch, in which case the settings from the indicated project
will be used.

Please see Chapter 15 for more details on using the command line compiler.

16.1.3 Active Project

Whenever a project is selected, the current project related data is saved to the closing project file, the new
project settings become active, and the (possibly new) BIOS will automatically be recompiled prior to
compiling a source file in the new environment.

The active project can be Factory.dcp, default.dcp or any project you create with
File | Project... | Save As... When Dynamic C opens, itretrieves the last used project, or the default project
if being opened for the first time or if the last used project cannot be found.

If a project is closed with the File | Projects... | Close menu option, the default project, default._dcp,
becomes the active project.

i. If DC is started with a cwd (current working directory) other than the exe directory, the cwd will be used
instead of the one saved in the project file. This can happen if Dynamic C is started from a Windows
shortcut with a specified “starts in” directory.

Dynamic C User’s Manuall rabbit.com 317

http://www.rabbit.com

The active project file name, without path or extension, is always shown in the leftmost panel of the status
bar at the bottom of the Dynamic C main window and is prepended to the Dynamic C version in the title
bar except when the active project is the default project.

Changes made to the compilation environment of Dynamic C are automatically updated to the active proj-
ect, unless the active project is factory.dcp.

16.2 Updating a Project File

Unless the active project is Factory.dcp, changes made in the Project Options dialog will cause the
active project file to be updated immediately:

Opening or closing files will not immediately update the active project file. The project file state of the
recently used files appearing at the bottom of the File menu selection and any opened files in edit windows
will only by updated when the project closes or when File | Projects... | Save is selected. The Message,
Assembly, Memory Dump, Registers and Stack debug windows are not edit windows and will not be
saved in the project file if you exit Dynamic C while debugging.

16.3 Menu Selections

The menu selections for project files are available in the File menu. The choices are the familiar ones: Cre-
ate..., Open..., Save, Save As... and Close.

Choosing File | Project | Open... will bring up a dialog box to select an existing project filename to
become the active project. The environment of the previous project is saved to its project file before it is
replaced (unless the previous project is Factory .dcp). The BIOS will automatically be recompiled
prior to the compilation of a source file within the new environment, which may have a different library
directory file and/or a different BIOS file.

Choosing File | Project... | Save will save the state of the environment to the active project file, including
the state of the recently used filelist and any files open in edit windows. This selection is greyed out if the
active project is Factory .dcp. This option is of limited use since any project changes will be updated
immediately to the file and the state of the recently used filelist and open edit windows will be updated
when the project is closed for any reason.

Choosing File | Project... | Save as... will bring up a dialog box to select a project file name. The file will
be created or, if it exists, it will be overwritten with the current environment settings. This environment
will also be saved to the active project file before it is closed and its copy (the newly created or overwritten
project file) will become active.

Choosing File | Project... | Close first saves the environment to the active project file (unless the active
project is Factory.dcp) and then loads the Dynamic C default project, deFault.dcp, as the active
project. As with Open..., the BIOS will automatically be recompiled prior to the compilation of a source
file within the new environment. The new environment may have a different library directory file and/or a
different BIOS file.

318 rabbit.com Project Files

http://www.rabbit.com

16.4 Command Line Usage

When using the command line compiler, dccl_cmp . exe, a project file is always read. The default proj-
ect, default._dcp, is used automatically unless the project file switch, -pf, specifies another project file
to use. The project settings are read by the command line compiler first even if a-pf switch comes after the
use of other switches, and then all other switches used in the command line are read, which may modify
any of the settings specified by the project file.

The default behavior given for each switch in the command line documentation is with reference to the
Tactory .dcp settings, so the user must be aware of the default state the command line compiler will
actually use. The settings of default.dcp can be shown by entering dccl_cmp alone on the com-
mand line. The defaults for any other project file can be shown by following dccl_cmp by a the project
file switch without a source file. The command:

dccl_cmp
shows the current state of all defaul t.dcp settings. The command:
dccl_cmp -pf myProject
shows the current state of all myProject.dcp settings. And the command:
dccl_cmp myProgram.c -ne 25 -pf myProject
reads myProject.dcp, then compiles and runs myProgram. c, showing a maximum of 25 errors.

The command line compiler, unlike Dynamic C, never updates the project file it uses. Any changes desired
to a project file to be used by the command line compiler can be made within Dynamic C or changed by
hand with an editor.

Making changes by hand should be done with caution. Use an editor that does not introduce carriage
returns or line feeds with wordwrap, which may be a problem if the global defines or any file pathnames
are lengthy strings. Be careful to not change any of the section names in brackets or any of the key phrases
up to and including the “=."

If a macro is defined on the command line with the -d switch, any value that may have been defined within
the project file used will be overwritten without warning or error. Undefining a macro with the -d- switch
has no consequence if it was not previously defined.

Dynamic C User’s Manuall rabbit.com 319

http://www.rabbit.com

320 rabbit.com Project Files

http://www.rabbit.com

| RABEIT-stg= PRODUCT MANUAL

17. HINTS AND TIPS

This chapter offers hints on how to speed up an application and how to store persistent data at run time.

17.1 A User-Defined BIOS

Before discussing a user-defined BIOS, we will review the history of the Rabbit BIOS. Dynamic C 9.30
introduced a reorganization of the BIOS. Prior to 9.30, RabbitB10S . c contained all the BIOS code and
a variety of configuration macros. Now, RabbitBI10S . c is a wrapper that permits a choice of which
BIOS to compile. In addition, a more modular design has been implemented by moving many of the con-
figuration macros to separate configuration libraries. The new BIOS file and configuration libraries are
located in LIB\BIOSL IB. Table 17-1 lists the new files and gives a brief description of their content.

Table 17-1. BIOS File and Configuration Libraries

File Name Description

STDBI0S.C Most of the code from RabbitBI0S . c was
moved here.

CLONECONFIG.LIB Macros for configuring cloning.

DKCONFIG.LIB Macros for configuring the debug kernel

ERRLOGCONFIG.LIB Macros for configuring non-RabbitSys error
logging. RabbitSys has its own error logging
method.

MEMCONFIG.LIB Macros for configuring memory organization.

SYSCONFIG.LIB Macros for other system-level configuration
options, such as the clock doubler and the
specturm spreader.

TWOPROGRAMCONFIG.LIB |Macros for configuring split memory for the old-
style DLM/DLP.

FATCONFIG.LIB Macros for configuring the FAT file system.

To create a user-defined BIOS prior to Dynamic C 9.30, begin with a copy of RABBITB10S . C. Starting
with Dynamic C 9.30, begin with a copy of STDB10S . C. Modify the BIOS file. It is prudent to save
RABBITBI10S.C or STDBI0OS.C as is and rename the modified file.

The Dynamic C GUI offers an option for hooking a user-defined BIOS into the system. See the description
of the “Advanced... Button” in Section 14.2.7 for details on using this GUI option. Prior to Dynamic C
9.30, this GUI option was the easiest way to accomplish the goal. If you are using Dynamic C 9.30 or later
and if you use the GUI option to hook in your BIOS, you will need to consider the configuration files and
associated macros described in Table 17-1.

Dynamic C User’s Manuall rabbit.com 321

http://www.rabbit.com

The suggested method to use with Dynamic C 9.30 or later involves editing the file RABBITBI0S.C to
include the user-defined BIOS file. To do so, find the “#if RABBITSYS == 0” statement and modify the
code as follows:

#if MYBIOS ==
#use “mybios.c”
#elift _ RABBITSYS ==
#use “STDBI10S.C”
#elif _ RABBITSYS ==
#use “sysBI10S.C”
#else
#use’rkBI10S.c”
#endif

To select the customized BIOS, define “MYBIOS = 1” in the Defines tab of the Options | Project Options
dialog box.

17.2 Efficiency

There are a number of methods that can be used to reduce the size of a program, or to increase its speed.
Let’s look at the events that occur when a program enters a function.

= The function saves IX on the stack and makes IX the stack frame reference pointer (if the program is in
the use i X mode).

= The function creates stack space for auto variables.
= The function sets up stack corruption checks if stack checking is enabled (on).

* The program notifies Dynamic C of the entry to the function so that single stepping modes can be
resolved (if in debug mode).

The last two consume significant execution time and are eliminated when stack checking is disabled or if
the debug mode is off.

17.2.1 Nodebug Keyword

When the PC is connected to a target controller with Dynamic C running, the normal code and debugging
features are enabled. Dynamic C places an RST 28H instruction at the beginning of each C statement to
provide locations for breakpoints. This allows the programmer to single step through the program or to set
breakpoints. (It is possible to single step through assembly code at any time.) During debugging there is
additional overhead for entry and exit bookkeeping, and for checking array bounds, stack corruption, and
pointer stores. These “jumps” to the debugger consume one byte of code space and also require execution
time for each statement.

At some point, the Dynamic C program will be debugged and can run on the target controller without the
Dynamic C debugger. This saves on overhead when the program is executing. The nodebug keyword is
used in the function declaration to remove the extra debugging instructions and checks.

nodebug Int myfunc(int x, int z){

}

322 rabbit.com Hints and Tips

http://www.rabbit.com

If programs are executing on the target controller with the debugging instructions present, but without
Dynamic C attached, the call to the function that handles RST 28H instructions in the vector table will be
replaced by a simple ret instruction for Rabbit 2000 based targets. For Rabbit 3000 based targets, the RST
28H instruction is treated as a NOP by the processor when in debug mode. The target controller will work,
but its performance will not be as good as when the nodebug keyword is used.

If the nodebug option is used for the main() function, the program will begin to execute as soon as it fin-
ishes compiling (as long as the program is not compiling to a file).

Use the directive #nodebug anywhere within the program to enable nodebug for all statements follow-
ing the directive. The #debug directive has the opposite effect.

Assembly code blocks are nodebug by default, even when they occur inside C functions that are marked
debug, therefore using the nodebug keyword with the #asm directive is usually unnecessary.

17.2.2 In-line I/O

The built-in I/O functions WrPortl1 (), RdPortl (), BitWrPortl () and BitRdPortl()) can be
generated as efficient in-line code instead of function calls. All arguments must be constant. A normal
function call is generated if the I/O function is called with any non-constant arguments. To enable in-line
code generation for the built-in I/O functions check the option “Inline builtin I/O functions” in the Com-
piler dialog, which is accessible by clicking the Compiler tab in the Project Options dialog.

17.3 Run-time Storage of Data

Data that will never change in a program can be put in flash by initializing it in the declarations. The com-
piler will put this data in flash. See the description of the const, xdata, and Xstring keywords for
more information.

If data must be stored at run-time and persist between power cycles, there are several ways to do this using
Dynamic C functions:

= User Block - Recommended method for storing non-file data. Factory-stored calibration constants live
in the User block for boards with analog I/O. Space here is limited to as small as (8K-
sizeof(SysIDBlock)) bytes, or less if there are calibration constants. For specific information
about the User block on your board, open the sample programs userblock_info.c and/or
idblock_report.c. The latter program will print, among other things, the location of the
User block.

= Flash File System - The file system is best for storing data that must be organized into files, or data
that won’t fit in the User block. It is best used on a second flash chip. It is not possible to use a second
flash for both extra program code that doesn’t fit into the first flash, and the file system. The macro
USE_2NDFLASH_CODE must be uncommented in the BIOS to allow programs to grow into the sec-
ond flash; this precludes the use of the file system.

= WriteFlash2 - This function is provided for writing arbitrary amounts of data directly to arbitrary
addresses in the second flash.

Dynamic C User’s Manuall rabbit.com 323

http://www.rabbit.com

= Battery-Backed RAM - Storing data here is as easy as assigning values to global variables or local
static variables. The file system can also be configured to use RAM.

The life of a battery on a Rabbit board is specified in the user’s manual for that board; some boards have
batteries that last several years, most board have batteries that come close to or surpass the shelf-life of
the battery. If it is important that battery-backed data not be lost during a battery failure, know how long
your battery will last and plan accordingly.

17.3.1 User Block

The User block is an area near the top of flash reserved for run-time storage of persistent data and calibra-
tion constants. The size of the User block can be read in the global structure member
SyslIDBlock.userBlockSize. The functions readUserBlock() and writeUserBlock()
are used to access the User block. These function take an offset into the block as a parameter. The highest
offset available to the user in the User block will be

SysIDBlock.userBlockSize-1

if there are no calibration constants, or

DAC_CALIB_ADDR-1

if there are.

See the Rabbit designer’s handbook for more details about the User block.

17.3.2 Flash File System

For a complete discussion of the file system, please see Chapter 10, “File Systems.”

17.3.3 WriteFlash2
See the Dynamic C Function Reference Manual for a complete description.

NOTE: There is aWriteFlash() function available for writing to the first flash,
but its use is highly discouraged for reasons of forward source and binary compatibil-
ity should flash sector configuration change drastically in a product. For more infor-
mation on flash compatibility issues, see technical notes TN216 “Is your Application
Ready for Large Sector Flash?” and TN217 “Binary and Source Compatibility Issues
for 4K Flash Sector Sizes” at Rabbit’s website: rabbit.com..

17.3.4 Battery-Backed RAM

Static variables and global variables will always be located at the same addresses between power cycles
and can only change locations via recompilation. The file system can be configured to use RAM also.
While there may be applications where storing persistent data in RAM is acceptable, for example a data
logger where the data gets retrieved and the battery checked periodically, keep in mind that a programming
error such as an uninitialized pointer could cause RAM data to be corrupted.

xalloc() will allocate blocks of RAM in extended memory. It will allocate the blocks consistently from
the same physical address if done at the beginning of the program and the program is not recompiled.

324 rabbit.com Hints and Tips

http://www.rabbit.com
http://www.rabbitsemiconductor.com/support/techNotes_whitePapers.shtml

17.4 Root Memory Reduction Tips

Customers with programs that are near the limits of root code and/or root data space usage will be inter-
ested in these tips for saving root space. For more help, see Technical Note TN238 “Rabbit Memory Usage
Tips.” This document is available at: rabbit.com, or by choosing Online Documentation from within the
Help menu of Dynamic C.

17.4.1 Increasing Root Code Space
Increasing the available amount of root code space may be done in the following ways:

= Enable Separate Instruction and Data Space

A hardware memory management scheme that uses address line inversion to double the amount of logi-
cal address space in the base and data segments is enabled on the Compiler tab of the Options | Project

Options dialog. Enabling separate I&D space doubles the amount of root cod and root data available for
an application program.

= Use #memmap xmem

This will cause C functions that are not explicitly declared as “root” to be placed in xmem. Note that the
only reason to locate a C function in root is lecause it modifies the XPC register (in embedded assembly
code), or it is an ISR. The only performance difference in running code in xmem is in getting there and
returning. It takes a total of 12 additional machine cycles because of the differences between
call/lIcall,and ret/Iret.

« |ncrease DATAORG

The macro DATAORG is the beginning logical address for the data segment.

Root code space can be increased by increasing DATAORG in the BIOS (in RabbitBios. c prior to
Dynamic C version 9.30 or in StdB10S . ¢ thereafter) in increments of 0x1000. The default is 0x3000
when separate I&D space is on, and 0x6000 otherwise. It can be as high as 0xB000.

When separate 1&D space is on, DATAORG defines the boundary between root variable data and root
constant data. In this case, increasing DATAORG increases root constant space and decreases root vari-
able space.

When separate 1&D space is off, DATAORG defines the boundary between root variable data and the
combination of root code and root constant data. Note that root constants are in the base segment with
root code. In this case, increasing DATAORG increases root code and root constant space and decreases
root data space.

= Compile out floating point support

Floating point support can be conditionally compiled out of stdio. 1 ib by adding #define
STDI1O_DISABLE_FLOATS to either a user program or the Defines tab page in the Project Options
dialog. This can save several thousand bytes of code space.

Dynamic C User’s Manuall rabbit.com 325

http://www.rabbit.com/support/techNotes_whitePapers.shtml
http://www.rabbit.com

= Reduce usage of root constants and string literals

Shortening literal strings and reusing them will save root space. The compiler automatically reuses iden-
tical string literals.
These two statements :

printf (“This is a literal string”);

sprintf (buf, “This is a literal string”);

will share the same literal string space whereas:
sprintf (buf, “this i1s a literal string”);

will use its own space since the string is different.

= Use xdata to declare large tables of initialized data

If you have large tables of initialized data, consider using the keyword xdata to declare them. The disad-
vantage is that data cannot be accessed directly with pointers. The function Xxmem2root() allows
xdata to be copied to a root buffer when needed.

// This uses root code space
const int root_tbl[8]={300,301,302,103,304,305,306,307};

// This does not
xdata xdata_table {300,301,302,103,304,305,306,307};

main(Q{

// this only uses temporary stack space
auto int table[8];

xmem2root(table, xdata_table, 16);
// now the xmem data can be accessed via a 16 bit pointer into the table

}

Both methods, const and xdata, create initialized data in flash at compile time, so the data cannot be
rewritten directly.

= Use xstring to declare a table of strings

The keyword Xstring declares a table of strings in extended flash memory. The disadvantage is that
the strings cannot be accessed directly with pointers, since the table entries are 20-bit physical
addresses. As illustrated above, the function xmem2root () may be used to store the table in tempo-
rary stack space.

// This uses root code space

const char * name[] = {“string_17, . . . “string_n"};

// This does not
xstring name {“string_17, . . . “string_n};

Both methods, const and Xstring, create initialized data in flash atcompile time, so the data cannot
be rewritten directly.

= Turn off selected debugging features

Watch expressions, breakpoints, and single stepping can be selectively disabled on the Debugger tab of
Project Options to save some root code space.

326 rabbit.com Hints and Tips

http://www.rabbit.com

= Place assembly language code into xmem

Pure assembly language code functions can go into xmem.
#asm
foo_root::
[some instructions]
ret
#endasm

The same function in xmem:
#asm xmem
foo_xmem: :
[some instructions]
Iret ; use Iretinstead of ret
#endasm

The correct calls are call foo_root and Ilcall Too_xmem. If the assembly function modifies
the XPC register with
LD XPC, A

it should not be placed in xmem. If it accesses data on the stack directly, the data will be one byte away
from where it would be with a root function because Ical I pushes the value of XPC onto the stack.

17.4.2 Increasing Root Data Space
Increasing the available amount of root data space may be done in the following ways:

= Enable Separate Instruction and Data Space

A hardware memory management scheme that uses address line inversion to double the amount of logi-
cal address space in the base and data segments is enabled on the Compiler tab of the Options | Project
Options dialog. Enabling separate 1&D space doubles the amount of root code and root data available
for an application program.

= Decrease DATAORG

The macro DATAORG is the beginning logical address for the data segment.

Root data space can be increased by decreasing DATAORG in the BIOS (in RabbitBios. c prior to
Dynamic C version 9.30 or in StdB10S. ¢ thereafter) in increments of 0x1000. At the time of this
writing, RAM compiles should be done with no less than the default value (0x6000) of DATAORG when
separate 1&D space is off. This restriction is to ensure that the pilot BIOS does not overwrite itself.

When separate 1&D space is on, DATAORG defines the boundary between root variable data and root
constant data. In this case, decreasing DATAORG increases root variable space and descreases root con-
stant space.

When separate 1&D space is off, DATAORG defines the boundary between root variable data and the
combination of root code and root constant data. Note that root constants are in the base segment with
root code. In this case, decreasing DATAORG increases root data space and decreases root code space.

= Use xmem for large RAM buffers

xal loc() can be used to allocate chunks of RAM in extended memory. The memory cannot be
accessed by a 16 bit pointer, so using it can be more difficult. The functions xmem2root() and
root2xmem() are available for moving from root to xmem and xmem to root. Large buffers used by
Dynamic C libraries are already allocated from RAM in extended memory.

Dynamic C User’s Manuall rabbit.com 327

http://www.rabbit.com

328 rabbit.com Hints and Tips

http://www.rabbit.com

RABBIT o=

PRODUCT MANUAL

APPENDIX A. MACROS AND GLOBAL

VARIABLES

This appendix contains descriptions of macros and global variables available in Dynamic C. This is not an

exhaustive list.

A.1 Macros Defined by the Compiler

The macros in the following table are defined internally. Default values are given where applicable, as well

as directions for changing values.

Table A-1. Macros Defined by the Compiler

Macro Name

Definition and Default

BIOSBAUD

This is the debug baud rate. The baud rate can be changed in the
Communications tab of Project Options.

_BOARD_TYPE_

This is read from the System ID block or defaulted to 0x100 (the
BL1810 JackRabbit board) if no System ID block is present. This can be
used for conditional compilation based on board type. Board types are
listed in boardtypes. lib.

_CPU_ID_

This macro identifies the CPU type, including its revision; e.g.,
#if _CPU_ID_ >= R3000_R1
will identify a Rabbit 3000 rev. 1 or newer chip

Look in \Lib\. .\BIOSLIB\sysiodefs. 1ib for the constants
and mask macros that are defined for use with _CPU_ID_.

CC_VER

Gives the Dynamic C version in hex, i.e., version 7.05 is 0x0705.

DC_CRC_PTR

Reserved.

___DATE__

The compiler substitutes this macro with the date that the file was
compiled (either the BIOS or the . C file). The character string literal is of
the form Mmm dd yyyy. The days of the month are as follows: "Jan,"
"Feb’H "Mar’" HApr’" "May’" "Jun’" "JUI’H "Aug," "sep," HOct," "NOV,"
"Dec." There is a space as the first character of dd if the value is less than
10.

DEBUG_RST

Go to the Compiler tab of Project Options and click on the “Advanced”
button at the bottom of the dialog box. Check “Include RST 28
instructions” to set DEBUG_RST to 1. Debug code will be included
even if #nodebug precedes the main function in the program.

Dynamic C User’s Manual

rabbit.com 329

http://www.rabbit.com

Table A-1. Macros Defined by the Compiler

Macro Name

Definition and Default

__FILE__

The compiler substitutes this macro with the current source code file
name as a character string literal.

_FAST_RAM_

FLASH

RAM

These are used for conditional compilation of the BIOS to distinguish
between the three options:

* compiling to and running in flash

* compiling to and running in RAM

* compiling to flash and running in RAM
The choice is made in the Compiler tab of Project Options. The default
is compiling to and running in flash.
The BIOS defines FAST_RAM_COMPILE, FLASH_COMP ILE and
RAM_COMP ILE. These macros are defined to O or 1 as opposed to the
corresponding compiler-defined macros which are either defined or not
defined. This difference makes possible statements such as:

#i1T FLASH_COMPILE || FAST_RAM_COMPILE

Setting FAST_RAM_COMP I LE limits the flash file system size to the
smaller of the following two values: 256K less the SystemID/User
Blocks reserved area; the sum of the completely available flash sectors
between the application code/constants and the SystemID/User Blocks
reserved area.

_FLASH_SIZE_

_RAM_SIZE_

These are used to set the MMU registers and code and data sizes
available to the compilet The values of the macros are the number of 4K
blocks of memory available.

__LINE__

The compiler substitutes this macro with the current source code line
number as a decimal constant.

NO_B10S

Boolean value. Tells the compiler whether or not to include the BIOS
when compiling to a .bin file. This is an advanced compiler option
accessible by clicking the “Advanced” button on the Compiler tab in
Project Options.

_TARGETLESS_COMPILE_

Boolean value. It defaults to 0. Set it by selecting “Compile defined
target configuration to .bin file” under “Default Compile Mode,” in the
Compiler tab of Project Options.

_ TIME__

The compiler substitutes this macro with the time that the file (BIOS or
- ¢) was compiled. The character string literal is of the form hh-mm:ss.

330

rabbit.com

http://www.rabbit.com

A.2 Macros Defined in the BIOS or Configuration Libraries

This is not a comprehensive list of configuration macros, but rather, a short list of those found to be com-
monly used by Dynamic C programmers. Most default conditions can be overridden by defining the macro
in the “Defines” tab of the “Project Options” dialog.

All the configuration macros listed here were defined in Rabb 1 €B10S . ¢ prior to Dynamic C 9.30. Since
then many of them have been moved to configuration libraries while RabbitB10S. ¢ has become a
wrapper file that permits a choice of which BIOS to compile. See Section 17.1 for more information on the
reorganization of the BIOS that occured with Dynamic C 9.30.

CLOCK_DOUBLED

Determines whether or not to use the clock doubler. The default condition is to use the clock doubler,
defined in \BIOSL I1B\sysconfTig. lib. Override the default condition by defining
CLOCK_DOUBLED to “0” in an application or in the project.

DATAORG

Defines the beginning logical address for the data segment. Defaults are defined in the BIOS: 0x3000 if
separate I&D space enabled, 0x6000 otherwise. Users can override the defaults in the Defines tab of Proj-
ect Options dialog.

WATCHCODESI1ZE

Specifies the number of root RAM bytes for watch code. Defaults are defined in the BIOS: 0x200 bytes if
watch expressions are enabled, zero bytes otherwise. The defaults cannot be overridden by an application.

USE_TIMERA_PRESCALE

Uncomment this macro in \BI10SL IB\sysconfig. c to run the peripheral clock at the same frequency
as the CPU clock instead of the standard “CPU clock/2.” This feature is not compatible with the Rabbit
2000.

USE_2NDFLASH_CODE

Uncomment this macro in \BIOSLIB\sysconfig. c only if you have a a board with two 256K
flashes, and you want to use the second flash for extra code space. The file system (FS2) is not compatible
with using the second flash for code.

Dynamic C User’s Manuall rabbit.com 331

http://www.rabbit.com

A.3 Global Variables

These variables may be read by any Dynamic C application program.

dc_timestamp

This internally-defined long is the number of seconds that have passed since 00:00:00 January 1, 1980,
Greenwich Mean Time (GMT) adjusted by the current time zone and daylight savings of the PC on which
the program was compiled. The recorded time indicates when the program finished compiling. The follow-
ing program will use dc_timestamp to help calculate the date and time.

printf(*'The date and time: %Ix\n", dc_timestamp);

main(Q{
struct tm t;

printf('dc_timestamp = %Ix\n', dc_timestamp);
mktm(&t, dc_timestamp);

printf(""%2d/%02d/%4d %02d:%02d:%02d\n"",
t.tm_mon,t.tm _mday,t.tm year + 1900, t.tm _hour,t.tm min,
t.tm_sec);

}

OPMODE

This is a char. It can have the following values:
* (x88 = debug mode

e (0x80 =run mode

SEC_TIMER

This unsigned long variable is initialized to the value of the real-time clock (RTC). If the RTC is set cor-
rectly, this is the number of seconds that have elapsed since the reference date of January 1, 1980. The
periodic interrupt updates SEC_TIMER every second. This variable is initialized by the Virtual Driver
when a program starts.

MS_TIMER

This unsigned long variable is initialized to zero. The periodic interrupt updates MS_T IMER every milli-
second. This variable is initialized by the Virtual Driver when a program starts.

TICK_TIMER

This unsigned long variable is initialized to zero. The periodic interrupt updates TICK_TIMER 1024
times per second. This variable is initialized by the Virtual Driver when a program starts.

332 rabbit.com

http://www.rabbit.com

A.4 Exception Types

These macros are defined in errors. lib:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

ERR_BADPOINTER
ERR_BADARRAY INDEX
ERR_DOMAIN
ERR_RANGE
ERR_FLOATOVERFLOW
ERR_LONGDIVBYZERO
ERR_LONGZEROMODULUS
ERR_BADPARAMETER
ERR_INTDIVBYZERO
ERR_UNEXPECTEDINTRPT
ERR_CORRUPTEDCODATA
ERR_VIRTWDOGT IMEOUT
ERR_BADXALLOC
ERR_BADSTACKALLOC
ERR_BADSTACKDEALLOC
ERR_BADXALLOCINIT
ERR_NOVIRTWDOGAVAIL
ERR_INVAL1DMACADDR
ERR_INVALIDCOFUNC

A.5 Rabbit Registers

Macros are defined for all of the Rabbit registers that are accessible for application programming. A list of
these register macros can be found in the user’s manuals for the Rabbit microprocessor, as well as in the
Rabbit Registers file accessible from the Dynamic C Help menu.

A.5.1 Shadow Registers

Shadow registers exist for many ofthe I/O registers. They are character variables defined in the BIOS. The
naming convention for shadow registers is to append the word Shadow to the name of the register. For

example, the global control status register, GCSR, has a corresponding shadow register named

GCSRShadow

228
229
234
235
236
237
238
239
240
241
243
244
245
246
247
249
250
251
252

The purpose of the shadow registers is to allow the program to reference the last value programmed to the

actual register. This is needed because a number of the registers are write only.

Dynamic C User’s Manual

rabbit.com

333

http://www.rabbit.com

334 rabbit.com

http://www.rabbit.com

PRODUCT MANUAL

APPENDIX B. MAP FILE GENERATION

All symbol information is put into a single file. The map file has three sections: a memory map section, a
function section, and a globals section.

The map file format is designed to be easy to read, but with parsing in mind for use in program down-load-
ers and in other possible future utlities (for example, an independent debugger). Also, the memory map, as
defined by the #0r(statements, will be saved into the map file.

Map files are generated in the same directory as the file that is compiled. If compilation is not successful,
the contents of the map file are not reliable.

B.1 Grammar

<mapfile>: <memmap section> <function section> <global section>
<memmap section>: <memmapreg>+
<memmapreg>: <register var> = <8-bit const>
<register var>: XPC|SEGSIZE|DATASEG

<function section>: <function descripton>+

<function description>: <identifier> <address> <size>
<address>: <logical address> | <physical address>
<logical address>: <16-bit constant>

<physical address: <8-bit constant>:<16-bit constant>
<size>: <20-bit constant>

<global section>: <global description>+

<global description>: <scoped name> <address>
<scoped name>: <global>| <local static>

<global>: <identifier>

<local static>: <identifier>:<identifier>

Comments are C++ style (// only).

Dynamic C User’s Manuall rabbit.com 335

http://www.rabbit.com

336 rabbit.com

http://www.rabbit.com

| RABEIT-stg= PRODUCT MANUAL

APPENDIX C. SECURITY SOFTWARE &
UTILITY PROGRAMS

This appendix documents the security software and utility programs available for Rabbit-based systems.
The security software is called the Rabbit Embedded Security Pack. It is summarized in Section C.1. There
are several Dynamic C utilities, each one described in Section C.2.

C.1 Rabbit Embedded Security Pack

The Rabbit Embedded Security Pack is composed of AES and SSL functionality. It is available for pur-
chase on the Rabibt website:

www . rabbit.com/products/dc/index.shtml

Documentation for the security pack is also available online:

www . rabbit.com/products/dc/DC9/docs.shtml

C.1.1 AES

Advanced Encryption Standard (AES) is an implementation of the Rijndael Advanced Encryption Stan-
dard cipher with 128 bit key. This is useful for encrypting sensitive data to be sent over unsecured network
paths.

C.1.2 SSL

Secure Sockets Layer (SSL) is a security protocol that transforms a typical reliable transport protocol
(such as TCP) into a secure communications channel for conducting sensitive transactions. The SSL proto-
col defines the methods by which a secure communications channel can be established—it does not indi-
cate which cryptographic algorithms to use. SSL supports many different algorithms, and serves as a
framework whereby cryptography can be used in a convenient and distributed manner.

Dynamic C User’s Manuall rabbit.com 337

http://www.rabbit.com/products/dc/index.shtml
http://www.rabbit.com/products/dc/DC9/docs.shtml
http://www.rabbit.com

C.2 Dynamic C Utilities

There are several utilities bundled with Dynamic C.

C.2.1 Library File Encryption
The Library File Encryption Utility, Encrypt.exe, allows distribution of sensitive runtime library files.

The encrypted library files compile normally, but cannot be read with an editor. The files will be automati-
cally decrypted during Dynamic C compilation, but users of Dynamic C will not be able to see any of the
decrypted contents except for function descriptions for which a public interface is given. An optional user-
defined copyright notice is put at the beginning of an encrypted file.

To use this utility, double-click on the program name, Encrypt.exe. The following window will
appear:

EE_E‘]‘ Encrypt Dynamic C Library Files

Add Filez to Encrypt ? Help

O ptional copyright notice to put at ztart of each enciypted file:

File[z) to encpt and save with extension Ielib

Complete instructions are available by clicking on the Help button in the upper righthand corner of the
program window. Context-sensitive help is accessed by positioning the cursor over the desired subject and
then pressing <F1>.

C.2.1.1 Add Files to Encrypt
There are two ways to select files to encrypt.

1. Type the path and filename in the lower window.

2. Click the Add Files to Encrypt button to bring up a file open dialog box and browse for the desired file.

The list of files to be encrypted may be edited if desired. Notice that if anything is entered in the lower
window, a new button named “Encrypt” appears. Two entries in the window change it to “Encrypt All”.
Clicking this button causes the utility to encrypt the file(s) listed in the lower window.

338 rabbit.com

http://www.rabbit.com

C.2.1.2 File Extension

Encrypted files will be saved with the same pathname but with the extension supplied. Dynamic C will use
encrypted and non-encrypted files seamlessly, so the choice of extension is for one’s own file manage-
ment.

C.2.1.3 Optional Text Area

The upper window is a text window of up to 4k bytes in length. Any text entered will appear in all files in
the list appearing in the lower window. If two files are to be given unique headers, they should be
encrypted separately.

This area can be used for copyright information, instructions, disclaimers, warnings, or anything else rele-
vant to viewers of the file.

C.2.2 File Compression Utility

Dynamic C has a compression utility feature. The default utility implements an LZSS style compression
algorithm. Support libraries to decompress files achieve a throughput of 10 KB/s to 20 KB/s (number of
bytes in uncompressed file/time to decompress entire file using ReadCompressedFi le()) depending
upon file size and compression ratio.

The #zimport() compiler directive performs a standard #X import, but compresses the file by invok-
ing the compression utility before emitting the file to the target. Support libraries allow the compressed file
to be decompressed on-the-fly. Compression ratios of 50% or more for text files can be achieved, thus
freeing up valuable xmem space. The compression library is thread safe.

For details on compression ratios, memory usage and performance, please see Technical Note 234, “File
Compression (Using #zimport)” available on our website, at www.rabbit.com.

C.2.2.1 Using the File Compression Utility

The utility is invoked by Dynamic C during compile time when #z import is used. The keyword
#zimport will compress any file. Of course some files are already in a compressed format, for example
jpeg files, so trying to compress them further is not useful and may even cause the resulting compressed
file to be larger than the original file. (The original file is not modified by the compression utility nor by
the support libraries.) The compression of FS2 files is a special case. Instead of using #zimport,
#ximport is used along with the function CompressFile().

Compressed files are decompressed on-the-fly using ReadCompressedFi le(). Compressed FS2 files
may also be decompressed on-the-fly by usingReadCompressedFile(). In addition, an FS2 file may
be decompressed into a new FS2 file by using DecompressFile().

There are 3 sample programs to illustrate the use of file compression
e Samples/zimport/zimport.c: demonstrates #zimport

e Samples/zimport/zimport_fs2.c: demonstrates file compression in combination with the
file system

= Samples/tcpip/http/zimport.c: demonstrates file compression support using the http server

Dynamic C User’s Manuall rabbit.com 339

http://www.rabbitsemiconductor.com/support/techNotes_whitePapers.shtml
http://www.rabbit.com

C.2.2.2 File Compression/Decompression API
The file compression API consists of 7 functions, 3 of which are of prime importance:

OpenlInputCompressedFile() - open a compressed file for reading or open an uncom-
pressed #ximport file for compression.

CloselnputCompressedFile() - close input file and deallocate memory buffers.
ReadCompressedFile() - perform on-the-fly decompression.

The remaining 4 functions are included for compression support for FS2 files:

OpenOutputCompressedFile() - open FS2 file for use with CompressFile().
CloseOutputCompressedFile() - close file and deallocate memory buffers.
CompressFile() - compress an FS2 file, placing the result in a second FS2 file.
DecompressFile() - decompress an FS2 file, placing the result in a second FS2 file.

Complete descriptions are available for these functions in the Dynamic C Function Reference Manual and
also via the Function Lookup facility (Ctrl+H or Help menu).

There are several macros associated with the file compression utility:

= ZIMPORT_MASK - Used to determine if the imported file is compressed (#zimport) or not
(#ximport).

e QUTPUT_COMPRESSION_BUFFERS (default = 0) - Number of 24K buffers for compression (com-
pression also requires a 4K input buffer, which is allocated automatically for each output buffer that is
defined).

« INPUT_COMPRESSI0ON_BUFFERS (default = 1) Number of 4KB internal buffers (in RAM) used for
decompression.

Each compressed file has an associated file descriptor of type ZFILE. All fields in this structure are used
internally and must not be changed by an application program.

C.2.2.3 Replacing the File Compression Utility

Users can use their own compression utility, replacing the one provided. If the provided compression util-
ity is replaced, the following support libraries will also need to be replaced: zimport.Lib, lzss_lib
and bitio. lib. They are located in 11b\ . . \zimport\. The default compression utility,
Zcompress.exe, is located in Dynamic C’s root directory. The utility name is defined by a key in the
current project file:

[Compression Utility]
Zimport External Utility=Zcompress.exe

To replace Zcompress . exe as the utility used by Dynamic C for compression, open your project file
and edit the filename.

340 rabbit.com

http://www.rabbit.com

The compression utility must reside in the same diectory as the Dynamic C compiler executable. Dynamic
C expects the program to behave as follows:

* Take as input a file name relative to the Dynamic C installation directory or a fully qualified path.

= Produce an output file of the same name as the input file with the extension .DCZ at the end. E.g.,
test. txt becomes test.txt.dcz.

e Exit with zero on success, non-zero on failure.
If the utility does not meet these criteria, or does not exist, a compile-time error will be generated.

C.2.3 Font and Bitmap Converter Utility

The Font and Bitmap Converter converts Windows fonts and monochrome bitmaps to a library file format
compatible with Rabbit’s Dynamic C applications and graphical displays. Non-Roman characters may also
be converted by applying the monochrome bitmap converter to their bitmaps.

Double-click on the fmbcnvtr . exe file in the Utilities folder where you installed Dynamic C. Select
and convert existing fonts or bitmaps. Complete instructions are available by clicking on the Help button
within the utility.

When complete, the converted file is displayed in the editing window. Editing may be done, but probably
won’t be necessary. Save the file as name_me . 1 1b: the name of your choice.

Add the file to applications with the statement:

#use name_me.lib // remember to add this filename to “lib.dir” file

or by cut and pasting from hame_me . I'ib directly into the application file.

C.2.4 Rabbit Field Utility

The Rabbit Field Utility (RFU) will load a binary file created with Dynamic C to a Rabbit-based board.
The RFU can be used to load a binary file without Dynamic C present on the host computer, and without
recompiling the program each time it is loaded to a controller.

The Dynamic C installation created a desktop icon

for the RFU. The executable file, rfu.exe, can _ X
be found in thjc subdlre?tory named Ut111t1§:s ﬂ Rabbit Field Utility

where Dynamic C was installed. Complete instruc-

tions are available by clicking on the Help button RFU Yersion 3.05

within the utility. The Help document details setup Copyright = 2001

information, the file menu options and BIOS Zwiorld Inc.

requirements. Al rights reserved.

The RFU executable that comes with the Dynamic
C distribution is branded as a product, as seen in the
“About” screenshot shown here. You can brand the RFU or customize its functionality to suit your needs.
Please contact technical support for the source file needed for customization:

http://www.rabbit.com/support/questionSubmit.shtml

The RFU enables those without Dynamic C to update their Rabbit-based board with a few files instdled on
the computer and the appropriate connection to the target board.

Dynamic C User’s Manuall rabbit.com 341

http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbit.com

The necessary files are
included with Dynamic C.
They are: the executable
(Rfu.exe), the cold loader,
the pilot BIOS, and a file used
to determine information about
the memory device being used.
The default files used for the
cold loader, etc., can be seen by
selecting “File Locations...”
from the Setup menu.

Rfu.exe and its ancillary
files are freely distributable.

The RFU communicates with
the target using either a serial
or a TCP/IP connection. The
serial connection requires a
programming cable. The
TCP/IP connection requires
either a RabbitLink board or a
RabbitSys-enabled board.

There is also a command line version of the RFU. On the command line specify:

T Rabbit Field Utility 3.05 - o] x|
“ Filz Setup Help ‘
x
— File Locations
e sl | WD C 96055 Mbioghcoldload. bir |
Filat BIOS :IE:'&DE_SEDSSL\biDs\piIDt.bin |
Flash table:IE:'\DE_E!EDSSL'\FIash.ini |
(] | Canicel Help |
| Y

cIRFU SourceFilePathName [options]

where SourceFi lePathName is the path name of the . bin file to load to the connected target. The

options are as follows:

-s port:baudrate

Description:
Default:

RFU GUI
Equivalent:

Example:

COMI and 115,200 bps

Select the comm port and baud rate for the serial connection.

From the Setup | Communications dialog box, choose values from the Baud
Rate and Comm Port drop-down menus.

cIRFU myProgram.bin -s 2:115200

342

rabbit.com

http://www.rabbit.com

-t ipAddress:tcpPort

Description:
Default:

RFU GUI
Equivalent:

Example:

Description:

Default:

RFU GUI
Equivalent:

Example:

Select the IP address and port.
Serial Connection

From the Setup | Communications dialog box, click on “Use TCP/IP Con-
nection,” then type in the IP address and port for the controller that is
receiving the - bin file or use the “Discover” radio button.

cIRFU myProgram.bin -t 10.10.1.100:4244

Causes the RFU version number and additional status information to be dis-
played.

Only error messages are displayed.

Status information is displayed by default and there is no option to turn it
off.

cIRFU myProgram.bin -v

-cl ColdLoaderPathName

Description:
Default:

RFU GUI
Equivalent:

Example:

Select a new initial loader.
\bios\coldload.bin

From the “Choose File Locations...” dialog box, visible by selecting the
menu option Setup | File Locations,, type in a pathname or click on the
ellipses radio button to browse for a file.

cIRFU myProgram.bin -cl mylnitialLoader.c

-pb PilotBiosPathName

Description:
Default:

RFU GUI
Equivalent:

Example:

Select a new secondary loader.
\bios\pilot.bin

From the “Choose File Locations...” dialog box, visible by selecting the
menu option Setup | File Locations, type in a pathname or click on the
ellipses radio button to browse for a file.

cIRFU myProgram.bin -pb mySecondarylLoader.c

Dynamic C User’s Manuall rabbit.com 343

http://www.rabbit.com

-fi Flash.ini PathName

Description: Select a new file that Dynamic C will use to externally define flash.
Default: flash.ini
RFU GUI From the “Choose File Locations...” dialog box, visible by selecting the
Equivalent: menu option Setup | File Locations, type in a pathname or click on the
ellipses radio button to browse for a file.

Example: cIRFU myProgram.bin -fi myflash.ini

_Vp+
Description: Verify the presence of the processor by using the DSR line of the PC serial

connection.

Default: The processor is verified.
RFU GUI From the “Communications Options” dialog box, visible by selecting
Equivalent: Setup | Communications, check the “Enable Processor Detection” option.
Example: cIRFU myProgram.bin -vp+

Vp
Description: Do not verify the presence of the processor.
Default: The processor is verified.
RFU GUI From the “Communications Options” dialog box, visible by selecting
Equivalent: Setup | Communications, uncheck the “Enable Processor Detection” option.
Example: cIRFU myProgram.bin -vp-

-usb+
Description: Enable use of USB to serial converter.
Default: The use of the USB to serial converter is disabled.
RFU GUI From the “Communications Options” dialog box, visible by selecting
Equivalent: Setup | Communications, check the “Use USB to Serial Converter” option.
Example: cIRFU myProgram.bin -usb+

344 rabbit.com

http://www.rabbit.com

-usb-

Description: Disable use of USB to serial converter.

Default: The use of the USB to serial converter is disabled.
RFU GUI From the “Communications Options” dialog box, visible by selecting
Equivalent: Setup | Communications, uncheck the “Use USB to Servile Converter”
option.
Example: cIRFU myProgram.bin -usb-
-d

Description: Run Ethernet discovery. Don’t load the . bin file. This option is for infor-
mation gathering and must appear by itself with no other options and no
binary image file name.

RFU GUI From the Setup | Communications dialog box, click on the “Use TCP/IP
Equivalent: Connection” radio button, then on the “Discover” button.

Example: cIRFU -d

Dynamic C User’s Manuall rabbit.com 345

http://www.rabbit.com

346 rabbit.com

http://www.rabbit.com

PRODUCT MANUAL

APPENDIX D. ADDITIONAL DOCUMENTATION

There is a suite of documentation available for the Dynamic C user. Numerous application notes, technical
notes and white papers are available to help the reader learn more about different topics likely to be of
interest to embedded systems engineers.

Dynamic C documentation is found in two places:

1. Online at the Rabbit website: www.rabbit.com. All manuals, application notes, technical notes and
white papers are linked from http://www.rabbitsemiconductor.com/docs/. Documentation specific to
Dynamic C is found here: http://www.rabbitsemiconductor.com/products/dc/docs.shtml#.

2. On the software CD that comes with Rabbit-based hardware. The documentation can be accessed
by opening Dynamic C and clicking on the Help menu or by clicking on the desktop icon that was cre-
ated during the Dynamic C installation.

Some technical notes of general interest are:

= TN202 “Rabbit Memory Management in a Nutshell”
Found online here (pdf) and here (html).

= TN203 “Porting a Program to Dynamic C”
Found online here (pdf) and here (html).

= TN213 “Rabbit Serial Port Software”
Found online here (pdf) and here (html).

* TN261 “The Slave Port Driver”
Found online here (pdf) and here (html).

Dynamic C User’s Manuall rabbit.com 347

http://www.rabbitsemiconductor.com/products/dc/docs.shtml
http://www.rabbitsemiconductor.com/docs/
http://www.rabbit.com
http://www.rabbitsemiconductor.com/documentation/docs/refs/TN202/TN202.pdf
http://www.rabbitsemiconductor.com/documentation/docs/refs/TN202/TN202.htm
http://www.rabbitsemiconductor.com/documentation/docs/refs/TN203/TN203.pdf
http://www.rabbitsemiconductor.com/documentation/docs/refs/TN203/TN203.htm
http://www.rabbitsemiconductor.com/documentation/docs/refs/TN213/TN213.pdf
http://www.rabbitsemiconductor.com/documentation/docs/refs/TN213/TN213.htm
http://www.rabbit.com

348 rabbit.com

http://www.rabbit.com

| RABEIT-stg= PRODUCT MANUAL

RABBIT® SOFTWARE END USER LICENSE
AGREEMENT

IMPORTANT-READ CAREFULLY: BY INSTALLING, COPYING OR OTHERWISE USING THE
ENCLOSED RABBIT DYNAMIC C SOFTWARE, WHICH INCLUDES COMPUTER SOFTWARE
("SOFTWARE") AND MAY INCLUDE ASSOCIATED MEDIA, PRINTED MATERIALS, AND
"ONLINE" OR ELECTRONIC DOCUMENTATION ("DOCUMENTATION"), YOU (ON BEHALF OF
YOURSELF OR AS AN AUTHORIZED REPRESENTATIVE ON BEHALF OF AN ENTITY) AGREE
TO ALL THE TERMS OF THIS END USER LICENSE AGREEMENT ("LICENSE") REGARDING
YOUR USE OF THE SOFTWARE. IF YOU DO NOT AGREE WITH ALL OF THE TERMS OF THIS
LICENSE, DO NOT INSTALL, COPY OR OTHERWISE USE THE SOFTWARE AND IMMEDI-
ATELY CONTACT RABBIT FOR RETURN OF THE SOFTWARE AND A REFUND OF THE PUR-
CHASE PRICE FOR THE SOFTWARE.

We are sorry about the formality of the language below, which our lawyers tell us we need to include to
protect our legal rights. If You have any questions, write or call Rabbit at (530) 757-4616, 2900 Spafford
Street, Davis, California 95616.

1. Definitions. In addition to the definitions stated in the first paragraph of this document, capitalized
words used in this License shall have the following meanings:

1.1 "Qualified Applications" means an application program developed using the Software and that
links with the development libraries of the Software.

1.1.1 "Qualified Applications" is amended to include application programs developed using the Soft-
ools WinIDE program for Rabbit processors available from Softools, Inc.

1.1.2 The MicroC/OS-II (nC/OS-II) library and sample code and the Point-to-Point Protocol (PPP)
library are not included in this amendment.

1.1.3 Excluding the exceptions in 1.1.2, library and sample code provided with the Software may be
modified for use with the Softools WinIDE program in Qualified Systems as defined in 1.2. All
other Restrictions specified by this license agreement remain in force.

1.2 "Qualified Systems" means a microprocessor-based computer system which is either (i) manufac-
tured by, for or under license from Rabbit, or (ii) based on the Rabbit 2000 microprocessor, the
Rabbit 3000 microprocessor, the Rabbit 4000 microprocessor, or any other Rabbit microproces-
sor. Qualified Systems may not be (a) designed or intended to be re-programmable by your cus-
tomer using the Software, or (b) competitive with Rabbit products, except as otherwise stated in a
written agreement between Rabbit and the system manufacturer. Such written agreement may
require an end user to pay run time royalties to Rabbit.

Dynamic C User’s Manuall rabbit.com 349

http://www.rabbit.com

2. License. Rabbit grants to You a nonexclusive, nontransferable license to (i) use and reproduce the Soft-
ware, solely for internal purposes and only for the number of users for which You have purchased
licenses for (the "Users") and not for redistribution or resale; (ii) use and reproduce the Software solely
to develop the Qualified Applications; and (iii) use, reproduce and distribute, the Qualified Applica-
tions, in object code only, to end users solely for use on Qualified Systems; provided, however, any
agreement entered into between You and such end users with respect to a Qualified Application is no
less protective of Rabbit’s intellectual property rights than the terms and conditions of this License. (iv)
use and distribute with Qualified Applications and Qualified Systems the program files distributed with
Dynamic C named RFU.EXE, PILOT.BIN, and COLDLOAD.BIN in their unaltered forms.

3. Restrictions. Except as otherwise stated, You may not, nor permit anyone else to, decompile, reverse
engineer, disassemble or otherwise attempt to reconstruct or discover the source code of the Software,
alter, merge, modify, translate, adapt in any way, prepare any derivative work based upon the Software,
rent, lease network, loan, distribute or otherwise transfer the Software or any copy thereof. You shall
not make copies of the copyrighted Software and/or documentation without the prior written permis-
sion of Rabbit; provided that, You may make one (1) hard copy of such documentation for each User
and a reasonable number of back-up copies for Your own archival purposes. You may not use copies of
the Software as part of a benchmark or comparison test against other similar products in order to pro-
duce results strictly for purposes of comparison. The Software contains copyrighted material, trade
secrets and other proprietary material of Rabbit and/or its licensors and You must reproduce, on each
copy of the Software, all copyright notices and any other proprietary legends that appear on or in the
original copy of the Software. Except for the limited license granted above, Rabbit retains all right, title
and interest in and to all intellectual property rights embodied in the Software, including but not limited
to, patents, copyrights and trade secrets.

4. Export Law Assurances. You agree and certify that neither the Software nor any other technical data
received from Rabbit, nor the direct product thereof, will be exported outside the United States or re-
exported except as authorized and as permitted by the laws and regulations of the United States and/or
the laws and regulations of the jurisdiction, (if other than the United States) in which You rightfully
obtained the Software. The Software may not be exported to any of the following countries: Cuba, Iran,
Iraq, Libya, North Korea, Sudan, or Syria.

5. Government End Users. If You are acquiring the Software on behalf of any unit or agency of the
United States Government, the following provisions apply. The Government agrees: (i) if the Software
is supplied to the Department of Defense ("DOD"), the Software is classified as "Commercial Com-
puter Software" and the Government is acquiring only "restricted rights" in the Software and its docu-
mentation as that term is defined in Clause 252.227-7013(c)(1) of the DFARS; and (ii) if the Software
is supplied to any unit or agency of the United States Government other than DOD, the Government's
rights in the Software and its documentation will be as defined in Clause 52.227-19(c)(2) of the FAR or,
in the case of NASA, in Clause 18-52.227-86(d) of the NASA Supplement to the FAR.

350 rabbit.com

http://www.rabbit.com

6. Disclaimer of Warranty. You expressly acknowledge and agree that the use of the Software and its
documentation is at Your sole risk. THE SOFTWARE, DOCUMENTATION, AND TECHNICAL
SUPPORT ARE PROVIDED ON AN "AS IS" BASIS AND WITHOUT WARRANTY OF ANY
KIND. Information regarding any third party services included in this package is provided as a conve-
nience only, without any warranty by Rabbit, and will be governed solely by the terms agreed upon
between You and the third party providing such services. RABBIT AND ITS LICENSORS
EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS, IMPLIED, STATUTORY OR OTHER-
WISE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD
PARTY RIGHTS. RABBIT DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE
SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE
SOFTWARE WILL BE CORRECTED. FURTHERMORE, RABBIT DOES NOT WARRANT OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE SOFT-
WARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. NO
ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY RABBIT OR ITS AUTHORIZED
REPRESENTATIVES SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE THE
SCOPE OF THIS WARRANTY. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

7. Limitation of Liability. YOU AGREE THAT UNDER NO CIRCUMSTANCES, INCLUDING NEG-
LIGENCE, SHALL RABBIT BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR CONSEQUEN-
TIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE LIKE) ARISING OUT OF
THE USE AND/OR INABILITY TO USE THE SOFTWARE, EVEN IF RABBIT OR ITS AUTHO-
RIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY
FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO YOU. IN NO EVENT SHALL RABBIT’S TOTAL LIABILITY
TO YOU FOR ALL DAMAGES, LOSSES, AND CAUSES OF ACTION (WHETHER IN CON-
TRACT, TORT, INCLUDING NEGLIGENCE, OR OTHERWISE) EXCEED THE AMOUNT PAID
BY YOU FOR THE SOFTWARE.

8. Termination. This License is effective for the duration of the copyright in the Software unless termi-
nated. You may terminate this License at any time by destroying all copies of the Software and its docu-
mentation. This License will terminate immediately without notice from Rabbit if You fail to comply
with any provision of this License. Upon termination, You must destroy all copies of the Software and
its documentation. Except for Section 2 ("License"), all Sections of this Agreement shall survive any
expiration or termination of this License.

Dynamic C User’s Manuall rabbit.com 351

http://www.rabbit.com

9. General Provisions. No delay or failure to take action under this License will constitute a waiver unless
expressly waived in writing, signed by a duly authorized representative of Rabbit, and no single waiver
will constitute a continuing or subsequent waiver. This License may not be assigned, sublicensed or
otherwise transferred by You, by operation of law or otherwise, without Rabbit's prior written consent.
This License shall be governed by and construed in accordance with the laws of the United States and
the State of California, exclusive of the conflicts of laws principles. The United Nations Convention on
Contracts for the International Sale of Goods shall not apply to this License. If for any reason a court of
competent jurisdiction finds any provision of this License, or portion thereof, to be unenforceable, that
provision of the License shall be enforced to the maximum extent permissible so as to affect the intent
of the parties, and the remainder of this License shall continue in full force and effect. This License
constitutes the entire agreement between the parties with respect to the use of the Software and its doc-
umentation, and supersedes all prioror contemporaneous understandings or agreements, written or oral,
regarding such subject matter. There shall be no contract for purchase or sale of the Software except
upon the terms and conditions specified herein. Any additional or different terms or conditions pro-
posed by You or contained in any purchase order are hereby rejected and shall be of no force and effect
unless expressly agreed to in writing by Rabbit. No amendment to or modification of this License will
be binding unless in writing and signed by a duly authorized representative of Rabbit.

Copyright 2007 Rabbit®. All rights reserved.

352 rabbit.com

http://www.rabbit.com

RABBIT

PRODUCT MANUAL

Index
Symbols A
_GLOBAL INIToooiiieiieteie e 204 AbANAONecveeeiieiieiceeccee e 185
{1 curly bracesccovveeevvieienieieceeeeeeee e 24 ADOTT vttt 185
@LENGTHoooviiiiiiieeeeeeeeeeeee e 167 about Dynamic Ccccoeevievierieiesieeiesiieieniens 294
@PC ..o 167 abstract data typesc.ccoevveveereicieneeieieeiee e 26
@RETVALoooviieicee e 167, 175 adc (add-with-carry)ccccovvevivievienieieseeieene 163
@SP oot e 167,171, 174, 175, 176, 184 add-on Modulesooovviiiiiiiie 337
ettt ettt 39 AddIress SPACEcvevvervieierieeierieeie e 4,117
ettt et 148 Advanced buttoncccocevereieininineieeee 275
ML L ettt ettt st sreerberans 138 AES encryptionccceeeeeveviiecieneeneenieeieseenennens 337
AL e ettt ettt ettt e et eese e b e ereenbens 138 aggregate data typesccocvvveeeierieiieeieieeeee e 27
and ## (OPETAtOrS) .ueevevveeeveereenieereeeeeee e 19 ALIGN .« o 186
HASII .o 163,214, 323 ALT key
HACDUZ c.veeieeceeeeee 201, 215, 323 See keystrokes
HAefiNe . .ooveeeeieeeeee 18,19, 215 AIWAYS 0N 1.vvievie it 186
HEIf oo 217 ANYIMEIN ... 1eveeivieteeeeeeteereeeeeteseeeseseeessesseeseesaessenns 186
HEISC ot 217 application Programccceveeeverreereerreseesneseennns 38
Hendasmoooeveviiiieiee e 163, 167, 215 argument passing 31,170,171, 175,177
HENAIT .. o 217 modifying valuec.cocvvvienieniieiieie e 31
2T 1) (SRS 216 AITANGZE 1COMS .eveeuvrerrerereerreeneeeeteesreeseesseesseenseennns 286
HEAtal oo s 215 AITAYS tevveeeereeireerireerreesteesreesseesseesnseesnesssesnne 27,28, 31
Huncchainooovvvviiiiiiiiicceec e 36,216 Characterscoovvveieiieeiee e 22
FT oo s 217 SUDSCIIPES .. vveereeireeiieeieeieesreenireseeeeieeseveeeeenes 27
FTAET i 217 AITOW KEYS oovviiiieciieieeeee e 237,238
el .o 218 ASII 1ottt ettt ettt ettt sttt et 187
#include RIS 1910) A0SR 3, 163-184, 247
AbSENCE Of ..ooviiiiiiiiiciiieee e 38 blocks in XMEMccueveeniireenirieneiieienieiene 169
FANLETICAVE ..ovveeieeceieeiece e 218 embedding C statementscccceeevverveeveennnens 164
#makechainccoeevveiiiiiiiiiiiiceee e 36,218 Stand-aloneccceveeveeiiiiiiiiiiee s 169
2310151101 00F:1 o RO PSS 219, 325 WINAOW <.evvvviiiiieis et 173, 287
H#N0debUgocvvvviieieiieeeee e 201, 215, 323 assigNMent OPEratorsccceeeveerveerueerreessveennennne 227
HNOINLETICAVE ..ovveeeveeieeiie e 218 ASSOCIALIVILY .. veeereeiieiieeieeieeseeeee e 223,224
HNOUSCIX «eeeneeeienieriiiienie ettt 221 attributes of @ filecocvveviiiniiiee 141
Hundefo 21 QUL .. ceeeieeeeie ettt 168, 169, 187
FEUSE v 38, 39, 220 storage of variablesccccooceiiiiininienencenne. 170
HUSCIX 1o vevieiieieeeee ettt e 221
HWATIS oottt e 221 B
#wgrnt ... 221 back slash . 148
#X}mport .. 221 backslash (\)
2721111 010) USRI 222 character literals ... 19,23
Numerics continuation in directivesc.cceceevverueeeennenne. 214
basic unit of a C programcccceceveeveneecennenne. 25
2nd copy Of FAT .ooiiiiieeee e 158 baud ratecoovereieiie e 271
BCDE . .o 169,175,177
BeginHeaderccccooeeiiiiiiiniiececee 40, 41
binary operatorscccceeceerierieneneeniencene e 223
Dynamic C User’s Manuall rabbit.com 353

http://www.rabbit.com

BIOS ..o 6
D (< LSS 111
calling premain()cceeeeeeevieieeeeeeeee e 105
command line compilerccccoecveeeneene 296, 304
compilation environmentsccocceeeeereerennn. 317
compile Optionc.eeceevveieriieiirieee e 330
configuration Macroscceceeeeeeeeenereeneennnns 115
control bIOckSccovvveiiiieiieee 122
macro definitionscoceeeerierenieienieieneeneen 281
memory loCationcoeceeeveveieiieneeiinieie e 118
MEMOTY SEtHNES .evevveeeiereeiieeieieeieeeereeeeeseeeneas 276
user-definedcccooooiiiiiiiie 276, 321
variable defined incccoovvieninieniee 193

BlOCKING ..o 132

blocking a non-blocking functionccccecee..e.. 143

blocking modeccceeieiiiienieeeee e 135

board informationc...ccceeeeenenenne. 245,283-284

BPB ... oo 157

branchingccceeeeeveveierinereeeeeeeee e 34,35

break ..oooovveviieeeeee e 188, 207
EXAMPIE « .o 33
KEYWOTd . ..ot 33
LMItAtioNS ...eovveeeieieeiieieeieeeie e 33
0Ut 0f @ 100D .evverviiiieicce e 33
out of a switch statementccccecererencncnenne. 33

breakpoints
assembly WINdOWc..coeeevienenieiincecncncncnnne 173
ENADIE . .ot 279
hardccoooeeiiii e 248
INLErTUPt SLAtUS .evevvveeeeireeeeeie e 247,248
0TSt KEYWOrd ..oeeenviiieiiciee e 201
PEISISEENE ..ottt 247
RST 28 oot 322
SINGle StEPPING ..oovvvenrieieieeiieieeiee e 247
SOTE e 247
Watches Windowc..coceeevivivcniniencnincnenns 251

bringing up the FAT file systemccccecevenuennee 134

C

C languagecceuvenee. 3,4,15,22,26,36, 165, 169
calling assemblycccoevvevierieiienieiene e 175
embedded in assemblycccecveeieiinieienennnn 164

cached WIIE ...o.ovveieieieieiececece e 139

Call SEQUENCE ...veevveeieeieiieeiecie et 290

CAITIAZE TETUINL .ovvveneieeerieieerere et eire e eieesereebee e 138

cascaded WINAOWSccceeeruiriinienienieeiecececeiee 286

CASE cieerereeeeeeitreeeeeeetreeeeeeetre e e e e eeaareeee s 35,188, 192

ChAT .o 26, 189, 211

characters
AITAYS o veeveerereereenreeireessresseesseessessseesssessseesssesses 22
embedded qUOLEScoovveiiriieiirieieeee s 23
NONPrinting valuesccceeveevieerieenieenieeneenneene 23
special Valuesccevvveveriieieieeieeeeee e 23

Clipboardc.covveieiiieieeee s 241

closing a fileccevveeiirieeriee e 239
clusters

ASSIZNMENLSeevvieeieeeeeieie e 158
defINitioncoccveeeeieiiecieee e 156
CoData Structurecccceevvieeeeiieeccieesiie e 51
POINLET T ceeviiiiiiiiieierierteneeteteteie e 53
COTUNC 1o 189
COTUNCHIONSvvieiieiiieieeeee e 54-60
AbANAON ... ot 59
calling restrictionsc.ccoeeveeververeeenencncnennenne 55
EVETYHIME .ot 59
FIFSTHME .. e 194
INAEXEd . oot 56
KeyWOrdccveevieiiiieiee e 189
SINGIE USCT .eeovviiieieeiieiieiieie ettt 57
SUSPEINA ..ottt 209
SYNEAX ..t eveeuveeiteeteeite et estee st esbeesteenbeeseteeaeesaeas 54
cold 1oaderoovveeieiiieee e 246
COLUMN TESIZING ...vevveeiieieieeiieie e 288
command line interfaceccoceeeveveeeenen. 295-316
communication
TCP/IP ettt 272
compatibility with pC/OS-1IIcccocercveviireirnee 160
compile
BIOS « e 246
command linec.ccoeevvvverencieneeieiene 295-313
CITOTS . veeeeeeuiieniteeieesteeeteesteesteenstesseebeessseeseens 243
TNCIIUL .. ueieiieenieeeieeeteesiteeieesaeeebeesateenbeeseaeenseeaees 245
o) 018 0] 1TSS 272
RAM . e 274,327
SPEEA . oottt 3
SEALUS © weeneeeeiieeiie ettt ettt 290
t0 .bIN fIle oo 246
£0 fI1€ wiovieiieieeiee e 237
t0 f1ash .oovvieiiice e 245
1O LAIZEL woveieieeiie e 237,245
compiler
line parsing HMitccccceevveeiecienierenieeieseenens 24
compiler direCtivesccceevecierierceererieeieseeieeeens 214
HASIN .. e 163,214,323
OPLIONS .. tovveeeieiieeieieeeteste e sre e ve e seees 214
HCIASS «ovveveeeieciieeeie et 214
OPLIONS .. covveeeieniieeeete et sre e reeerenrees 214
HACDUEZ ..ot 201, 215, 323
HACTINE ..ooeieeeeeeeeee e 19, 215
HElIf o.e e 217
HEISC oo vttt 217
#endasmocooeveeiiiii 163, 167,215
HENAIf ... oo 217
HOITOT .+ envveeeiieeiieeie ettt et 216
HEAtAl . oo 215
#funcchainccccoooviviviiie e 36,216
H#GLOBAL INIT .. .oooieieiieieeeieieeeeeeeeine 216
FHE L e 217

354 rabbit.com

Index

http://www.rabbit.com

HIEdet ..o 217 10341 10) « USRS 28
Hifndef ..o 218 data tYPES .eeeeeeiieiee e 27
HINLEIICAVE ..o 218 Yo (< [T 27
#makechainccocoeevevieirieeceeeee 36,218 PLIMItIVE oo 17
HMEMMAD ..o.veveeeeeeeeeee e 219 DATAORG ... oo 325,327
10) 08 o) T USRI 219 DATASEG . ot 117
#n0debugocovveiiieeee e 201, 215, 323 date and tiMeocooevvieiiiviiiieeeeieeeee e 106
HNOoINtErleaveoceveeiieieieee e 218 AD e 165
HNOUSEIXeoververeireicrceeeeee e 221 debUZ .. oo 322
HPIagMA ... cooveeeieiieiieieeeeee e 219 dialog BOX ..ovveveieiiieicencn e 278
HPIecomMPIleooevvieveiiiciciciccec e 220 differences highlightingccccccecevinininene. 251
Hundef ... c.ooooeeiieee e 21, 220 disassemble at addressccceeveeevieerienieeennenns 251
FEUSC .. veeeeiee e eciee et 38, 39, 220 disassembled codeccceeiiiiiiieniiiiieie, 251
FUSCIX - veoveeveerinrenreteteteeetee et 221 hints and tipscccoceevereneniecieiennneee 83-104
HWATTIS ..ottt 221 Keywordcccooivirininininicce 191
HWATNE (.. et 221 MEMOTY dUMP ..coververiiriiiiieieeeiieieneneeeieeeaen 251
HXIMPOTL ..vevirereieitereeetetee et 221 MOAE . ettt 248
HZIMPOTEeoververeiriiieieteteeeeeeeee e 222 polling the targetc.ccoceeveviecivicnincnencee, 247
line continUAtioNc..ccevvevveneeeeinencreeenenane 214 SEEP OVET ettt 247
compound SWitching MOdescecevviviereeienieiee s 243
NAIMCS .+ «eevveeeieneeeeeeeeseeeneeseeeesseesesseesesseensesneensens 18 tLACE INTO .eevveeeveeeeeniieeieeeeeerieeee et eee e es 247
STATETNENLS ...eeuvieiiieiieiie ettt 24 tLACE MACTOS ...eeuveueenrieurerieieeteeeenieeeenneeresaeeanens 13
COMPTESSION . vttt 339 update watch expressionsccccceceeverenuennee 251
concatenation of Stringscccceceeeevervenienerenennenn 22 watchdog timerscceveeveeeeninenenenenenenen 108
configuration libraryc..ccceceevevevcevcnicncnenene. 135 WINAOWS ...oovvviriiiiniiieieieceieaes 262-268, 286-290
CONSE oveviieeeiee et e e 165,190, 214 declarationsccceeeevveeeeeeeceeeeeee e 24, 40
CONLINUEevveeeerieeeeieeeeeee e eeeee e 33,191, 207 defaultoocvveeeiieeee e 35,192
19/ €: 1111 o) (TSP 33 Default Compile Modeccoeevveveniirieieeieeene 275
COPYING tEXE wovvreuierieirerieeieerieienieeeeereeeee e eeeseeens 241 delay L0OP .ooveeeeieieeeeeee e 107
COSTALE .. vevieneeeereie ettt et e e e ens 191 delimiter matchingc.ccoecvevvevievienieiesieiene 238
COSTAtEMENTS ...oeeeeerieeeeeeeereeeeeeee e 48-54, 143-145 AemMOIONooeiiiviiiiiie e 273
ADOTL . et 185 EVICE . 132
FIFSTHME oo 194 differences highlightingccccoovvieiiinieciennnne 251
KeYyWOrd ... c.oooeveiiiee e 191 QITECLOTY .ttt ettt 132
SUSPENA ..ottt 209 CICALE ..vveuveeerenreeieeteeeeeeserenteeeeeseeseensesneenseeneannes 151
2 117 QST 49 default searchccooceevevievieiiceeeee, 153
VIELd « oo 213 delete .ovvieieieeeee e 154
creating a fileoccovvveiereiieeeeeee e 138 CNLLY STIUCTUIC .vvevrenreeieeierieeee e eeeeieeeeeeeeeeennes 152
curly braces { } .ooocveeeeieieeieee e 24 NAMICS ... vevvevreeveeteereeseereeeessesseessesssessesssensenseenes 159
cursor TOOL ettt ettt ettt ettt 158
EXECULION ... e e 247,248 search conditionsccccceevvvevvveeeiveeeeineeennen. 152
POSIHIONING .. .o 238,243 disassemble
custom device driVerccccevvveveevveeeeiieeeeeeenen. 135 at addressooeveeeeiiieeeeeee e 251,287
CULHING tEXL uvevvenieeeieiesieeiesrieie e esrenteeeae e eneeseeenns 241 AL CUTSOT .ovvieniiieienieeieenieseeeieseeeeeereenseseeenns 251, 287
DLM and FAT ...ooooiiiieicineeeeeeee 147
D O 100D eieeiiiieieeeee e 32
data Areacceceeiieiieie e 158 R 18,28
data structure download.manager ... 147
COMPOSILES . wevvvererrre oo 28 dqwnloadlng ... 3
KEYWOTA . ooeoeeeoeeoeeeeeeeeeee oo 24 AEIVET . e 132
NESHING .. ettt 28 DSR Ch?Ck """""""""""""""""""""""""""""""""""" 271
offset of element ... 168 dump Windowcceecvevvirierieiieiereeee e 252
DASS DY VAIUE .ovoeeeeeeeeeoeeeeeeeeeeeeee e 31 dw...... e 166
returned by functioncceceeeveniininicncnen. 175 Dynamic C
Dynamic C User’s Manuall rabbit.com 355

http://www.rabbit.com

CXI 1 vieiieiiiecee ettt 240
SUPPOTITL FIlES oo 44
Dynamic C modulescccccoeverierenirniiieeene 337
dynamic storage allocationcccceeeveeeevereennnnnen. 29
E
Edit Mmenuccocevinininiicce 241
edit MOAE ..evveeeriieeeeeeeeee e 237,243
CAIEOT . vttt 3
CISE . ittt s 192
embedded assemblycccoeeveciirieciinnnnen. 3,170, 175
embedded qUOLESccceevvieieiieieeeee e 23
CNCTYPLION .oevvreiieeienieeeieieeeeeieeee e eeee e seeeseenaeneens 337
ENd KCY ooeeoiieeciieeeeeeeeee e 237
EndHeadercc.ooooveveeviieeiieeeeeeeeeee 40, 41
CIIUITL .ottt ettt eeeesaeeveesaeeaeesreeanenbeeas 193
QU+ eteenteeteeete et et e ettt et e et e e e bt sbeenabeenees 167
EITOT COUES .ovviiinriiinieeereeeeeee e e e 133, 135
errors
CITOr COAE TANZES ...evveeveereereiieeieneeeeeeee e seeenees 111
10CALING .. .eovveeieeieeieeieciee e 243
TUN-TINE © v 111,273
ESC key
0 CLOSE MENU ..ot 238
escape Characterccoceevevieveenieriere e 148
examples
BIEak . .ovevviiiiiieieieeeee e 33
COMEIMUE . .ottt 33
delay 100D .vvveeieeieieieeee e 107
fOr LIOOP cevivieiieeee e 32
MOAUIES . ..o 42
OF AITAY eviiieieciieieeee e 27
HMING 100D vveviiieieeeee e 106
UNIOM « ottt ettt et saeene e 28
exit Dynamic Cccoccvveiienieniieieeeeeeie e 240
extended MEMOTYoovvvevvierieeieeiieceeeie e, 175,212
ASM DIOCKS ..eovveiiiiieiieiieiececeec e 169
[0S & o LRSS 41,42, 193
F
FAT and DLM ..o 147
fat AutoMouNtcooeevieiiniiiecceee e 136
fat_config.liboooviiiiii 135
fat direntoocoooeiiiee e 152
fat INIt ..o 136
FAt PATt . oo 136
fat_part mountedocooiiiiiiiiiie 136, 151
FAT USE FORWARDSLASHcccccoevvvirrnne. 148
file
ALIDULES ..o 141
COMMANAS ..ot 239
COMPIESSION «.eeneeiientieiieieeieeteenee st enee e eeeseeeneas 339
(63 (71 (R 138, 151

CIEte . oo 154
EXLENSIONScvveeieieeeeeeeeeeeeeeeeteeeeere e e e eere e 246
ENETatedeeoeeeieieee e 246
NAINIES ... ceeeeeirieeeeeeiieeeeeeeetreeeeeeetareeeeeennreeeeeanns 159
0] 013 E PO PRI POUTSOTUPRURRONE 138, 148
PIINE oottt 240
<Y [« R 139, 149
SEEK .. e 150
STALE ... ceeeeeeeeeecc e 143
A4 & UL TR 138, 149
file system
in primary flash ..o 125
IMRAM .o 122
max. # of files ..ccooviviiieiiieieeeee e, 122
max. file SIZ€ ...ccceeevieviieiieciecie e 122
MUItItasSKingocceevvevieviieieieeiee e 123
files
additional SOUTCEccoeevveriieiieeiieiee e 38
Find Next <F3>oooiiiiiiiieeceeceeeeeee e 242
FIFSEHIME « oo 194
flags TEZISEr ..ovvveeieeieiieieie e 288
flash
file SYSteM ..oovveeieieieeieeee e 122
initialized variablesc.cccceevievievieeiiieiieeien, 5
USE _2NDFLASH CODEcccccceeveieinriiennnn 122
WIIEINE 1O ceviiieieiieiieiieeeeee et es 121
XIMEIM ACCESS uvvvreevrreaereeesveeesereeeasreesssseeessseaans 117
flash types supportedc.cccoeevevieceriecieneeiee 133
FloAt ..o 26,194, 211
VAIUES ... ettt e 21
FOr 100D cevveeieieeieeeeee e 32,195
forward slashccccooviiiiiiiiiii 148
frame
reference Pointccecevveceereeiieneeeeneeieneens 175
reference pointerc......... 174,175, 201, 322
TUNCHION . oo 25
auto variablesScccevvveeieeiiieeieeieeeee e 187
CallS v 25,170, 171, 175
calls from assemblycecevvecieniecienieiee, 177
ChaINSo 36, 204
create Chainsoccoeevveviieiiicciieececce e 218
eNtry and eXitcoevvevveeiereeienieeiee e 322
€XECULION tIME ..veevveierieiieeeie et 322
headersc.ooovveeiieieeecee e 44
REIP i 44
indirect callc.cooeiiviiiiieiieiece e 30
PTOLOLYPES eveenvieeieeieeieenire et 25,27,40
TETUITIS .. voeeeeeiieeeeeeeeireeeeeeetee e e e eeareeee e e 175,177
SAVING TEZISLELS .uvevvevrenierieierieeieereeiesaeeeesaenenes 184
StACK SPACE .ovveeveiieiieeieeiee e 322
transferring controlccccevvecienievienenieienn. 32
unbalanced stackcccceeiiiiiieiiieiiee. 184
function lookup <CTRL-H>ccccceoinininnnnnn. 292

function prefix

356 rabbit.com

Index

http://www.rabbit.com

3117410153 1 SO PS 186 JAtENCY .o 178
dEbUZ ..o 191 unpreserved registerscoovimenerereeericnenene 184
FIFSTHIME .« eeveeiiiieeiee e 194 VECTOTS oo eeeeieeee et e 179, 198
INECTTUPE ©eoveeeieiieiieie et 197 ISR e 178, 325
NOAEDUE ..coveviiiiiiiictceceee e 201 IX (index register)c....... 56, 174, 175, 201, 208
TIOTSE « ettt ettt ettt et e 201
MOUSECIX .. 1eveenteeeieeeeneeteeneesteeneeneeeeeseeeneesseeneennens 201
TOOL vt 203 KEY et ettt 40
SIZE ..ttt ettt st sttt 205 keystrokes
spged ... 205 <ALT-Backspace>
USCIX + euveeueeeteeniteeteenieeebeesteesbeesbeesteenbaesreenbeens 208 UNAOING ChANEES w.oovvvvvveeeeeeeeeeeeeeesese e, 241
XIMEI . oottt s 212 <ALT-C>
G select Compile menuccoccveveeeeeennnee. 245
<ALT-F10>
Global Initializationc.ccoceveveeveennienienenenenne. 37 Disassemble at Addressc..cccceveeenene 251
global variablesccccceeiecierieciiriecee e 29 <ALT-F2>
L0010 RS S 33,34, 195, 243 Toggle Hard Breakpointccenee. 248
EICP et euveeiieeieenite et et et et sb e sttt st s 243 <ALT-F4>
quitting Dynamic Cccoocvveveriieiennns 240
H <ALT-F9>
hard breakpointscccecveevieerieiiieneerie e, 248 Run W/ N0 POIING .ovvvevcriis 247
header <ALT-H>
FUNCHION « e 44 select Help MeNU .o..cooccvvvevccsvvvernne 292
MOGQUIE .. oo 40, 42 SALT-O=
Help Mmenucccoevieeiieiiecieeeceeeee e 292 select Otions MeNUcccvvvvvecvsssnen 254
hexadecimal INtEZErcccceveierieieieieeee e 21 <ALT'SHI,F T-backspace>
2 DR 169, 174, 175, 177 redoing Changescosveesscssscee 241
HOME KEY .ovieiiiieeeeeeee e 237 <ALT-W> .
HOTZONEAL NG oo 286 select Window menuloccoveeveenee 286
hot-swapping <CTRL'F10>
SD €ardocoeieieeeeee e 161 Disassemble at Cursorccoeeee 251
XD €ard ..o 160 <CTRL-F2>
Reset Programccccceeevevvienienieeinene, 248
| <CTRL-G>
) GOLO .o 243
1cons <CTRL-H>
arranged .. 286 Library Help lookup 202
IEEE floating pointcccceeeeviereneeeieneeieeeenes 194 <CTRL-N>
T e 192 NEXt EITOT oo 243
MUItICHOICE ..o 34 <CTRL-O>
simple .. 34 Poll Target .. 248
WIth €IS€ .o 34 <CTRL-P>
information Windowc.cccceeeveeiieeieennnenns 286, 290 PIEVIOUS €ITOT . vvvveorereeeeeeeseeeseseseeeeeeee 243
TNIE OM .t 196 <CTRL-U>
INItIAlIZAtION . .eoveeeiieieceiiccie e 136 Update Watch windowo.coo......... 251
ININE COA v 275 <CTRL-V>
INSErtion POINtcceeveveeereeeierieeieceeee e 241,243 PASHNG LEXE errrvreeerreeeeseeeeereseeeeseeesessen 241
Inspect Menucoceeeveeeiiiiiiiiniiiieeceen 249, 286 <CTRL-W>
Instruction Set Referencecoccevvvveienveceennne. 294 Add/Del Ttems oo 249
INE oo 26,197, 211 <CTRL-X>
INEEZCIS .eevieneeeeieseeeeieteeeesteeeee e eneeseeeneeseeeeeseeeneenneas 21 CULNG EXE wevrrrrrrreeereeeeeeeeeeresseseeeeeseen 241
INEETTUPLS .. vttt eee s 178 <CTRL-Y>
breakpointsc.ccceceverereneninenencceecceens 247 Reset Target/Compile BIOS 246
keyword for ISRcccoveiiiiiiiiiiiiinncncee 197 <CTRL-Z>
Dynamic C User’s Manuall rabbit.com 357

http://www.rabbit.com

Assembly Windowcccceeeeeviiieiinnnnne 286

<F2>
Toggle Breakpointcccccveeeevveeennnnne. 247

<F3>
Find Next ..oooooiiiiiieeeeeeeee e, 242

<F5>
Compile . oo 245

<F7>
Trace INtOccoveeeeeeeeeeieeeeeeeeeeeeeeeeeeas 247

<F&>
SEEP OVET ..o 247

<F9o>
RUn oo 247
Keywordscocccevveiierieieee e 175, 185, 201
F:1 0 0) o AU USSR 185
ALIGN .. 186
AIWAYS 01 ..eoviriiiiiiiinieneecteeteee e 186
ANYIMEINL « .eeuveeireeieeniienteesteesteesieeeseesbeesneeseenas 186
F T o PP UUUUN 187
AULO e e e e e e e 187
[5) 7213 KRR 187
Dreak ..o 188
C e ettt et e e e e e e e—b e e e bea e teeeeabaeetraeeatraeeanes 188
CASE .t veevreenteenttesteetee st e e sbee st e bt e satesteesaaeereenae 188
ChAT ..o 189
COTUNC ..ot 189
COMSE .+ ettt ettt ettt ettt 165
CONLINUE . .eevvieieieeeietieeieieeeeeeeeeeeeeeseeaeseeeseesnees 191
COSLALE . .euvieiieeiiieriteete ettt 191
DU .. oo 191
defaultcoooveiieeee e 192
O et s 192
RIS .ottt 192
CIUITL . .eeitienieeeiteeteeiee et esieestteesbeesatesnbeesaneenneenes 193
EXLEITL .. ettt et ete ettt siae e 193
FIFSTHME .« oo 194
FlOAL oo 194
FOT L e 195
BOTO ettt 195
I e s 196
10T [o) 1 ST 196
IO Lottt neas 197
INECTTUPE .« oottt 197
INLETTUPE VECLOT ... ceveeeeeeeeieieeeieie et 198
JONE .ot 200
NOAEDUZ . oot 201
1 100) (] AU PRPT 201
NMOUSECIX .. cvverveeereniererereseesseesseseessenseessenseeseensenses 201
NULL « oottt 201
PIOteCted ... it 202
(72 11 1<) U 202
TEEUITL .. weeevvieeieeteeiteeieerite et steeereeaeesabeenaeenaee s 203

TOOL « vteiieeetiesite et e stte et e e st e baeebeebeesebeenaeenaees 203
SCOTUNC . ..eeeiiiieie e 203
SEEChAIN ...oovviiiiiicieecee e 204
Sharedcccoeieeeiieecee e 204
] 170 4 ARSI 205
SIZE . cvveereetiereeteete et e e se et ete e eteeaeereennenes 205
SIZEOT . e s 205
SPCEA . e e e 205
SEALIC .. ceveveereereere e ee ettt 206
STTUCT wvvveeeeeeiee ettt ettt et sire e 206
SWIECH 1.ttt 207
tYPEAEt ..o 207
UIEOTL « covveveeereieenteeteereeteeseeereensessaensesreensesssessens 208
UNSIZNEA .. veovveiieiietieieee et es 208
USCIX .. tevveveeeresieesteeseeseeseesseeseessessaesseessesseessessenns 208
VOIA .t ettt 209
VOLAtILE .ovivieiiiieieeeeeee e 209
WAILTOT ..o 209
WaItfordonecocevveeviinieiiniee e, 210
WHILE .o 210
XAALA ..ot 211
D.€1115) 1 4 LSOO UPRRS 212
XS 1. vevevieiereeieeeireetee e ereeste e e eseesereenanesenes 212
VIR o 213
L
language elementscccoceeevereereeennnne 15, 18,22, 185
OPCTALOTS .eeeuvveiieenieeriieenteeniteeteeniteeteenieeereeeeens 223
ID.dir e 38, 39, 43,220
LIDIATIES . woeeeveeeeeeeee e 3,38
HNKING .. vt 38
real-time programmingccecceeeeevverreecverveennenns 3
WIILING YOUT OWIL ..ovieeiiiieeieiieeieeeeeeeeeeeeee e 39
Library Help 100KUp ..cc.occvevvrieiiiieiccieieis 44,292
line feed ...ovvvieeieieeieeeee e 138
BINKING oo vt 3
LISt IS evivieiiiiieieetece et 274
10CALING CITOTS ..ocvvevieeiirieeierieeeieie e steeeeereeeeeaens 243
long
INEEZET .. cevveeiieeieeee ettt e e e eteeiee e eaeesreebeesaneenee 21
KeYyWOrdocviiieiiiieiice e 200
lookup functioncccceeceeviieieneeienieeieseeieins 292
LOOPS ettt 32,33
breaking out Ofcccocvieeiiviieviiiieee e 33
delay with MS TIMERcccovevvieiiiierrennne, 107
O e 192
TOT e 195
Skipping to NEXt PASS ...ccveevvverirrerieerieeieerreeieenne 33
timing with MS_TIMERc.ccoovevererenrnann. 106
M
INACTOS ... ceveeeeeeeeeeeeeeeeeerreeeeeesaaeeeeeeennes 19, 167, 215
TESIIICHIONS .. evvieeieeiieireeeieesieeeteesteeseeereeneeseneens 21
With Parameterscccoecveeevierveerieeieesveeseenenens 19

358 rabbit.com

http://www.rabbit.com

main functioncecceeeevveuveeeeiiinnnnes. 25, 38, 200, 323 F110) 6] AP PRRRN 201
MAap fIle oo 335 01018 1D QU 201
max number of characters readcccccveeeennne 139 NULL .« ettt 201
MBR . e 156 num_fat devicescceeeeverieieeieeeee e 136
memory
Address SPACEeevveeeeeiieierie et 117 O
CONfIUIAtion MACTOS ...ovvevecerrrrveess e 124 0Ctal INTEZET ..o 21
DATAORG . 325,327 offsets in assemblycccccevveeieriiienieieees 174, 175
AUIMP .. e 249 ONENE BEID oo 44,294
dump at Addresscvvvrecismmrieerinrenn 251 opening a filecccoceeverinininiinenieee, 138
QUM £18SH oo 251 OPETALOTS .. .eeveiriiieerenieeireieeee e e sieereseeenneeaeene 223
dump t0 file .ooiiiei 251 # A0 ## (INACTOS) vvvvvvoeerereeeeeoeeeeeeeeseeeee oo 19
extendedoooeiiiiiieee e, 175,212 ATIENMEHIC OPETALOTS ovvrrreoeeeeeeoeeeese e 224
Managementcoceeueeeenrieeenieneeneeeeennes 186, 203 AECTEMEN (=) wevvvvereeeeeeeeeeeee e 226
TNAD ceevveenieeiieetee st eiee st et e st e st e sareeneeeee 117,335 IVISION (/) wovvveeeeereereeeeeeeeeeeeeeeeeeeeseee s 225
TOOL ceveeveeiet veereeiesteeeeeeeeaeaeseeeens 119, 168, 203, 325 INCIEMENt () ooeerereeeeooes oo 226
use 2ndflash codecccooevieciecininininincncnne 118 INAITECHON (%) ooeeeeeeeeeeeseeeeeeeeeeeeee, 225
MEMOTy MANAZEMENE UME .oovvveirrvinnns 117 TNINUS (5) covereieieeeeneneeeseeeeeeee e 224
menus MOAUIUS (%0) «eovvvvereerrverrmeresssrreesseeneees 226
close 2.111 OPEIN ettt 238 MUIPHCATON (%) ovovereeeeeeoreeoer, 225
Complle ... 245 DIUS () wevveeeeeeeeee oo 294
Edit cooioieeeiceeeeeeeeee e 241 DOIIETS oo 205
HEIP oo 292 POSt-AECTEMENE (~-) .vvvveeeeeererrrerereeeeeree, 226
Inspect ... 249, 286 POSE-NCIEMENt (+4) ovvoeoeeererrooeereoeeeeee, 226
OPLIONS ..ot 254 Pre-deCrement (--)eeeeeeerrerrrreeren. 226
Run R 247 PIE-INCIEMENt () weoovvvvevrrrooeooeoeeeeeseee 226
mMessage WiNdOWeecveeeveveereeienieeienieeenans 243,286 ASSIZNMENT OPEIALOTS -.rrrrr oo 227
mc?tadata ettt ettt e —e ettt ete et eseeneereenean 128 Add SSIZN (F=) ovvererreeeereeeoeeeeeeeer, 207
Micro C/OSAIT ... 160 AND 8SSIZ0 (&=) wevvvrrrrrrrreeooeeorerer, 228
MMU . 117 B s WO 207
mode . divide assign (/=) .cccoeveeviecienerreiieieiene 227
Chan@ingcccccevvieierieieieeeee e 248 MOAUIO ASSIEN (%=) wevvvvorrereeeerererereesse, 227
debug (TUN) e 243 MUIEPLY ASSIEN (¥=) wovvrrrrreoeerrer, 207
ed.lt e 243 OR aSSIZN () ovvverorrrrreeseeeooeeoeoerrreeen 228
PIINE PIEVIEW ovvieniieiiieiieeiieeieeeiteeie et 240 SHift 1eft (=) oo 227
MOAUIES ... 39,42, 337 SHEft FHGNE (552) oo 28
BOAY . o 40, 41, 42 SUBLIACE ASSIGN (<=) 1rrrrroeeoeeooeorn 297
33111 o) (TSR P 42 XOR 2SS0 (=) oo 278
headeroooovvveviieeeeeeeeeeee e 40, 42, 193 ASSOCIALIVILY - +rooooeveoeoeeoe oo 223,224
KEY ottt 40 DALY e eooeoeeoeeeeeeeeeee oo 223
TNOUSE ... eovviieenienieeienireteeeeesenteenteseeenseereennesneenneenee 237 bitwise operators
MS_iIMER et et 106, 332 B 3 R 229
multitasking bitwise AND (&) oo 229
cooperat.lve .. 45 bitwise exclusive OR (%) wooooooorrrrrrrrere. 229
prgemptlve T 62 bitwise inclusive OR () woovvrrrrrrererrrererrr, 229
multitasking compatibilityccccceeevercienrennnnn. 160 COMPIEMENt (=) wvvvvvveeoeeoeeeeeeeeeeeeeeeee 229
N POINLETS .ooevieeeeeeiieiieeieeiee e eeveeseee e 229
shift left (<<) oo 228
TIAINIES .. veeereenrierireeteenteeeteenteesaeesseessnesseenseenns 18, 159 shift right (>>) .o, 228
HAETINE .. .eoveeeiiiiiieec e 18 COMIMIA « 1.enteeieienientene ettt eteseeeeeseesteeeneenseneeneeneas 236
N aSSEMDBIY ..ooviiiiiicieiceeee e 168 conditional operators (? :)cceoererieniinienenne. 234
Next error <CTRL-N> ..o 243 equality Operatorsc.ccocevereerenienieneeeenne. 231
nodebug 163, 201, 247,251, 274, 322, 323 eqUAL () oo 231
NON-bloCKINgccoevvivieiiriieieciieieeieie e 132, 142 not equal (1=) oo 231
Dynamic C User’s Manuall rabbit.com 359

http://www.rabbit.com

1N aSSEMDIY ...coevviiiiiiiiiiiiiccc e 165 choO0SING & PIINET ...cc.evveuveiiieiciiciercrcncecenee 240
logical OPETAtOrsSccceceeuereeruervinrerienieeererecenens 231 PNt fIle woeoiiiiiiiiiiicee 240
logical AND (&&) .eooevvveeeeieeeeeeeen 231 PIINE PIEVIEW ..enviiiiiieienieeeieeeeeieeie e seesaeneene 240
logical NOT (1) .eoveveneneieiceecrencncine 232 PINE oo 23,27,263
logical OR (]]) ceeeereereerienieeieeeeeeeeeene 231 program
OPETator PreCedencecouvvrerervenerenenennens 236 EXAMPIE .. e 26
POStIIX EXPIEeSSIONS ...vevverververeieieeeneeeneneeneennes 232 FIOW .t e 32
() parenthesesc.cceceeverveienerienienens 232 TESEE 1.t ettt ettt ettt ettt et 248
[]array indicescccceevrererieieieeenenne. 232 spanning 2 flashcccccceoevniniinininicnens 122,323
Ot (1) v 232 project filescocvverinenieneienncnceen 239,317-319
parentheses () .oooeeeerveeenereeneceeieiee 232 10011074) o ST 224
right arrow (=) .ooeceeveeeeeeeeeee e 233 protected
PIECEAENCE .. .eviviiiieieieiceceeecceiceie e 223 KeyWordcoveieiiiiiiininncecceeeee 202
reference/dereference operatorscccecenee 233 Variablescoccoveveeinininiee 3,202
AAAress (&) veovevvereerrenieieieieeeeeeeeneae 233 prototypes
bitwise AND (&) .oocveveveeeeiieecieieiene 233 Checkingoccvevieieieiee e 273
Indirection (*) ..occveceevereiereeieeeeee e 233 fUNCHON vt 25,27,40
multiplication (*)ccocevevrevievieieieeenns 233 in module headerccooovvvveiiiciinieeeec e 40
relational Operatorsc..cccecevereneeeenencniennen 230 PUNCLUALION ..ottt 16
greater than (>) ..ooccovvveerenieeeceee 230
greater than or equal (>=)ccccccevcenenne 230 Q
less than (<) ceeveeveeovcmrcescnn 230 QUItHNG DYNAMIC C oo 240
less than or equal (<=) ..ccccoveveccncncncnnne 230
SIZEOT .. vt 235 R
UDNATY .« oovteeniieniteeieenitesteesiteeeeesbeesseebeesabeesseesanean 223)
Optimize Size OF SPEEdcvvverveviieierieiieeererieens 274 Rabbit restart
options protected variablesccccocevvierieniieiiieneenn. 202
COMPILET .o 272 RabbItSYS . evveiieiieieceeeee e 275
IMENU « ..ottt es e e es s s es s s enen e 254 RAM compile ..o, 274,327
OTIZINS 1vovoreveieeiieeceee et 214 RAM fUnctions ..., 184
reading a fileocooeiiiiiiii 139
P reading max number of charactersccoc..... 139
real-time
PageDown Keyccccoevenieieniiiiiiiicnceene e 237 PIOZIAIMIINNE - .vvoeeveeeeeeeeeeeeeeeeeee e eeereeeeee 3
Pagc.a[.Jp KEY o 237 redoing changesc.cccocecvevieneeieneniene e 241
part%t%on ... 132 registers
parqt?on'structure .. 136 SAVING AN TESLOTING rrrrrrerrrer e rereeeeeeeerererone 178
part1j[10n1ng """""""""""""""""""""""""" 127, 146-147 ShadOW . .o 333
passing ATGUMENLS ovvooovvveevseee 31, 170,171, 175, 177 SNAPSHOLS . .o 288
PASHING TEXLE .eevvieiiieiieeiieeieeree et nre e tee e 241 window . 286, 288
path sgpgrator """""""""""""""""""""""""""""""" 148 relocatable codecoooiiiiiiiiiiiiie 184
peI:IOdIC 1nte@pt """"""""""""""""" 54, 62,105,332 removable device adviceocoveeeeiiiiiiieeenn. 139
pO}nter Checking ...oocoovviiiiiieeeee 30 FESEIVING FI1E SPACE rrrrrveveerrrrrrrrsseesssoeoeeeeeeeseo 135
POINLELS eoviiiiiieicieeiee e 22,29, 30,31 reset
UNINItialiZed . ..oooeeviiiieeeeee e 30 PIOZIAIM ..+ eeeeeeee oo eeeeee e 248
poll'target .. 248 FESIZING COIUMNS <evrrrr oo 788
poll'n.]g s 247 FESUIE COE (IC) ~ovvrrrrrroeooeoeeeeeoeoeeeeoeeeee 135
POSIHONING TEXL -.vovsvvsvves v L SO 175, 178
PIEalloC . 135 PO+ voovooooeeoeeeeeeeeeeee oo oo oo eeeeeesesesemmsenessesseeeseeeeeee e 178
precomplle s 40, 220 feturn . 175, 203, 207
preserving TEGISELS w.ovvvvoierieeii 177, 184 return addressocoooevieieiii e 170
Pr§V1ous error <CTRL-P> ..o, 243 root memory
primary TEGISLET ovvooinseis 169, 175, 177 file SyStem USagecccceveereevieeienieeiereeee e 123
pr1m1tlve B EYPES oo 17 Keywordc.cceeierieii e 203
print MEMOTY MAP +.veenvereenereneeeeeneeneeeeeseeeseesseeeeneeans 117
360 rabbit.com Index

http://www.rabbit.com

static variablesccocevevieeiieiiee e, 119 pointer (SP)ccccvevvrnne 171,176,177, 184, 221
variable addressccocceviriiiieieeee 168 SNAPSHOLS ..ot 289
RST 28H ..o 247,322 trace WINAOWocovvveeeneeeeiieeeeeee e, 268, 290
run unbalancedccooveieriieciene e 184
1101S) 110 USRS 247 WINAOW ..eviiiiiiiies ettt 289
MOAE vttt 243,247 STACKSEG .. c.ooiiiiiiriniienentreeseeeeeee 117
N0 POILING .eovviiiriiiiiiiiccicec e 247 state machine
TUN-tIME @ITOLS .neevieneeeeeietieiieeeeneeeeeneeeeeneeneeenes 111 11111 o) (IS 46
state Of file ...ooveviviieiceceeeeee e 143
S SEALEINIENLS ... veerereeniieriieeieeeite et ere et st 24
sample programs sta.ti(.: Ava.riab‘les
basic C conStructS ..o 26 INTHANZALION .. .eovveeieiccice e 5
SAVING & fIl€ .ooveeieiiiee e 239 KEYWOId . 206
SCOTUNC ...ttt 203 R 119
SCATCH LEXL 1.vieiviiieieiieie e 242 STALUS TEISTET wovvvroovrnen 288
SEC TIMER .. oo 106, 332 Stdio WINAOW ...ooovvveiiiiieiciiieeeeeceeeeee e 262,286
et 156 STDIO_DEBUG_SERIAL . ..ccoovvvvmmrririrririsssnnn 263
SECUre COMMUNICAtONS oo 337 step over s 247
SEEChAIN . .eoviiiiiiieicccec e 36,204 B 247
SEGSIZE .. oo 117 SEOTAZE ClASS ..vvevveiereeieirieieie ettt 24
separate [&D SPACE ..., 165, 179, 251, 275 autg ettt et sbe et st ena e st eae e 29
SFL000 ..o 160 SEALIC oot 29
SHAOW TEEISTELS +.....ovoeeeevereereeereeeeeeeeeeeeeee e 333 strings s 22,211
ShAredcooeviriic e 204 CONCALENALION .. ovvvvvssvvvvsns i 22
shared variables .. 3,202 f}mctlons ettt 22
SHEIL PIOZEAM ..o 140 llterql T Otes 19
SHOT .. et 205 terminating MUl Yte w.occooooovvvveescssvecs 22
single stepping Struct Keywordccovcvveiieeiieieeeeee e 206
assembly WindOWcccceevveeiinienienieienieie e 173 structure .
10] 013 T0) 1 TSRS 247 COMPOSILES . oo 28
watches Window ... 251 key\fvord .. 24
SIZC . oerrrenerene e 205,274 DESUNG v 28
SIZEOT ittt 205 offset Of elementvcccvveeccerinn 168
SKIPPINg 0 NEXE 100D PASS +rrrevvvoeeeeeereerrreeroeeene 33 Pass by valuecocvvveeiieieiieice e 31
Slice StatemMENtSccvvvevevieieeeeeeeeeeee e 62 TTUIN SPACE oo 171, 175, 177
SOft breakpointsccoecvvevvenieiciierienie e 247 returned by funCtioneveevveeereverisissssssnsns 175
SOUICE TS ..eovveniieiiiiiiiec e 38 UIIOML . oo 28
SP (stack pointer) 171, 176, 177, 184, 221 subdlre':ctory .. 132
special Characterscccevveercierriienieeieeee e 23 subscripts
special symbols AITAY .+ veeveeenreerreenreeteesaeenseesseeeseesseessseesseesssesnses 27
i1 ASSEIBLY —oooooooeo oo 167 SUPPOTL FIIES .eveverieiieeeiieiieeieee e 44
s 205,274 supported flash types ... 133
L) SR 337 SWHOR 35,192,207
stack breaking out ofcccevviierieniiiiieee e 33
€NADIE TrACIAZ -rrrrrrreee e eeeeeeereeseeeneeeee 279 CASE . ottt 207
enter fUNCLiONcccveveviereeeiieiecie e 322 switching to edit modeccccvvvvvvvvnnniiiiniicnens 243
frame ... 170, 171, 175, 177, 184 symbol informationccceccvevveneieeiienienneennen. 335
frame reference PONtooooooooocoerereeeeen 175 SYMbOIIC CONSLANT ..eovvvvrerieiieririeiieeiieeie e 215
frame reference pointer 174,175, 201, 322 T
function argumentscoccecevienencenenceee 31
function returning Structccoceeeeereeceenennenn 175 target informationcccceceeeiecncnnene 245,283-284
ISR e 178 TCP/IP s 272
local variablescccovvevvieeeciicrieiienennn, 174, 187 teXt €AILING .oovvevieeieiicieieeeereeeee e 241
TIOUSCIX .. verveveteeeneeneeneeeeneeseeseeeeeeeeseseeseeseeseeeens 201 XL SEATCH .oveiiiiiiiiiece e 242
Dynamic C User’s Manuall rabbit.com 361

http://www.rabbit.com

TICK _TIMER . ..ooiiiiiieieeeeee e 106, 332
tiling WINAOWS ..oo.eeivieiiiieiee e 286
tiMING 10OP +.eeeeeeiieiieeeee e 106
toggle

breakpointccoeeevereeririeeeeeee 247,248
tOOIDAT .. oo 285
trACE INTO tovvvieeveeiieeie ettt et e 247
tTACE MACTOS .eeeevrrererreerereeesereeerereeesneeeasreeessseesssnens 13
tracing

CXAMPIE . oo 12
type

CASEINE vvveeeienierieeeieteeie st eee et e st e e eesee s 224

ChecKingooccovvieieiieeeeeee e 25,273

defiNItioNnSocovvevevieiieciieeieee e 26
typedet ..o 26,207
U
UCOSZ . ittt ettt sttt ene s eanesieeas 160
UAPPAZES.C . eovvreereniieiieii et re e sreeae e 140
UNATY OPETATOTS .ovveeneieririeiienreereesreeeeesieesveenaeenns 223
unbalanced stackccooeveiiriininininee, 184
undoing changescoccevveevenieienenieecieieeene 241
uninitialized

POINLETS .. ceveeeienrieienieeeeieeetete e eeeeaesteeeesneensenneas 30
UNIOM .. e e enns 24, 28, 208
unpreserved re@isters ..oovinimneneereererceereennens 177, 184
UNSIZNEA .« ovveiieiieii et 208
UNSigNed INEEETocvveeveiieierieeieeeie e 21
unsupported FAT featuresccoccevvreveneeveniennnnns 161
untitled files ..o..ooevevenerinen 239
USB ..ot 271
USE 2NDFLASH CODE 118, 122,323
USEIX wvveineeeeeeeeeeeeee e e e e 174,208, 322
USEr BIOCK ..oooevviiceieeeeeeeeeeeeeeeeeeee e 323,324
using the FAT file systemccoocvvvvevieeveneennnne. 137
Utility Programs

File Compression/Decompression 339

Font/ Bitmap COonvertercceeeveeereerveenuenne 341

Rabbit Field Utilitycceoevireneieecececiene 341
\%
variables

AULO - ettt ettt ettt 187

Clobal ..o 29

SEALIC . ettt 206
vertical tilingcooeeevieiiniiiineeeeeee 286
virtual watchdogscceccevirieniiieniiceeeee 108
VOIA ettt 209
VOLAtIIE ..o 209
W
WATLEOT 1. veeeiieiie ettt 209
WaItfordoneccoeeeeviiivieeie e 210

WAINING TEPOTLS .oouvieieieeeieeietieieeeeeeeseeeaeseeeeeeea 273
watch expressions

add or deleteocceveeiieiieeee e 249
eNADIE ... i 279
single stepping in assemblyc.ccoeceriiiennnn. 89
watch menu optioncoccoeeeevvrveererienieieneeae 286
watch Windowcccccccevviviiiiiiiiiiiieeeee, 249, 286
watchdog timersccoeeeeverieriereeercee e 108
watchdogs, virtual ... 108
WIE oot e 210
WHILE .o, 24,32, 210
wildcard maskccoooveiiiiinii 39
windows
ASSEMDLY ..ot 173, 287
cascadedccooieriiiee e 286
informationccccooeeeiieiiieeeeceee e 286, 290
TNESSAZE ... veeenveeureereerireeieeneeebeesresbeesieeenseenaees 286
(723 1] 1<) TSRS 286, 288
STACK .. oo 286, 289
SEAIO .. ettt 262,286
tiled horizontallycc.cocvvenenivicinininncneee 286
tiled verticallyccccocevmeniininenicniecnncnees 286
WALCH © v 251,286
write-back cacheccceevviriinieieeeeeeen 139
Writing a file ...oooveviiieiieeee 138
X
XABLA < evviieieeiiriere e 211
XIMCINL . c.evvveeeeeeeiireeeeeeetreeeeeeeareeeeeeenaneeeeeeenns 175,212
aSM BIOCKS ..c.veviiiiiiciciicccccccccc 169
definitionooevevenieiieieiccecce 117
100t fUNCtions IN ...c..cceeeveririenienienieieinencnieen 200
XPC e 117,325
XSELIME 1.t vveeieieeteie ettt 212
Y
VICLA .« e 213
Z
PC/OS-II compatibilityccccceveecieneieieeeeieee. 160

362 rabbit.com

Index

http://www.rabbit.com

	Table of Contents
	1. Installing Dynamic C
	1.1 Requirements
	1.2 Assumptions

	2. Introduction to Dynamic C
	2.1 The Nature of Dynamic C
	2.1.1 Speed

	2.2 Dynamic C Enhancements and Differences
	2.3 Rabbit and Z180 Comparison

	3. Quick Tutorial
	3.1 Run DEMO1.C
	3.1.1 Single Stepping
	3.1.2 Watch Expression
	3.1.3 Breakpoint
	3.1.4 Editing the Program

	3.2 Run DEMO2.C
	3.2.1 Watching Variables Dynamically

	3.3 Run DEMO3.C
	3.3.1 Cooperative Multitasking

	3.4 Run DEMO4.C
	3.4.1 Trace Macros

	3.5 Summary of Features

	4. Language
	4.1 C Language Elements
	4.2 Punctuation Tokens
	4.3 Data
	4.3.1 Data Type Limits

	4.4 Names
	4.5 Macros
	4.5.1 Macro Operators # and ##
	4.5.2 Nested Macro Definitions
	4.5.3 Macro Restrictions

	4.6 Numbers
	4.7 Strings and Character Data
	4.7.1 String Concatenation
	4.7.2 Character Constants

	4.8 Statements
	4.9 Declarations
	4.10 Functions
	4.11 Prototypes
	4.12 Type Definitions
	4.13 Aggregate Data Types
	4.13.1 Array
	4.13.2 Structure
	4.13.3 Union
	4.13.4 Composites

	4.14 Storage Classes
	4.15 Pointers
	4.16 Pointers to Functions, Indirect Calls
	4.17 Argument Passing
	4.18 Program Flow
	4.18.1 Loops
	4.18.2 Continue and Break
	4.18.3 Branching

	4.19 Function Chaining
	4.20 Global Initialization
	4.21 Libraries
	4.21.1 LIB.DIR

	4.22 Headers
	4.23 Modules
	4.23.1 The Parts of a Module
	4.23.2 Module Sample Code
	4.23.3 Important Notes

	4.24 Function Description Headers
	4.25 Support Files

	5. Multitasking with Dynamic C
	5.1 Cooperative Multitasking
	5.2 A Real-Time Problem
	5.2.1 Solving the Real-Time Problem with a State Machine

	5.3 Costatements
	5.3.1 Solving the Real-Time Problem with Costatements
	5.3.2 Costatement Syntax
	5.3.3 Control Statements

	5.4 Advanced Costatement Topics
	5.4.1 The CoData Structure
	5.4.2 CoData Fields
	5.4.3 Pointer to CoData Structure
	5.4.4 Functions for Use With Named Costatements
	5.4.5 Firsttime Functions
	5.4.6 Shared Global Variables

	5.5 Cofunctions
	5.5.1 Cofunction Syntax
	5.5.2 Calling Restrictions
	5.5.3 CoData Structure
	5.5.4 Firsttime Functions
	5.5.5 Types of Cofunctions
	5.5.6 Types of Cofunction Calls
	5.5.7 Special Code Blocks
	5.5.8 Solving the Real-Time Problem with Cofunctions

	5.6 Patterns of Cooperative Multitasking
	5.7 Timing Considerations
	5.7.1 waitfor Accuracy Limits

	5.8 Overview of Preemptive Multitasking
	5.9 Slice Statements
	5.9.1 Slice Syntax
	5.9.2 Usage
	5.9.3 Restrictions
	5.9.4 Slice Data Structure
	5.9.5 Slice Internals

	5.10 µC/OS-II
	5.10.1 Changes to µC/OS-II
	5.10.1.1 Ticks per Second
	5.10.1.2 Task Creation
	5.10.1.3 Restrictions

	5.10.2 Tasking Aware Interrupt Service Routines (TA-ISR)
	5.10.2.1 Interrupt Priority Levels
	5.10.2.2 Possible ISR Scenarios
	5.10.2.3 General Layout of a TA-ISR

	5.10.3 Library Reentrancy
	5.10.4 How to Get a µC/OS-II Application Running
	5.10.4.1 Default Configuration
	5.10.4.2 Custom Configuration
	5.10.4.3 Examples

	5.10.5 Compatibility with TCP/IP
	5.10.5.1 Socket Locks

	5.10.6 Debugging Tips

	5.11 Summary

	6. Debugging with Dynamic C
	6.1 Debugging Features Prior to Dynamic C 9
	6.2 Debugging Features Introduced in Dynamic C 9
	6.3 Debugging Tools
	6.3.1 printf()
	6.3.2 Software Breakpoints
	6.3.3 Single Stepping
	6.3.4 Watch Expressions
	6.3.5 Evaluate Expressions
	6.3.6 Memory Dump
	6.3.7 MAP File
	6.3.8 Execution Trace
	6.3.9 Symbolic Stack Trace
	6.3.10 Assert Macro
	6.3.11 Miscellaneous Debugging Tools

	6.4 Where to Look for Debugger Features
	6.4.1 Run and Inspect Menus
	6.4.2 Options Menu
	6.4.3 Window Menu

	6.5 Debug Strategies
	6.5.1 Good Programming Practices
	6.5.2 Finding the Bug
	6.5.2.1 Reproduce the Problem
	6.5.2.2 Minimize the Failure Scenario
	6.5.2.3 Other Things to Try

	6.6 Reference to Other Debugging Information

	7. The Virtual Driver
	7.1 Default Operation
	7.2 Calling _GLOBAL_INIT()
	7.3 Global Timer Variables
	7.3.1 Example: Timing Loop
	7.3.2 Example: Delay Loop

	7.4 Watchdog Timers
	7.4.1 Hardware Watchdog
	7.4.2 Virtual Watchdogs

	7.5 Preemptive Multitasking Drivers

	8. Run-Time Errors
	8.1 Run-Time Error Handling
	8.1.1 Error Code Ranges
	8.1.2 Fatal Error Codes

	8.2 User-Defined Error Handler
	8.2.1 Replacing the Default Handler

	8.3 Run-Time Error Logging
	8.3.1 Error Log Buffer
	8.3.2 Initialization and Defaults
	8.3.3 Configuration Macros
	8.3.4 Error Logging Functions
	8.3.5 Examples of Error Log Use

	9. Memory Management
	9.1 Memory Map
	9.1.1 Memory Mapping Control
	9.1.2 Macro to Use Second Flash for Code

	9.2 Extended Memory Functions
	9.3 Code Placement in Memory
	9.4 Dynamic Memory Allocation

	10. File Systems
	10.1 FS2
	10.1.1 General Usage
	10.1.1.1 Maximum File Size
	10.1.1.2 Two Flash Boards
	10.1.1.3 Using SRAM
	10.1.1.4 Wear Leveling
	10.1.1.5 Low-Level Implementation
	10.1.1.6 Multitasking and FS2

	10.1.2 Application Requirements
	10.1.2.1 Library Requirements
	10.1.2.2 FS2 Configuration Macros
	10.1.2.3 FS2 and Use of the First Flash

	10.1.3 File System API Functions
	10.1.3.1 FS2 API Error Codes

	10.1.4 Setting up and Partitioning the File System
	10.1.4.1 Initial Formatting
	10.1.4.2 Logical Extents (LX)
	10.1.4.3 Logical Sector Size

	10.1.5 File Identifiers
	10.1.5.1 File Numbers
	10.1.5.2 File Names

	10.1.6 Skeleton Program Using FS2

	10.2 FAT File System
	10.2.1 Overview of FAT Documentation
	10.2.2 Running Your First FAT Sample Program
	10.2.2.1 Bringing Up the File System
	10.2.2.2 Using the File System

	10.2.3 More Sample Programs
	10.2.3.1 Blocking Sample
	10.2.3.2 Non-Blocking Sample

	10.2.4 FAT Operations
	10.2.4.1 Format and Partition the Device
	10.2.4.2 File and Directory Operations
	10.2.4.3 Error Handling

	10.2.5 More FAT Information
	10.2.5.1 Clusters and Sectors
	10.2.5.2 The Master Boot Record
	10.2.5.3 FAT Partitions
	10.2.5.4 Directory and File Names
	10.2.5.5 µC/OS-II and FAT Compatibility
	10.2.5.6 SF1000 and FAT Compatibility
	10.2.5.7 Hot-Swapping an xD Card
	10.2.5.8 Hot-Swapping an SD Card
	10.2.5.9 Unsupported FAT Features
	10.2.5.10 References

	11. Using Assembly Language
	11.1 Mixing Assembly and C
	11.1.1 Embedded Assembly Syntax
	11.1.2 Embedded C Syntax
	11.1.3 Setting Breakpoints in Assembly

	11.2 Assembler and Preprocessor
	11.2.1 Comments
	11.2.2 Defining Constants
	11.2.3 Multiline Macros
	11.2.4 Labels
	11.2.5 Special Symbols
	11.2.6 C Variables

	11.3 Stand-Alone Assembly Code
	11.3.1 Stand-Alone Assembly Code in Extended Memory
	11.3.2 Example of Stand-Alone Assembly Code

	11.4 Embedded Assembly Code
	11.4.1 The Stack Frame
	11.4.1.1 Stack Frame Diagram
	11.4.1.2 The Frame Reference Point

	11.4.2 Embedded Assembly Example
	11.4.3 The Disassembled Code Window
	11.4.4 Local Variable Access

	11.5 C Calling Assembly
	11.5.1 Passing Parameters
	11.5.2 Location of Return Results
	11.5.3 Returning a Structure

	11.6 Assembly Calling C
	11.7 Interrupt Routines in Assembly
	11.7.1 Steps Followed by an ISR
	11.7.2 Modifying Interrupt Vectors

	11.8 Common Problems

	12. Keywords
	abandon
	abort
	align
	always_on
	anymem
	asm
	auto
	bbram
	break
	c
	case
	char
	cofunc
	const
	continue
	costate
	debug
	default
	do
	else
	enum
	extern
	firsttime
	float
	for
	goto
	if
	init_on
	int
	interrupt
	interrupt_vector
	__lcall__
	long
	main
	nodebug
	norst
	nouseix
	NULL
	protected
	register
	return
	root
	scofunc
	segchain
	shared
	short
	size
	sizeof
	speed
	static
	struct
	switch
	typedef
	union
	unsigned
	useix
	void
	volatile
	waitfor
	waitfordone (wfd)
	while
	xdata
	xmem
	xstring
	yield
	12.1 Compiler Directives
	#asm
	#class
	#debug #nodebug
	#define
	#endasm
	#fatal
	#GLOBAL_INIT
	#error
	#funcchain
	#if #elif #else #endif
	#ifdef
	#ifndef
	#interleave #nointerleave
	#makechain
	#memmap
	#pragma
	#precompile
	#undef
	#use
	#useix #nouseix
	#warns
	#warnt
	#ximport
	#zimport

	13. Operators
	13.1 Arithmetic Operators
	+
	–
	*
	/
	++
	––
	%

	13.2 Assignment Operators
	=
	+=
	-=
	*=
	/=
	%=
	<<=
	>>=
	&=
	^=
	|=

	13.3 Bitwise Operators
	<<
	>>
	&
	^
	|
	~

	13.4 Relational Operators
	<
	<=
	>
	>=

	13.5 Equality Operators
	==
	!=

	13.6 Logical Operators
	&&
	||
	!

	13.7 Postfix Expressions
	()
	[]
	. (dot)
	->

	13.8 Reference/Dereference Operators
	&
	*

	13.9 Conditional Operators
	? :

	13.10 Other Operators
	(type)
	sizeof
	,

	14. Graphical User Interface
	14.1 Editing
	14.2 Menus
	14.2.1 Using Keyboard Shortcuts
	14.2.2 File Menu
	New <Ctrl+N>
	Open <Ctrl+O>
	Save <Ctrl+S>
	Save As
	Save All <Shift+Ctrl+S>
	Close <Ctrl+F4>
	Project
	Print Setup
	Print Preview
	Print
	Exit <Alt+F4>

	14.2.3 Edit Menu
	Undo <Ctrl+Z>
	Redo <Shift+Ctrl+Z>
	Cut <Ctrl+X>
	Copy <Ctrl+C>
	Paste <Ctrl+V>
	Insert Code Template <Ctrl+J>
	Toggle Bookmark
	Go to Bookmark
	Find <Ctrl F>
	Replace <F6>
	Find Next <F3>
	Reverse Find Next <Alt+F3>
	Find in Files (Grep)... <Shift+Ctrl+F>
	Go to Line Number
	Previous Error <Ctrl+Alt+P>
	Next Error <Ctrl+Alt+N>
	Edit Mode <F4>
	Editor Window Popup Menu
	Open File at Cursor <Ctrl+Enter>

	14.2.4 Compile Menu
	Compile <F5>
	Compile to Target
	Compile to .bin File
	Reload RabbitSys binary
	Reset Target/Compile BIOS <Ctrl+Y>

	14.2.5 Run Menu
	Run <F9>
	Stop <Ctrl+Q>
	Run w/ No Polling <Alt+F9>
	Step Into <F7>
	Step Over <F8>
	Source Step Into <Alt+F7>
	Source Step Over <Alt+F8>
	Toggle Breakpoint <F2>
	Toggle Hard Breakpoint <Alt+F2>
	Clear All Breakpoints <Ctrl+A>
	Poll Target <Ctrl+L>
	Reset Program <Ctrl+F2>
	Debug Mode <Shift+F5>
	Close Connection

	14.2.6 Inspect Menu
	Add Watch <Ctrl+W>
	Delete Watch
	Delete All Watches
	Update Watch Window <Ctrl+U>
	Evaluate Expression
	Disassemble at Cursor <Ctrl+F10>
	Disassemble at Address <Alt+F10>
	Dump at Address <Ctrl+D>
	Stop Execution Tracing <Ctrl+Alt+T>
	Start Execution Tracing <Shift+Ctrl+T>
	Goto execution point <Ctrl+E>

	14.2.7 Options Menu
	Environment Options
	Editor Tab
	Gutter & Margin Tab
	Display Tab
	Syntax Colors Tab
	Code Templates Tab
	Debug Windows Tab
	Print/Alerts Tab

	Project Options
	Communications Tab
	Compiler Tab
	Debugger Tab
	Defines Tab
	Targetless Tab

	Toolbars

	14.2.8 Window Menu
	Watch
	Stdio
	Assembly (F10)
	Register (F11)
	Stack (F12)
	Execution Trace (Alt+ F12)
	Stack Trace (Ctrl+T)
	Information

	14.2.9 Help Menu
	Online Documentation
	Keywords
	Operators
	HTML Function Reference
	Function Lookup <Ctrl+H>
	Instruction Set Reference <Alt+F1>
	I/O Registers
	Keystrokes
	Contents
	Tech Support
	Register Dynamic C
	Tip of the Day
	About

	15. Command Line Interface
	15.1 Default States
	15.2 User Input
	15.3 Saving Output to a File
	15.4 Command Line Switches
	15.4.1 Switches Without Parameters
	-b
	-bf-
	-br
	-h+
	-h-
	-id+
	-id-
	-ini
	-lf-
	-mf
	-mfr
	-mr
	-n
	-r
	-rb+
	-rb-
	-rd+
	-rd-
	-ri+
	-ri-
	-rp+
	-rp-
	-rw+
	-rw-
	-sp
	-sz
	-td+
	-td-
	-tp+
	-tp-
	-tt+
	-tt-
	-vp+
	-vp-
	-wa
	-wn
	-ws

	15.4.2 Switches Requiring a Parameter
	-bf BIOSFilePathname
	-clf ColdLoaderFilePathname
	-d MacroDefinition
	-d- MacroToUndefine
	-eto EthernetResponseTimeout
	-i InputsFilePathname
	-lf LibrariesFilePathname
	-ne maxNumberOfErrors
	-nw maxNumberOfWarnings
	-o OutputFilePathname
	-oa OutputFilePathname
	-pbf PilotBIOSFilePathname
	-pf projectFilePathname
	-pw TCPPassPhrase
	-ret Retries
	-rf RTIFilePathname
	-rti BoardID:CpuID:CrystalSpeed:RAMSize:FlashSize
	-s Port:Baud:Stopbits
	-sto SerialResponseTimeout
	-t NetAddress:TcpName:TcpPort

	15.5 Examples
	Example 1
	Example 2
	Example 3

	15.6 Command Line RFU
	-cl ColdLoaderPathName
	-d
	-fi Flash.ini PathName
	-pb PilotBiosPathName
	-pw
	-s port:baudrate
	-t ipAddress:tcpPort
	-v
	-vp+
	-vp-
	-usb+
	-usb-

	16. Project Files
	16.1 Project File Names
	16.1.3 Active Project

	16.2 Updating a Project File
	16.3 Menu Selections
	16.4 Command Line Usage

	17. Hints and Tips
	17.1 A User-Defined BIOS
	17.2 Efficiency
	17.2.1 Nodebug Keyword
	17.2.2 In-line I/O

	17.3 Run-time Storage of Data
	17.3.1 User Block
	17.3.2 Flash File System
	17.3.3 WriteFlash2
	17.3.4 Battery-Backed RAM

	17.4 Root Memory Reduction Tips
	17.4.1 Increasing Root Code Space
	17.4.2 Increasing Root Data Space

	Appendix A. Macros and Global Variables
	A.1 Macros Defined by the Compiler
	A.2 Macros Defined in the BIOS or Configuration Libraries
	A.3 Global Variables
	A.4 Exception Types
	A.5 Rabbit Registers

	Appendix B. Map File Generation
	B.1 Grammar

	Appendix C. Security Software & Utility Programs
	C.1 Rabbit Embedded Security Pack
	C.1.1 AES
	C.1.2 SSL

	C.2 Dynamic C Utilities
	C.2.1 Library File Encryption
	C.2.2 File Compression Utility
	C.2.3 Font and Bitmap Converter Utility
	C.2.4 Rabbit Field Utility
	-s port:baudrate
	-t ipAddress:tcpPort
	-v
	-cl ColdLoaderPathName
	-pb PilotBiosPathName
	-fi Flash.ini PathName
	-vp+
	-vp-
	-usb+
	-usb-
	-d

	Appendix D. Additional Documentation
	Software License Agreement
	Index

