Dynamic C

For Rabbit Semiconductor Microprocessors
Integrated C Development System

User’s Manual

060313 » 019-0125-E

This manual (or an even more up-to-date revision) is available for free
download at the Rabbit Semiconductor website: www.rabbit.com

Table of Contents

1 Installing Dynamic C.........cccocoeeerereerennen. 1 Thefar Qualifier......cccveeeicieeiinas 30
1.1 ReqUIrEMENtS.....ceeveveveeerererererererereeeeens 1 Basic Declarations.............cooceuinnnes 30
1.2 ASSUMPLIONS ..voveverereeeeve e 1 Multi-Level Far Pointers................. 31

2 Introduction to Dynamic C..............cc......... 3 Arraysand SIUCIUIES ..o 32
2.1 The Nature of Dynamic C 3 Complex Declarations..............c...... 32

' SpEed oo 3 S_ample Prograr_ns.........._ 32
22 Dyramic C Enhancementsand """"""" 4.17 Pointersto Fun_ctlons, Indirect Calls..33
; 4.18 Argument Passing...........ccceeeeeeennenn. 34
Differences......ccooeevenvensenneneseee 4 4.19 Program Flow 2

23 Dynamic C Differences Between Rabbit LOOPS w3
ANd Z180.....coovereeeeerreeere e 6 Continue and Break........___ 35

3 Quick Tutorialccceeevevevececeee e, 7 Branching........ccccoeeeevniiceienesnienns 36

3.1 RUNDEMOILC.....coeeeeeeeeeeeeeeeeenn 8 4.20 Function Chaining.........cccceeveevereneenn. 38
Single SEPPING .vovveeereeereesereeenen 9 4.21 Global Initiaization.........cc.covvreereene. 39
Watch EXpression..........ccceeeeevenenee. 9 422 LiDrarieS....cocoovevveneeeneeeneee e 40
Breakpoint.........cccevevveeieeveireesieene, 9 423 Headers.....ccooveveveieeee e 41
Editing the Programc.cccveeeee. 10 424 MOQUIES ...t 41

3.2 RUNDEMO2.C....ccovvverrrrirereriennennn, 10 The Parts of aModule..................... 41
Watching Variables Dynamically....10 Module Sample Code..........ccocvuneee 43

3.3 RUNDEMO3.C......coeevetrerreeereereenne. 11 Important NOtes..........cccocveveervenenne. 44
Cooperative Multitasking................ 1 4.25 Function Description Headers............ 45

3.4 RUNDEMOAC.....eeeeeeeeeeee, 12 4.26 Support FileS.....ccovvveveserereeesee, 45

a5 SugfncaeryMgfré’:atur% """"""""""""" ﬁ 5 Multitasking with Dynamic C 47

TS T e 5.1 Cooperative Multitasking 47

4 LangUage.....ccccoceeeveeiereeese e 15 5.2 A Red-TimeProblem..........cccccovennee 49
4.1 CLanguage Elements.........c..cccoevueeeee 15 Solving the Real-Time Problem
4.2 Punctuation TOKENS........ccceeeeeerennennns 16 with a State Machine.................... 49
T/ I D T - T 17 5.3 Costatements........coceevveerierereerenennen. 50

Data Type Limits.......ccccocevvrevrnenene. 17 Solving the Real-Time Problem

4.4 NAMES ..cvvrrirrrresereseseseseseseseenssesesenes 18 with Costatements..........ccoceueene. 50

A5 MACIOS....cveeeeeeeeeeereeee e e ee et ete s 19 Costatement SyntaX...........ccevereeeenne 51
Macro Operators # and ##............... 19 Control Statements.........cccceveerreenes 52
Nested Macro Definitions............... 20 5.4 Advanced Costatement Topics........... 54
Macro Restrictions...........ccceeeneee. 21 The CoData Structure.............c........ 54

4.6 NUMDEXS.....coovvveeeerrirerieee e 21 CoData Fields........ccoeveveinninnne 54

4.7 Strings and Character Data................. 22 Pointer to CoData Structure............ 55
String Concatenation..........cccueeeeeee. 22 Functions for Use With Named
Character Constants.........cccoeuveeeee. 23 Costatementscoeveereerieennns 56

4.8 StAEMENES.....cevevrrierereerereresereeseeens 23 Firsttime Functions...........cccvvueuee. 56

4.9 Declarations.........ccccoceeveeeeeevereeenennnn. 24 Shared Global Varidbles.................. 57

4.10 FUNCLIONS.....c.cvveeeeeerererieeee s 24 55 Cofunctions.......c.cccevvvrvrnenneneennene 57

4.11 ProtOtYPES....c.cevveeeeeeeeeeveeeeeere e 25 Cofunction SyntaX.........cceceeeeevrenene. 57

4.12 Type Definitions.........cceveveveveeennee. 25 Calling Restrictions...........ccccceveneee. 58

4,13 Aggregate Data TYPES........ccevvveenene. 27 CoData Structure..........cccoceeevereenene 59
AITAY o 27 Firsttime FUNCtions...........ccccceeene. 59
SHUCLUIE ...t 27 Types of Cofunctions.........cccceeeeee 59
UNION o 28 Types of Cofunction Cdlls............... 61
(00071110101 (T 28 Specia Code Blocks.........ccoervneee. 61

4,14 Storage ClassesS.......cvveereveerereeesrerennns 28 Solving the Real-Time Problem

415 POINErS ...cveeeeeereeseeieee e 29 with Cofunctions..........c.ccceeenne. 62

4.16 Far Pointers and Far Data (Introduced 5.6 Patterns of Cooperative Multitasking .63

in Dynamic C 10)cccvveerevenenrennennns 30 5.7 Timing Considerations...........c.c.ccvuu... 64
Dynamic C User’'s Manual iii

waitfor Accuracy Limits................. 64
5.8 Overview of Preemptive Multitasking65

5.9 Slice Statements........ccoeevveeereeereenne 65
Slice SYNtaX ..ccceeveeeeeeeeereveseveereenens 65
USB0E .oovieeereerertee e 66
ReStrictions......c.covvevvennenerieeen, 66
Slice Data Structure.........ccccecvveeenee 66
Slice Internas.......ccooovenveinieenns 66

5.10 SUMMAYovvvieeeeieeie e 68

6 Debugging with Dynamic C..................... 69

6.1 Debugging TOOIS......ccceoveerererinienenns 70
o141 011 71
Breakpoints........ccccoceveveeneeeenenennnns 72
STale (TSRS (= ool oo (R 74
Watch EXPressions.........coeveeveeeene 75
Evaluate EXpressions..........cccceceee. 76
Memory DUmMpcooeeveieeeieienee. 77
[o o S 78
EXecution TraCe.........ceveveeieenerennens 80
Symbolic Stack Trace.........ccoeeeuee 81
ASSert Macroccceveeeeiveecienieeene 82

Miscellaneous Debugging Tools 83
6.2 Where to Look for Debugger Features ..

85

Run and Inspect Menus.................. 86
OptionsSMenU.........ccoceveveeiereeceenene 86
Window Menuccceeveeiennnnnenne 86
6.3 Debug SIrategiescceeververercereneens 87
Good Programming Practices......... 87
Finding the Bug.........ccccceriencnennene 89

6.4 Referenceto Other Debugging
Information.........ccocoveveveeiceeiecceene, Q0
7 TheVirtua Driver........onns 91
7.1 Default Operation.........cccccveeveereeeenene 91
7.2 Caling _GLOBAL_INIT() .ccceeveenne 91
7.3 Globa Timer Variables.........cccceuenee 92
7.4 Watchdog Timers.......cccceeevevenennnenne 93
Hardware Watchdogcccoeeeee 93
Virtual Watchdogs.......cccoeverieenne. 93
7.5 Preemptive Multitasking Drivers....... 94
8 TheSlave Port Driver.........oovenceniennes 95
8.1 Slave Port Driver Protocal 95
OVEIVIBW ... 95
Registerson the Slave.................... 95
Polling and Interrupts..........ccceeeee 97
Communication Channels.............. 97
8.2 FUNCLIONS.....ccierireniniere e 97
8.3 EXamples.....ccocervireiiiire e 102
Status Handlerccooeveeniiennens 102
Serial Port Handlerccccceue.e. 103
Byte Stream Handler 116

9 RUN-TIMEEITOrS....ccccoirririccrririries 125
9.1 Run-Time Error Handling................ 125
Error Code Ranges........cccceeevuene. 125
Fatal Error Codes.........cccvovrverennene. 126
9.2 User-Defined Error Handler 127
Replacing the Default Handler 127
9.3 Run-Time Error Loggingcccc.c.... 128
Error Log Buffer........ccocoveeienenne. 128
Initialization and Defaults............. 129
Configuration Macros................... 129
Error Logging Functions.............. 130
Examples of Error Log Use.......... 130
10 Memory Management.........ccccocoeevvnenene 131
10.1 Memory Map......ccccceeeveeeeneieeneeenen 131
Memory Mapping Control............ 132
Macro to Use Second Flash for Code.
132

10.2 Extended Memory Functions.......... 132
Code Placement in Memory 132
10.3 Dynamic Memory Allocation.......... 133

10.4 Direct Memory Access (Introduced in
Dynamic C 10)cccoverirerieeerereenas 133
DMA Registers and Global Resources

133
APl FUNCLIONS......coeereeireeenieienee 133
DMA INterrupts.....cccoeeeeceeneeneene. 134
DMA Transfer Information........... 134
DMA with Ethernet....................... 135
11 TheFlash File System........cccccooeveuvnneee. 137
11.1 General USage......ccoovvvvveenereeieneenns 137
Maximum File Size........c.cccoueee. 137
Two Flash Boards..........cccceeveunnee 138
Using SRAM ... 138
Wear Levelingccocoevneieniceeennne 138
Low-Level Implementation.......... 138
Multitasking and the File System. 138
11.2 Application Requirements............... 139
Library Requirements................... 139
FS2 Configuration Macros........... 139
FS2 and Use of the First Flash 141
11.3 File System API Functions.............. 142
FS2 API Error Codes...........c....... 143
11.4 Setting up and Partitioning the File

SYSEEM .t 143
Initial Formatting.........ccoccverveeenne. 143
Logical Extents (LX) ...ccoceveereeuenne 144
Logical Sector Size.........ccoeruennne 145
11.5Fileldentifiers.......cocovveercnncnennn. 145
File NUMbers.......cccoeovvevinirinnne 145
File Names.......cccovenevnecrcnene 146
11.6 Skeleton Program Using FS2........... 147
12 Using Assembly Language..................... 149
12.1 Mixing Assembly and C.................. 149

Dynamic C User’s Manual

Embedded Assembly Syntax 149 [0 (0] T 186
Embedded C Syntax...................... 150 I e, 187
Setti ng Breakp0| ntsin A$embly150 !nlt_on ... 187
A blv and 32-bit Pointer Reaist L e, 188
Ssemply and Sc-Dit Fointer Registers TEEITUPE .o 188
(PW, PX, PY, PZ) INtErTUPt_VECHOTeeovveeeereeeene. 189
(Introduced in Dynamic C 10)...151 Ccall 190
12.2 Assembler and Preprocessor 152 o5 o TR 190
COMMENS oo 152 MAIN. ...t 190
Defining Constants 152 (91070 1= o0 o [190
T TSI IS e [0 191
Multiline Macros..........c...coeveevenne. 154 NOUSEIX +..eoovveeeeeseeesse s seseeeneen, 191
LabElS....ooieereeee e 154 NULL .o 191
Special Symbols........cceevevveerrenen. 154 Protected........coovereieininiieieieine, 191
SRV 1= 155 (OISO o 1
12.3 Stand-Alone Assembly Code...........156 FOOL corvoooeresseeoeseooeseoesreeeeeenr 193
Stand-Alone Assembly Code in SEQCNAIN. ..vvevee s 194
Extended Memoryccccu.e. 156 Shared ..o 194
Examp|e of Stand-Alone Amnuy S (0] W 194
S 157 L s 1
12.4 Embeaded Assembly Code............. 157 s T T >
The Stack Frame.........cc..ccocues 157 S (] SRR 195
Embedded Assembly Example.....159 SUCE..cos 196
The Disassembled Code Window .160 SWILCH e 197
Local Variable ACCESS....onnonnn. 161 L}:ﬁgﬂe‘f ... igg
125C CaII_| NG ASSEMDIY wooooooo 162 UNSIONED ... 198
Passing Parameters..........c....oo...... 162 1S) S 198
L ocation of Return Results............ 162 WAITFOr . 199
Returning a Structure..................... 163 waitfordone
12.6 Ambly Calllng Cooo 164) (Wfd) 199
127 Routinesin A bl 165 WhIl€....oiiiiii e 200
-/ Interrupt Routines in Assembly D 1= - VS 200
Steps Followed by an ISR.............. 165 XMEM.ovecvccieeeee e 201
Modifying Interrupt Vectors.......... 166 XSUING. oo 202
12.8 Common Problemscoovvvviiiiiii, 171 Ield e 202
13.1 Compiler Directives.......ccccceveerenene 203
13 KeyWOrds.......cccoceeveveviereeieeseee e, 173 HASM oo 203
abandon ... 173 HCIBSS...cciceie e 203
ADOMt ..o 173 #debug
AIGN.ei e 174 #NOEDUQ.cooereerireriiiiein 204
AWaYS ON....eeieeereeeee 174 HAEFINE....cvi i 204
ANYMEM . 174 HENAASM ...veeeeceveeee e 204
BSM e 175 Hatal ..o 204
0 (0 TSR 175 H#GLOBAL _INIT ..ooeveeeeeeee 205
bbram ... 175 HEITON ..ot 205
break......ooeieeee, 176 #uncchain.......ocoooeveieininice 205
Correerereerestese et 176 #if
(07 1S SRS 176 #elif
Char......cooi 177 #else
CONSE .t 178 #Hendif ..o 206
CONLINUE......eeeeeieeeiriecriec e 179 HIFAEl oo 206
COSEALE. ... 179 H#fndef ..o 207
debUg....ooiee 179 #interleave
default........ccooeiiireeee 180 #nointerleave........coccoveevnienens 207
O 180 #makechaincccooeeeeevnenencni 207
ElSE 180 HMEMMAEP....eeeeeierereee e 208
< 010 [o 181 212210 1 7= SN 208
EXEEIN e 181 #precompile........coveveinieniiiennn 209
Al e 182 HUNAER ..o 210
fIrsttime . ..c.ooee v 185 HUSE ..o 210
FlOAL ..o 185 #useix
FOF e 186 HNOUSEIX ..o 210
Dynamic C User’'s Manual %

FWAIMS......oiiriiinere e 210
FWAML ..o 210
EXIMPOIT .o 211

E2741 101010 o SR 211

14 OpEraorsS.....cccocomeueeeerenieieinieeeseeeeeseseeeeeens 213
14.1 Arithmetic Operators.........c.ccvevruennn. 214
F o 214
e 214
s 215

L s 215

FH e 216
s 216
DBt 216

14.2 Assignment Operators........ccceveeenene 217
SO P PP PPN 217

F e 217

T e 217
e 217
e 217

Q0= e 217

ST e 217

SDT 217
Tttt 218

AT s 218
e 218

14.3 Bitwise Operators..........ccevreererreenens 218
S SRS 218
S 218

& e 218
e 219

[e 219
TSP 219

14.4 Relational Operators.........cccoveevrenee. 219
RPN 219

S TSRS 219

S e e 220

D TSRS 220

14.5 Equality Operators.........ccevvvvrevreenes 220
T st 220

Lo s 220

14.6 Logical Operators..........ceevreererreenens 221
& it 221
| 221
e 221

14.7 Postfix EXpressions..........cccevveeenns 221
() e e 221

[T e 221

(dOL) e 222

e TSR 222

14.8 Reference/Dereference Operators... 222
& e 222
s 223

14.9 Condmonal Operators.......cccevveuenne. 223
.. 223

14.10 Other Operators.......ooveevereereeeene 224

SIZEOF oo 224
et 225

15 Graphical User Interface..........cccuuuee. 227
ST o] 1] o SRR 227
IS2 MENUS.....coviieriereee e 228
FleMenu ... 228

Edit MenU.......cccevnincncne 230
Compile Menu........ccccevvvveevenennen, 233
RUNMENU.....oviiciieee e 235
Inspect Menu........ccccvvveveenieeennee. 237
OptionsMenU......ccccoeeevvveeriereenne. 241
Environment Options............ 241

Editor Tab......c.coevvrerennnes 241

Gutter & Margin Tab......... 245

Display Tab.......cccceeverenneee. 246

Syntax Colors Tab............. 247

Code Templates Tab.......... 249

Debug Windows Tab......... 250

Print/Alerts Tab................. 257

Project Options........c.ccoeeeeeeee 258
Communications Tab 258

Compiler Tabcceveeueneee 260

Debugger Tab.......cccceeeueee. 266

Defines Tabcoceeevenneee. 269

Targetless Tabcceeeneee 271

Window Menu.........ccoeveeeenncennne 274

Help Menu.......cooovineniiecee 280

16 Command Line Interface.............cco...... 283
16.1 Default StAteS....ocoveveeeererieieenereinas 283
16.2 User INPUL.....oceeeeieieieeeereeee e 283
16.3 Saving Output to aFile.................... 283
16.4 Command Line Switches................ 284
Switches Without Parameters....... 284
Switches Requiring a Parameter... 293

16.5 EXamples.....ccooeveeerireeeeenieeeeeee 300
16.6 Command Line RFUcccccc.... 301
17 Project Fil€S.....ooovievvececeeece e, 305
17.1 Project File Names........ccccocevveeneee 305
Active Projectcoceevveieniieeennne 305

17.2 Updating a Project File.................... 306
17.3 Menu Selections.........cccceveverereenes 306
17.4 Command Line Usage.........ccceceuee. 307
18 Hintsand TipS......cccoevevrvevererevieeeisenee, 309
18.1 EffiCIONCY ..cooveeeeeieeeeese e 309
Nodebug Keywordccccueueee. 309
IN-IINE /O ..o 310

18.2 Run-time Storage of Data................ 310
User BIOCKcooerireeeieineeiniee 311

Flash File Systemcccoccocviinennne 311
WriteFlash2 ..o 311
Battery-Backed RAM 311

Vi

Dynamic C User’s Manual

18.3 Root Memory Reduction Tips......... 312

Increasing Root Code Space......... 312

Increasing Root Data Space.......... 314

Appendix A: Macros and Global Variables 315

Macros Defined by the Compiler 315

Macros Defined in the BIOS or Configura-

tion Libraries........ccooeoeieveeneeneneene 317

Global Variables..........ccooovivenennninnen. 318

EXCeption TYPES....cccevverenereriireeie e 319

Rabbit Registers........ocooevenricinenne 319

Appendix B: Map File Generation............. 321

Grammar.........oceeveeereeeeeeees e 321
Appendix C: Dynamic C Modules and Utility

Programs.........cccoeveennenensene e 323

Dynamic C Modules..........ccccoevrenunnenne 323

Dynamic C Utilities.......ccccevvrerennnenne 325

Font and Bitmap Converter Utility...... 328

NOLICETO USErS ... 333

License Agreementccceeveeevecreecensenne 335

INAEX ...t 339

Dynamic C User’'s Manual

Vii

viii Dynamic C User’s Manual

1. Installing Dynamic C

Insert theinstallation disk or CD in the appropriate disk drive on your PC. The ingtallation should
begin automatically. If it doesn’t, issue the Windows “Run...” command and type the following
command.

<disk> : \SETUP

Theinstallation program will begin and guide you through the installation process.

1.1 Requirements

Your IBM-compatible PC should have at least one free COM port and be running Windows 95 or
later.

1.2 Assumptions

It is assumed that the reader has a working knowledge of:
e thebasics of operating a software program and editing files under Windows on a PC.
e programming in a high-level language.
e assembly language and architecture for controllers.

For afull treatment of C, refer to one or both of the following texts:
e The C Programming Language by Kernighan and Ritchie (published by Prentice-Hall).
e C: A Reference Manual by Harbison and Steel (published by Prentice-Hall).

Chapter 1: Installing Dynamic C 1

Dynamic C User’'s Manua

2. Introduction to Dynamic C

Dynamic C is an integrated development system for writing embedded software. It is designed for
use with Z-World controllers and other controllers based on the Rabbit microprocessor.

2.1 The Nature of Dynamic C
Dynamic C integrates the following devel opment functions:
e Editing
e Compiling
e Linking
e Loading
e Debugging

into one program. In fact, compiling, linking and loading are one function. Dynamic C has an
easy-to-use, built-in, full-featured, text editor. Dynamic C programs can be executed and
debugged interactively at the source-code or machine-code level. Pull-down menus and keyboard
shortcuts for most commands make Dynamic C easy to use.

Dynamic C also supports assembly language programming. It is not necessary to leave C or the
devel opment system to write assembly language code. C and assembly |anguage may be mixed
together.

Debugging under Dynamic C includes the ability to use print £ commands, watch expressions
and breakpoints. Watch expressions can be used to compute C expressionsinvolving the target’s
program variables or functions. Watch expressions can be evaluated while stopped at a breakpoint
or while the target is running its program. Dynamic C 9 introduces advanced debugging features
such as execution and stack tracing. Execution tracing can be used to follow the execution of
debuggable statements, including such information as function/file name, source code line and
column numbers, action performed, time stamp of action performed and register contents. Stack
tracing shows function call sequences and parameter values.

Dynamic C provides extensions to the C language (such as shared and protected variables, cos-
tatements and cofunctions) that support real-world embedded system development. Dynamic C
supports cooperative and preemptive multitasking.

Dynamic C comes with many function libraries, all in source code. These libraries support real-
time programming, machine level 1/O, and provide standard string and math functions.

2.1.1 Speed

Dynamic C compiles directly to memory. Functions and libraries are compiled and linked and
downloaded on-the-fly. On afast PC, Dynamic C might load 30,000 bytes of code in 5 seconds at
abaud rate of 115,200 bps.

Chapter 2: Introduction to Dynamic C 3

2.2 Dynamic C Enhancements and Differences

Dynamic C differsfrom atraditional C programming system running on a PC or under UNIX. The
reason? To be better help customers write the most reliable embedded control software possible. It
is not possible to use standard C in an embedded environment without making adaptations. Stan-
dard C makes many assumptions that do not apply to embedded systems. For example, standard C
implicitly assumesthat an operating system is present and that a program starts with a clean date,
whereas embedded systems may have battery-backed memory and may retain data through power
cycles. Rabbit Semiconductor has extended the C language in a number of areas.

2.2.1 Dynamic C Enhancements
Many enhancements have been added to Dynamic C. Some of these are listed below.

e Function chaining, a concept unique to Dynamic C, alows special segments of code to be
embedded within one or more functions. When a named function chain executes, al the seg-
ments belonging to that chain execute. Function chains allow software to perform initializa-
tion, data recovery, or other kinds of tasks on request.

e Costatements allow concurrent parallel processes to be simulated in a single program.
e Cofunctions allow cooperative processes to be simulated in a single program.
e Slice statements allow preemptive processesin a single program.

e Dynamic C supports embedded assembly code and stand-alone assembly code.

e Dynamic C has shared and protected keywords that help protect data shared between different
contexts or stored in battery-backed memory.

e Dynamic C has a set of features that allow the programmer to make fullest use of extended
memory. Dynamic C supportsthe 1 MB address space of the microprocessor. The address space
is segmented by a memory management unit (MMU). Normally, Dynamic C takes care of
memory management, but there are instances where the programmer will want to take control
of it. Dynamic C has keywords and directivesto help put code and datain the proper place. The
keyword root selects root memory (addresses within the 64 KB physical address space). The
keyword xmem selects extended memory, which means anywhere in the 1024 KB or 1 MB
code space. root and xmem are semantically meaningful in function prototypes and more effi-
cient code is generated when they are used. Their use must match between the prototype and
the function definition. The directive #memmap allows further control. See “Memory Manage-
ment” on page 131, for further details on memory.

4 Dynamic C User’s Manual

2.2.2 Dynamic C Differences
The main differencesin Dynamic C are summarized here and discussed in detail in chapters“Lan-
guage” on page 15 and “Keywords’ on page 173.

e [f avariableisexplicitly initialized in adeclaration (e.g., int x = 0;),itisstoredinflash
memory (EEPROM) and cannot be changed by an assignment statement. Such a declaration
will generate awarning that may be suppressed using the const keyword:

const int x = 0

To initialize static variables in Static RAM (SRAM) use #GLOBAL INIT sections. Note that
other C compilers will automatically initialize al static variablesto zero that are not explicitly
initialized before entering the main function. Dynamic C programs do not do this becausein an
embedded system you may wish to preserve the data in battery-backed RAM on reset

e The numerousinclude filesfound in typical C programs are not used because Dynamic C has a
library system that automatically provides function prototypes and similar header information
to the compiler before the user’s program is compiled. Thisis done viathe #use directive.
Thisisan important topic for userswho are writing their own libraries. Those users should refer
to the Modul es section of the language chapter. It isimportant to note that the #use directiveis
areplacement for the #include directive, and the #include directiveis not supported.

e \When declaring pointers to functions, arguments should not be used in the declaration. Argu-
ments may be used when calling functionsindirectly via pointer, but the compiler will not
check the argument list in the call for correctness.

e Bit fields are not supported.

e Separate compilation of different parts of the program is not supported or needed.

Chapter 2: Introduction to Dynamic C 5

2.3 Dynamic C Differences Between Rabbit and Z180

A major difference in the way Dynamic C interacts with a Rabbit-based board compared to aZ180
or 386EX board isthat Dynamic C expects no BIOS kernel to be present on the target when it
starts up. Dynamic C stores the BIOS kernel as a C source file. Dynamic C compiles and loads it
to the Rabbit target when it starts. Thisis accomplished using the Rabbit CPU’s bootstrap mode
and a specia programming cable provided in al Rabbit product development kits. This method
has numerous advantages.

e A socketed flash is no longer needed. BIOS updates can be made without a flash-EPROM
burner since Dynamic C can communicate with a target that has a blank flash EPROM. Blank
flash EPROM can be surface-mounted onto boards, reducing manufacturing costs for both Rab-
bit Semiconductor and other board devel opers. BIOS updates can then be made available on the
Web.

e Advanced users can see and modify the BIOS kernel directly.

e Board developers can design Dynamic C compatible boards around the Rabbit CPU by simply
following afew simple design guidelines and using a “skeleton” BIOS provided by Rabbit
Semiconductor.

e A magjor featureis the ability to program and debug over the Internet or local Ethernet. This
requires the use of a RabbitLink board, available alone or as an option with Rabbit-based devel-
opment Kits.

6 Dynamic C User’s Manual

3. Quick Tutorial

Sample programs are provided in the Dynamic C Samples folder, which isin the root directory
where Dynamic C wasinstalled. The Samples folder contains many subfolders, as shown in
Figure 1. Sample programs are provided in source code format. You can open the source code file
in Dynamic C and read the comment block at the top of the sample program for a description of its
purpose and other details. Comments are also provided throughout the source code. This docu-
mentation, provided by the software engineers, is arich source of information.

Look in: I _4 Sarples j ﬁl

[EAES_Encryption; I dmtarget L 1Gps

| |Bl2000 LI dmunit =

| 1BI2100 L 100w M _LOAD __1lcom

| IBIZR00 _lEmorHandling __llntrupts

|| Cofunc __IFft __lJackrab

|| Costate ___|FileSygtem | |LCD_Keppad

KN i

Flepame: | [Oeen |
Filez of type: II: Source [*.e) j Cancel |

Figure 1. Screenshot of Samples folder

The subfolders contain sample programs that illustrate the use of the various Dynamic C libraries.
E.g., the subfolders “ Cofunc” and “ Costate” have sample programs illustrating the use of
COFUNC.LIB and COSTATE . LIB, librariesthat support cooperative multitasking using
Dynamic C language extensions. Besides its subfolders, the Samples folder also contains some
sample programs to demonstrate various aspects of Dynamic C. E.g., the sample program
Pong.c demonstrates output to the Stdio window.

In the rest of this chapter we examine four sample programs in some detail.

Chapter 3: Quick Tutorial 7

3.1 Run DEMO1.C

This sample program will be used to illustrate some of the functions of Dynamic C. Open the file
Samples/DEMOL . C using the File menu or the keyboard shortcut <Ctrl+O>. The program will
appear in awindow, as shown in Figure 1 below (minus some comments). Use the mouse to place
the cursor on the function name print £ in the program and press <Ctrl+H>. Thisbrings up a
Function Description window for printf (). You can do thiswith all functionsin the Dynamic
C libraries, including libraries you write yoursdlf.

=E Default - Dynamic C Dist. 8. 00Beta? - [E-ADC 8\Samplesi\DEMO1.C]

ﬁEile Edit Compile Bun Inspect Options Window Help _|E|5|

DS emnn alas||enssr

fﬁ-:{-ﬁ-:{-ﬁ-:{-ﬁ-:{-ﬁ-***********************

demol. c
E-World, 2000

Sample program for Dynamic C© tutorial
:(-:i-:(-:i-:(-:i-**********:(-*:(-*:(-*:(-*:(-:(-:(-:(-*:(-************************ﬁ

foaing) o A40 programs begin with main

int i, 3:

i = 0;: S Initialize & counter
while (1) { FS Btart an endless loop
i++: S Increment the counter

for (j=0; j<20000; J++); /7 Delavy by counting to 20,000
printf(™i = sdyn"™, 1i): A Print out counter

b
|Default [Line: 21 [Zal 70 | |Inzert oz

Figure 2. Sample Program DEMO1.C

To run DEMO1 . ¢ compile it using the Compile menu, and then run it by selecting Run
ﬂ in the Run menu. (The keyboard shortcut <F9> will compile and run the program. You
may also use the green triangle toolbar button as a substitute for <F9>.)

The value of the counter should be printed repeatedly to the Stdio window if everything went well.
If this doesn’t work, review the following points:

e Thetarget should be ready, indicated by the message “BIOS successfully compiled...” If you
did not receive this message or you get a communication error, recompile the BIOS by typing
<Ctrl+Y> or select Reset Target / Compile BIOS from the Compile menu.

8 Dynamic C User’s Manual

e A message reports “No Rabbit Processor Detected” in cases where the wall transformer is not
connected or not plugged in.

e The programming cable must be connected to the controller. (The colored wire on the program-
ming cableis closest to pin 1 on the programming header on the controller). The other end of
the programming cable must be connected to the PC serial port. The COM port specified in the
Communications dialog box must be the same as the one the programming cable is connected
to. (The Communications dialog box is accessed via the Communications tab of the Options |
Project Options menu.)

e To check if you have the correct serial port, press <Ctrl+Y>. If the “BIOS successfully com-
piled ...” message does not display, choose a different serial port in the Communications dia-
log box until you find the seria port you are plugged into. Don’'t change anything in this menu
except the COM number. The baud rate should be 115,200 bps and the stop bits should be 1.

3.1.1 Single Stepping

____ Toexperiment with single stepping, we will first compile DEMO1 . C to the target with-

‘ ﬂ out running it. This can be done by clicking the compile button on the task bar. Thisis

- thesameas pressing F5. Both of this actions will compile according to the setting of
“Default Compile Mode.” (See “Default Compile Mode” in Chapter 15, for how to set this param-
eter.) Alternatively you may select Compile | Compile to Target from the main menu.

After the program compiles a highlighted character (green) will appear at the first exe-
cutable statement of the program. Press the <F8> key to single step (or use the toolbar
button). Each time the <F8> key is pressed, the cursor will advance one statement. When
you get to the statement: for (=0, j< ... ,itbecomesimpractical to single step further
because you would have to press <F8> thousands of times. We will use this statement to illustrate
watch expressions.

3.1.2 Watch Expression

Watch expressions may only be added, deleted or updated in run mode. To add a watch
expression click on the toolbar button pictured here, or press <Ctrl+W=> or choose Add
Watch from the Inspect menu. The Add Watch Expression popup box will appear. Type
the lower case letter “j” and click on either Add or OK. The former keeps the popup box open, the
latter closesit. Either way the Watches window appears. This is where information on watch
expressions will be displayed. Now continue single stepping. Each time you do, the watch expres-
sion (j) will be evaluated and printed in the Watches window. Note how the value of “j” advances
when the statement 5§ ++ is executed.

+

Q

3.1.3 Breakpoint
Move the cursor to the start of the statement:
for (j=0; j<20000; Jj++);

To set a breakpoint on this statement, press <F2> or select Toggle Breakpoint from the Run menu.
A red highlight appears on the first character of the statement. To get the program running at full
speed, press <F9>. The program will advance until it hits the breakpoint. The breakpoint will start
flashing both red and green colors.

Chapter 3: Quick Tutorial 9

To remove the breakpoint, press <F2> or select Toggle Breakpoint on the Run menu. To continue
program execution, press <F9>. You will see the value of “i” displayed in the Stdio window
repeatedly until program execution is halted.

You can set breakpoints while the program is running by positioning the cursor to a statement and
using the <F2> key. If the execution thread hits the breakpoint, a breakpoint will take place. You
can toggle the breakpoint with the <F2> key and continue execution with the <F9> key.

Starting with Dynamic C 9, you can also set breakpoints while in edit mode. Breakpoint informa-

tion is not only retained when going back and forth from edit mode to debug mode, it is stored
when afileisclosed and restored when thefile is re-opened.

3.1.4 Editing the Program

Press <F4>to put Dynamic C into edit mode. Use the Save as choice on the File menu to save the
file with a new name so as not to change the original demo program. Save the fileasMYTEST . C.
Now change the number 20000 in the for statement to 10000. Then use the <F9> key to recom-
pile and run the program. The counter displays twice as quickly as before because you reduced the
valuein the delay loop.

3.2 Run DEMO2.C

Go back to edit mode and open the program DEMO?2 . C. This program is the same as the first pro-
gram, except that avariable k has been added along with a statement to increment k by the value
of i each time around the endless |loop. Compile and run DEMO2 . C.

3.2.1 Watching Variables Dynamically
Press <Ctrl+W> to open the “ Add Watch Expression” popup box.

Type“k” in the text entry

box, then click OK (or Add) Add Watch Expression
to add the expression k to the watch Expression [k =]

top of the list of watch
expressions. Now press
<Ctrl+U>, the keyboard short-
cut for updating the watch
window. Each time you press <Ctrl+U>, you will seethe current value of k.

ok | Cancel | Help |

Add another expression to the watch window:
k*5
Then press <Ctrl+U> several times to observe the watch expressionsk and k*5.

10 Dynamic C User’s Manual

3.3 Run DEMOQO3.C

The example bel ow, sample program DEMO3 . C, uses costatements. A costatement is away to
perform a sequence of operations that involve pauses or waits for some external event to take
place.

3.3.1 Cooperative Multitasking

Cooperative multitasking is away to perform several different tasks at virtualy the same time. An
example would be to step a machine through a sequence of tasks and at the sametime carry on a
dialog with the operator via a keyboard interface. Each separate task voluntarily surrenders its
compute time when it does not need to perform any more immediate activity. In preemptive multi-
tasking control is forcibly removed from the task via an interrupt.

Dynamic C has language extensions to support both types of multitasking. For cooperative multi-
tasking the language extensions are costatements and cofunctions. Preemptive multitasking is
accomplished with slicing or by using the uC/OS-11 real-time kernel that comes with Dynamic C
Premier.

Advantages of Cooperative Multitasking

Unlike preemptive multitasking, in cooperative multitasking variables can be shared between dif-
ferent tasks without taking elaborate precautions. Cooperative multitasking also takes advantage

of the natural delays that occur in most tasks to more efficiently use the available processor time.

The DEMO3 . C sample program has two independent tasks. The first task prints out a message to
Stdio once per second. The second task watchesto see if the keyboard has been pressed and prints
the entered key.

main () {
int secs; // seconds counter
secs = 0; // initialize counter
(1) while (1) { // endlessloop

// First task will print the seconds elapsed.

(2) costate {
secs++; // increment counter
(3) waitfor (DelayMs (1000)) ; // wait one second

printf ("$d seconds\n", secs); // printeapsed seconds
(4) }

// Second task will check if any keys have been pressed.

costate {

(5) if (!kbhit()) abort; // key been pressed?
printf (" key pressed = %c\n", getchar());
}
(6) 1} // end of while loop
1 // endof main

Chapter 3: Quick Tutorial 11

The numbersin the left margin are reference indicators and not part of the code. Load and run the
program. The elapsed time is printed to the Stdio window once per second. Push severa keys and
note how they are reported.

The elapsed time message is printed by the costatement starting at the line marked (2). Costate-
ments need to be executed regularly, often at least every 25 ms. To accomplish this, the costate-
ments are enclosed inawhile loop. Thewhile loop starts at (1) and ends at (6). The statement
at (3) waitsfor atime delay, in this case 1000 ms (one second). The costatement executes each
pass through the while loop. When await for condition is encountered the first time, the cur-
rent value of MS TIMER is saved and then on each subsequent pass the saved value is compared
to the current value. If await for condition isnot encountered, then ajump is made to the end of
the costatement (4), and on the next pass of the loop, when the execution thread reaches the begin-
ning of the costatement, execution passes directly to the wait for statement. Once 1000 ms has
passed, the statement after the wait for isexecuted. A costatement can wait for along period of
time, but not use alot of execution time. Each costatement is alittle program with its own state-
ment pointer that advances in response to conditions. On each pass through the while loop as
few as one statement in the costatement executes, starting at the current position of the costate-
ment’s statement pointer. Consult Chapter 5 "Multitasking with Dynamic C" for more details.

The second costatement in the program checks to see if an alpha-numeric key has been pressed
and, if one has, prints out that key. The abort statement isillustrated at (5). If the abort state-
ment is executed, the internal statement pointer is set back to the first statement in the costatement,
and ajump is made to the closing brace of the costatement.

Observe the value of secs while the program is running.To illustrate the use of snooping, use the
watch window to observe secs while the program isrunning. Add the variable secs to thelist
of watch expressions, then press <Ctrl+U> repeatedly to observe as secs increases.

3.4 Run DEMOA4.C

The sample program DEMO4 . C uses execution tracing. Thisis one of the advanced debugging
features introduced in Dynamic C 9. Tracing records program state information based on options
you choose in the Debugger tab of the Project Options dialog. The information captured from the
target by Dynamic C'stracing feature is displayed in the Trace window, available from the Win-
dow menu. To make the target send trace information, you must turn on tracing either from the
INSPECT menu or from within your program using one of the macros described here.

To use this sample program, first go - r—————
o the DepUQQGr tab of the Project ile Edit Compile Rum Inspect I?ptl_l:lg Window Help
Options dialog, select Enable Trac- _ ;

ing, and choose Full for the Trace " O= N | “ & ||| & Bz % Environment Options
Level. Click OK to save and close “ = e o Praject Options

the dialog, then compile and run
DEMO4 . C. When the program fin-
ishes, the Trace window will open
and you can examine its entries. The Trace window can be opened anytime after the program is
compiled, but execution speed is dlightly affected if the window is open while the program is run-
ning.

Toolbars g

12 Dynamic C User’s Manual

3.4.1 Trace Macros
Trace macros provide more fine-grained control than the menu options.

TRACE
The TRACE macro creates one entry in the trace buffer containing the program state information
at the time the macro executes. It is useful if you want to monitor one statement closely rather than
follow theflow of part of aprogram. In Demo4 . ¢, TRACE isexecuted at lines45 and 77, asyou
can see in the screenshot in Figure 3.

EE:"\DEIHPHDE‘\SAHPLES\DEHD#.E Trace
Achion Function | File Mame Line/Col
Execute DEMO4 . C

Execute foo DEMO4 . C &0, &
Execute foo LEMO4_C &5l,2
Execute foo DEMO4_C 62,1
Exit foo DEMO4._C G2, 1
Execute main LEMO4_C 71,4
MACEO fool DEMO4._C 45,1
MACERO main DEMO4._C 7.1
Execute foo LEMO4_C Lg, 4
Execute foo DEMO4_C &0,z
Execute foo LEMO4_C &5l,2
Execute foo LEMO4_C 62,1
Exit foo DEMO4._C G2, 1
Execute main LEMO4_C g0, 4
Execute main DEMO4_C 21,4
MACERO fool DEMO4._C 45,1
Execute main LEMO4_C gz, 4
Execute main DEMO4_C g23,1
Exit main DEMO4._C 23,1

Figure 3. Trace window contents after running Demo4.c

The TRACE macro does not affect the TRACEON and TRACEOFF macros, and likewiseis not
affected by them. It will execute regardless of whether tracing is turned on or off. An interesting
thing to note about TRACE isthat it generate a trace statement even when it appearsin anode -
bug function.

_TRACEON

The TRACEON macro turnson tracing. This does not cause any information to be recorded by
itself likethe TRACE macro, but rather causes a change of state within the debug kernel so that
program state information is recorded for program and library statements executed thereafter, until
the TRACEOFF macro isexecuted or by menu command. Dynamic C captures the information
you specified in the Project Options dialog and displaysit in the Trace window.

InDemo4 .c, TRACEON isexecuted inthe function foo () . Notethat tracing isturned on in the
second call to fool () inmain (), but that except for the TRACE statement there are no trace
statementsfor foo1l () . Thisis because statementsin nodebug functions are not traceable.

_TRACEOFF

The TRACEOFF macro turns off tracing, starting with the next statement after it executes.
Instances of the TRACE macro will still execute, but tracing remains off until it is turned on by
the TRACEON macro or by menu command.

Chapter 3: Quick Tutorial 13

3.5 Summary of Features

This chapter provided a quick look at the interface of Dynamic C and some of the powerful
options available for embedded systems programming. The following several paragraphs are a
summary of what we' ve discussed.

Development Functions

When you load a program it appearsin an editor window. You compile by clicking Compile on the
task bar or from the Compile menu. The program is compiled into machine language and down-
loaded to the target over the serial port. The execution proceeds to the first statement of main,
where it pauses, waiting to run. Press <F9> or select Run on the Run menu. If want to compile and
run the program with one keystroke, use <F9>, the run command; if the program is not aready
compiled, the run command compilesit.

Single Stepping

Thisis done with the F8 key. The F7 key can also be used for single stepping. If the F7 key is
used, then descent into functions will take place. With F8 the function is executed at full speed
when the statement that callsit is stepped over.

Setting Breakpoints

The F2 key is used to toggle a breakpoint at the cursor position. Prior to Dynamic C 9, breakpoints
could only be toggled whilein run mode, either while stopped at a breakpoint or when the pro-
gram ran at full speed. Starting with Dynamic C 9, breakpoints can be set in edit mode and
retained when changing modes or closing thefile.

Watch Expressions

A watch expression is a C expression that is evaluated on command in the Watches window. An
expressionishbasically any type of C statement that can include operators, variables, structures and
function calls, but not statements that require multiple lines such as for or switch. You can
have alist of watch expressions in the Watches window. If you are single stepping, then they are
all evaluated on each step. You can also command the watch expressions to be evaluated by using
the <Ctrl+U> command. When awatch expression is evaluated at a breakpoint, it is evaluated as if
the statement was at the beginning of the function where you are single stepping.

Costatements

A costatement is a Dynamic C extension that allows cooperative multitasking to be programmed
by the user. Keywords, like abort and wait for, are available to control multitasking operation
from within costatements.

Execution Tracing

Execution tracing allows you to follow the flow of your program’s execution in real time instead
of single stepping through it. The Trace window can show which statement was executed, what
type of action it was, when it was executed, and the contents of the registers after executing it. You
can also save the contents of the Trace window to afile.

14 Dynamic C User’s Manual

4. Language

Dynamic C is based on the C language. The programmer is expected to know programming meth-
odologies and the basic principles of the C language. Dynamic C hasits own set of libraries,
which include user-callable functions. Please see the Dynamic C Function Reference Manual for
detailed descriptions of these API functions. Dynamic C libraries are in source code, allowing the
creation of customized libraries.

Before starting on your application, read through the rest of this chapter to review C-language fea-
tures and understand the differences between standard C and Dynamic C.

4.1 C Language Elements

A Dynamic C program is a set of files consisting of one filewith a. ¢ extension and the requested
library files. Each file is a stream of characters that compose statements in the C language. The
language has grammar and syntax, that is, rules for making statements. Syntactic elements—often
called tokens—form the basic elements of the C language. Some of these elements are listed in the
table below.

Table 4-1 Language Elements

Syntactic Element Description
punctuation Symbols used to mark beginnings and endings
names Words used to name data and functions
numbers Literal numeric values
strings Literal character values enclosed in quotes
directives Words that start with # and control compilation
keywords Words used as instructions to Dynamic C
operators Symbols used to perform arithmetic operations

Chapter 4: Language 15

4.2 Punctuation Tokens
Punctuation serves as boundariesin C programs. The table below lists the punctuation tokens.

Table 4-2 Punctuation Marks and Tokens

Token Description

Terminates a statement |abel.

; Terminates a simple statement or ado loop.

Separatesitemsin alist, such as an argument list,
declaration list, initiaization list, or expression list.

Encloses argument or parameter lists. Function calls
always require parentheses. Macros with parameters
also require parentheses. Also used for arithmetic and
logical sub expressions.

()

Begins and ends a compound statement, a function

{1} body, a structure or union body, or encloses a function
chain segment.

/7 Indicatesthat the rest of the lineisacomment and is not
compiled.

/* ... */|Comments are nested between the /* and * / tokens.

16 Dynamic C User’s Manual

4.3 Data

Data (variables and constants) have type, size, structure, and storage class. Basic (aka primitive)

data types are shown below.

Table 4-3 Dynamic C Basic Data Types

Data Type Description
char 8-bit unsigned integer. Range: 0 to 255 (OxFF)
int 16-bit signed integer. Range: -32,768 to +32,767

unsigned int

16-hit unsigned integer. Range: 0 to +65,535

long

32-bit signed integer. Range: -2,147,483,648 to +2,147,483,647

unsigned long

32-hit unsigned integer. Range 0to 232 - 1

32-bit |IEEE floating-point value. The sign bit is 1 for negative
values. The exponent has 8 hits, giving exponents from -127 to

float +128. The mantissa has 24 bits. Only the 23 least significant bits
are stored; the high bit is 1 implicitly. (Rabbit controllers do not
have floating-point hardware.) Range: 1.18 x 1038 to 3.40 x 108

enum Definesalist of named integer constants. The integer constants are

signed and in the range: -32,768 to +32,767.

4.3.1 Data Type Limits

The following symbolic names for the hardcoded limits of the data types are defined in

limits.h.
#define CHAR BIT 8
#define UCHAR MAX 255
#define CHAR MIN 0
#define CHAR MAX 255
#define MB_LEN MAX 1
#define SHRT MIN -32768
#define SHRT MAX 32767
#define USHRT MAX 65535
#define INT MIN -32767
#define INT MAX 32767
#define UINT MAX 65535
#define LONG MIN -2147483647
#define LONG_MAX 2147483647

#define ULONG MAX 4294967295

Chapter 4: Language

17

4.4 Names

Names identify variables, certain constants, arrays, structures, unions, functions, and abstract data
types. Names must begin with aletter or an underscore (_), and thereafter must be letters, digits,
or an underscore. Names may not contain any other symbols, especialy operators. Names are dis-
tinct up to 32 characters, but may be longer. Names may not be the same as any keyword. Names
are case-sensitive.

Examples
my function // ok
_Dblock // ok
test32 // ok
jumper- // not ok, usesaminus sign
3270type // not ok, begins with digit
Cleanup the data now // These names are not distinct in DC 6.19

Cleanup the data later // butaredistinctinall later versions.

References to structure and union elements require compound names. The ssimple names in a com-
pound name are joined with the dot operator (period).

cursor.loc.x = 10; // set structure element to 10

Usethe #define directive to create names for constants. These can be viewed as symbolic con-
stants. See Section 4.5, “Macros.”

#define READ 10
#define WRITE 20
#define ABS 0
#define REL 1
#define READ ABS READ + ABS
#define READ REL READ + REL

Theterm READ_ ABS isthesameas 10+ O or 10, and READ REL isthesameas10+ 1 or 11.
Note that Dynamic C does not allow anything to be assigned to a constant expression.

READ ABS = 27; // produces compiler error

To accomplish the above statement, do the following:

#undef READ ABS
#define READ ABS 27

18 Dynamic C User’s Manual

4.5 Macros

Macros may be defined in Dynamic C by using #define. A macro is a name replacement fea-
ture. Dynamic C has atext preprocessor that expands macros before the program text is compiled.
The programmer assigns a name, up to 31 characters, to afragment of text. Dynamic C then
replaces the macro name with the text fragment wherever the name appears in the program. In this
example,

#define OFFSET 12
#define SCALE 72

int i, x;

i = x * SCALE + OFFSET;

thevariable i getsthevauex * 72 + 12. Macroscan have parameters such asin the follow-
ing example.

#define word(a, b) (a<<8 | b)

char c;

int i, Jj;

i = word(j, <); // sameasi=(j<<8]¢)

The compiler removes the surrounding white space (comments, tabs and spaces) and collapses
each sequence of white space in the macro definition into one space. It placesa \ beforeany " or
\ to preserve their original meaning within the definition.

4.5.1 Macro Operators # and ##
Dynamic C implements the # and ## macro operators.

The # operator forces the compiler to interpret the parameter immediately following it as a string
literal. For example, if amacro is defined

#define report (value, fmt) \
printf (#value "=" #fmt "\n", value)

then the macroin
report (string, %s);
will expand to
printf ("string" "=" "%s" "\n", string);
and because C always concatenates adjacent strings, the final result of expansion will be

printf ("string=%s\n", string);

The ## operator concatenates the preceding character sequence with the following character
sequence, deleting any white space in between. For example, given the macro

#define set(x,y,2z) x ## z ## ## vy ()
themacroin

set (AASC, FN, 6);
will expand to

AASC6 _FN() ;

Chapter 4: Language 19

For parameters immediately adjacent to the ## operator, the corresponding argument is not
expanded before substitution, but appears asit does in the macro call.

4.5.2 Nested Macro Definitions
Generally speaking, Dynamic C expands macro calls recursively until they can expand no more.
Another way of stating thisis that macro definitions can be nested.

The exceptionsto thisrule are
1. Argumentsto the # and ## operators are not expanded.
2. To prevent infinite recursion, a macro does not expand within its own expansion.

The following complex example illustrates this.

#define A B

#define B C

#define uint unsigned int

#define M(x) M ## x

#define MM(x,y,2z) X = v ## z

#define string something

#define write(value, fmt)\

printf (#value "=" #fmt "\n", value)

The code

uint z;
M (M) (A,A,B);
write (string, %s);

will expand first to

unsigned int z; // simple expansion
MM (A,A,B); // M(M) does not expand recursively
printf ("string" "=" "%g" "\n", string) ;

// #vaue A "string" #mt /£ "%s"

then to

unsigned int z;

A = AB; // fromA =A##B

printf ("string" "=" "%s" "\n", something) ;
// string — something

then to

unsigned int z;
B = AB; // A —> B
printf ("string=%s\n", something) ; // concatenation

20 Dynamic C User’s Manual

and finally to

unsigned int z;
C = AB; // B— C
printf ("string = %$s\n", something) ;

4.5.3 Macro Restrictions

The number of argumentsin amacro call must match the number of parametersin the macro defi-
nition. An empty parameter list is allowed, but the macro call must have an empty argument list.
Macros are restricted to 32 parameters and 126 nested calls. A macro or parameter name must
conform to the same requirements as any other C name. The C language does not perform macro
replacement inside string literals, character constants, comments, or within a #def ine directive.

A macro definition remains in effect unless removed by an #undef directive. If an attempt is
made to redefine a macro without using #undef, awarning will appear and the original defini-
tion will remainin effect.

4.6 Numbers

Numbers are constant values and are formed from digits, possibly a decimal point, and possibly
thelettersU, L, X, or A-F, ortheir lower case equivalents. A decimal point or the presence of
the letter E or F indicates that anumber isreal (has afloating-point representation).

Integers have several forms of representation. The normal decimal form is the most common.
10 -327 1000 0

Aninteger islong (32-bit) if its magnitude exceeds the 16-bit range (-32768 to +32767) or if it has
the letter 1, appended.

OL -32L 45000 32767L

Aninteger isunsigned if it has the letter U appended. Itis1ong if it also has 1. appended or if its
magnitude exceeds the 16-bit range.

0U 4294967294U 32767U 1700UL

Aninteger is hexadecimal if preceded by 0x.
0X7E 0xE000 OXxFFFFFFFA

It may contain digits and the lettersa—f or A-F.

Aninteger isoctal if begins with zero and contains only the digits 0-7.
0177 020000 000000630

A rea number can be expressed in avariety of ways.

4.5 means 4.5

4f means 4.0
0.3125 means 0.3125

456e-31 means 456 x 10 ot
0.3141592e1 means 3.141592

Chapter 4: Language 21

4.7 Strings and Character Data
A string isagroup of characters enclosed in double quotes ().
"Press any key when ready..."

Stringsin C have aterminating null byte appended by the compiler. Although C does not have a
string data type, it does have character arrays that serve the purpose. C does not have string opera-
tors, such as concatenate, but library functions strcat () and strncat () areavailable.

Strings are multibyte objects, and as such they are always referenced by their starting address, and
usualy by achar* variable. More precisely, arrays are always passed by address. Passing a
pointer to a string is the same as passing the string. Refer to Section 4.15 for more information on
pointers.

The following example illustrates typical use of strings.
const char* select = "Select option\n";
char start[32];

strcpy (start, "Press any key when ready...\n");
printf (select); // pass pointer to string

printf (start); // passstring

4.7.1 String Concatenation

Two or more string literals are concatenated when placed next to each other. For example:
"Rabbits" "like carrots."

becomes
"Rabbits like carrots."

during compilation.

If the strings are on multiple lines, the macro continuation character must be used. For example:

"Rabbits"\
"don’'t like line dancing."

becomes
"Rabbits don’t like line dancing."
during compilation.

22 Dynamic C User’s Manual

4.7.2 Character Constants
Character constants have a slightly different meaning. They are not strings. A character constant is
enclosed in single quotes (+ ') and is arepresentation of an 8-bit integer value.

g’ |\n| '\XlB'

Any character can be represented by an alternate form, whether in a character constant or in a
string. Thus, nonprinting characters and characters that cannot be typed may be used.

A character can be written using its numeric value preceded by a backslash.

\x41 // thehex vaue 41
\101 // theocta value 101, aleading zero is optional
\B10000001 // thebinary value 10000001

There are also several “specia” forms preceded by a backslash.

\a bdl \b backspace

\f formfeed \n newline

\r carriage return \t tab

\v vertical tab \0 null character

\\ backslash \c theactual character ¢

\’ single quote \” double quote

Examples

"He said \"Hello.\"" // embedded double quotes

const char j = 'Z'; // character constant

const char* MSG = "Put your disk in the A drive.\n";
// embedded new line at end

printf (MSG) ; // print MSG

char* default = ""; // empty string: asingle null byte

4.8 Statements

Except for comments, everything in a C program is a statement. Almost all statements end with a
semicolon. A C program is treated as a stream of characters where line boundaries are (generally)
not meaningful. Any C statement may be written on as many lines as needed. The Dynamic C text
editor enforces a 512 byte limit on the length of aline. Similarly, the Dynamic C compiler isonly
guaranteed to parse up to 512 bytes for any single C statement.

A statement can be many things. A declaration of variables is a statement. An assignment isa
statement. A while or for loop isastatement. A compound statement is a group of statements
enclosed in braces { and }. A group of statements may be single statements and/or compound
statements.

Comments (the /* . . . */ kind) may occur aimost anywhere, even in the middle of a statement,
as long as they begin with /* and end with * /.

Chapter 4: Language 23

4.9 Declarations

A variable must be declared before it can be used. That means the variable must have a name and
atype, and perhaps its storage class could be specified. If an array is declared, its size must be
given. Root data arrays are limited to atotal of 32,767 elements.

static int thing, arrayl[12]; // staticinteger variable &

// staticinteger array
auto float matrix[3] [3]; // autofloat array with 2 dimensions
char *message="Press any key...” // initialized pointer to char array

If an aggregate type (struct or union) is being declared, itsinternal structure has to be
described as shown below.

struct ({ // description of structure
char flags;
struct { // anested structure here
int x;
int y;
} loc;

} cursor;

int a;
a = cursor.loc.x; // use of structure element here

4.10 Functions

The basic unit of a C application program is afunction. Most functions accept parameters (ak.a.,
arguments) and return results, but there are exceptions. All C functions have areturn type that
specifieswhat kind of result, if any, it returns. A function with avoid return type returns no
result. If afunction is declared without specifying areturn type, the compiler assumesthat it isto
return an int (integer) value.

A function may call another function, including itself (arecursive cal). Themain functionis
called automatically after the program compiles or when the controller powers up. The beginning
of thema in function isthe entry point to the entire program.

24 Dynamic C User’s Manual

4.11 Prototypes

A function may be declared with a prototype. Thisis so that:
e Functions that have not been compiled may be called.

e Recursive functions may be written.

e The compiler may perform type-checking on the parameters to make sure that calls to the func-
tion receive arguments of the expected type.

A function prototype describes how to call the function and is nearly identical to the function’sini-
tial code.

/* Thisisafunction prototype.* /
long tick count (char clock id);

/* Thisisthe function’s definition.* /
long tick count (char clock id) {

}

It is not necessary to provide parameter names in a prototype, but the parameter type is required,
and all parameters must be included. (If the function accepts a variable number of arguments, as
printf does, usean ellipsis.)

/* This prototypeis as good as the one above. */
long tick count (char);

/* Thisisaprototype that uses ellipsis. */
int startup (device id, ...);

4.12 Type Definitions

Both types and variables may be defined. One virtue of high-level languages such as C and Pascal
isthat abstract data types can be defined. Once defined, the data types can be used as easily as
simple datatypeslike int, char, and float. Consider thisexample.

typedef int MILES; // abasictype named MILES
typedef struct ({ // astructure type...
float re; //
float im; // ...
} COMPLEX; // ..named COMPLEX
MILES distance; // declare variable of type MILES
COMPLEX z, *zp; // declare variable of & pointer to type COMPLEX .

Chapter 4: Language 25

Use typedef to create ameaningful name for aclass of data. Consider this example.

typedef unsigned int node;

void NodeInit (node) ;

void NodeInit (unsigned int

This example shows many of the basic C constructs.

// typenameisinformative
// not very informative

/* Put descriptive information in your program code using this form of comment,
which can be inserted anywhere and can span lines. The double slash comment
(shown below) may be placed at the end of aline.* /

#define SIZE 12

int g, h;

float sumSquare(int, int
void init () ;

main () {
float x;
init () ;
X = sumSquare(g, h);
printf (*x = %f”,x);

}

void init () {
g = 10;
h = SIZE;

}

float sumSquare(int a, int b){

float temp;
temp = a*a + b*b;
return(temp) ;

}

/* and hereisthe end of the program */

// A symbolic constant defined.
// Declare global integers.

// Prototypesfor

// functions below.

// Program starts here.

// Xisloca to main.

// Call avoid function.

// X gets sumSquare value.

// printf is astandard function.

// Void functions do things but
// they return no val ue.

// Here, it uses the symbolic
// constant defined above.
// Integer arguments.

// Local variables.

// Arithmetic statement.

// Return value.

The program above calculates the sum of squares of two numbers, g and h, which are initialized
to 10 and 12, respectively. The main function callsthe init function to give valuesto the globa
variables g and h. Then it uses the sumSquare function to perform the calculation and assign
the result of the calculation to the variable x. It prints the result using the library function
printf, which includes aformatting string as the first argument.

Notice that al functions have { and } enclosing their contents, and all variables are declared
before use. Thefunctionsinit () and sumSquare () were defined before use, but there are
aternatives to this. The “Prototypes’ section explained this.

26

Dynamic C User’s Manual

4.13 Aggregate Data Types

Simple data types can be grouped into more complex aggregate forms.

4.13.1 Array
A data type, whether it is simple or complex, can be replicated in an array. The declaration

int item[10]; // An array of 10 integers.

represents a contiguous group of 10 integers. Array elements are referenced by their subscript.

j = item[n] ; // Thenth element of the array.

Array subscripts count up from 0. Thus, item [7] aboveisthe eighth item in the array. Notice
the [and] enclosing both array dimensions and array subscripts. Arrays can be “nested.” Thefol-
lowing doubly dimensioned array, or “array of arrays.”

int matrix[7] [3];

isreferenced in asimilar way.

scale = matrix[i] [J];

The first dimension of an array does not have to be specified as long as an initiaization list is
specified.

int x[11[2] = { {1, 2}, {3, 4}, {5, 6} };

char string[] = "abcdefg";

4.13.2 Structure

Variables may be grouped together in structures (st ruct in C) or in arrays. Structures may be
nested.

struct {
char flags;
struct {
int x;
int y;
} loc;
} cursor;

Structures can be nested. Structure members—the variables within a structure—are referenced
using the dot operator.

j = cursor.loc.x

The size of astructure is the sum of the sizes of its components.

Chapter 4: Language 27

4.13.3 Union

A union overlays simple or complex data. That is, all the union members have the same address.
The size of the union isthe size of the largest member.
union {
int ival;
long jval;
float xval;
b ou;

Unions can be nested. Union members—the variables within a union—are referenced, like struc-
ture elements, using the dot operator.

j = u.ival

4.13.4 Composites

Composites of structures, arrays, unions, and primitive data may be formed. This example shows
an array of structures that have arrays as structure elements.

typedef struct ({

int *x;

int c[32]; // array in structure
} node;
node list([12]; // array of structures

Refer to an element of array ¢ (above) as shown here.

z = list[n] .c[m];

list[0] .c[22] = OxFF37;

4.14 Storage Classes

Variable storage canbe auto or static. Theterm “static” means the data occupies a permanent
fixed location for the life of the program. Theterm “auto” refersto variables that are placed on the
system stack for the life of afunction call. The default storage classis aut o, but can be changed
by using #class static. Thedefault storage class can be superseded by the use of the key-
word auto or static inavariable declaration.

These terms apply to local variables, that is, variables defined within a function. If avariable does
not belong to afunction, it is called a global variable—available anywhere in the program—~but
thereis no keyword in C to represent this fact. Global variables always have static storage.

Theregister typeisreserved, but isnot currently implemented. Dynamic C will change avari-
ableto be of type auto if register isencountered. Even though the register keywordis
not implemented, it still can not be used as a variable name or other symbol name. Its use will
cause unhelpful error messages from the compiler.

28 Dynamic C User’s Manual

4.15 Pointers

A pointer is avariable that holds the 16-bit logical address of another variable, a structure, or a
function. Dynamic C does not currently support long pointers. The indirection operator (*) is used
to declare avariable as a pointer. The address operator (&) is used to set the pointer to the address
of avariable.

int *ptr to i;

int 1i;

ptr to i = &i; // setpointer equal to the address of i
i = 10: // assignavauetoi

j = *ptr to i; // thissetsj equal to thevalueini

In thisexample, thevariableptr to i isapointer to an integer. The statement j =

*ptr to 1i; referencesthe value of theinteger by the use of the asterisk. Using correct pointer
terminology, the statement dereferences the pointer ptr to i.Then *ptr to i and i have
identical values.

Notethat ptr to_ i and i do not havethe samevaluesbecauseptr to i isapointerandi is
an int. Note also that * has two meanings (not counting its use as a multiplier in others contexts)
in avariable declaration suchas int *ptr to i; the* meansthat the variable will be a
pointer type, and in an executable statement j = *ptr to_ i; means“thevalue stored at the
addresscontained inptr to 1i.”

Pointers may point to other pointers.

int *ptr to i;
int **ptr to ptr to i;
int i,7;
ptr to i = &i; // Set pointer equal to the address of i
ptr to ptr to i = &ptr to i; // Setapointer tothe pointer
// tothe addressof i
i = 10; // Assignavauetoi
j = **ptr to ptr to i; // Thissetsj equal tothevaueini.

Itispossible to do pointer arithmetic, but thisis slightly different from ordinary integer arithmetic.
Here are some examples.

float £[10], *p, *qg; // an array and some ptrs
p = &f; // point pto array element O
g = p+5; // pointqto array element 5
g++; // point qto array e ement 6
P =p+ d; // illegal!

Becausethe f1oat isa4-byte storage element, the statement g = p+5 setsthe actual value of g
top+20. The statement g++ adds 4 to the actual value of g. If £ were an array of 1-byte charac-
ters, the statement g++ adds1toq.

Chapter 4: Language 29

Beware of using uninitialized pointers. Uninitialized pointers can reference ANY location in
memory. Storing data using an uninitialized pointer can overwrite code or cause a crash.

A common mistake isto declare and use a pointer to char, thinking there isa string. But an unini-
tialized pointer is al thereis.

char* string;

strcpy (string, "hello"); // Invalid!
printf (string) ; // Invaid!

Pointer checking is arun-time option in Dynamic C. Use the Compiler tab on the Options | Project
Options menu. Pointer checking will catch attempts to dereference a pointer to unallocated mem-
ory. However, if an uninitialized pointer happens to contain the address of a memory location that
the compiler has already allocated, pointer checking will not catch thislogic error. Because pointer
checking is arun-time option, pointer checking adds instructions to code when pointer checking is
used.

Pointer checking is not currently supported for far pointers.

4.16 Far Pointers and Far Data (Introduced in Dynamic C 10)

This section examines the syntax of the far keyword, using examples from simple variables to
complex aggregate types.

4.16.1 The far Qualifier

The far keyword, added in Dynamic C 10 and supported only on the Rabbit 4000 microproces-
sor, allows a programmer to directly declare variables in xmem. Previous to this development,
usage of xmem was limited to library routines such as root 2xmem () and xmem2root ()
using memory alocated using xalloc. Now, the compiler will directly generate code to access
xmem allocated through standard variable declarations with the addition of the far keyword.

4.16.2 Basic Declarations

In amost all respects, far behaves syntactically identically to the const quaifier. As of
Dynamic C 10, const obeysthe ANSI C 99 specification. £ar was added to use the same basic
principles as const, with afew exceptions. The reason for thisisthat far and const both indi-
cate the storage type for variables. In the case of const, the storage isin the flash device. Vari-
ablesdeclared as far are stored in xmem in RAM (and can therefore be modified). A variable can
also be declared as const far, which places the constant variable in the xmem space on the
flash device.

far type var; // Declaresavariable“var” having far storage

We aso allow

type far var;

which has the same meaning as the previous declaration. In other words, the far keyword may
appear before or after the base type.

30 Dynamic C User’s Manual

We do not allow
far type far var;

In this context, these are base type qualifiers. The far keyword can also qualify pointer types,
such as in the following example:

type * far ptr;

Thisdeclaresavariable, ptr, having far storage pointing to an object of type type. Pointer qual-
ifiers are aways found on the right-hand side of the‘ *’ token.

Here is a slightly more complex declaration:

far type * far ptr;

Here, the object type to which pt r pointsis qualified as having far storage.

4.16.3 Multi-Level Far Pointers

The semantics of the far qualifier can become quite complex if used with multi-level pointers.
Some confusion arises when thinking about how to qualify different pointer levelsin a more com-
plex declaration such as the following basic pointer-to-pointer declaration:

type * * ptr;

Thisdeclares pt r as avariable which pointsto an object of type pointer to type, or smply, ptr is
apointer to pointer-to-type. What if we wanted to declare pt r to be a pointer to a pointer having
far storage (the pointer to typeisin xmem, but what it pointsto isin root)? This would have the
following declaration:

type * far * ptr;

Here we see that pointer declarations are right-associative. Recalling that the far qualifier associ-
ates with the * =’ token to itsleft, we see that the nested pointer typeistheleft ‘ *' not the right
one, illustrated using brackets:

[type * far] * ptr;

In the above example, the association of the‘*’ and far isevident —thevariable ptrisa
pointer-in-root, and it points to a pointer-in-far.

For another example, a complex and infrequent declaration might be:

far type * far * * far ptr;

A succinct way of stating the type of ptr in thisexample would be: ptr isapointer-in-far to a
pointer-in-root to a pointer-in-far to a variable of type having far storage.

Chapter 4: Language 31

4.16.4 Arrays and Structures

The far qualifier can aso be applied to arrays and structures, with the effect of the compiler allo-
cating storage for those variables from xmem. The declarations for both structures and arrays (and
pointers to those types) follow the same rules as basic type variable declarations. An example
structure declaration might be:

struct S {
int a;
char b[20];

}i

far struct S str; // A sructure of type Sin xmem

Note that the far qualifier is applied only to the actual declaration of a variable with the structure
type, not the structure definition itself. The far qualifier may not be applied to either a structure
type definition or any member of a structure. If a structure instance variable is placed in xmem
using the far keyword, then all members of that instance are in xmem — you cannot mix xmem
and root within a single structure.

Arrays can also be placed in xmem using far. The following is apossible declaration of an array
in xmem:

far type array([5000]; // Anarray of 5000 elements of type type in xmem

Note that the size limit imposed on arrays in root memory (32,767 bytes) aso apply to far arrays.
You can declare an array as large as your largest contiguous free block of xmem available up to
this limit. See Chapter 10 “Memory Management” for more information on how xmem isallo-
cated and used by the compiler.

4.16.5 Complex Declarations
All of the elements discussed so far can be applied in asingle declaration to produce very complex
types for variables. As an example, such adeclaration may look like the following:

const type (* far const ptr) [c0] [cl] = &const array;

In this example, ptr isaconstant pointer-in-far (xmem constant) to a 2-dimensional array of

c0 X c1 elements of type constant type. In other words, we have a pointer in xmem to atwo-
diminsional array of constant elements. The array the pointer is pointing to isin root memory,
sincethe far qualifier only associates with the pointer variable itself. The pointer is constant, so
it must be initialized, and the first const impliesthat we cannot change the elementsin the array
since they represent constants (which are in flash and cannot be modified). We assume that co,
cl,and const array areal constant variables or literals defined previously.

4.16.6 Sample Programs

From the Dynamic C installation directory, look in /Samples/Rabbit4000/FAR/ for sam-
ple programs demonstrating the use of the far keyword. The sample far demo . ¢ shows how
to declare alocal variable that will be stored in far memory (which means it must be declared
static) and accessed just like any other local variable. The sample LinkedList . ¢ demon-
stratesfar pointersand includesalibrary, LinkedList . LIB, that creates and maintains alinked
list in the far memory space.

32 Dynamic C User’s Manual

4.17 Pointers to Functions, Indirect Calls

Pointers to functions may be declared. When afunction is called using a pointer to it, instead of
directly, we call thisan indirect call.

The syntax for declaring a pointer to afunction is different than for ordinary pointers, and
Dynamic C syntax for thisis slightly different than the standard C syntax. Standard syntax for a
pointer to afunctionis:

returntype (*name) ([argument list]) ;

for example:

int (*funcl) (int a, int b);
void (*func2) (char*) ;

Dynamic C doesn’t recognize the argument list in function pointer declarations. The correct
Dynamic syntax for the above examples would be:

int (*funcl) () ;
void (*func2) () ;

You can pass arguments to functions that are called indirectly by pointers, but the compiler will
not check them for correctness. The following program shows some examples of using function
pointers.

typedef int (*fnptr) (); // createpointer to function that returns an integer
main () {
int x,vy;
int (*fncl) () ; // declarevar fncl as a pointer to an int function.
fnptr fp2; // declare var fp2 as pointer to an int function
fncl = intfunc; // initializefncl to point to int func ()
fp2 = intfunc; // initialize fp2 to point to the same function.
x = (*fncl) (1,2); // cal intfunc() viafncl
y = (*fp2) (3,4); // cdl intfunc() viafp2

printf ("%d\n", x);
printf ("%d\n", vy);

}

int intfunc(int x, int y) {
return x+y;

}

Chapter 4: Language

33

4.18 Argument Passing

In C, function arguments are generally passed by value. That is, arguments passed to a C function
are generally copies—on the program stack—of the variables or expressions specified by the
caller. Changes made to these copies do not affect the original values in the calling program.

In Dynamic C and most other C compilers, however, arrays are always passed by address. This
policy includes strings (which are character arrays).

Dynamic C passes st ructs by value—on the stack. Passing alarge st ruct takesalong time
and can easily cause a program to run out of memory. Pass pointers to large st ructs if such
problems occur.

For a function to modify the original value of a parameter, pass the address of, or a pointer to, the
parameter and then design the function to accept the address of the item.

4.19 Program Flow

Three terms describe the flow of execution of a C program: sequencing, branching and looping.
Sequencing is simply the execution of one statement after another. Looping is the repetition of a
group of statements. Branching is the choice of groups of statements. Program flow is altered by
calling afunction, that is transferring control to the function. Control is passed back to the calling
function when the called function returns.

4.19.1 Loops
A while loop tests acondition at the start of the loop. Aslong as expression is true (non-zero),
the loop body (some statement(s)) will execute. If expressionisinitially false (zero), the loop body

will not execute. The curly braces are necessary if there is more than one statement in the loop
body.

while (expression) {
some statement (s)
}

A do loop tests a condition at the end of the loop. Aslong as expression istrue (non-zero) the loop
body (some statement(s)) will execute. A do loop executes at least once before its test. Unlike
other contrals, the do loop requires a semicolon at the end.

dof{
some statements
}while (expression) ;

The for loop is more complex: it sets an initial condition (expl), evaluates a terminating condi-
tion (exp2), and provides a stepping expression (exp3) that is evaluated at the end of each iteration.
Each of the three expressionsis optional.

for(expl ; exp2 ; exp3){
some statement (s)
}

34 Dynamic C User’s Manual

If the end conditionisinitially false, a for loop body will not execute at al. A typical use of the
for loopisto count n times.

sum = 0;
for(i = 0; i < n; i++){
sum = sum + arrayl[il;

}

Thisloop initially sets i to 0, continues aslong as i islessthan n (stopswhen i equalsn), and
increments 1 at each pass.

Another use for the for loop isthe infinite loop, which is useful in control systems.

for(;;){ some statement (s) }

Here, thereisnoinitial condition, no end condition, and no stepping expression. The loop body
(some statement(s)) continues to execute endlessly. An endless |oop can also be achieved with a
while loop. This method is dightly less efficient than the for loop.

while (1) { some statement (s) }

4.19.2 Continue and Break
Two keywords are available to help in the construction of loops: cont inue and break.

The cont inue statement causes the program control to skip unconditionally to the next pass of
the loop. In the example below, if bad istrue, more statements will not execute; control will pass
back to the top of the while loop.

get char() ;

while(! EOF) {
some statements
if(bad) continue;
more statements

Thebreak statement causes the program control to jump unconditionally out of aloop. In the
example below, if cond_RED istrue, more statements will not be executed and control will pass
to the next statement after the ending curly brace of the for loop

for(i=0;i<n;i++){
some statements
if (cond RED) break;
more statements

Thebreak keyword also appliesto the switch/case statement described in the next section.
The break statement jumps out of the innermost control structure (loop or switch statement)
only.

Chapter 4: Language 35

There will be timeswhen break isinsufficient. The program will need to either jump out more
than one level of nesting or there will be a choice of destinations when jumping out. Use agoto
statement in such cases. For example,

while (some statements) {
for(i=0;i<n;i++){
some statements
if (cond RED) goto yyy;
some statements
if (code BLUE) goto zzz;
more statements

}
YYY:
handle cond RED

ZZ7Z:
handle code_ BLUE

4.19.3 Branching
The goto statement is the simplest form of a branching statement. Coupled with a statement
label, it simply transfers program control to the labeled statement.

some statements
abc:

other statements

goto abc;

more statements
goto def;

def:
more statements

The colon at the end of the labelsisrequired. In generd, the use of the got o statement is discour-
aged in structured programming.
The next simplest form of branching isthe 1 £ statement. The simple form of the i £ statement

tests a condition and executes a statement or compound statement if the condition expressionis
true (non-zero). The program will ignore the i £ body when the condition isfalse (zero).

if (expression) {
some statement (s)
}

36 Dynamic C User’s Manual

A more complex form of the i f statement tests the condition and executes certain statements if
the expression istrue, and executes another group of statements when the expression isfalse.

if (expression) {

some statement (s) // if true
}else{
some statement (s) // if fase

}

The fullest form of the i £ statements produces a succession of tests.

if (expr;){
some statements
}else if(expr,){
some statements
Jelse if(expr;){
some statements
}else{
some statements
}

The program evaluates the first expression (expr). If that provesfalse, it tries the second expres-
sion (expr,), and continues testing until it finds a true expression, an e1 se clause, or the end of
theif statement. An else clauseisoptional. Without an else clause,an if/else if dtate
ment that finds no true condition will execute none of the controlled statements.

The switch statement, the most complex branching statement, allows the programmer to phrase
a“multiple choice” branch differently.

switch(expression) {

case constq
statements;
break;

case consts
statements,
break;

case constg
statements,
break;

default:
statementspgraynT

}

First the switch expression is evaluated. It must have an integer value. If one of the consty
values matches the switch expression, the sequence of statementsidentified by the consty

Chapter 4: Language 37

expression is executed. If there is no match, the sequence of statementsidentified by the
default label isexecuted. (Thedefault partisoptional.) Unlessthe break keywordis
included at the end of the case’s statements, the program will “fall through” and execute the state-
ments for any number of other cases. The break keyword causes the program to exit the
switch/case statement.

The colons (:) after case and default arerequired.

4.20 Function Chaining

Function chaining allows special segments of code to be distributed in one or more functions.
When a named function chain executes, all the segments belonging to that chain execute. Function
chains allow the software to perform initialization, data recovery, and other kinds of tasks on
request. There are two directives, #makechain and #funcchain, and one keyword, seg-
chain that create and control function chains:

#makechain chain name

Creates afunction chain. When a program executes the named function chain, all of the func-
tions or chain segments belonging to that chain execute. (No particular order of execution can
be guaranteed.)

#funcchain chain name name
Adds a function, or another function chain, to a function chain.

segchain chain name { statements }

Defines a program segment (enclosed in curly braces) and attaches it to the named function
chain.

Function chain segments defined with segchain must appear in afunction directly after data
declarations and before executabl e statements, as shown below.

my function () {
/* datadeclarations */

segchain chain x{
/* some statements which execute under chain_x */
}

segchain chain y{
/* some statements which execute under chain y */
}

/* function body which executes when my_functioniscalled =/

A program will call afunction chain asit would an ordinary void function that has no parameters.
The following example shows how to call afunction chain that is named recover.

#makechain recover

recover () ;

38 Dynamic C User’s Manual

4.21 Global Initialization

Various hardware devicesin a system need to beinitialized, not only by setting variables and con-
trol registers, but often by complex initialization procedures. Dynamic C provides a specific func-
tion chain, GLOBAL_ INIT, for thispurpose. Your program can add segmentsto the
_GLOBAL_INIT function chain, as shown in the example below.

long my func(char j);

main () {
my func(100) ;

}

long my func(char j){
static int i;
static long array[256] ;

// The GLOBAL_INIT section is automatically run once when the program starts up

#GLOBAL INIT{

for(i = 0; 1 < 100; i++){
array[i] = i*i;
}
}
return arrayl[jl; // only this code runs when the function is called

}

The special directive #GLOBAL INIT{ } tellsthe compiler to add the codein the block
enclosed in bracesto the GLOBAL_INIT function chain. Any number of #GLOBAL INIT sec-
tions may be used in your code. The order in which they are called is indeterminate since it
depends on the order in which they were compiled. The storage class for variables used in a global

initialization section must be static. Since the default storage class is auto, you must define vari-
ables as static in your application.

The GLOBAL INIT function chainisalways called when your program starts up, so thereis
nothing special to do to invoke it. In addition, it may be called explicitly at any time in an applica-
tion program with the statement:

_GLOBAL_INIT() ;

Make this call this with caution. All costatements and cofunctions will beinitialized. See “Calling
_GLOBAL_INIT()" on page 91 for more information.

Chapter 4: Language 39

4.22 Libraries

Dynamic C includes many libraries—files of useful functions in source code form. They are
located in the 1.IB subdirectory where Dynamic C was installed. The default library file extension
is . LIB. Dynamic C uses functions and datafrom library files and compiles them with an applica-
tion program that is then downloaded to a controller or savedto a . bin file.

An application program (the default file extension is . c) consists of a source code file that con-
tains a main function (called ma in) and usually other user-defined functions. Any additional
source files are considered to be libraries (though they may have a . ¢ extension) and are treated as
such. The minimum application program is one source file, containing only

main () {

}
Libraries (both user defined and Rabbit Semiconductor defined) are “linked” with the application
through the #use directive. The #use directive identifies afile from which functions and data
may be extracted. Files identified by #use directives are nestable, as shown below. The #use
directiveis areplacement for the # include directive, which is not supported in Dynamic C.
Any library that isto be #used in a Dynamic C program must be listed in thefile LIB . DIR, or
another * . DIR file specified by the user. Starting with version Dynamic C 7.05, a different
* _DIR file may be specified by the user in the Compiler Options dialog box to facilitate working
on multiple projects.

Thelib.dir strategy starting with Dynamic C 9.30 allows naming a folder with optional mask(s).
No mask implies *.* and multiple masks are separated by “;” so that “lib” and “lib*.*” both
includeall filesand “1ib*.1lib;*.c; * .h*" includes al fileswith extensonsof .1ib, .c
and . h. Dynamic C generated file (e.g., .md1, .hx1, efc.) are not parsed, which means they are
excluded when using the wildcard mask.

Dynamic C now enforces unique file extension names regardless of path, so that “#use myfile.lib”
can not use an unintended copy of myfile.lib asthelist of pathnamesincludedin1ib.dir

is searched for the first occurrence of that file extension. An error message naming both full paths
will come up when trying to compile ANY program alerting the user of the infraction.

Application X.LIB Y.LIB
huse x. 14—] #use y.1ib 40— 1T
main () { function | |
i. ’ J.fizéction
#l;ée z.1lib %iu.?ction ZLIB

#use z.1ib T
‘= =

Figure 4-1 Nesting Files in Dynamic C

Most libraries needed by Dynamic C programs have #use statementsin 1ib\default.h.

The“Modules’ section later in this chapter explains how Dynamic C knows which functions and
global variablesin alibrary are available for use.

40 Dynamic C User’s Manual

4.23 Headers
The following table describes two kinds of headers used in Dynamic C libraries.

Table 4-4 Dynamic C Library Headers

Header Name Description

Make functions and global variablesin the library known to

Module headers Dynamic C.

Describe functions. Function headersform the basisfor function

Function Description headers lookup help.

You may also notice some “Library Description” headers at the top of library files. These have no
special meaning to Dynamic C, they are simply comment blocks.

4.24 Modules

A Dynamic C library typically contains several modules. Modules must be understood to write
efficient custom libraries. Modules provide Dynamic C with the names of functions and variables
within alibrary that may be referenced by filesthat have a #use directive for the library some-
where in the code.

Modules organize the library contents in such away asto allow for smaller code sizein the com-
piled application that uses the library. To create your own libraries, write modules following the
guidelinesin this section.

The scope of modulesis global, but indeterminate compilation order makes the situation less than
straightforward. Read this entire section carefully to understand modul e scope.

4.24.1 The Parts of a Module
A module has three parts: the key, the header, and the body. The structure of amoduleis:

/*** BeginHeader funcl, var2, */
prototype for funcl
extern var2
/*** EndHeader */
definition of funcl
declaration for wvar2
possibly other functions and data

A module beginswith its BeginHeader comment and continues until either the next Begin-
Header comment or the end of thefileis encountered.

Chapter 4: Language 41

4.24.1.1 Module Key

The module key is usually contained within the first line of the module header. It isalist of func-
tion and data names separated by commas. The list of names may continue on subsequent lines.

/*** BeginHeader [name;, name,,] */

It isimportant to format the BeginHeader comment correctly, otherwise Dynamic C cannot
find the contents of the module. The case of the word “beginheader” is unimportant, but it must be
preceded by aforward slash, 3 asterisks and one space (/***). The forward slash must be the
first character on theline. The BeginHeader comment must end with an asterisk and aforward
dash (/).

The key tells the compiler which functions exist in the module so the compiler can exclude the
module if namesin the key are not referenced. Data declarations (constants, structures, unions and
variables) as well as macros and function chains (both #makechain and #funchain state-
ments) do not need to be named in the key if they are completely defined in the header, i.e, no
extern declaration. They are fully known to the compiler by being completely defined in the
module header. An important thing to remember is that variables declared in a header section will
be alocated memory space unless the declaration is preceded with extern.

4.24.1.2 Module Header

Every line between the BeginHeader and EndHeader comments belongs to the header of the
module. When alibrary islinked to an application (i.e., the application has the statement #use
“library name”), Dynamic C precompiles every header in the library, and only the headers.

With proper function prototypes and variable declarations, a module header ensures proper type
checking throughout the application program. Prototypes, variables, structures, typedefs and mac-
ros declared in a header section will always be parsed by the compiler if the library is#used, and
everything will have global scope. It is even permissible to put function bodies in header sections,
but it’s not recommended because the function will be compiled with any application that #uses
the library. Since variables declared in a header section will be allocated memory space unless the
declaration is preceded with extern, the variable declaration should be in the modul e body
instead of the header to save data space.

The scope of anything inside the module header is global; this includes compiler directives. Since
the headers are compiled before the module bodies, the last one of a given type of directive
encountered will be in effect and any previous ones will be forgotten.

Using compiler directiveslike #class or #memmap inside module headersisinadvisable. If itis
important to set, for example, “#class auto” for some library modules and “#class static” for oth-
ers, the appropriate directives should be placed inside the modul e body, not in the module header.
Furthermore, since there is no guaranteed compilation order and compiler directives have global
scope, when you issue a compiler directive to change default behavior for a particular module, at
the end of the module you should issue another compiler directive to change back to the default
behavior. For example, if amodule body needs to have its storage class as static, have a

“#class static” directive at the beginning of the module body and “#class auto” at the end.

42 Dynamic C User’s Manual

4.24.1.3 Module Body

Every line of code after the EndHeader comment belongs to the body of the module until (1)
end-of-file or (2) the BeginHeader comment of another module. Dynamic C compilesthe
entire body of amoduleif any of the namesin the key or header are referenced anywhere in the
application. So keep modules small, don’t put all the functionsin alibrary into one module. If you
look at the Dynamic C libraries you'll notice that many modules consist of one function. This
saves on code size, because only the functions that are called are actually compiled into the appli-
cation.

To further minimize waste, define code and data only in the body of amodule. It is recommended
that a module header contain only prototypes and extern declarations because they do not gen-
erate any code by themselves. That way, the compiler will generate code or allocate data only if
the module is used by the application program.

4.24.2 Module Sample Code
There are many examples of modulesin the Lib directory of Dynamic C. The following code will
illustrate proper module syntax and show the scope of directives, functions and variables.

/*** BeginHeader ticks*/
extern unsigned long ticks;
/*** EndHeader */

unsigned long ticks;

/*** BeginHeader Get Ticks */
unsigned long Get Ticks() ;
/*** EndHeader */

unsigned long Get Ticks () {

}

/*** BeginHeader Inc Ticks */
void Inc Ticks(int i);
/*** EndHeader */

#asm

Inc Ticks::
or a
ipset 1

ipres
ret
#endasm

There are 3 modules defined in this code. Thefirst oneisresponsible for the variable t i cks, the
second and third modules define functionsGet Ticks () and Inc_Ticks that accessthe vari-
able. Although Inc_Ticks isan assembly language routine, it has a function prototypein the
module header, alowing the compiler to check callsto it.

Chapter 4: Language 43

If the application program calls Inc_Ticks or Get Ticks () (or both), the module bodies
corresponding to the called routines will be compiled. The compilation of these routines triggers
compilation of the module body corresponding to t i cks because the functions use the variable
ticks.

/*** BeginHeader func a */

int func al();

#ifdef SECONDHEADER
#define XYZ

#endif

/*** EndHeader */

int func a() {

#ifdef SECONDHEADER

printf ("I am function A.\n");
#endif
}
/*** BeginHeader func b */
int func b() ;
#define SECONDHEADER
/*** EndHeader */
#ifdef XYZ
#define FUNCTION B
#endif
int func b() {
#ifdef FUNCTION B

printf ("I am function B.\n");
#endif

Let'ssay the abovefileisnamed mylibrary. 1ib. If an application has the statement

#use “mylibrary.lib” andthencalls func b (), will the printf statement be reached?
The answer isno. The order of compilation for module headersis sequential from the beginning of
thefile, therefore, the macro SECONDHEADER is undefined when the first module header is
parsed.

If an application #uses this library and then makesacall to func_a (), will that function’s print
statement be reached? The answer isyes. Since all the headers were compiled first, the macro
SECONDHEADER is defined when the first modul e body is compiled.

4.24.3 Important Notes

Remember that in a Dynamic C application there is only one file that containsmain () . All other
source files used by the file that containsmain () areregarded aslibrary files. Each library must
beincludedin LIB.DIR (or auser defined replacement for it). Although Dynamic C uses . L.IB

asthelibrary extension, you may use anything you like as long as the complete path is entered in

your LIB.DIR file.

There is no way to define file scope variables in Dynamic C libraries.

44 Dynamic C User’s Manual

4.25 Function Description Headers

Each user-callable function in a Rabbit Semiconductor library has a descriptive header preceding
the function to describe the function. Function headers are extracted by Dynamic C to provide on-
line help messages.

The header is a specialy formatted comment, such as the following example.

/* START FUNCTION DESCRIPTION * %% %% %k %% k% %k k& k% x%

WrIOport <IO.LIB>
SYNTAX: void WrIOport (int portaddr, int wvalue) ;
DESCRIPTION:

Writes data to the specified I/0O port.
PARAMETER1: portaddr - register address of the port.
PARAMETER2: value - data to be written to the port.

RETURN VALUE: None
KEY WORDS: parallel port

SEE ALSO: RdIOport
END DESCRIPTION ***xkkkkkkkkhhkkkhkhkhkhhhkkkrkkhkkkrkkxx /

If thisformat is followed, user-created library functions will show up in the “Function L ookup”
facility if thelibrary islistedin 1ib . dir or itsreplacement. Note that these sections are scanned
in only when Dynamic C starts.

4.26 Support Files

Dynamic C has severa support files that are necessary in building an application. These files are
listed below.

Table 4-5 Dynamic C Support Files

File Name Purpose of File

DCW.CFG Contains configuration data for the target controller.

Contains prototypes, basic type definitions, #def ine, and default modes

DC. HH for Dynamic C. Thisfile can be modified by the programmer.

Contains a set of #use directives for each control product that Rabbit

DEFAULT. H Semiconductor ships. This file can be modified.

Contains pathnames for all libraries that are to be known to Dynamic C.
The programmer can add to, or remove libraries from thislist. The factory
default isfor thisfile to contain all the libraries on the Dynamic C distribu-
tion disk. Any library that isto be used in a Dynamic C program must be
listedinthefile LIB.DIR, or another * . DIR file specified by the user.
(Starting with version Dynamic C 7.05, adifferent * . DIR file may be
specified by the user in the Compiler Options dialog to facilitate working
on multiple projects.)

LTIB.DIR

These files hold the default compilation environment that is shipped from
the factory. DEFAULT . DCP may be modified, but not PROJECT . DCP.
See Chapter 17 for details on project files.

PROJECT .DCP
DEFAULT .DCP

Chapter 4: Language 45

46

Dynamic C User’s Manual

5. Multitasking with Dynamic C

In a multitasking environment, more than one task (each representing a sequence of operations)
can appear to execute in parallel. In reality, a single processor can only execute one instruction at
atime. If an application has multiple tasks to perform, multitasking software can usualy take
advantage of natural delaysin each task to increase the overall performance of the system. Each
task can do some of its work while the other tasks are waiting for an event, or for something to do.
In this way, the tasks execute almost in parallel.

There are two types of multitasking available for developing applications in Dynamic C: preemp-
tive and cooperative. In a cooperative multitasking environment, each well-behaved task voluntar-
ily gives up control when it is waiting, allowing other tasks to execute. Dynamic C has language
extensions, costatements and cofunctions, to support cooperative multitasking. Preemptive multi-
tasking is supported by the dlice statement, which allows a computation to be divided into small
dices of afew milliseconds each, and by the uC/OS-11 real-time kernel.

5.1 Cooperative Multitasking

In the absence of a preemptive multitasking kernel or operating system, a programmer given a
real-time programming problem that involves running separate tasks on different time scales will
often come up with a solution that can be described as a big loop driving state machines.

Y

Top of loop

Y

State machine

#

State machine

#

State machine
|

Figure 5-1. Big Loop

This means that the program consists of alarge, endless loop—a big loop. Within the loop, tasks
are accomplished by small fragments of a program that cycle through a series of states. The stateis
typically encoded as numerical valuesin C variables.

Chapter 5: Multitasking with Dynamic C 47

State machines can become quite complicated, involving alarge number of state variables and a
large number of states. The advantage of the state machine isthat it avoids busy waiting, whichis
waiting in aloop until a condition is satisfied. In thisway, one big loop can service alarge number
of state machines, each performing its own task, and no oneis busy waiting.

The cooperative multitasking language extensions added to Dynamic C use the big loop and state
machine concept, but C code is used to implement the state machine rather than C variables. The
state of atask is remembered by a statement pointer that records the place where execution of the
block of statements has been paused to wait for an event.

To multitask using Dynamic C language extensions, most application programs will have some
flavor of this simple structure:

main() {
int 1i;
while (1) { // endlessloop for multitasking framework
costate { // task 1
.. // body of costatement
}

costate { // task 2
. // body of costatement
}

}
}

48 Dynamic C User’s Manual

5.2 A Real-Time Problem

The following sequence of eventsis common in real-time programming.
Start:

Wait for a pushbutton to be pressed.

Turn on the first device.

Wait 60 seconds.

Turn on the second device.

Wait 60 seconds.

Turn off both devices.

Go back to the start.

N o o s~ wbdPE

The most rudimentary way to perform this function isto idle (“busy wait”) in atight loop at each

of the steps where waiting is specified. But most of the computer time will used waiting for the

task, leaving no execution time for other tasks.

5.2.1 Solving the Real-Time Problem with a State Machine
Hereis what a state machine solution might look like.

tasklstate = 1; // initialization:
while (1) {
switch (tasklstate)
case 1:
if (buttonpushed()) {
tasklstate=2; turnondevicel () ;
timerl = time; // timeincremented every second
}
break;
case 2:
if((time-timerl) >= 60L) {
tasklstate=3; turnondevice2 () ;

timer2=time;

}

break;
case 3:
if ((time-timer2) >= 60L) {
tasklstate=1; turnoffdevicel () ;
turnoffdevice2 () ;
}
break;

}

/* other tasks or state machines */

Chapter 5: Multitasking with Dynamic C

49

If there are other tasks to be run, this control problem can be solved better by creating aloop that
processes a number of tasks. Now each task can relinquish control when it is waiting, thereby
allowing other tasks to proceed. Each task then doesits work in the idle time of the other tasks.

5.3 Costatements

Costatements are Dynamic C extensions to the C language which simplify implementation of state
machines. Costatements are cooperative because their execution can be voluntarily suspended and
later resumed. The body of a costatement is an ordered list of operationsto perform -- atask. Each
costatement hasits own statement pointer to keep track of which item on thelist will be performed
when the costatement is given a chance to run. As part of the startup initialization, the pointer is
set to point to the first statement of the costatement.

The statement pointer is effectively a state variable for the costatement or cofunction. It specifies
the statement where execution is to begin when the program execution thread hits the start of the
costatement.

All costatements in the program, except those that use pointers as their names, are initialized when
the function chain _GLOBAL_ INIT iscaled. GLOBAL INIT iscalled automatically by
premain beforemain iscalled. Calling GLOBAL INIT from an application program will
cause reinitialization of anything that was initialized in the call made by premain.

5.3.1 Solving the Real-Time Problem with Costatements
The Dynamic C costatement provides an easier way to control the tasks. It isrelatively easy to add
atask that checks for the use of an emergency stop button and then behaves accordingly.

while (1) {

costate{ ... } // task 1

costate(// task 2
waitfor (buttonpushed()) ;
turnondevicel () ;
waitfor (DelaySec (60L)) ;
turnondevice2 () ;
waitfor (DelaySec (60L)) ;
turnoffdevicel () ;
turnoffdevice2 () ;

}

costate{ ... } // task n

}

The solution is elegant and simple. Note that the second costatement looks much like the original
description of the problem. All the branching, nesting and variables within the task are hidden in
the implementation of the costatement and itswa it for statements.

50 Dynamic C User’s Manual

5.3.2 Costatement Syntax

costate [name [state] 1 { [statement | yield; | abort; |
waitfor(expression); 1 . . .}

The keyword costate identifies the statements enclosed in the curly braces that follow as a cos-
tatement.

name can be one of the following:

e A valid C name not previously used. This results in the creation of a structure of type
CoData of the same name.
e Thenameof alocal or global CoData structure that has already been defined

e A pointer to an existing structure of type CoData

Costatements can be named or unnamed. If name is absent the compiler creates an *“ unnamed”
structure of type CoData for the costatement.

state can be one of the following:
® always on

The costatement is always active. This means the costatement will execute every timeitis
encountered in the execution thread, unlessit is made inactive by CoPause () . It may be
made active again by CoResume ().

® init on
The costatement isinitially active and will automatically execute the first timeitis

encountered in the execution thread. The costatement becomes inactive after it completes
(or aborts). The costatement can be made inactive by CoPause ().

If state isabsent, anamed costatement isinitialized in apaused init on condition. This
means that the costatement will not execute until CoBegin () or CoResume () isexecuted. It
will then execute once and become inactive again.

Unnamed costatements are always_on. You cannot specify init on without specifying a
costatement name.

Chapter 5: Multitasking with Dynamic C 51

5.3.3 Control Statements

waitfor (expression);
The keyword wa it for indicates aspecia waitfor statement and not afunction call. Each
timewaitfor isexecuted, expression is evaluated. If true (non-zero), execution proceeds to
the next statement; otherwise ajump is made to the closing brace of the costatement or cofunc-
tion, with the statement pointer continuing to point to the wait for statement. Any valid C
function that returns avalue can be used in await for statement.

Figure 5-2 shows the execution thread through a costatement when awa it for evauatesto
false. The diagram on the left side shows which statements are executed the first time through
the costatement. The diagram on the right shows that when the execution thread again reaches
the costatement the only statement executed isthe waitfor. Aslong asthewaitfor con-
tinues to evaluate to false, it will be the only statement executed within the costatement.

! e

Statement
statement

statement
Statement

costate ...

{

waitfor(...

) 574 >

costate ...

statement
Statement

Statement
Statement

{

\\—>waitfor(

)i~

—|

v ’

(b) Subsequent Times

v -

(a) First Time

Figure 5-2. Execution thread when waitfor evaluates to false

Figure 5-3 shows the execution thread through a costatement when awa it for evauatesto
true.

- T = < l
- ~
7

/ costate ... {
statement
Statement

~ > waitfor(...);
Statement
Statement
: |

Y

Execution thread when waitfor evaluates to true

Figure 5-3.

52 Dynamic C User’s Manual

yield
Theyield statement makes an unconditional exit from a costatement or a cofunction. Execu-
tion continues at the statement following yie1d the next time the costatement or cofunctionis

encountered by the execution thread.

v

costate ...
statement
Statement

yield; -~

Statement
Statement

{

—

’/—_\\l
e

Statement
Statement

yield;
I~ — > statement

Statement

costate ...

{

}
|

e

(b) Execution thread the
next time the costate
is encountered

(a) Execution of yield

Figure 5-4. Execution thread with yield statement

abort
The abort statement causes the costatement or cofunction to terminate execution. |If acos-
tatement isalways_on, the next time the program reaches it, it will restart from the top. If
the costatement isnot always_on, it becomes inactive and will not execute again until
turned on by some other software.

v v

costate ...

statement
Statement

abort; -~

Statement
statement

Statement
Statement

abort;
Statement
Statement

costate ...

S i

(a) At time of abort (b) Next time

Figure 5-5. Execution thread with abort statement

A costatement can have as many C statements, including abort, yield, and wait for state-
ments, as needed. Costatements can be nested.

Chapter 5: Multitasking with Dynamic C 53

5.4 Advanced Costatement Topics

Each costatement has a structure of type CoData. This structure contains state and timing infor-
mation. It aso contains the address inside the costatement that will execute the next time the pro-
gram thread reaches the costatement. A value of zero in the address |ocation indicates the
beginning of the costatement.

5.4.1 The CoData Structure

typedef struct {
char CSState;
unsigned int lastlocADDR;
char lastlocCBR;
char ChkSum;
char firsttime;
union{
unsigned long ul;
struct {
unsigned int ul;
unsigned int u2;
} us;
} content;
char ChkSum2;
} CoData;

5.4.2 CoData Fields

CSState

The csstate field contains two flags, STOPPED and INIT. The possible flag values and their
meaning are in the table bel ow.

Table 5-1. Flags that specify the run status of a costatement

STOPPED INIT State of Costatement
Done, or has been initialized to run, but set to
yes yes o
inactive. Set by CoReset ().
yes no Paused, waiting to resume. Set by CoPause ().
no yes Initialized to run. Set by CoBegin ().
Running. CoResume () will return the flagsto
no no)
this state.

The function i sCoDone () returnstrue (1) if both the STOPPED and INIT flagsare set. The
function i sCoRunning () returnstrue (1) if the STOPPED flag is not set.

The csstate field appliesonly if the costatement hasaname. The cSState flag hasno
meaning for unnamed costatements or cofunctions.

54 Dynamic C User’s Manual

Last Location

Thetwo fields last 1ocADDR and 1ast 1ocCBR represent the 24-bit address of the location at
which to resume execution of the costatement. If 1ast1ocADDR iszero (asit iswheninitial-
ized), the costatement executes from the beginning, subject to the csstate flag. If
lastlocADDR isnonzero, the costatement resumes at the 24-bit address represented by
lastlocADDR and last1locCBR.

These fields are zeroed whenever one of the following is true:
e theCoData structureisinitialized by acall to GLOBAL_ INIT, CoBegin Or CoReset
e the costatement is executed to completion
e the costatement is aborted.

Check Sum

The chksum field isaone-byte check sum of the address. (It is the exclusive-or result of the
bytesin last1locADDR and lastlocCBR.) If ChkSum ishot consistent with the address, the
program will generate a run-time error and reset. The check sum is maintained automatically. It is
initialized by GLOBAL_INIT, CoBegin and CoReset.

First Time

The firsttime fieldisaflagthatisused by awaitfor, or waitfordone statement. Itis
set to 1 before the statement is evaluated the first time. Thisaidsin calculating elapsed time for the
functionsDelayMs, DelaySec, DelayTicks, IntervalTick, IntervalMs, and
IntervalSec.

Content
The content field (aunion) is used by the costatement or cofunction delay routines to store a
delay count.

Check Sum 2
The chksum2 field is currently unused.

5.4.3 Pointer to CoData Structure
To obtain a pointer to a named costatement’s CoData structure, do the following:

static CoData costl; // dlocate memory for a CoData struct
static CoData *pcostl;

pcostl = &costl; // get pointer to the CoData struct
CoBegin (pcostl) ; // initialize CoData struct

costate pcostl { // pcostlisthe costatement name and also a

// pointer to its CoData structure.

}

The storage class of a named CoData structure must be static.

Chapter 5: Multitasking with Dynamic C 55

5.4.4 Functions for Use With Named Costatements
For detailed function descriptions, please see the Dynamic C Function Reference Manual or select
Function Lookup/Insert from Dynamic C's Help menu (keyboard shortcut is <Ctrl-H>).

All of these functionsarein COSTATE . LIB. Each one takes a pointer to a CoData struct asits
only parameter.
int isCoDone (CoData* p);

Thisfunction returnstrue if the costatement pointed to by p has completed.

int isCoRunning (CoData* p);

Thisfunction returnstrueif the costatement pointed to by p will run if given a continua
tion call.

void CoBegin (CoData* p);

This function initializes a costatement’s CoDat a Sstructure so that the costatement will
be executed next timeit is encountered.

void CoPause (CoData* p);

Thisfunction will change CoData so that the associated costatement is paused. When
acostatement is called in this state it does an implicit yield until itisreleased by acall
from CoResume Or CoBegin

void CoReset (CoData* p);

Thisfunction initializes a costatement’s CoData structure so that the costatement will
not be executed the next time it is encountered (unless the costatement is declared
always_ on.

void CoResume (CoData* p);

Thisfunction unpauses a paused costatement. The costatement will resume the next time
itiscaled.

5.4.5 Firsttime Functions

In afunction definition, the keyword £irsttime causesthe function to have an implicit first
parameter: a pointer to the CoData structure of the costatement that calls it. User-defined
firsttime functionsare allowed.

Thefollowing firsttime functionsare defined in COSTATE . LIB.

DelayMs (), DelaySec (), DelayTicks ()
IntervalMs (), IntervalSec (), IntervalTick()

For more information see the Dynamic C Function Reference Manual. These functions should be
caledinsde await for statement because they do not yield while waiting for the desired timeto
elapse, but instead return O to indicate that the desired time has not yet elapsed.

56 Dynamic C User’s Manual

5.4.6 Shared Global Variables

ThevariablesSEC_TIMER, MS TIMER and TICK TIMER are shared, making them atomic
when being updated. They are defined and initialized in VDRIVER . LIB. They are updated by the
periodic interrupt and are used by £irsttime functions. They should not be modified by an
application program. Costatements and cofunctions depend on these timer variables being valid
for usein waitfor statementsthat call functions that read them. For example, the following
statement will access SEC_ TIMER.

waitfor (DelaySec(3)) ;

5.5 Cofunctions

Cofunctions, like costatements, are used to implement cooperative multitasking. But, unlike cos-
tatements, they have aform similar to functions in that arguments can be passed to them and a
value can be returned (but not a structure).

The default storage class for a cofunction’svariablesis Instance. An instance variable
behaveslikeastatic variable, i.e., itsvalue persists between function calls. Each instance of an
Indexed Cofunction hasits own set of instance variables. The compiler directive #class does
not change the default storage class for a cofunction’s variables.

All cofunctionsin the program are initialized when the function chain _ GLOBAL_INIT iscdlled.
Thiscal ismade by premain.

5.5.1 Cofunction Syntax
A cofunction definition is similar to the definition of a C function.

cofunc|scofunc type [name] [[dim]] ([type argl, ..., type argN])
{ [statement | yield; | abort; | waitfor (expression);]... }

cofunc, scofunc

The keywords cofunc or scofunc (asingle-user cofunction) identify the statements
enclosed in curly braces that follow as a cofunction.

type
Whichever keyword (cofunc or scofunc) isusedisfollowed by the data type returned
(void, int, &c.).

name

A name can beany valid C name not previously used. Thisresultsin the creation of a structure
of type CoData of the same name.

dim
The cofunction name may be followed by adimension if an indexed cofunction is being
defined.

Chapter 5: Multitasking with Dynamic C 57

cofunction arguments (argl, . . ., argN)
As with other Dynamic C functions, cofunction arguments are passed by value.

cofunction body

A cofunction can have as many C statements, including abort, yield, waitfor, and
waitfordone statements, as needed. Cofunctions can contain calls to other cofunctions.

5.5.2 Calling Restrictions
You cannot assign a cofunction to afunction pointer then call it viathe pointer.

Cofunctions are called using awaitfordone statement. Cofunctions and thewaitfordone
statement may return an argument value as in the following example.

int j,k,x,y,2z;
j = waitfordone x = Cofuncl;
k waitfordone{ y=Cofunc2(...); z=Cofunc3(...); }

The keyword wa it fordone (can be abbreviated to the keyword wfd) must be inside a costate-
ment or cofunction. Since a cofunction must be called from inside a wfd statement, ultimately a
wfd statement must be inside a costatement.

If only one cofunction isbeing called by wfd the curly braces are not needed.

The wfd statement executes cofunctionsand £irsttime functions. When al the cofunctions
and firsttime functionslisted in the wfd statement are complete (or one of them aborts), exe-
cution proceeds to the statement following wf d. Otherwise ajump is made to the ending brace of
the costatement or cofunction where the wfd statement appears and when the execution thread
comes around again control is given back towfd.

In the example above, x, v and z must be set by return statementsinside the called cofunc-
tions. Executing areturn statement in a cofunction has the same effect as executing the end brace.

In the example above, the variable k is a status variable that is set according to the following
scheme. If no abort has taken place in any cofunction, k issetto 1, 2, ..., n to indicate which
cofunction inside the braces finished executing last. If an abort takes place, k issetto -1, -2, ..., -n
to indicate which cofunction caused the abort.

5.5.2.1 Costate Within a Cofunc

In al but trivial cases (where the costateis really not necessary), a costate within a cofunc causes
execution problems ranging from never completing the cofunc to unexpected interrupts or target
lockups. To avoid these problems, do not introduce costates with nested wfd cofuncs into a cofunc.
If you find yourself coding such athing, consider these alternatives:

1. Intermediate regular functions can be used between the cofuncs to isolate them.

2. Aregular waitfor (function) can be substituted for the top level costate's wfd cofunc-
tion.

3. The nested costates with wfd cofuncs can be moved up into the body of the calling function,
replacing the top-level costate with the wfd cofunc.

A compiler error will be generated if a costate is found within a cofunction.

58 Dynamic C User’s Manual

5.5.2.2 Using the IX Register
Functions called from within a cofunction may use the I X register if they restore it before the
cofunction is exited, which includes an exit viaan incomplete wa it fordone statement.

In the case of an application that uses the #useix directive, the I X register will be corrupted when
any stack-variable using function is called from within a cofunction, or if a stack-variable using
function contains a call to a cofunction.

5.5.3 CoData Structure
The CoData structure discussed in Section 5.4.1 applies to cofunctions; each cofunction has an
associated CoData structure.

5.5.4 Firsttime Functions

The firsttime functionsdiscussed in “Firsttime Functions’ on page 56. can also be used
inside cofunctions. They should be called inside awa it for statement. If you call these functions
from inside awfd statement, no compiler error is generated, but, since these delay functions do
not yield while waiting for the desired time to elapse, but instead return 0 to indicate that the
desired time has not yet elapsed, the wfd statement will consider areturn value to be completion
of the £irsttime function and control will pass to the statement following the wfd.

5.5.5 Types of Cofunctions
There are three types of cofunctions: simple, indexed and single-user. Which one to use depends
on the problem that is being solved. A single-user, indexed cofunction is not valid.

5.5.5.1 Simple Cofunction
A simple cofunction has only oneinstance and is similar to aregular function with a costate taking
up most of the function’s body.

5.5.5.2 Indexed Cofunction
Anindexed cofunction allows the body of a cofunction to be called more than once with different
parameters and local variables. The parameters and the local variable that are not declared static
have a special lifetime that begins at afirst time call of a cofunction instance and ends when the
last curly brace of the cofunction is reached or when an abort or return isencountered.

The indexed cofunction call is a cross between an array access and a normal function call, where
the array access selects the specific instance to be run.

Typicaly thistype of cofunction isused in a situation where N identical units need to be con-
trolled by the same algorithm. For example, a program to control the door latches in abuilding
could use indexed cofunctions. The same cofunction code would read the key pad at each door,
compare the passcode to the approved list, and operate the door latch. If there are 25 doorsin the
building, then the indexed cofunction would use an index ranging from 0 to 24 to keep track of
which door is currently being tested. An indexed cofunction has an index similar to an array index.

waitfordone{ ICofunc[n] (...); ICofunc2[m] (...); }

Chapter 5: Multitasking with Dynamic C 59

The value between the square brackets must be positive and less than the maximum number of
instances for that cofunction. There is no runtime checking on the instance selected, so, like
arrays, the programmer is responsible for keeping this value in the proper range.

5.5.5.2.1 Indexed Cofunction Restrictions
Costatements are not supported inside indexed cofunctions. Single user cofunctions can not be
indexed.

5.5.5.3 Single User Cofunction
Since cofunctions are executing in parallel, the same cofunction normally cannot be called at the
same time from two places in the same big loop. For example, the following statement containing
two simple cofunctions will generally cause afatal error.

waitfordone{ cofunc nameA(); cofunc nameA() ;}

Thisis because the same cofunction is being called from the second location after it has already
started, but not completed, execution for the call from the first location. The cofunction is a state
machine and it has an internal statement pointer that cannot point to two statements at the same
time.

Single-user cofunctions can be used instead. They can be called simultaneoudly because the sec-
ond and additional callers are made to wait until thefirst call completes. The following statement,
which contains two calls to single-user cofunction, is okay.

waitfordone (scofunc nameA() ; scofunc_nameA();}

loopinit()
This function should be called in the beginning of a program that uses single-user cofunctions. It
initializes interna data structures that are used by 1cophead () .

loophead()
This function should be called within the “big loop” in your program. It is necessary for proper
single-user cofunction abandonment handling.

Example

// echoes characters
main ()
int c;
serAopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
costate {
wfd ¢ = cof serAgetc() ;
wfd cof serAputc(c) ;
}
}

serAclose () ;

60 Dynamic C User’s Manual

5.5.6 Types of Cofunction Calls
A wfd statement makes one of three types of calls to a cofunction.

5.5.6.1 First Time Call
A first time call happens when awfd statement calls a cofunction for the first time in that state-
ment. After the first time, only the original wfd statement can give this cofunction instance con-
tinuation calls until either the instance is complete or until the instance is given another first time
call from adifferent statement. The lifetime of a cofunction instance stretches from afirst time call
until itsterminal call or until its next first time call.

5.5.6.2 Continuation Call
A continuation call iswhen a cofunction that has previously yielded is given another chance to run
by the enclosing wf d statement. These statements can only call the cofunction if it was the last
statement to give the cofunction afirst time call or a continuation call.

5.5.6.3 Terminal Call
A terminal call ends with a cofunction returning to its wf d statement without yielding to another
cofunction. This can happen when it reaches the end of the cofunction and does an implicit return,
when the cofunction does an explicit return, or when the cofunction aborts.

5.5.7 Special Code Blocks
The following special code blocks can appear inside a cofunction.

everytime { statements }

This must be the first statement in the cofunction. The everytime statement block will be
executed on every cofunc continuation call no matter where the statement pointer is
pointing. After the everytime statement block is executed, control will pass to the statement
pointed to by the cofunction’s statement pointer.

The everytime statement block will not be executed during theinitial cofunc entry
call.

abandon { statements }
This keyword appliesto single-user cofunctions only and must be the first statement in the
body of the cofunction. The statements inside the curly braces will be executed if the single-
user cofunction isforcibly abandoned. A call to loophead () (definedin COFUNC.LIB)is
necessary for abandon statements to execute.

Chapter 5: Multitasking with Dynamic C 61

Example
Samples/COFUNC/ COFABAND.C illustrates the use of abandon.

scofunc SCofTest (int 1)
abandon {
printf ("CofTest was abandoned\n") ;
}

while (i>0) {
printf ("CofTest (%d) \n",1i) ;

yield;
}
}
main () {
int x;
for (x=0;x<=10;x++) {
loophead () ;
if (x<5) {
costate {
wfd SCofTest (1) ; // firstcaler

}
}
costate {

wfd SCofTest (2) ; // second caller
}

}

In this example two tasks in main are requesting accessto SCofTest. Thefirst request is hon-
ored and the second request is held. When 1 cophead natices that thefirst caller is not being
called each time around the loop, it cancel s the request, calls the abandonment code and allows the

second caller in.

5.5.8 Solving the Real-Time Problem with Cofunctions

for(;;){

costate(// task 1
wfd emergencystop () ;
for (i=0; i<MAX DEVICES; 1i++)

wfd turnoffdevice (i) ;

}

costate(// task 2
wfd x = buttonpushed() ;
wfd turnondevice (X) ;
waitfor (DelaySec (60L)) ;
wfd turnoffdevice (x) ;

}
é&étate{ ce) // taskn

62 Dynamic C User’s Manual

Cofunctions, with their ability to receive arguments and return values, provide more flexibility and
specificity than our previous solutions. Using cofunctions, new machines can be added with only
trivial code changes. Making but tonpushed () acofunction allows more specificity because
the value returned can indicate a particular button in an array of buttons. Then that value can be
passed as an argument to the cofunctions turnondevice and turnoffdevice.

5.6 Patterns of Cooperative Multitasking

Sometimes atask may be something that has a beginning and an end. For example, a cofunction to
transmit a string of charactersviathe seria port begins when the cofunction isfirst called, and
continues during successive calls as control cycles around the big loop. The end occurs after the
last character has been sent and the wait fordone condition is satisified. Thistype of acall toa
cofunction might look like this:

waitfordone{ SendSerial ("string of characters"); }
[next statement]

The next statement will execute after the last character is sent.

Some tasks may not have an end. They are endless loops. For example, atask to control aservo
loop may run continuously to regulate the temperature in an oven. If there are a anumber of tasks
that need to run continuoudly, then they can be called using asingle wait fordone statement as
shown below.

costate {
waitfordone { Taskl(); Task2(); Task3(); Task4(); }
[tocome hereisan error]

}

Each task will receive some execution time and, assuming none of the tasks is completed, they
will continue to be called. If one of the cofunctions should abort, then the waitfordone State-
ment will abort, and corrective action can be taken.

Chapter 5: Multitasking with Dynamic C 63

5.7 Timing Considerations

In most instances, costatements and cofunctions are grouped as periodically executed tasks. They
can be part of areal-time task, which executes every n milliseconds as shown below using costate-
ments.

lentel' every n milliseconds

costate{ ... }
costate{ ... }
costate{ ... }

}

costate{ ...

| exit

Figure 5-6. Costatement as part of real-time task

If all goeswell, the first costatement will be executed at the periodic rate. The second costatement
will, however, be delayed by the first costatement. The third will be delayed by the second, and so
on. The frequency of the routine and the time it takes to execute comprise the granularity of the
routine.

If the routine executes every 25 milliseconds and the entire group of costatements executesin 5 to
10 milliseconds, then the granularity is 30 to 35 milliseconds. Therefore, the delay between the
occurrence of awa it for event and the statement following thewai t for can be as much asthe
granularity, 30 to 35 ms. The routine may also be interrupted by higher priority tasks or interrupt
routines, increasing the variation in delay.

The consequences of such variations in the time between steps depends on the program’s objec-
tive. Suppose that the typical delay between an event and the controller’s response to the event is
25 ms, but under unusual circumstances the delay may reach 50 ms. An occasional slow response
may have no consequences whatsoever. If adelay is added between the steps of a process where
the time scale is measured in seconds, then the result may be avery slight reduction in throughput.

If thereis adelay between sensing a defective product on a moving belt and activating the reject
solenoid that pushes the abject into the reject bin, the delay could be serious. If acritical delay
cannot exceed 40 ms, then a system will sometimes fail if its worst-case delay is 50 ms.

5.7.1 waitfor Accuracy Limits

If anidleloop isused to implement adelay, the processor continues to execute statements almost
immediately (within nanoseconds) after the delay has expired. In other words, idle loops give pre-
cise delays. Such precision cannot be achieved with wait for delays.

A particular application may not need very precise delay timing. Suppose the application requires
a 60-second delay with only 100 ms of delay accuracy; that is, an actual delay of 60.1 secondsis

64 Dynamic C User’s Manual

considered acceptable. Then, if the processor guarantees to check the delay every 50 ms, the delay
would be at most 60.05 seconds, and the accuracy requirement is satisfied.

5.8 Overview of Preemptive Multitasking

In a preemptive multitasking environment, tasks do not voluntarily relinquish control. Tasks are
scheduled to run by priority level and/or by being given a certain amount of time.

There are two ways to accomplish preemptive multitasking using Dynamic C. The first way is
HC/OS-1, areal-time, preemptive kernel that runs on the Rabbit microprocessor and is fully sup-
ported by Dynamic C. For more information see “Dynamic C Modules’ on page 323. The other
way istouse s1lice statements.

5.9 Slice Statements

The s11ce statement, based on the costatement language construct, allows the programmer to
run ablock of code for a specific amount of time.

5.9.1 Slice Syntax

slice ([context buffer,] context buffer size, time slice)
[name] { [statement |yield; |abort; |waitfor (expression);]}

context buffer size

Thisvalue must evaluate to a constant integer. The value specifies the number of bytes for the
buffer context buffer. Itneedsto belarge enough for worst-case stack usage by the
user program and interrupt routines.

time slice

The amount of timein ticks for the slice to run. One tick = 1/1024 second.

name

When defining anamed s1ice statement, you supply a context buffer as the first argument.
When you define an unnamed s1ice statement, this structure is allocated by the compiler.

[statement | yield; | abort; | waitfor (expression) ;]
The body of as1ice statement may contain:
e Regular C statements
e yield statementsto make an unconditional exit.
e abort statementsto make an execution jump to the very end of the statement.

e waitfor statementsto suspend progress of the slice statement pending some condition
indicated by the expression.

Chapter 5: Multitasking with Dynamic C 65

5.9.2 Usage

The s1ice statement can run both cooperatively and preemptively all in the same framework. A
dice statement, like costatements and cofunctions, can suspend its execution with an abort,
yield, or waitfor. It can also suspend execution with an implicit yield determined by the
time slice parameter that was passed to it.

A routine called from the periodic interrupt forms the basis for scheduling slice statements. It
counts down the ticks and changesthe s1 i ce statement’s context.

5.9.3 Restrictions

Since aslice statement hasits own stack, local auto variables and parameters cannot be
accessed whilein the context of as1ice statement. Any functions called from the dlice statement
function normally.

Only one s11ice statement can be active at any time, which eliminates the possibility of nesting
slice statementsor using aslice statement inside afunction that is either directly or indi-
rectly called from as1ice statement. The only methods supported for leaving aslice state-
ment are completely executing the last statement in the s11ice, or executing an abort, yield
or waitfor statement.

The return, continue, break, and goto statements are not supported.
Slice statements cannot be used with uC/OS-11 or TCP/IP,

5.9.4 Slice Data Structure

Internally, the s11ce statement uses two structures to operate. When defining anamed s1ice
statement, you supply a context buffer asthe first argument. When you definean unnamed s1ice
statement, this structure is allocated by the compiler. Internally, the context buffer is represented
by the S1iceBuf fer structure below.

struct SliceData {
int time out;
void* my sp;
void* caller sp;
CoData codata;

}

struct SliceBuffer ({
SliceData slice data;
char stackl[]; // fillsrest of the dice buffer

b

5.9.5 Slice Internals

When as1ice statement isgiven control, it saves the current context and switchesto a context
associated with the s1 i ce statement. After that, the driving force behind the s11ice statement is
the timer interrupt. Each time the timer interrupt is called, it checksto seeif aslice statementis
active. If aslice statement is active, the timer interrupt decrementsthe t ime out field in the
slice’sSliceData. Whenthefield is decremented to zero, the timer interrupt saves the
slice statement’s context into the S11iceBuffer and restores the previous context. Once the

66 Dynamic C User’s Manual

timer interrupt completes, the flow of control is passed to the statement directly following the
slice statement. A similar set of events takes place when the s11ice statement does an explicit
yield/abort/waitfor.

5.9.5.1 Example 1

Two s11ice statements and a costatement will appear to run in parallel. Each block will run inde-
pendently, but the s11ice statement blocks will suspend their operation after 20 ticks for
slice aand40ticksfor slice b. Costate awill not release control until it either explicitly
yields, aborts, or completes. In contrast, slice a will runfor at most 20 ticks, thenslice b
will begin running. Costate awill get its next opportunity to run about 60 ticks after it relinquishes
control.

main () {
int x, vy, 2z;
for (;;) {
costate a {

}

slice (500, 20) { // dice a

}

slice (500, 40) { // dice b

}

5.9.5.2 Example 2
This code guarantees that the first slice startson TICK TIMER evenly divisible by 80 and the
second startson TICK_TIMER evenly divisible by 105.

main () {
for(;;) {
costate {
slice(500,20) { // slice_a
waitfor (IntervalTick (80)) ;
}
slice(500,50) { // slice b

waitfor (IntervalTick (105) ;

Chapter 5: Multitasking with Dynamic C 67

5.9.5.3 Example 3
This approach is more complicated, but will allow you to spend the idle time doing a low-priority
background task.

main () {
int time left;
long start time;

for(;;) {
start time = TICK TIMER;
slice(500,20) // dice a

waitfor (IntervalTick (80)) ;

}
slice(500,50) // dice b
waitfor (IntervalTick (105)) ;

}

time left = 75- (TICK TIMER-start time) ;
if (time left>0) {
slice(500,75- (TICK TIMER-start time)) { //dicec

}

5.10 Summary

Although multitasking may actually decrease processor throughput slightly, it isan important con-
cept. A controller is often connected to more than one external device. A multitasking approach
makes it possible to write a program controlling multiple devices without having to think about all
the devices at the same time. In other words, multitasking is an easier way to think about the sys-
tem.

68 Dynamic C User’s Manual

6. Debugging with Dynamic C

This chapter isintended for anyone debugging Dynamic C programs. For the person with little to
no experience, we offer general debugging strategiesin Section 6.3. Both experienced and inexpe-
rienced Dynamic C users can refer to Section 6.1 to see the full set of tools, programs and func-
tions available for debugging Dynamic C programs. Section 6.2 consolidates the information
found in the GUI chapter regarding debugging featuresinto an quicker-to-read table of GUI
options. And lastly, Section 6.4 gives some good references for further study.

Dynamic C comes with robust capabilities to make debugging faster and easier. The debugger is
highly configurable; it is easy to enable or disable the debugger features using the Project Options
diaog.

The following features are available prior to Dynamic C 9. They are summarized here, with links
to more detailed descriptions.

e printf() - Display messages to the Stdio window (default) or redirect to a seria
port. May also writeto afile.

e Breakpoints - Stop execution, alow the available debug windows to be exam-
ined: Stack, Assembly, Dump and Register windows are always available.

e Single Stepping - Execute one C statement or one assembly statement. Thisisan
extension of breakpoints, so again, the Stack, Assembly, Dump and Register
windows are always available.

e \Watch Expressions - Keep running track of any valid C expression in the appli-
cation. Fly-over hints evaluate any watchabl e statement.

e Memory Dump - Displays blocks of raw values and their ASCII representation
at any memory location (can also be sent to afile).

e MAPFile- Showsaglobal view of the program: memory usage, mapping of
functions, global/static data, parameters and local auto variables, macro listing
and afunction call graph.

e Assert Macro - Thisisapreventative measure, akind of defensive programming
that can be used to check assumptions before they are used in the code. Thiswas
introduced in Dynamic C 8.51.

e Blinking Lights - LEDs can be toggled to indicate a variety of conditions. This
requires asignal line connected to an LED on the board.

Chapter 6: Debugging with Dynamic C 69

Dynamic C 9 contains all the previous debugging tools, plus some enhancements and the addition
of both execution and stack tracing:

e [Execution Trace - Traces at each statement, each function, or customer inserted
points. Displays resultsin the Trace window. The options for execution tracing
are configurable. Thisfeatureis disabled by default.

e Symbolic Stack Trace - Helps customers find out the path of the program at each
single step or break point. By looking through the stack, it is possible to recon-
struct the path and allow the customer to easily move backwards in the current
call tree to get a better feeling for the current debugging context.

e Persistent Breakpoints - Persistent breakpoints mean the information is retained
when transitioning back and forth from edit mode to debug mode and when a
fileis closed and re-opened.

e Enhanced Watch Expressions - The Watches window is now atree structure
capable of showing struct members. That is, all members of a structure become
viewable as watch expressions when a structure is added, without having to add
them each separately.

e Enhanced Memory Dumps - Changed datain the Memory Dump window is
highlighted in reverse video or in customizable colors every timeyou single step
in either C or assembly.

e Enhanced Maode Switching - Debug mode can be entered without a recompile
and download. If the contents of the debugged program are edited, Dynamic C
prompts for arecompile.

e Enhanced Stdio Window - The Stdio window is directly searchable.

6.1 Debugging Tools

This section describes the different tools available for debugging, including their pros and
cons, aswell aswhen you might want to use them, how to use them and an exampl e of using
them. The examples are suggestions and are not meant to be restrictive. While there may
be some collaboration, bug hunting is largely a solitary sport, with different people using
different tools and methods to solve the same problem.

70 Dynamic C User’s Manual

6.1.1 printf()

Theprintf () function has always been available in Dynamic C, with output going to the Stdio
window by default, and optionally to afile (by configuring the Stdio window contentsto log to a

file). The ability to redirect output to any one of the serial ports A, B, C or D was introduced in

Dynamic C 7.25. In DC 8.51, seria ports E and F were added for the Rabbit 3000. See
Samples\stdio serial.c forinstructionson how to usethe serial port redirect. Thisfea
tureisintended for debug purposes only.

The syntax for printf () isexplained in detail in the Dynamic C Function Reference Manual,

including alisting of allowable conversion characters.

Pros

Cons

Uses

Example

Aprintf () statementisquick, easy and sometimesall that isneeded
to nail down a problem.

You can use #1ifdef directivesto create levels of debugging informa
tion that can be conditionally compiled using macro definitions. Thisis
atechnique used by Rabbit Semiconductor engineers when developing
Dynamic C libraries. Inthelibrary code you will see statements such as:

#ifdef LIBNAME DEBUG
printf (*Insert information here.\n”);

#endif
#ifdef LIBNAME VERBOSE
printf (*Insert more information.\n”);

#endif
By defining the above mentioned macro(s) you include the correspond-

ing printf statements.

Theprintf () functionisso easy to useg, itis easy to overuse. This
can lead to ashortage of root memory. A solution to thisthat allowsyou
to still have lots of printf stringsisto place the stringsin extended mem-
ory (xmem) using the keyword xdataandthen call printf () withthe
conversion character “%ls.” An overuse of printf statements can also af -
fect execution time.

Use to check a program’s flow without stopping its execution.

There are numerous examples of using printf () inthe programs
provided in the Samples folder where you installed Dynamic C.

To display astring to the Stdio window place the following line of code
in your application:

printf ("Entering my function() .\n");
To do the same thing, but without using root memory:

xdata entering {“Entering my function() .”};

printf ("$1s\n", entering) ;

Chapter 6: Debugging with Dynamic C

71

6.1.2 Breakpoints

Breakpoints have always been available in Dynamic C. They have been improved over severa
versions: the Clear All Breakpoints command was introduced in DC 7.10; the ability to set break-
pointsin ISRswas introduced in DC 7.30, and most recently, DC 9 introduces persistent break-
points and the ahility to set breakpointsin edit mode.

Pros

Cons

Uses

Breakpoints can be set on any C statement unlessit is declared
nodebug andinany assembly block that isdeclared as#asm debug.
Breakpoints let you run aprogram at full speed until the desired stop-
ping point isreached. Y ou can set multiple breakpointsin a program or
even on the same line. They are easy to toggle on and off individually
and can all be cleared with one command. Y ou can choose whether to
leave interrupts turned on (soft breakpoint) or not (hard breakpoint).

When stopped at a breakpoint, you can examine up-to-date contentsin
debug windows and choose other debugging featuresto employ, such as
single stepping, dumping memory, fly-over watch expressions.

To support large sector flash, breakpoint internals require that break-
point overhead remain, even when athe breakpoint has been toggled off.
Recompile the program to remove this overhead.

When the debug keyword is added to an assembly block, relative jumps
(which are limited to 128 bytes) may go out of range. If this happens,
change the JR instruction to a JP instruction. Another solution isto em-
bed anull C statement in the assembly code like so:

#asm
é ' // Set abreakpoint on the semicolon
#éﬁdasm
Use breakpoints when you need to stop at a specified location to begin

single stepping or to examine variables, memory locations or register
values.

72

Dynamic C User’s Manual

Example OpensSamples\Demol.c.IfyouareusingDC9, placethecursor on
theword “for,” then press F2 to insert a breakpoint. Otherwise, pressF5
to compilethe program before setting the breakpoint. Now press F9. Ev-
ery time you press F9 program execution will stop when it hits the start
of the for loop. From here you can single step or ook at a variety of in-
formation through debug windows.

For example, let us say thereis a problem when you get to thelimit of a
for loop. You can use the Evaluate Expressions dialog to set the loop-
ing variable to a value that brings program execution to the exact spot
that you want, as shown in this screenshot:

Figure 6-1. Altering the looping variable when stopped at a breakpoint

% C\DYNAMIC C 91SAMPLES\DEMOLE o]
= |

S main()] |
10 Il Evaluate Expression ™

11 int i, 3:

Ezpression |[EUEEEE

3 el Besub =193 int 15393 [0+4ETF)

15 while (1) | Evaluate I Close | Help |
16 i++:
17
18 for (3=0; 3<20000; j++): J
19
z0 printf("i = zd\n"™, 1i);
21 L b
1| | oz

Chapter 6: Debugging with Dynamic C

73

6.1.3 Single Stepping
Single stepping has always been available in Dynamic C. In version 7.10, the ability to single step
on C statements with the Assembly window open was added.

Pros

Cons

Uses

Example

Single stepping allows you to closely supervise program execution at
the source code level, either by C statement or assembly statement. This
helpsin tracing thelogic of the program. Y ou can single step any debug-
gable statement. Even Dynamic C library functions can be stepped into
as long as they are not flagged as nodebug.

Single stepping isof limited useif interaction with an external deviceis
being examined; an external device does not stop whatever it is doing
just because the execution of the application has been restrained.

Also, single stepping can be very tedious if stepping through many in-
structions. Well-placed breakpoints might serve you better.

Single stepping istypicaly used when you have isolated the problem
and have stopped at the area of interest using a breakpoint.

To single step through a program instead of running at full execution
speed, you must either set a breakpoint while in edit mode (if you have
DC 9) or compile the program without running it.

To compile the pro-
gram without running
it, use the Compile

=% Dynamic C Dist. 9,00
File Edit |c|:|mpile Run Inspect Opkions hindow

menu option, thekey- | {| [= T Compile F5
board shortcut F5 or 1% Compile to Target .
the toolbar menu but- ol _ e

. &E Compile to |, bin File r
ton (pictured to the
|eft of the Compile 5 Resek Target { Compile BIOS Ch+Y
menu option).

F7, F8, Alt+F7 and Alt+F8 are the keyboard shortcuts for stepping
through code. Use F7 if you want to step at the C statement level, but
want to step into calls to debuggable functions. Use F8 instead if you
want to step over function calls.

If the Assembly window is open, the stepping will be done by assembly
instruction instead of by C statement if the feature “Enable instruction
level single stepping” is checked on the Debugger tab of the Project Op-
tions dialog; otherwise, stepping is done by C statement regardless of
the status of the Assembly window. If you have checked “Enable in-
struction level single stepping” but wish to continue to step by C state-
ment when the Assembly window isopen, use Alt+F7 or Alt+F8 instead
of F7 or F8.

74

Dynamic C User’s Manual

6.1.4 Watch Expressions
Like many other debugging features, watch expressions have been around since the beginning and

have improved over time. Dynamic C 8.01 introduced the ability to eval uate watchable expres-
sions using flyover hints. (The highlighted expression does not need to be set as awatch expres-

sion for evaluation in aflyover hint.) Dynamic C 9 introduced a new way of handling structures as
watch expressions. Previoudy when you set awatch on a struct, its members had to be added sep-
arately and deliberately. Now they are set as watch expressions automatically with the addition of

the struct.

Pros

Cons

Uses

Example

Any valid C expression can be watched. Multiple expressions can be
watched simultaneously. Once awatch is set on an expression, itsvalue
is updated in the Watches window whenever program execution is
stopped.

The Watches window may be updated while the programisrun-

ning (which will affect timing) by issuing the “ Update Watch ¥
Window” command: use the Inspect menu, Ctrl+U or the tool-

bar menu button shown here to update the Watches window.

You can use flyover hintsto find out the value of any highlighted C ex-
pression when the program is stopped.

The scope of variablesin watch expressions affectsthe value that is dis-
played in the Watches window. If the variable goes out of scope, itstrue
value will not be displayed until it comes back into scope.

Keep in mind two additional things, which are not bad per se, but could
beif they are used carelesdy: Assignment statementsin awatch expres-
sion will change the value of avariable every time watches are evaluat-
ed. Similarly, when afunction call isin awatch expression, the function
will run every time watches are evaluated.

Use awatch expression when the value of the expression isimportant to
the behavior of the part of the program you are analyzing.

Watch expressions can be used to evaluate complicated conditionals. A
quick way to see thisisto run the program Samples\pong.c. Seta
breakpoint at thisline

if (nx <= x1 || nx >= xh)

within the function pong () . While the program is stopped, highlight
the section of the expression you want evaluated. Use the watches fly-
over hint by hovering the cursor over the highlighted expression. It will
be evaluated and theresult displayed. You can seethevaluesof, e.g., nx
or x1 or theresult of the conditional expressionnx <= x1, depending
on what you highlight.

Chapter 6: Debugging with Dynamic C

75

6.1.5 Evaluate Expressions

The evaluate expression functionality was separated out from watch expressionsin Dynamic C
8.01. Itisaspecial case of awatch expression evaluation in that the evaluation takes place once,
when the Evaluate button is clicked, not every time the Watches window is updated.

Pros Like watches, you can use the Eval uate Expression feature on any valid
C expression. Multiple Evaluate Expression dialogs can be opened si-
multaneously.

Cons Can alter program data adversely if the change being made is not
thought out properly

Uses This feature can be used to quickly and easily explore a variant of pro-
gram flow.

Example Say you have an application that is supposed to treat the 100th iteration
of aloop asaspecial case, but it does not. You do not want to set a break-
point on the looping statement and hit F9 that many times, so instead
you forcethe loop variable to equal 99 using the eval uate expression di-
alog. To do this compile the program without running it. Set a break-
point at the start of the loop and then single step to get past the loop
variable initialization. Open the Inspect menu and choose Evaluate Ex-
pression. Typein"j=99" and click on the Evaluate button. Now you are
ready to start examining the program'’s behavior.

76 Dynamic C User’s Manual

6.1.6 Memory Dump

The Dump window was improved in Dynamic C 8.01 in several ways. For example, multiple
dump windows can be active simultaneousdly, flyover hints make it easier to see the correct
address, and three different types of dumps are allowed. Read the section titled, “Dump at
Address,” for more information on these and the other improvements made in version 8.01. In
Dynamic C 9, dump windows were improved again. One improvement is that values that have
changed are shown highlighted in reverse video or in customizable colors. Another improvement
isthat the value entered in the Memory Dump Setup dialog is the first address shown in the dump
window. E.g., if you typein alogical address such as 74ec (all addresses are in hexadecimal), that
will be the first address shown. Earlier versions of Dynamic C took a zero-based approach, mean-
ing that the first address would be 74€0.

Pros

Cons

Uses

Example

Dump windows allow accessto any memory location, beginning at any
address. There are alignment options; the data can be viewed as bytes,
words or double-words using a right-click menu.

The Dump window does not contain symbolic information, which
makes someinformation harder to decipher. Thereisthe potential for in-
creased debugging overhead if you open multiple dump windows and
make them large.

Use adump window when you suspect memory is being corrupted. Or
to watch string or numerical data manipulation proceed. String manipu-
lation can easily cause memory corruption if you are not careful.

Consider the following code:

char my array[10];

for (i=0; 1i<=10; i++){
my arrayl[i] = Oxff;

}

If you do not have run-time checking of array indices enabled, thiscode
will corrupt whatever isimmediately followingmy array inmemory.

There is no run-time checking for string manipulation, so if you wrote
something like thefollowing in your application, memory would be cor-
rupted when the null terminator for the string “1234” was written.

void foo () {
int x;
char str([4];
x = OxXffff;
strcpy (str,”1234");
}
Watching changesin a dump window will make the mistake more obvi-
ousin both of these situations, though in the former, turning on run-time
checking for array indicesin the Compiler tab of the Project Options di-
aogiseasier.

Chapter 6: Debugging with Dynamic C 77

6.1.7 MAP File
Map files have been generated for compiled programs since Dynamic C 7.02.

Pros

Cons

Uses

Example

The map fileisfull of useful information. It contains,

* |ocation and size of code and data segments
« alist of al symbols used, their location, size and their file of origin

* alist of all macros used, their file of origin and the line number within
that file where the macro is defined

« function call graph

A valid mapfileis produced after asuccessful compile, soitisavailable
when a program crashes.

If the compile was not successful, for example you get a message that
saysyou ran out of root code space, the map file will still be created, but
will contain incomplete and possibly incorrect information.

Map files are useful when you want to gather more data or aretrying to
get acomprehensive overview of the program. A map file can help you
make better use of memory in cases where you are running short or are
experiencing stack overflow problems.

Say you are pushing the limits of memory in your application and want
to see where you can shave bytes. The map file contains sizesfor all the
data used in your program.The screen shot below shows some code and
part of its map file. Maybe you meant to type “200" asthe size for

my array and added a zero on the end by mistake. (Thisis agood
place to mention that using hard-coded values is more prone to error
than defining and using constants.)

5 CHDYNAMIC C 9\ SAMPLES\DEMOL =10] x|
main(] { |
int i, j:
int my array[Z000];
g-
'
3% C:\DYNAMIC C 9),SAMPLES'\DEMO1.MAP i 1Ol x]
S/ Parameter and local auto symbol mapping and source reference.;l
S f0ffset Rel. to Size Symbol File
400z =1 Z main:i 4 DEM
4000 =13 2 main: j WDEM__y
u] P 4000 wainimy array Y DEM
7 3P 7 printf:fmt NSTD
2 SP 2 _ge2:c Y STD
4 5P 2 qeZ: printfbuf \sujj
« | o 4

Scanning the size column, the mistake jumps out at you more readily
than looking at the code, maybe because you expect to see “ 200" and so
your brain filters out the extra zero. For whatever reason, looking at the
same information in a different format allows you to see more.

The size value for functions might not be accurate because it measures
code distance. In other words, if afunction spans a gap created with a

78

Dynamic C User’s Manual

follows action, the size reported for the function will be much greater
than the actual number of bytes added to the program. The follows ac-
tion is an advanced topic related to the subject of origin directives. See
the Rabbit 3000 Designer’s Handbook for a discussion of origin direc-
tives and action qualifiers.

Themap file providesthelogical and physical addresses of the program
and its data. The screen shot below shows a small section of

demo1l .map. Theleft-most column shows line numbers, with address-
esto their immediate right. Using the addresses we can reproduce the
actions taken by the Memory Management Unit (MMU) of the Rabbit.
Addresseswith four-digits are both the logical and the physical address.
That isbecauseinthelogical address spacethey areinthe base segment,
which always starts at zero in the physical address space. You can see
this for yourself by opening two dump windows: one with a four-digit
logical address and the second with that same four-digit number but
with aleading zero, making it a physical address. The contents of the
dump windows will be the same.

7% C:\DYNAMIC C 9',5AMPLES! DEMO1.MAP =10l =]
179 fa:eiccoc * dkCheckEntry \DKCORE;!
180 fa:e2d? * dkikZetiingleltepHook 4 DEENTR
181 fa:ezdf E dkSetEpilogHook 4 DEENTR
152
183
184 // Global/static data sywbol mapping and source reference.,
185 // Addr Size Syrbol File o
156 Zche 129 _ctype table YW STRING
157 zf0ad 10 _tens WETDIO.!
155 3308 44 _ ltens WSTDIO.!
159 3503 32 pflec:round YSTDIO.:
180 3ed3 4 froa:lg 2 10 Y STDIO.!
B K 462k 3z _ T divxmemwrapper: divtsble 4 MUTILF:
192 bl:c387 4 __initial stack % PROGRA
193 bl:c3ss3 4 freeStacks YWETACKE.:
194 40el 10 stackiizes WETACK.

/ | Ld

The addressesin the format xx:yyyy are physical addresses. For code xx
isthe XPC value, for datait is the value of DATASEG,; yyyy isthe PC
valuefor both code and data. I n the above map file you can see examples
of both code and data addresses. Addressesin the format xx:yyyy are
transformed by the MMU into a 5-digit physical address.

Wewill use the address fa:e64c to explain the actions of the MMU. Itis
really very simpleif you can do hex arithmetic in your head or have a
decent calculator. The MMU takes the XPC or DATASEG value, ap-
pends three zeros to it, then adds it to the PC value, like so:

fa000 + e64c = 10864c

A sixth digit in theresult isignored, leaving us with the value 0x0864c.
Thisisthe physical address. Again, you can check thisin a couple of
dump windows by typing in the 5-digit physical addressfor onewindow
and the XPC:offset into another and seeing that the contents are the
same.

Chapter 6: Debugging with Dynamic C

79

6.1.8 Execution Trace

Execution tracing was introduced in Dynamic C 9. The program Samples\demo4 . ¢ demon-
strates its use. Go to Section 3.4 on page 12 for afull description of demo4 . c.

There are basically three ways to toggle tracing during program execution. Two of them are simi-
lar: they require that tracing be enabled in the Debugger tab of the Project Options dialog and they
do not trace in nodebug functions.

e GUI options: Opening the Inspect menu, you will see the “ Stop Execution Trac-
ing” and the “ Start Execution Tracing” commands, along with their keyboard
shortcuts and toolbar buttons. Use any of these methods to start and stop execu-
tion tracing while the program is running or while stopped at a breakpoint.

e TRACEON and TRACEOFF: Macros that are the equal to the GUI options

The third way does not require tracing to be enabled and it can be done in nodebug functions.

e TRACE: A macro that causes itself, and only itself, to be traced.

Note that execution tracing isintrusive, slightly more so when the Trace window is open.

Pros The large amount of tracing information that may be saved on the host
PC isavailable even if the program crashes. Tracing information fields
can be turned on and off by the user on the Debugger tab of the Project
Options dialog. The size of the trace buffer, which determines the num-
ber of trace entries, and whether to save the buffer to afile on program
termination are also decided on the Debugger tab.

Cons Execution tracing alters the timing of a program because tracing infor-
mation is inserted between every source statement that is executed.
Therefore, execution tracing may not be useful in tracking down atim-
ing related problem... it might even cause one.

Uses A good data gathering tool to use when you are not sure what is happen-
ing.

Example Sayyou havean applicationinwhich program flow deviates at some un-
known point that is too tedious to detect by stepping. With execution
tracing enabled, compile the program and click “Trace On” in the In-
spect menu. Run the program and stop when the deviation is known or
suspected to have occurred. Open the Trace window. You can now fol-
low the execution at any point in the trace by double-clicking to source,
or save to afile and grep for pertinent function calls or lines executed.

80 Dynamic C User’s Manual

6.1.9 Symbolic Stack Trace

Dynamic C has always had the Stack window, but the Stack Trace window isnew in Dynamic C 9.
The old Stack window is still available to any compiled program, and being able to view the top
32 bytes of the stack could still be useful.

The Stack Trace window lets you see where you are and how you got there. It keeps arunning
depth value, telling you how many bytes have been pushed on the stack in the current program
instance, or since the depth value reset button was clicked. The Stack Trace window only tracks
stack-based variables, i.e., auto variables. The storage classfor local variables can be either auto or
static, specified through a modifier when the variable is declared or globally via the #class direc-
tive. Whatever the means, if alocal variable is marked static it will not appear in the Stack Trace

window.

Pros

Cons

Uses

Example

Provides a concise history of the call sequence and values of local vari-
ables and function argumentsthat led to the current breakpoint, all for a
very small cost in execution time and BIOS memory.

Currently, the Stack Trace window can not trace the parameters and |o-
cal variablesin cofunctions. Also the contents of the window can not be
saved after a program crash.

Use stack tracing to capture the call sequence leading to a breakpoint
and to see the values of functions arguments and local variables.

Say you have afunction that isbehaving badly. You can set a breakpoint
in the function and use the Stack Trace window to examine the function
call sequence. Examining the call sequence and the parameters being
passed might give enough information to solve the problem.

Thefollowing screenshot showsan instanceof gsortdemo . ¢ and the
Stack Tracewindow. Notethat the call tomemcpy () isnot represented
on the stack. The reason? Its stack activity had completed and program
execution had returned tomain () when the stack was traced at the
breakpoint in the function mycmp () .

Figure 6-2. Using Stack Trace

,";'", C:\DYNAMIC C 94,SAMPLES')SORTDEMO.C

A/ user defined compare must be supplied for gsort
int mycmp (int *p,int Fo |

Seturn [*p - *o):
i

woid main()
{
int i:

A4 copy initislized dats to RAM
memcpy (b, Q, sizeoL (Q]]}

Ff o sert it
gsort (p, ARRAY ELEMENT COUNT,Z,mycmp) ;

¥ Stack Trace =10l x|
wycnp (p=0xC377, o=0xC37F)

gqsort (hase=, n=0xk, s=0%Z, cmp=0x1D94) i=0x0, j=0x3, piv=0x4, lo=0x0, hi=0x3, pivot={0xC3ITF} "O°
main{) i=0x1DEE

| | 1=
4

|Depth: 35 [Max Depth: 35

Chapter 6: Debugging with Dynamic C 81

6.1.10 Assert Macro

The assert macro was introduced in Dynamic C 8.51. The Dynamic C implementation of assert
followsthe ANSI standard for the NDEBUG macro, but differsin what the macro is defined to be
S0 as to save code space (ANSI specifies that assert is defined as ((void)0) when NDEBUG is
defined, but this generatesa NOP in Dynamic C, so it is defined to be nothing).

Pros

Cons

Uses

Example

The assert macro is self-checking software. It lets you explicitly state
something istrue, and if it turns out to be fal se, the program terminates
with an error message. At thetime of thiswriting, thislink contained an
excellent write-up on the assert macro:

http://www.embedded.com/story/0OEG200103115S0021

Side effects can occur if the assert macro is not coded properly, e.g.,
assert (i=1)

will never trigger the assert and will change the value of the variablei;
it should be coded as:

assert (i==1)

Use the assert macro when you must make sure your assumption is ac-
curate.

Check for aNULL pointer before using it.

void my function (int * ptr) {
assert (ptr) ;

82

Dynamic C User’s Manual

6.1.11 Miscellaneous Debugging Tools
Noted here are a number of other debugging tools to consider.

General Debug Windows

In addition to the debug windows we have discussed already, there are three other windows that
are available when a program is compiled: the Assembly, Register and Stack windows. They are
described in detail in Chapter 15, in the sectionstitled, Assembly (F10), Register Window and
Stack (F12), respectively.

xalloc_stats()
Prints atable of physical addressesthat are available for allocation in xmemviaxalloc () calls.
To display thisinformation in the Stdio window, execute the statement:

xalloc_stats(0) ;

in your application or use Inspect | Evaluate Expression. The Stdio window will display something
similar to the following:

il 5
|"f'r-3-'-15tdlu _-.Igl.l(.l
FAuailable #allocl) regions: o
Region#t Low addr High addr Size Auail Tupe
2 = durmy
2 = dummg
1 5242585 T43E55 224755 217853 normal
GREAES0E0E OxEEaEBbEdf f OnEEE3ccEE GuAEBRISEEE
a rE6432 1648575 262144 262144 normal
HREAEcHOEE OxA88f Ffff D-0EE40088 Sua804088E
-
< | AW

A region is a contiguous piece of memory. Theoretically, up to four regions can exist; aregion that
ismarked “dummy” is aregion that does not exist. Each region isidentified as“normal” or “BB
RAM,” which refers to memory that is battery-backed.

SeriallO.exe

The utility serialIO.exe islocated in \Diagnostics\Serial IO.Itisasointhefile
SerialIO_1.zip, avalablefor download at the RabbitSemiconductor website. Thisutility isa
specialized terminal emulator program and comes with several diagnostic programs. The diagnos-
tic programs test a variety of functionality, and allow the user to simulate some of the behavior of
the Dynamic C download process.

The utility has a Help button that gives complete instructions for its use. The Rabbit 3000
Designer’s Handbook in the chapter titled “ Troubleshooting Tips for New Rabbit-Based Systems”
explains some of the diagnostic programs that come with the seriallO utility. Understanding the
information in this chapter will allow you to write your own diagnostic programs for the seriallO
utility.

reset_demo.c

The sample program Samples\reset demo.c demonstrates using the functions that check
the reason for areset: hard reset (power failure or pressing the reset button), soft reset (initiated by
software), or awatchdog timeout.

Chapter 6: Debugging with Dynamic C 83

http://www.rabbitsemiconductor.com/support/downloads/

Error Logging

Chapter 9, “Run-Time Errors,” describes the exception handling routine for run-time errorsthat is
supplied with Dynamic C. The default handler may be replaced with a user-defined handler. Also
error logging can be enabled by setting ENABLE_ ERROR_LOGGING to 1 in the BIOS (prior to
Dynamic C version 9.30) or in ERRLOGCONFIG. LIB (starting with DC 9.30). See Chapter 9 for
more information.

Watchdogs

Ten virtual watchdogs are provided, in addition to the hardware watchdog(s) of the processor.
Watchdogs, whether hardware or software, limit the amount of time a system isin an unknown
state.

Virtual watchdogs are maintained by the Virtual Driver and described in Section 7.4.2. The sample
program Samples\VDRIVER\VIRT WD.C demonstrates the use of avirtua watchdog.

Compiler Options
The Compiler tab of the Project Options dialog contains several options that assist debugging.
They are summarized here and fully documented starting on page 260.

e List Files- When enabled, this option generates an assembly list file for each
compile. Thelist file contains the same information and is in the same format as
the contents of the Assembly window. List files can be very large.

e Run-Time Checking - Run-time checking of array indices and pointers are
enabled by default.

e Type Checking - Compile-time checking of type options are enabled by default.
There are three type checking options, labeled as. Prototype, Demotion and
Pointer. Checking prototypes means that arguments passed in function calls are
checked against the function prototype. Demotion checking means that the auto-
matic conversion of atypeto asmaller or less complex type is noted. Pointer
checking refers to making sure pointers of different types being intermixed are
cast properly.

See the section titled, “ Type Checking” on page 261 for more information.

Blinking Lights

Debugging software by toggling LEDs on and off might seem like a strange way to approach the
problem, but there are a number of situations that might call for it. Maybe you just want to exer-
cise the board hardware. Or, let us say you need to seeif a certain piece of code was executed, but
the board is disconnected from your computer and so you have no way of viewing printf output or
using the other debugging tools. Or, maybe timing is an issue and directly toggling an LED with a
cal toWwrPortE () or BitWrPortE () givesyou the information you need without as much
affect on timing.

The sample program \ Samples\LP3500\power . c demonstrates how to use LEDsto com-
municate information.

84 Dynamic C User’s Manual

6.2 Where to Look for Debugger Features

Debugger features are accessed from several different Dynamic C menus. The menu to look in
depends on whether you want to enable, configure, view or use the debugger feature. This section
identifies the various menus that deal with debugging. Table 6-1 summarizes the menus and

debugging tools.

Table 6-1. Summary of Debug Tools and Menus

Right-click menu in the
Trace window

Name of Where Feature is Where Feature is Where Feature is
Feature Configured Enabled Toggled?
Environment Options,
Debug Windows tab
. . . . Inspect Menu
Execution Trace Project Options, Project Options, Pr aticallv with
Debugger tab Debugger tab ogramatically wi

macros

Register windows

Debug Windows tab

Symbolic Stack Environment Options, Project Options, Windows Menu
Trace Debug Windows tab Debugger tab
. Project Options, Project Options,
Breakpoints Debugger tab Debugger tab Run Menu
Single Stepping No configuration options | Always enabled Run Menu
Instruction Level . . . Project Options,
Single Stepping No configuration options Debugger tab Run Menu
Environment Options,
. Debug Windows tab Project Options,
Watch Expressions Project Options, Debugger tab Inspect Menu
Debugger tab
Thisfeature is enabled
Evaluate No configuration options when the Wetch Inspect Menu
Expression 9 P Expressions feature is o
enabled.
i . . . Automatically generated
Map File No configuration options | Always enabled for compiled programs
Environment Options,
Memory Dump Debug Windows tab Always enabled Inspect Menu
Disassemble Code Environment Options, Always enabled Inspect Menu
Debug Windows tab
Assert Macro Programatically Programatically Programatically
printf() Programatically Programatically Programatically
Stdio, Stack and Environment Options, Always enabled Windows Menu

a. Keyboard shortcuts and toolbar menu buttons are shown along with their corresponding

menu commands in the dropdown menus.

Chapter 6: Debugging with Dynamic C

85

6.2.1 Run and Inspect Menus

The Run and Inspect menus are covered in detail in Section 15.2.4 and Section 15.2.5, respec-
tively. These menus are where you can enable the use of several debugger features. The Run menu
has options for toggling breakpoints and for single stepping. The Inspect menu has options for
mani pulating watch expressions, disassembling code, dumping memory and for toggling execu-
tion tracing. For the most part, a debugger feature must be enabled before it can be selected in the
Run or Inspect menus (or by its keyboard shortcut or toolbar menu button). Most debugger fea-
tures are enabled by default in the Project Options dialog. The disassembled code and memory
dump options are the exception, as they are always available to a compiled program.

6.2.2 Options Menu

From the Options menu in Dynamic C you can select Environment Options, Project Options or
Toolbars, where you configure debug windows, enable debug tools or customize your toolbar but-
tons, respectively.

The Environment Options dialog has atab |abeled “ Debug Windows.” There are a number of con-
figuration options available there. You can choose to have al or certain debug windows open auto-
matically when a program compiles. You can choose font and color schemes for any debug
window. More important than fonts and colors, you can configure most of the debug windows in
way's specific to that window. For example, for the Assembly window you can alter which infor-
mation fields are visible. See the section titled, “Debug Windows Tab” on page 250 for complete
information on the specific options available for each window.

The Project Options dialog has atab labeled “Debugger.” Thisiswhere symbolic stack tracing,
execution tracing, breakpoints, watch expressions and instruction level single stepping are
enabled. These debugging tools must be enabled before they can be used. Some configuration
options are also set on the Debugger tab. See the section titled, “ Debugger Tab” on page 266, for
compl ete information on the configuration options available on the Debugger tab.

Thefina menu selection on the Options menu islabeled, “ Toolbars.” Thisiswhere you choose the
toolbars and the menu buttons that appear on the control bar. See the section titled, “Toolbars’ on

page 273, for instructions on customizing this area. Placing the menu buttons you use the most on
the control bar is not really a debugging tool, but may make the task easier by offering some con-

venience.

6.2.3 Window Menu

The Window menu is where you can toggle display of debug windows. See Section 15.2.7 on
page 274 for more information. Another selection available from the Window menu isthe Infor-
mation window, which contains memory information and the status of the last compile. See
“Information” on page 278 for full details.

86 Dynamic C User’s Manual

6.3 Debug Strategies

Since bug-free code is a trade-off with time and money, we know that software has bug§. This
section discusses ways to minimize the occurrence of bugs and gives you some strategies for find-
ing and eliminating them when they do occur.

6.3.1 Good Programming Practices

There isabig difference between “buggy code” and code that runs with near flawless precision.
The latter program may have abug, but it may be arelatively minor problem that only appears
under abnormal circumstances. (This touches on the subject of testing, which are the actions taken
specificaly to find bugs, alarger discussion that is beyond the scope of this chapter.) This section
discusses some time-tested methods that may improve your ability to write software with fewer
bugs.

e TheDesign: Thedesign isthe solution to the problem that a program or function is sup-
posed to solve. At ahigh level, the design is independent of the language that will be used
in the implementation. Many questions must be asked and answered. What are the require-
ments, the boundaries, the special cases? Thesethingsare al captured in awell thought out
design document. The design, written down, not just an idea floating in your head, should
be rigorous, complete and detailed. There should be agreement and sign-off on the design
before any coding takes place. The design underlies the code—it must come first. Thisis
also the first part of creating full documentation.

e Documentation: Other documentation includes code comments and function description
headers, which are specially formatted comments. Function description headers allow
functions from librarieslisted in 1ib . dir to be displayed in the Function Lookup option
in Dynamic C’'s Help menu (or by using the keyboard shortcut Ctrl+H). See Section 4.25
for details on creating function description headers for user-defined library functions.

Another way to comment code is by making the code self-documenting: Always choose
descriptive names for functions, variables and macros. The brain only has so much
memory capacity, why waste it up by requiring yourself to remember that cwl() isthe
function to call when you want to check the water level in your fish tank;

chk_h20 _level(), for example, makesit easier to remember the function’s purpose. Of
course, you get very familiar with code whileit isin development and so your brain
transforms the letters “cwl” quite easily to the words “check water level.” But years
later when some esoteric bug appears and you have to dig into old code, you might be
glad you took the time to type out some longer function names.

e Modular Code: If you have afunction that checks the water level in the fish tank, don’t
have the same function check the temperature. Keep functions focused and as simple as
possible.

i. For an account of what can happen when time and money constraints al but disappear,
read “ They Write the Right Stuff” by Charles Fishman.

Chapter 6: Debugging with Dynamic C 87

http://www.fastcompany.com/online/06/writestuff.html

e Coding Sandards: The use of coding standards increases maintainability, portability and
re-use of code. In Dynamic C libraries and sample program§ some of the standards are as
follows:

- Macros names are capitalized with an underscore separating words, e.g., MY MACRO.

- Function names start with alowercase letter with an underscore or a capital letter sep-
arating words, e.g., my function () ormyFunction ().

- Use parenthesis. Do not assume everyone has memorized the rules of precedence.
E.g.,
y =a * b << ¢; // this is legal
vy (a * b) << ¢; // but this is more clear

- Use consistent indenting. This increases readability of the code. Look in the Editor tab
in the Environment Options dialog to turn on a feature that makes this automatic.

- Use block comments (/*...*/) only for multiple line comments on the global level and
line comments (//) inside functions, unless you really need to insert along, multiple
line comment. Thereason for thisisit isdifficult to temporarily comment out sections
of code using /*...*/ when debugging if the section being commented out has block
comments, since block comments are not nestable.

- Use Dynamic C code templates to minimize syntax errors and some typos. Look in the
Code Templates tab in the Environment Options dialog to modify existing templates
or create you own. Right click in an editor window and select Insert Code Template
from the popup menu. Thiswill bring up a scroll box containing all the available tem-
plates from which to choose.

e Syntax Highlighting: Many syntactic elements are visually enhanced with color or other
text attributes by default. These elements are user-configurable from the Syntax Colors tab
of the Environment Options dialog. Thisis more than mere lipstick. The visual representa-
tion of material can aid in or detract from understanding it, especially when the material is
complex.

e Revision Control System: If your company has a code revision control systemsin place,
useit. In addition, when in development or testing stages, keep aknown good copy of your
program close at hand. That is, a compil es-and-runs-without-crashing copy of your pro-
gram. Then if you make changes, improvements or whatever and then can’'t compile, you
can go back to the known good copy.

i. Older libraries may not adhere strictly to these standards.

88

Dynamic C User’s Manual

6.3.2 Finding the Bug
When a program does not compile, or compiles, but when running behaves in unexpected ways, or
perhaps worse, runs and then crashes, what do you do?

Compilation failures are caused by syntax errors. The compiler will generate messages to help you
fix the problem. There may be alist of compiler error messages in the window that pops up. Fix
the first one, then recompile. The other compile errors may disappear if they were not true syntax
errors, but just the compiler being confused from the first syntax error.

During development, verify code as you progress. Develop code one function at atime. Do not
wait until you are finished with your implementation before you attempt to compile and runiit,
unlessit isavery short application. After aprogram is compiled, other types of bugs have a
chance to reveal themselves. The rest of this section concentrates on how to find a bug.

6.3.2.1 Reproduce the Problem

Keep an open mind. It might not be a bug in the software: you might have a bad cable connection,
or something along those lines. Check and eliminate the easy thingsfirst. If you are reasonably
sure that your hardware isin good working order, then it is time to debug the software.

Some bugs are consistent and are easy to reproduce, which meansit will be easier to gather the
information needed to solve the problem. Other bugs are more elusive. They might seem random,

happening only on Wedn&daysi, or some other seemingly bizarre behavior. There are a number of
reasons why a bug may be intermittent. Here are some common one;

e Memory corruption
- uninitialized or incorrectly initialized pointers
- buffer overflow
- Stack overflow/underflow

ISR modifying but not saving infrequently used register

Interrupt latency

Other borderline timing issues

EMI

One of the difficulties of debugging isthat the source of abug and its effect may not appear
closely related in the code. For example, if an array goes out of bounds and corrupts memory;, it
may not be a problem until much later when the corrupted memory is accessed.

6.3.2.2 Minimize the Failure Scenario
After you can reproduce the bug, create the shortest program possible that demonstrates the prob-
lem. Whatever the size of the code you are debugging, one way to minimize the failure scenario is
amethod called “binary search.” Basically, comment out half the code (more or less) and see
which half of the program the bug isin. Repeat until the problem isisolated.

i. Read some accounts of some hairy bugs, including one where the program only worked on Wednesdays,
at http://lieber.www.media.mit.edu/people/lieber/Lieberary/Softviz/ CACM-Debugging/Hairiest.html.

Chapter 6: Debugging with Dynamic C 89

6.3.2.3 Other Things to Try
Get out of your cubicle. It isawell-known fact that there are times when simply walking over to a
co-worker and explaining your problem can result in a solution. Probably because it is aform of
data gathering. The more data you gather (up to a point), the more you know, and the more you
know, the more your chances of figuring out the problem increase.

Stay in your cubicle. Log on and get involved in one of the online communities. There is a great
Yahoo E-group dedicated to Rabbit and Dynamic C. Although Rabbit Semiconductor engineers
will answer questions there, it is mostly the members of this group that solve problems for each
other. To join this group go to:

http://groups.yahoo.com/group/rabbit-semi/

Another good online source of information and help is the Rabbit Semiconductor bulletin board.
Goto:

http://www.zworld.com/support/bb/

If you are having trouble figuring out what is happening, remember to analyze the bug under vari-
ous conditions. For example, run the program without the programming cable attached. Change
the baud rate. Change the processor speed. Do bug symptoms change? If they do, you have more
clues.

6.4 Reference to Other Debugging Information
There are many good references available. Here are a few of them:

e Debugging Embedded Microprocessor Systems, Stuart Ball
e \Writing Solid Code, by Steve Macquire

e \Websites: google, search on debugging software

At the time of thiswriting the following links provided some good information:

e http://lieber.www.media.mit.edu/peopl e/lieber/Lieberary/Softviz/CACM-
Debugging/CACM-Debugging-Intro.html#Intro

¢ http://www.embeddedstar.com/techni cal papers/content/d/embedded1494.html

e “They Write the Right Stuff” by Charles Fishman
http://www.fastcompany.com/online/06/writestuff.html

Q0 Dynamic C User’s Manual

http://groups.yahoo.com/group/rabbit-semi/)
http://www.zworld.com/support/bb/
http://lieber.www.media.mit.edu/people/lieber/Lieberary/Softviz/CACM-Debugging/CACM-Debugging-Intro.html#Intro
http://www.embeddedstar.com/technicalpapers/content/d/embedded1494.html
http://www.fastcompany.com/online/06/writestuff.html

7. The Virtual Driver

Virtual Driver is the name given to some initialization services and a group of services performed
by a periodic interrupt. These services are:

Initialization Services

e Cal GLOBAL INIT()
e [nitialize the global timer variables
e Start the Virtual Driver periodic interrupt

Periodic Interrupt Services
e Decrement software (virtual) watchdog timers
e Hitting the hardware watchdog timer
e |ncrement the global timer variables
e Drive uC/OS-1l preemptive multitasking
e Drive dice statement preemptive multitasking

7.1 Default Operation

The user should be aware that by default the Virtual Driver starts and runsin a Dynamic C pro-
gram without the user doing anything. This happens because beforemain () iscaled, afunction
caled premain () iscaled by the Rabbit kernel (BIOS) that actually callsmain () . Before
premain () calsmain (), it calsafunction named vdinit () that performstheinitializa-
tion services, including starting the periodic interrupt. If the user were to disable the Virtual Driver
by commenting out thecall to vdInit () inpremain (), then none of the services performed
by the periodic interrupt would be available. Unless the Virtual Driver isincompatible with some
very tight timing requirements of a program and none of the services performed by the Virtua
Driver are needed, it is recommended that the user not disable it.

7.2 Calling _GLOBAL_INIT()

vdiInit () callsthefunction chain GLOBAL INIT () whichrunsal #GLOBAL INIT Sec-
tionsinaprogram. GLOBAL INIT () alsoinitiaizesall of the CoData structures needed by
costatements and cofunctions. If vdInit () isnot called, users could still use costatements and
cofunctionsif thecall tovdInit () wasreplaced by acall to GLOBAL INIT (), butthe
DelaySec () and DelayMs () functions often used with costatements and cofunctionsin
waitfor statements would not work because those functions depend on timer variables which
are maintained by the periodic interrupt.

Chapter 7: The Virtual Driver 91

7.3 Global Timer Variables

SEC_TIMER, MS TIMER and TICK TIMER areglobal variablesdefined as shared
unsigned long. Thesevariables should never be changed by an application program. Among
other things, the TCP/IP stack depends on the validity of the timer variables.

Oninitialization, SEC_TIMER is synchronized with the real-time clock. The date and time can be
accessed more quickly by reading SEC_ TIMER than by reading the real-time clock.

The periodic interrupt updates SEC_ TIMER every second, MS_TIMER every millisecond, and
TICK TIMER 1024 times per second (the frequency of the periodic interrupt). These variables
areused by theDelaySec, DelayMS and DelayTicks functions, but are also convenient for
application programs to use for timing purposes. The following sample shows the use of
MS_TIMER to measure the execution timein microseconds of a Dynamic C integer add. The
work isdonein anodebug function so that debugging does not affect timing. For more informa-
tion on the nodebug keyword, please see “nodebug” on page 190.

#define N 10000
main(){ timeit(); }
nodebug timeit ()
unsigned long int TO;
float T2,T1;
int x,vy;
int 1i;
TO = MS TIMER;
for(i=0;i<N;i++) { }
// T1givesempty loop time
Tl=(MS_TIMER-TO) ;
TO = MS TIMER;
for(i=0;1i<N;i++){ x+y;}
// T2 givestest code execution time
T2=(MS_TIMER-TO) ;
// subtract empty loop time and convert to time for single pass
T2=(T2-T1) / (float)N;
// multiply by 1000 to convert milliseconds to microseconds.
printf ("time to execute test code = %f us\n",T2%1000.0) ;

92 Dynamic C User’s Manual

7.4 Watchdog Timers

Watchdog timers limit the amount of time your system will be in an unknown state.

7.4.1 Hardware Watchdog

The Rabbit CPU has one built-in hardware watchdog ti mer'. The Virtual Driver hitsthe watchdog
timer (WDT) periodically. The following code fragment could be used to disable thisWDT:

#asm
1d a,0x51
ioi 1d (WDTTR),a
1d a,0x54
ioi 1d (WDTTR), a
#endasm

However, it is recommended that the watchdog not be disabled. This prevents the target from
entering an endless loop in software due to coding errors or hardware problems. If the Virtual
Driver is not used, the user code should periodicaly call hitwd ().

When debugging a program, if the program is stopped at a breakpoint because the breakpoint was
explicitly set, or because the user is single stepping, then the debug kernel hits the hardware
watchdog periodically.

7.4.2 Virtual Watchdogs

There are 10 virtual WDTs available; they are maintained by the Virtual Driver. Virtual watch-
dogs, like the hardware watchdog, limit the amount of time a system isin an unknown state. They
also narrow down the problem areato assist in debugging.

The function vdGet FreeWd (count) allocates and initializes a virtual watchdog. The return
value of thisfunction isthe ID of the virtual watchdog. If an attempt is made to allocate more than
10 virtual WDTSs, afatal error occurs. In debug mode, thisfatal error will cause the program to
return with error code 250. The default run-time error behavior isto reset the board.

The ID returned by vdGetFreeWd () isused asthe argument when calling VdHitWd (ID) to
hit avirtual watchdog or VdReleaseWd (ID) to dedlocateit.

The Virtual Driver counts down watchdogs every 62.5 ms. If avirtual watchdog reaches 0, thisis
fatal error code 247. Once avirtual watchdog is active, it should be reset periodically with acall to
VAHitWd (ID) to prevent this. If count = 2 for aparticular WDT, then vdHitWd (ID) will
need to be called within 62.5 msfor that WDT. If count = 255, vdHitWd (ID) will need to be
called within 15.94 seconds.

The Virtual Driver does not count down any virtual WDTs if the user is debugging with Dynamic
C and stopped at a breakpoint.

i. The Rabbit 3000A has a secondary hardware watchdog timer. See the Rabbit 3000 Microproces-
sor’'s User’s Manual for details.

Chapter 7: The Virtual Driver 93

7.5 Preemptive Multitasking Drivers

A simple scheduler for Dynamic C's preemptive slice statement is serviced by the Virtual Driver.
The scheduling for pC/OS-11, a more traditional full-featured real-time kernel, is also done by the

Virtual Driver.
These two scheduling methods are mutually exclusive—slicing and pC/OS-I1 must not be
used in the same program.

9 Dynamic C User’s Manual

8. The Slave Port Driver

The Rabbit family of microprocessors has hardware for a dave port, allowing a master controller
to read and write certain internal registers on the Rabbit. The library, Slaveport.lib, imple-
ments a compl ete master/slave protocol for the Rabbit slave port. Sample libraries,

Master serial.libandSp stream.lib provide serial port and stream-based communi-
cation handlers using the slave port protocol.

8.1 Slave Port Driver Protocol

Given the variety of embedded system implementations, the protocol for the dave port driver was
designed to make the software for the master controller as simple as possible. Each interaction
between the master and the dave isinitiated by the master. The master has compl ete control over
when data transfers occur and can expect single, immediate responses from the slave.

8.1.1 Overview

1. Master writesto the command register after setting the address register and, optionally, the data
register. These registers are internal to the slave.

2. Slave reads the registers that were written by the master.

3. Slave writes to command response register after optionally setting the data register. This also
causesthe SLAVEATTN line on the Rabbit slave to be pulled low.

4. Master reads response and data registers.
5. Master writes to the slave port status register to clear interrupt line from the dave.

8.1.2 Registers on the Slave
From the point of view of the master, the slave is an I/O device with four register addresses.

Table 8-1. The slave registers that are accessible by the master

Internal Address of
REISE] Address of REIBED F’rom Register Use
Name . Master’s
Register ;
Perspective
SPDOR 0x20 0 Command and response register
SPD1R 0x21 1 Address register
SPD2R 0x22 2 Optional dataregister
0x23 3 Slave port status register. In this protocol the only bit
used is for checking the command response register.
SPSR Bit 3isset if the dave has written to SPDOR. It is
cleared when the master writesto SPSR, which aso
deassertsthe SLAVEATTN line.

Chapter 8: The Slave Port Driver 95

Accessing the same address (0, 1 or 2) uses two different registers, depending on whether the
access was aread or awrite. In other words, when writing to address 0, the master accesses a dif-
ferent location than when the it reads address 0.

Table 8-2. What happens when the master accesses a slave register

Register :
Address Read Write
0 Gets command response from | Sends command to slave, triggers
dave dlave response
1 Not used Sets channel addressto send
command to
2 Getsreturned datafrom slave | Sets data byte to send to slave
Gets dave port status (see Clears dlave response bit (see
3
below) below)

The status port is a bit field showing which slave port registers have been updated. For the pur-
poses of this protocol. Only bit 3 needs to be examined. After sending a command, the master can
check bit 3, which is set when the slave writes to the response register. At this point the response
and returned data are valid and should be read before sending a new command. Performing a
dummy write to the status register will clear this bit, so that it can be set by the next response.

Pin assignments for both the Rabbit 2000 and the Rabbit 3000 acting as a slave are as follows:

Table 8-3. Pin assignments for the Rabbit acting as a slave

Pin Function

PE7 /SCS chip select (active low to read/write slave port)

PB2 ISWR slave write (assert for write cycle)

PB3 /SRD slave read (assert for read cycle)

PB4 SAOQ low address bit for slave port registers

PB5 SA1 high address bit for dave registers

PR7 /SLVATTN a_sserted by d ave when it responds to acommand. cleared
by master write to status register

PAO-PA7 | dave port databus

For more details and read/write signal timing see the Rabbit 2000 Microprocessor User’s Manual
or the Rabbit 3000 Microprocessor User’s Manual.

96 Dynamic C User’s Manual

8.1.3 Polling and Interrupts

Both the slave and the master can use interrupt or polling for the slave. The parameter passed to
SPinit () determineswhich oneisused. Ininterrupt mode, the devel oper can indicate whether
the handler functions for the channels are interruptible or non-interruptible.

8.1.4 Communication Channels

The Rabbit slave has 256 configurable channels available for communication. The developer must
provide a handler function for each channel that is used. Some basic handlers are available in the
library Slave Port.1lib. These handlerswill be discussed later in this chapter.

When the slave port driver isinitialized, a callback table of handler functionsis set up. Handler
functions are added to the callback table by SPsetHandler ().

8.2 Functions
Slave port.1lib providesthe following functions:
SPinit ()
SPsetHandler ()
MyHandler ()
SPtick ()
SPclose ()

Chapter 8: The Slave Port Driver 97

SPinit

int SPinit (int mode);

DESCRIPTION

Thisfunction initializes the dave port driver. It sets up the callback tables for the dif-
ferent channels. The dave port driver can be run in either polling mode where
Sptick () mustbecalled periodically, or ininterrupt modewherean ISR istriggered
every time the master sends a command. There are two version of interrupt mode. In
the first, interrupts are reenabled while the handler function is executing. In the other,
the handler function will execute at the same interrupt priority as the driver ISR.

PARAMETERS

mode 0: For polling
1: For interrupt driven (interruptible handler functions)
2: For interrupt driven (non-interruptible handler functions)

RETURN VALUE

1: Success
0: Failure

LIBRARY
SLAVE PORT.LIB

98 Dynamic C User’s Manual

SPsetHandler

int SPsetHandler (char address, int (*handler) (), wvoid
*handler params) ;

DESCRIPTION

This function sets up ahandler function to processincoming commands from the mas-
ter for a particular slave port address.

PARAMETERS
address The 8-bit slave port address of the channel that corresponds
to the handler function.
handler Pointer to the handler function. This function must have a

particular form, which is described by the function descrip-
tionfor MyHandler () shown below. Setting this parame-
ter to NULL unloads the current handler.

handler params Pointer that will be saved and passed to the handler function
eachtimeitiscalled. Thisallowsthe handler function to be
parameterized for multiple cases.

RETURN VALUE

1: Success, the handler was set.
0: Failure.

LIBRARY
SLAVE PORT.LIB

Chapter 8: The Slave Port Driver

99

MyHandler

int MyHandler (char command, char data in, void *params);

DESCRIPTION

Thisfunction is a developer-supplied function and can have any valid Dynamic C
name. Its purposeisto handle incoming commands from a master to one of the 256
channels on the dlave port. A handler function must be supplied for every channel that

is being used on the slave port.
PARAMETERS
command Thisisthe received command byte.
data in The optional data byte
params The optional parameters pointer.

RETURN VALUE

Thisfunction must return an integer. The low byte must contains the response code and
the high byte contains the returned data, if thereis any.

LIBRARY
Thisis a developer-supplied function.

100 Dynamic C User’s Manual

SPtick

void SPtick (void);
DESCRIPTION
This function must be called periodically when the slave port is used in polling mode.

LIBRARY
SLAVE PORT.LIB

Chapter 8: The Slave Port Driver 101

SPclose

void SPclose(wvoid);

DESCRIPTION
This function disables the dave port driver and unloads the ISR if one was used.

LIBRARY
SLAVE PORT.LIB

8.3 Examples

The rest of the chapter describes some useful handlers.

8.3.1 Status Handler
SPstatusHandler (), avalableinSlave port.1lib,isanexampleof asimple handler to
report the status of the slave. To set up the function as a handler on slave port address 12, do the
following:

SPsetHandler (12, SPstatusHandler, &status char);

Sending any command to this handler will cause it to respond with a 1 in the response register and
the current value of status_char inthe data return register.

102 Dynamic C User’s Manual

8.3.2 Serial Port Handler
Slave port.lib containshandlersfor al seria portsA, B, C and D on the slave.

Master serial.lib containscode for amaster using the slave's serial port handler. This

library illustrates the general case of implementing the master side of the master/slave protocol.

8.3.2.1 Commands to the Slave

Table 8-4. Commands that the master can send to the slave

Command

Command Description

Transmit byte. Byte value isin data register. Slave responds with 1 if the
byte was processed or O if it was not.

Receivebyte. Slave respondswith 2 if has put a new received byte into the
data return register or O if there were no bytes to receive.

Combined transmit/receive—a combination of the transmit and receive
commands. The response will also be alogical OR of the two command
responses.

Set baud factor, byte 1 (LSB). The actual baud rateis the baud factor
multiplied by 300.

Set baud factor, byte 2 (MSB). The actual baud rate is the baud factor
multiplied by 300.

Set port configuration bits

Open port

Close port

Get errors. Slave respondswith 1if the port is open and can return an error
bitfield. The error bits are the same asfor the function serAgetErrors() and
are put in the datareturn register by the slave.

10, 11

Returns count of free bytes in the seria port write buffer. The two
commands return the LSB and the M SB of the count respectively. The
L SB(10) should be read first to latch the count.

12,13

Returns count of free bytes in the serial port read buffer. The two
commands return the LSB and the M SB of the count respectively. The
L SB(12) should be read first to latch the count.

14,15

Returns count of bytes currently in the serial port write buffer. The two
commands return the LSB and the M SB of the count respectively. The
L SB(14) should be read first to latch the count.

16, 17

Returns count of bytes currently in the serial port write buffer. The two
commands return the LSB and the M SB of the count respectively. The
L SB(16) should be read first to latch the count.

Chapter 8: The Slave Port Driver

103

8.3.2.2 Slave Side of Protocol
To set up the serial port handler to connect serial port A to channel 5, do the following:

SPsetHandler (5, SPserAhandler, NULL) ;

8.3.2.3 Master Side of Protocol

Thefollowing functionsareinMaster serial.lib. They arefor amaster using aserial port
handler on a slave.

cof MSgetc

int cof MSgetc(char address);

DESCRIPTION

Yields to other tasks until abyte is received from the serial port on the slave.
PARAMETERS

address Slave channel address of the serial handler.

RETURN VALUE

Value of the received character on success.
-1: Failure.

LIBRARY
MASTER SERIAL.LIB

104 Dynamic C User’s Manual

cof MSputc

void cof MSputc(char address, char ch);

DESCRIPTION

Sends a character to the seria port. Yields until character is sent.

PARAMETERS
address Slave channdl address of serial handler.
ch Character to send.

RETURN VALUE

0: Success, character was sent.
-1: Failure, character was not sent.

LIBRARY
MASTER SERIAL.LIB

Chapter 8: The Slave Port Driver

105

cof MSread

int cof MSread(char address, char *buffer, int length, unsigned
long timeout);

DESCRIPTION

Reads bytesfrom the serial port on the slave into the provided buffer. Waitsuntil at |east
one character has been read. Returns after buffer isfull, or t imeout has expired be-
tween reading bytes. Yields to other tasks while waiting for data.

PARAMETERS
address Slave channel address of serial handler.
buffer Buffer to store received bytes.
length Size of buffer.
timeout Time to wait between bytes before giving up on receiving any-

more.

RETURN VALUE

>0: Bytesread.
-1: Failure.

LIBRARY
MASTER SERIAL.LIB

106 Dynamic C User’s Manual

cof MSwrite

int cof MSwrite(char address, char *data, int length);

DESCRIPTION

Transmits an array of bytes from the serial port onthe dave. Yieldsto other taskswhile
waiting for write buffer to clear.

PARAMETERS
address Slave channel address of serial handler.
data Array to be transmitted.
length Size of array.

RETURN VALUE
Number of bytes actually written or -1 if error.

LIBRARY
MASTER SERIAL.LIB

MSclose

int MSclose (char address);

DESCRIPTION
Closes a serial port on the dlave.
PARAMETERS
address Slave channel address of serial handler.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
MASTER SERIAL.LIB

Chapter 8: The Slave Port Driver 107

MSgetc

int MSgetc(char address);

DESCRIPTION
Receives a character from the serial port.

PARAMETERS

address Slave channdl address of serial handler.

RETURN VALUE

Value of received character.
-1: No character available.

LIBRARY
MASTER_ SERIAL.LIB

MSgetError

int MSgetError (char address);

DESCRIPTION

Gets bitfield with any current error from the specified serial port on the dave. Error
codes are:

SER_PARITY ERROR

SER_OVERRUN ERROR

PARAMETERS
address Slave channel address of serial handler.

RETURN VALUE

Number of bytes free: Success.
-1: Failure.

LIBRARY
MASTER SERIAL.LIB

108 Dynamic C User’s Manual

MSinit

int MSinit(int io_bank);
DESCRIPTION
Sets up the connection to the slave.

PARAMETERS

io bank The 10 bank and chip select pin number for the slave device.
Thisisanumber from 0 to 7 inclusive.

RETURN VALUE
1: Success.

LIBRARY
MASTER SERIAL.LIB

MSopen

int MSopen(char address, unsigned long baud);

DESCRIPTION
Opens a seria port on the slave, given that thereis a serial handler at the specified ad-
dress on the dslave.
PARAMETERS
address Slave channel address of serial handler.
baud Baud rate for the seria port on the slave.

RETURN VALUE

1: Baud rate used matches the argument.
0: Different baud rate is being used.
-1: Slave port comm error occurred.

LIBRARY
MASTER SERIAL.LIB

Chapter 8: The Slave Port Driver 109

MSputc

int MSputc (char address, char ch);

DESCRIPTION
Transmits asingle character through the serial port.

PARAMETERS
address Slave channdl address of serial handler.
ch Character to send.

RETURN VALUE

1: Character sent.
0: Transmit buffer isfull or locked.

LIBRARY
MASTER SERIAL.LIB

MSrdFree

int MSrdFree (char address);

DESCRIPTION

Gets the number of bytes available in the specified serial port read buffer on the dave.
PARAMETERS

address Slave channel address of serial handler.

RETURN VALUE

Number of bytes free: Success.
-1: Failure.

LIBRARY
MASTER SERIAL.LIB

110 Dynamic C User’s Manual

MSsendCommand

int MSsendCommand (char address, char command, char data,
char *data returned, unsigned long timeout);

DESCRIPTION

Sends a single command to the slave and gets a response. This function also serves as
ageneral example of how to implement the master side of the slave protocol.

PARAMETERS
address Slave channel address to send command to.
command Command to be sent to the slave (see Section 8.3.2.1).
data Data byte to be sent to the dlave.

data returned Addressof variableto place datareturned by the slave.

timeout Time to wait before giving up on slave response.

RETURN VALUE

>0: Response code.
-1: Timeout occured before response.
-2: Nothing at that address (response = Oxff).

LIBRARY
MASTER SERIAL.LIB

Chapter 8: The Slave Port Driver 111

MSread

int MSread(char address, char *buffer, int size, unsigned long
timeout) ;

DESCRIPTION
Receives bytes from the serial port on the slave.

PARAMETERS
address Slave channel address of serial handler.
buffer Array to put received datainto.
size Size of array (max bytesto be read).
timeout Timeto wait between charactersbefore giving up on receiving any

more.

RETURN VALUE
The number of bytes read into the buffer (behaveslike serxXread ()).

LIBRARY
MASTER SERIAL.LIB

112 Dynamic C User’s Manual

MSwrFree

int MSwrFree (char address)

DESCRIPTION
Getsthe number of bytes available in the specified serial port write buffer on the slave.

PARAMETERS

address Slave channdl address of serial handler.

RETURN VALUE

Number of bytes free: Success.
-1: Failure.

LIBRARY
MASTER SERIAL.LIB

Chapter 8: The Slave Port Driver 113

MSwrite

int MSwrite (char address, char *data, int length);

DESCRIPTION
Sends an array of bytes out the serial port on the slave (behaveslike serXwrite ()).

PARAMETERS
address Slave channel address of serial handler.
data Array of bytesto send.
length Size of array.

RETURN VALUE
Number of bytes actually sent.

LIBRARY
MASTER_ SERIAL.LIB

114 Dynamic C User’s Manual

8.3.2.4 Sample Program for Master
Thissample program, /Samples/SlavePort/master demo.c, treatsthe davelikea
seria port.

#use "master serial.lib"
#define SP CHANNEL 0x42

char* const test str = "Hello There";

main () {
char buffer[100];
int read length;

MSinit (0) ;

// comment thisline out if talking to a stream handler
printf ("open returned:0x%x\n", MSopen (SP_CHANNEL, 9600));

while (1)
{

costate

{

wfd{cof MSwrite (SP_CHANNEL, test str, strlen(test str));}
wfd{cof MSwrite (SP_CHANNEL, test str, strlen(test str));}

}

costate

{

wfd{ read length = cof MSread(SP_CHANNEL, buffer, 99, 10); }
if (read length > 0)
{

buffer[read length] = 0; //null terminator

printf ("Read:%s\n", buffer);

}

else if (read length < 0)

{

printf ("Got read error: %d\n", read length);

}

printf ("wrfree = %d\n", MSwrFree (SP_CHANNEL)) ;

Chapter 8: The Slave Port Driver 115

8.3.3 Byte Stream Handler

Thelibrary, SP_STREAM. LIB, implements abyte stream over the slave port. If the master isa
Rabbit, the functionsin MASTER SERIAL.LIB can be used to access the stream as though it
came from a serial port on the slave.

8.3.3.1 Slave Side of Stream Channel
To set up the function sPshandler () asthe byte stream handler, do the following:

SPsetHandler (10, SPShandler, stream ptr);

This function sets up the stream to use channel 10 on the slave.

A sample program in Section 8.3.3.2 shows how to set up and initialize the circular buffers. An
internal data structure, SPStream, keeps track of the buffers and a pointer to it is passed to
SPsetHandler () and some of the auxiliary functions that supports the byte stream handler.
Thisis aso shown in the sample program.

8.3.3.1.1 Functions
These are the auxiliary functions that support the stream handler function, SPShandler ().

cbuf init

void cbuf init(char *circularBuffer, int dataSize);

DESCRIPTION
This function initializes acircular buffer.

PARAMETERS

circularBuffer The circular buffer to initialize.

dataSize Size available to data. The size must be 9 bytes more than
the number of bytes needed for data. Thisisfor interna
book-keeping.
LIBRARY
RS232.LIB

116 Dynamic C User’s Manual

cof SPSread

int cof SPSread(SPStream *stream, void *data, int length,
unsigned long tmout);

DESCRIPTION

Reads 1ength bytes from the slave port input buffer or until tmout milliseconds
transpires between bytes after the first byteisread. It will yield to other tasks while
waiting for data. This function is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
data Structure to read from slave port buffer.
length Number of bytes to read.
tmout Maximum wait in milliseconds for any byte from previous one.

RETURN VALUE
The number of bytes read from the buffer.

LIBRARY
SP_STREAM.LIB

Chapter 8: The Slave Port Driver 117

cof SPSwrite

int cof SPSwrite(SPStream *stream, void *data, int length);

DESCRIPTION
Transmits 1ength bytesto slave port output buffer. This function is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
data Structure to write to slave port buffer.
length Number of bytes to write.

RETURN VALUE
The number of bytes successfully written to dave port.

LIBRARY
SP_STREAM.LIB

SPSinit

void SPSinit(void);
DESCRIPTION
Initializes the circular buffers used by the stream handler.

LIBRARY
SP_STREAM.LIB

118 Dynamic C User’s Manual

SPSread

int SPSread(SPStream *stream, void *data, int length, unsigned
long tmout) ;

DESCRIPTION

Reads 1ength bytes from the slave port input buffer or until tmout milliseconds
transpires between bytes. If no datais available when this function is called, it will re-
turn immediately. Thisfunction will call sptick () if thedave portisin polling
mode.

Thisfunction is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
data Buffer to read received datainto.
length Maximum number of bytes to read.
tmout Time to wait between received bytes before returning.

RETURN VALUE
Number of bytes read into the data buffer

LIBRARY
SP_STREAM.LIB

Chapter 8: The Slave Port Driver 119

SPSwrite

int SPSwrite(SPSream *stream, void *data, int length)

DESCRIPTION

This function transmits length bytes to slave port output buffer. If the slave portisin
polling mode, this function will call SPtick () whilewaiting for the output buffer to
empty. Thisfunction is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
data Bytesto write to stream.
length Size of write buffer.

RETURN VALUE
Number of bytes written into the data buffer.

LIBRARY
SP_STREAM.LIB

120 Dynamic C User’s Manual

SPSwrFree

int SPSwrFree();
DESCRIPTION
Returns number of free bytesin the stream write buffer.

RETURN VALUE
Space available in the stream write buffer.

LIBRARY
SP_STREAM.LIB

SPSrdFree

int SPSrdFree();

DESCRIPTION

Returns the number of free bytesin the stream read buffer.

RETURN VALUE
Space available in the stream read buffer.

LIBRARY
SP_STREAM.LIB

Chapter 8: The Slave Port Driver

121

SPSwrUsed

int SPSwrUsed();

DESCRIPTION

Returns the number of bytes currently in the stream write buffer.

RETURN VALUE
Number of bytes currently in the stream write buffer.

LIBRARY
SP_STREAM.LIB

SPSrdUsed

int SPSrdUsed();
DESCRIPTION
Returns the number of bytes currently in the stream read buffer.

RETURN VALUE
Number of bytes currently in the stream read buffer.

LIBRARY
SP_STREAM.LIB

122

Dynamic C User’s Manual

8.3.3.2 Byte Stream Sample Program

Thisprogram, /Samples/SlavePort/Slave Demo

byte stream over the slave port.

. ¢, runson aslave and implements a

#iclass auto

#use "slave port.lib"
#use "sp_ stream.lib"

#define STREAM BUFFER SIZE 31

main ()

{

char buffer[10];
int bytes read;

SPStream stream;
// Circular buffers need 9 bytes for bookkeeping.

char stream inbuf [STREAM BUFFER SIZE + 9];
char stream outbuf [STREAM BUFFER SIZE + 9];

SPStream *stream ptr;

// setup buffers

cbuf init (stream inbuf, STREAM BUFFER SIZE) ;
stream.inbuf = stream inbuf;

cbuf init (stream outbuf, STREAM BUFFER SIZE) ;
stream.outbuf = stream outbuf;

stream ptr = &stream;

SPinit (1) ;

SPsetHandler (0x42, SPShandler, stream ptr) ;
while (1)

{

bytes read = SPSread(stream ptr, buffer, 10,
if (bytes read)

{
}

SPSwrite (stream ptr, buffer, bytes read);

10) ;

Chapter 8: The Slave Port Driver

123

124 Dynamic C User’s Manual

9. Run-Time Errors

Compiled code generated by Dynamic C calls an exception handling routine for run-time errors.
The exception handler supplied with Dynamic C printsinternally defined error messagesto a Win-
dows message box when run-time errors are detected during a debugging session. When software
runs stand-alone (disconnected from Dynamic C), such a run-time error will cause awatchdog
timeout and reset. Run-time error logging is available for Rabbit-based target systems with bat-
tery-backed RAM.

9.1 Run-Time Error Handling

When arun-time error occurs, acall ismadeto exception (). Therun-timeerror typeis passed
to exception (), which then pushes various parameters on the stack, and calls the installed
error handler. The default error handler places information on the stack, disables interrupts, and
enters an endless loop by calling the xexit function in the BIOS. Dynamic C notices this and
halts execution, reporting a run-time error to the user.

9.1.1 Error Code Ranges

The table bel ow shows the range of error codes used by Dynamic C and the range available for a
custom error handler to use. Table 9-1 isvalid prior to Dynamic C version 9.30. Starting with DC
9.30, thefileerrmsg. ini located in the root directory of Dynamic C can be edited to add
descriptions for user-defined run-time errors that will be displayed by Dynamic C should the error
occur.

For example, if the following entry ismade in errmsg . ini:

// My custom errors
800=My own run-time error message

Cdlling “exit(-800)" in an application or library will cause Dynamic C to report “My own run-time
error message” in a message box.

Table 9-1. Dynamic C Error Types Ranges (prior to DC 9.30)

Error Type Meaning
0-127 Reserved for user-defined error codes.
128-255 Reserved for use by Dynamic C.

Please see Section 9.2 on page 127 for information on replacing the default error handler with a
custom one.

Chapter 9: Run-Time Errors 125

9.1.2 Fatal Error Codes
Thistableliststhe fatal errors generated by Dynamic C.

Table 9-2. Dynamic C Fatal Errors

Error Type Meaning
127 - 227 not used
228 Pointer store out of bounds
229 Array index out of bounds
230- 233 not used
234 Domain error (for example, acos (2))
235 Range error (for example, tan (pi/2))
236 Floating point overflow
237 Long divide by zero
238 Long modulus, modulus zero
239 not used
240 Integer divide by zero
241 Unexpected interrupt
242 not used
243 Codata structure corrupted
244 Virtua watchdog timeout
245 XMEM adllocation failed (xalloc call)
246 Stack allocation failed
247 Stack deallocation failed
248 not used
249 Xmem allocation initialization failed
250 No virtual watchdog timers available
251 No valid MAC address for board
252 Invalid cofunction instance
253 Socket passed as auto variable while running uC/OS-|
254
not used
255

126

Dynamic C User’s Manual

9.2 User-Defined Error Handler

Dynamic C allows replacement of the default error handler with a custom error handler. Thisis
needed to add run-time error handling that would require treatment not supported by the default
handler.

A custom error handler can also be used to change how existing run-time errors are handled. For
example, the floating-point math librariesincluded with Dynamic C are written to allow for execu-
tion to continue after adomain or range error, but the default error handler halts with arun-time
error if that state occurs. If continued execution is desired (the function in question would return a
value of INF or whatever value is appropriate), then asimple error handler could be written to pass
execution back to the program when a domain or range error occurs, and pass any other run-time
errors to Dynamic C.

9.2.1 Replacing the Default Handler
To tell the BIOS to use a custom error handler, cal this function:

void defineErrorHandler (void *errfcn)
This function sets the BIOS function pointer for run-time errors to the one passed to it.

When arun-time error occurs, exception () pushesonto the stack the information detailed in
the table below.

Table 9-3. Stack setljp for run-time errors

Address Data at address
SP+0 Return address for error handler
SP+2 Error code

SP+4 Additional data (user-defined)

XPC when exception () wascalled (upper

SP+6 byte)

SP+8 Addresswhere exception () wascalled from

Then exception () calstheinstaled error handler. If the error handler passes the run-time
error to Dynamic C (i.e. itisafata error and the system needs to be halted or reset), then registers
must be loaded appropriately before calling the _xexit function.

Dynamic C expects the following values to be loaded:

Table 9-4. Register contents loaded by error handler before passing the error to Dynamic C

Register Expected Value
H XPC when exception () wascalled
L Run-time error code
HL’ Addresswhere exception () was called from

Chapter 9: Run-Time Errors 127

9.3 Run-Time Error Logging

Error logging is available as a BIOS enhancement for storing run-time exception history. It can be
useful diagnosing problems in deployed Rabbit targets. To support error logging, the target must
have battery-backed RAM.

9.3.1 Error Log Buffer

A circular buffer in extended RAM will be filled with the following information for each run-time
error that occurs:

e Thevaueof SEC_TIMER at thetime of the error. This variable contains the number of
seconds since 00:00:00 on January 1st 1980 if the real-time clock has been set correctly.
Thisvariableis updated by the periodic timer which is enabled by default. Rabbit Semi-
conductor sets the real-time clock in the factory. When the BIOS starts on boards with bat-
teries, it initializes SEC_ TIMER to the value in the real-time clock.

e The address where the exception was called from. This can be traced to a particular func-
tion using the MAP file generated when a Dynamic C program is compiled.

e The exception type. Please see Table 9-2 on page 126 for alist of exception types.

e Thevalueof al registers. Thisincludes alternate registers, SP and XPC. Thisisaglobal
option that is enabled by default.

e An 8-byte message. Thisisaglobal option that is disabled by default. The default error
handler does nothing with this.

e A user-definable length of stack dump. Thisisaglobal option that is enabled by default.

e A one byte checksum of the entry.

The size of the error log buffer is determined by the number of entries, the size of an entry, and the
header information at the beginning of the buffer. The number of entriesis determined by the
macro ERRLOG_NUM_ENTRIES (default is 78). The size of each entry is dependent on the set-
tings of the global options for stack dump, register dump and error message. The default size of
the buffer is about 4K in extended RAM.

128 Dynamic C User’s Manual

9.3.2 Initialization and Defaults

Aninitialization of the error log occurs when the BIOS is compiled, when cloning takes place or
when the BIOS is loaded via the Rabbit Field Utility (RFU). By default, error logging is disabled.

The error log buffer contains header information as well as an entry for each run-time error. A
debug start-up will zero out this header structure, but the run-time error entries can till be exam-
ined from Dynamic C using the static information in flash. The header is at the start of the error
log buffer and contains:

e A statusbyte

e The number of errors since deployment

e Theindex of thelast error

e The number of hardware resets since deployment

e The number of watchdog time-outs since deployment
e The number of software resets since deployment

e A checksum byte.

“Deployment” is defined as the first power up without the programming cable attached. Repro-
gramming the board through the programming cable, RFU, or RabbitLink and starting the pro-
gram again without the programming cable attached is a new deployment.

9.3.3 Configuration Macros

These macros are defined at the top of Bios/RabbitBios. ¢ prior to Dynamic C version 9.30
andinLib/BIOSLIB/errlogconfig. lib thereafter. Starting with Dynamic C version 10
you should define these macrosin your project to use them. For instructions, see* Defines Tab” on
page 269. Prior to DC 10, you must edit the #define statement either in the BIOS or the configura-
tion library, depending on your version of Dynamic C.

ENABLE_ERROR_LOGGING
Default: 0. Disables error logging. Changing thisto “1” enables error logging.

ERRLOG_USE_REG_DUMP
Default: 1. Include aregister dump in log entries. Changing thisto zero excludes the register
dump in log entries.

ERRLOG_STACKDUMP_SIZE
Default: 16. Include a stack dump of size ERRLOG_STACKDUMP SIZE inlog entries.
Changing thisto zero excludes the stack dump in log entries.

ERRLOG_NUM_ENTRIES
Default: 78. Thisisthe number of entries allowed in the log buffer.

ERRLOG_USE_MESSAGE
Default: 0. Exclude error messages from log entries. Changing thisto “1” includes error mes-
sagesin log entries The default error handler makes no use of this feature.

Chapter 9: Run-Time Errors 129

9.3.4 Error Logging Functions
The run-time error logging API consists of the following functions:

errlogGetHeader I nfo Reads error log header and formats output.

errlogGetNthEntry Loads errLogEntry structure with the Nth entry
from the error log buffer. errLogEntry isapre-alo-
cated global structure.

errlogGetM essage Returns aNULL-terminated string containing the 8 byte
error message in errLogEntry.

errlogFormatEntry Returns aNULL-terminated string containing basic
informationin errLogEntry

errlogFormatRegDump Returns aNULL-terminated string containing the regis-
ter dumpinerrLogEntry.

errlogFormatStack Dump Returns aNULL-terminated string containing the stack
dumpinerrLogEntry

errlogReadHeader Reads error log header into the structure errlog-
Info.

ResetErrorL og Resets the exception and restart type counts in the error
log buffer header.

9.3.5 Examples of Error Log Use
To try error logging, follow the instructions at the top of the sample programs:

samples\ErrorHandling\Generate runtime errors.c

and

samples\ErrorHandling\Display errorlog.c

130 Dynamic C User’s Manual

10. Memory Management

Processor instructions can specify 16-bit addresses, giving alogical address space of 64K (65,536
bytes). Dynamic C supports a 1M physical address space (20-bit addresses).

An on-chip memory management unit (MMU) translates 16-bit addresses to 20-bit memory
addresses. Four MMU registers (SEGSIZE, STACKSEG, DATASEG and XPC) divide and main-
tain the logical sections and map each section onto physical memory.

Any memory beyond the 16 bit address capability of the processor, whether flash or RAM, is
called xmem and requires memory management techniques for access. In general, xmem flash
access for program space is transparent to the user, but xmem accesses to RAM are not.

10.1 Memory Map

A typical Dynamic C memory mapping of logical and physical address spaceis shown in the fig-
ure below. The actual layout may be different depending on board type and compilation options.
E.g., enabling separate 1& D space will affect the memory map.

OXFFFFF,

OXFFFF \
Xmem Segment
0xBEOO
0xE000
Root Data
Stack Segment Interrupt Vectors, RAM

0xDO00 (-~ ——————————— e—0xDO! Watch Code

External Interfupt - - OO0, 0xB1000
OXCFO0 . OxCCOO 0xA9000

) o Stack
s Data Segment 0xA8000

it Find i (Root Data) W

‘Internal Interrupt -, -,

Vectors ... 0x80000
OXCEQQ e e s ettt

S Xmem Code

.\:,\:/:.t:h:.c;::;:::::::::: (from Xmem Segment) Flash

ateh-Code

RSN Base Segment Memory

...................... (Root Code)

S Root Code
oxccoot - -ttt T T T T 0x0000 0x00009

Logical Address Space Physical Address Space

Figure 1. Dynamic C Memory Mapping

Figure 1 illustrates how the logical address space is divided and where code resides in physical
memory. Both the static RAM and the flash memory are 128K in the diagram. Physical memory
starts at address 0x00000 and flash memory is usually mapped to the same address. SRAM typi-
cally begins at address 0x80000.

If BIOS code runs from flash memory, the BIOS code startsin the root code section at address
0x00000 and fills upward. The rest of the root code will continue to fill upward immediately fol-

Chapter 10: Memory Management 131

lowing the BIOS code. If the BIOS code runs from SRAM, the root code section, along with root
data and stack sections, will start at address 0x80000.

10.1.1 Memory Mapping Control

The advanced user of Dynamic C can control how Dynamic C allocates and maps memory. For
details on memory mapping, refer to any of the Rabbit microprocessor user’s manuals or
designer’s handbooks. You can also refer to one of our technical notes: TN202, “ Rabbit Memory
Management in aNutshell.” All of these documents are available at:

www.rabbitsemiconductor.com/docs/

10.1.2 Macro to Use Second Flash for Code
ThemacroUSE_2NDFLASH CODE can be uncommented in thefile sysconfig. 1ib to cause
the compiler to use a second available flash for xmem code.

10.2 Extended Memory Functions

A program can use many pages of extended memory. Under normal execution, code in extended
memory maps to the logical address region OXEOOO to OxFFFF.

Extended memory addresses are 20-bit physical addresses (the lower 20 bits of along integer).
Pointers, on the other hand, are 16-bit machine addresses. They are not interchangeable. However,
there are library functions to convert address formats.

To access xmem data, use function calls to exchange data between xmem and root memory. Use
the Dynamic C functions root 2xmem () , xmem2root () and xmem2xmem () to move blocks
of data between logical memory and physical memory.

10.2.1 Code Placement in Memory

Coderunsjust as quickly in extended memory asit does in root memory, but calls to and returns
from the functions in extended memory take afew extra machine cycles. Code placement in mem-
ory can be changed by the keywords xmem and root, depending on the type of code:

Pure Assembly Routines

Pure assembly functions may be placed in root memory or extended memory. Prior to Dynamic C
version 7.10, pure assembly routines had to be in root memory.

C Functions

C functions may be placed in root memory or extended memory. Accessto variablesin C state-
ments is not affected by the placement of the function. Dynamic C will automatically place C
functions in extended memory as root memory fills. Short, frequently used functions may be
declared with the root keyword to force Dynamic C to load them in root memory.

Inline Assembly in C Functions

Inline assembly code may be written in any C function, regardless of whether it is compiled to
extended memory or root memory.

All static variables, even those local to extended memory functions, are placed in root memory.
Keep thisin mind if the functions have many variables or large arrays. Root memory can fill up
quickly.

132 Dynamic C User’s Manual

http://www.rabbitsemiconductor.com/docs/

10.3 Dynamic Memory Allocation

Dynamic C 9 introduces the ability for an application to allocate a pool of memory at compiletime
for dynamic allocation and deallocation of fixed-size blocks at run time. A pool can be located in
root or extended memory. Descriptionsfor all API functionsfor dynamic memory allocation arein
the Dynamic C Function Reference Manual. Or use Function Lookup from the Help menu (or
Ctrl+H) to gain quick access to the function descriptions from within Dynamic C.

Read the comments at the top of \L.IB\ POOL . L.IB for adescription of how to use dynamic
memory allocation in Dynamic C.

10.4 Direct Memory Access (Introduced in Dynamic C 10)

The Rabbit 4000 microprocessor has an internal DMA controller. DMA stands for “Direct Mem-
ory Access.” The DMA controller takes control of the address and data bus from the CPU so that
data transfers occur without processor handling.There are eight DMA channels; aDMA channel is
a system pathway for transferring data directly to or from memory and peripheral devices without
using the CPU. DMA memory addresses are always physical addresses and are never translated by
the MMU.

The rest of this section discusses DMA from a software perspective. For detailed information
about the DMA controller, see the Rabbit 4000 Microprocessor User’s Manual.

10.4.1 DMA Registers and Global Resources

There are some global resources associated with all DMA channels. These resources are managed
by Dynamic C libraries because it would be difficult for most users to determine their optimal
usage. Thelibrary DMA . L.IB contains al of the DMA functionality available to the user. The
advanced user can manually override the library settings by directly manipulating the DMA con-
trol registers; however, thisis not recommended.

The debug function DMAprintRegs () letsyou view the values of the DMA master registers.

e DMCR (DMA Master Control Register) - Transfer and interrupt priority levels.
e DMCSR (DMA Master Control/Status Register) - DMA channel status

e DMTCR (DMA Master Timing Control Register) - Sets the burst size, the inter-burst timing
and the relative prioritization of the channels.

For more information on Rabbit registers, click on “1/0 Registers’ on the Dynamic C help menu
or consult the Rabbit 4000 Microprocessor User’s Manual to get information about directly
manipulating the DMA registers.

10.4.2 API Functions

Dynamic C provides several API functions for use with the DMA controller that was introduced
with the Rabbit 4000. These functions make it unnecessary for an application to directly manipu-
late the DMA registers. Complete descriptions for al DMA API functions can be found from
within Dynamic C using the Function Lookup feature from the help menu (Ctrl+H); also, in the
Dynamic C Function Reference Manual. In this section we will look at some of these functions.

Chapter 10: Memory Management 133

The function DMAalloc () iscalled to alocate aDMA channel; the function DMAunalloc ()
iscalled to release it. The handle returned by DMAalloc () ispassed to all the DMA transfer
functions (see Section 10.4.4) and must be passed to DMAunalloc () to release the channel. All
eight channels are identical, with the priority between them either fixed or rotating.

Thefunction DMAsetParameters () accepts parametersthat set transfer and interrupt priority
levels, channel priority, maximum bytes per burst and minimum clocks between bursts.
DMAsetParameters () must be called by an application before a DMA channel can be used;
however, the channel can be allocated before DMAset Parameters () iscaled. The DMA
parameters set in DMAsetParameters () areglobal, that is, they apply to all channels.

Some low-level functions are also provided for the DMA controller. These functions usethe DMA
channel number instead of the handle returned by DMAalloc (). The function
DMAhandle2chan () providesaDMA channel number when passed avalid handle.

The low-level functions DMAsetBufDesc () and DMAloadBufDesc () work with a buffer
descriptor associated with aDMA channel. A buffer descriptor isamemory structure that controls
the DMA operation. It contains a control byte, a byte count for the data, a source address, a desti-
nation address and an optional link address. Low-level transfer functions are provided for use with
the buffer descriptor functions. They are DMAstartAuto () and DMAstartDirect ().

Sample programs located in Samples\Rabbit4000\DMA\ illustrate many of the API func-
tions.

10.4.3 DMA Interrupts

Aninterrupt may be requested when aDMA channel has completed transferring data. All channels
assert thistype of interrupt at the same priority level, which can be set to level 1, 2, or 3with acall
to DMAsetParameters (). Whether or not an interrupt is requested at the end of atransfer is
determined by flag options in the DMA transfer function. See Section 10.4.4.4 for more informa-
tion.

Each channel hasits own interrupt vector in the processor’s externa interrupt vector table.

10.4.4 DMA Transfer Information

A DMA transfer is requested when the channel wants the DMA controller to take control of the
address and data buses.

10.4.4.1 DMA Transfer Priority
DMA transfers may be programmed to occur at any priority level (0, 1, 2, or 3). Relative prioriti-
zation among the DMA channelsis set using one of the following constants:

e DMA IDP FIXED - fixed priorities, with higher channel numbers taking precedence

e DMA IDP ROTATE FINE - prioritiesarerotated after every byte transferred

e DMA IDP ROTATE COARSE - prioritiesrotated after every transfer request, the size of
which is determined by “chunkiness,” another parameter aso passed to the function
DMAsetParameters ().

The DMA transfer priority and the relative prioritization among channels are set in
DMAsetParameters ().

134 Dynamic C User’s Manual

10.4.4.2 DMA Transfer Mode

DMA transfers can happen in burst or single-cycle mode. The “ chunkiness’ parameter passed to
the DMA transfer function determines the burst size.

10.4.4.3 DMA Transfer Functions
There are three types of transfers, with associated transfer functions.

1. Memory-to-memory transfers. Use DMAmem2memn () .

2. Internal 1/0 addresstransfersto or from memory. Use DMAioi2mem () and DMAmem2ioi (),
respectively.

3. External 1/0O address transfers to or from memory. Use DMAioce2mem () and
DMAmem2ioe (), respectively.

10.4.4.4 DMA Transfer Function Flags
The DMA transfer functions accept the following flags:

e DMA F REPEAT - transfer will be acycle.

e DMA F INTERRUPT - indicatesan interrupt will be triggered at the completion of the trans-
fer.

e DMA F LAST SPECIAL - (only for Ethernet or HDL C peripherals) Internal Source: Status
byte written to initial buffer descriptor before last data. Internal Destination: Last byte written
to offset address for frame termination.

e DMA F SRC_DEC - only for transfers with memory source. Indicates the source address
should be decremented.

e DMA F DEST DEC - only for transfers with memory destination. Indicates the destination
address should be incremented.

e DMA F STOP_MATCH - indicates whether or not to stop the DMA transfer when a character
isreached. The match byte and mask should have been set previoudy by calling the
DMAmatchSetup () function.

e DMA F TIMER -indicatesthe DMA timer will be used. Set the divisor first by calling the
DMAtimerSetup () function. DMA F TIMER 1BPR indicatesthat the timed transfers
will send one byte per request instead of the entire descriptor.

10.4.5 DMA with Ethernet

Use of the Rabbit 4000 Ethernet imposes some restrictions on the global DMA settings. It isrec-
ommended that applications make use of the DMA API functionsto avoid possibly breaking
Ethernet by using DMA settings that are not compatible with the Ethernet restrictrictions. For
example, Ethernet uses DM A channels 6 and 7 and fixed prioritization among the channels. There
are also requirements regarding burst size and the minimum time between bursts. If you are using
Ethernet and call the function DMAset Parameters () with parameters that are not compatible
with the Ethernet restrictions, those parameters will be quietly ignored.

Chapter 10: Memory Management 135

136 Dynamic C User’s Manual

11. The Flash File System

The Dynamic C file system, known as the filesystem mk Il or simply as FS2, was designed to be
used with a second flash memory or in SRAM.

FS2 dlows:

e the ability to overwrite parts of afile

e the simultaneous use of multiple device types

e the ability to partition devices

e cfficient support for byte-writable devices

e better performance tuning

e ahigh degree of backwards compatibility with its predecessor
e all necessary run-time data to be reconstructed on power up

NOTE: Dynamic C'slow-level flash memory access functions should not be used in
the same area of the flash where the flash file system exists.

11.1 General Usage

The recommended use of aflash file system is for infrequently changing data or data rates that

have writes on the order of tens of minutes instead of seconds. Rapidly writing datato the flash
could result in using up its write cycles too quickly. For example, consider a 256K flash with 64
blocks of 4K each. Using aflash with a maximum recommendation of 10,000 write cycles means
alimit of 640,000 writesto the file system. If you are performing one write to the flash per second,
in alittle over aweek you will use up its recommended lifetime.

Increase the useful lifetime and performance of the flash by buffering data before writing it to the
flash. Accumulating 1000 single byte writes into one multi-byte write can extend the life of the
flash by an average of 750 times. FS2 does not currently perform any in-memory buffering. If you
write asingle byte to afile, that byte will cause write activity on the device. This ensures that data
iswritten to non-volatile storage as soon as possible. Buffering may be implemented within the
application if possible loss of datais tolerable.

11.1.1 Maximum File Size

The maximum file size for an individual file depends on the tota file system size and the number
of files present. Each file requires at least two sectors: at least one for data and always one for
metadata (for information used internally). There also needs to be two free sectorsto allow for
moving data around.

FS2 supports atotal of 255 files, but storing a large number of small filesis not recommended. It
is much more efficient to have afew large ones.

i. All other code, including ISRs, is suspended while writing to flash.

Chapter 11: The Flash File System 137

11.1.2 Two Flash Boards

By default, when a board has two flash devices, Dynamic C will use only thefirst flash for code.
The second flash is available for the file system unless the macro USE_ 2NDFLASH CODE is
defined in the application by adding it to the Defines tab of the Project Options dialog box (for
instructions see “Defines Tab” on page 269). This macro allocates the second flash to hold pro-
gram code. Theuse of USE_2NDFLASH CODE is not compatible with FS2.

11.1.3 Using SRAM

The flash file system can be used with battery-backed SRAM. Internaly, RAM istreated like a
flash device, except that there is no write-cycle limitation, and access is much faster. Thefile sys-
tem will work without the battery backup, but would, of course, lose al data when the power went
off.

Currently, the maximum size file system supported in RAM is about 200k. This limitation holds
true even on boards with a512k RAM chip. The limitation involves the placement of BIOS con-
trol blocks in the upper part of the lower 256k portion of RAM.

To obtain more RAM memory, xalloc () may beused. If xalloc () iscalledfirst thinginthe
program, the same memory addresses will always be returned. This can be used to store non-vola-
tile datais so desired (if the RAM is battery-backed), however, it is not possible to manage this
area using the file system.

Using FS2 increases flexibility, with its capacity to use multiple device types simultaneously.

Since RAM isusually ascarce resource, it can be used together with flash memory devices to
obtain the best balance of speed, performance and capacity.

11.1.4 Wear Leveling

The current code has a rudimentary form of wear leveling. When you write into an existing block
it selects afree block with the least number of writes. The file system routines copy the old block
into the new block adding in the user’s new data. This hasthe effect of evening the wear if thereis
areasonable turnover in the flash files. This goes for the data as well as the metadata.

11.1.5 Low-Level Implementation
For information on the low-level implementation of the flash file system, refer to the beginning of
thelibrary file FS2 . LIB.

11.1.6 Multitasking and the File System
Thefile system is not re-entrant. If using preemptive multitasking, ensure that only one thread per-
forms calls to the file system, or implement locking around each call.

When using uC/OS-11, FS2 must be initialized first; that is, £s_init () must be called before
O0SInit () inthe application code.

138 Dynamic C User’s Manual

11.2 Application Requirements
Application regquirements for using FS2 are covered in this section, including:

which library to use
which driversto use

defaults and descriptions for configuration macros
detailed instructions for using the first flash

11.2.1 Library Requirements
The file system library must be compiled with the application:

#use “FS2.LIB”

For the simplest applications, thisis all that is necessary for configuration. For more complex
applications, there are several other macro definitions that may be used before the inclusion of
FS2.LIB. Theseare:

#define FS_MAX DEVICES 3
#define FS_MAX LX 4
#define FS_MAX FILES 10

These specify certain static array sizesthat alow control over the amount of root data space taken
by FS2. If you are using only one flash device (and possibly battery-backed RAM), and are not
using partitions, then thereisno need to set FS_MAX DEVICES or FS_MAX LX.

For more information on partitioning, please see section 11.4, “ Setting up and Partitioning the File
System,” on page 143.

11.2.2 FS2 Configuration Macros

FS_MAX DEVICES

This macro defines the maximum physical media. If it is not defined in the program
code, FS_MAX DEVICES will defaultto 1, 2, or 3, depending on the values of
FS2 USE PROGRAM FLASH, XMEM RESERVE SIZE and

FS2 RAM RESERVE.

FS MAX LX
This macro defines the maximum logical extents. You must increase thisvalue by 1 for

each new partition your application creates. It thisis not defined in the program code it
will default to FS_MAX DEVICES.

For a description of logical extents please see section 11.4.2, “Logica Extents (LX),”
on page 144.

FS_MAX FILES

Thismacro is used to specify the maximum number of filesthat are allowed to coexist
inthe entirefile system. Most applications will have afixed number of files defined, so
this parameter can be set to that number to avoid wasting root datamemory. The default

Chapter 11: The Flash File System 139

is 6 files. The maximum value for this parameter is 255.

FS2 DISALLOW GENERIC FLASH

Thismacrois used to prevent FS2 from mistakenly attempting to recover a nonexistent
file system on the “generic” (second) flash, or to prevent RAM corruption caused by
_GetFlashID () when flashisnot mapped into memory at all.

FS2 DISALLOW PROGRAM FLASH

Thismacrois used to prevent FS2 from mistakenly attempting to recover anonexistent
file system on the “program” (first) flash, or to prevent RAM corruption caused by
_GetFlashID () when flashisnot mapped into memory at all.

FS2 RAM RESERVE

This macro determines the amount of space used for FS2 in RAM. If some battery-
backed RAM isto be used by FS2, then this macro must be modified to specify the
amount of RAM to reserve. The memory isreserved near the top of RAM. Note that
this RAM will be reserved whether or not the application actually uses FS2.

Prior to Dynamic C 7.06 this macro was defined as the number of bytesto reserve and
had to be a multiple of 4096. It is now defined as the number of blocksto reserve, with
each block being 4096 bytes.

Thismacro is defined in the BIOS prior to Dynamic C version 9.30 and in
memconfig.lib thereafter.

FS2 SHIFT DOESNT UPDATE FPOS

If this macro is defined before the #use f£s2.1ib statement in an application, mul-
tiple file descriptors can be opened, but their current position will not be updated if
fshift () isused.

FS2 USE_PROGRAM FLASH

The number of kilobytes reserved in the first flash for use by FS2. If not defined in an
application, it defaultsto zero, meaning that thefirst flashisnot used by FS2. The actual
amount of flash used by FS2 is determined by the minimum of this macro and
XMEM_RESERVE_ SIZE.

XMEM RESERVE SIZE

This macro is the number of bytes (which must be a multiple of 4096) reserved in the
first flash for use by FS2 and possibly other customer-defined purposes. Thisis defined
as0x0000. Memory set asidewith XMEM RESERVE_SIZE will NOT beavailablefor
xmem code.

Thismacrois defined in the BIOS prior to Dynamic C version 9.30 and in
memconfig.1lib thereafter.

140 Dynamic C User’s Manual

11.2.3 FS2 and Use of the First Flash
To use the first flash in FS2, follow these steps:

1. Define XMEM_RESERVE_SIZE (currently set to 0x0000) to the number of bytes to allo-
cate in the first flash for the file system.

2. Define FS2 _USE PROGRAM FLASH to the number of KB (1024 bytes) to alocate in the
first flash for the file system. Do thisin the application code before #use "fs2.1ib".

3. Obtain the LX' number of thefirst flash: Call £s_get other 1x ()when there aretwo
flash memories; cal £s_get flash 1x () whenthereisonly one.

4. If desired, create additional logical extents by calling the FS2 function £s_setup () to
further partition the device. This function can also change the logical sector sizes of an
extent. Please see the function description for £s_setup () in the Dynamic C Function
Reference Manual for more information.

Example Code Using First Flash in FS2

If the target board has two flash memories, the following code will cause the file system to use the
first flash:

FSLXnum flashl; // logica extent number
File f; // struct for file information

flashl = fs get other 1x();
if (flashl) {
fs set 1x(flashl, flashl);
fcreate(&f, 10);

}

To obtain the logical extent number for aoneflash board, fs _get flash 1x () mustbe
caledinstead of fs get other 1x().

i. For adescription of logical extents please see section 11.4.2, “Logica Extents (LX),”
on page 144.

Chapter 11: The Flash File System 141

11.3 File System API Functions

These functions are defined in FS2 . LIB. For more information please see the Dynamic C
Function Reference Manual or from within Dynamic C you can use the Function L ookup feature,
with its convenient Ctrl+H shortcut that will take you directly to afunction’s description if the cur-
sor isonits name in the active edit window.

Table 11-1. FS2 API

Command

Description

fs_setup (FS2)

Alterstheinitia default configuration.

fs init (FS2)

Initialize the internal data structures for the file system.

fs format (FS2)

Initialize flash and the internal data structures.

1x format

Formats a specified logical extent (LX).

fs set 1x (FS2)

Sets the default LX numbers for file creation.

fs get 1x (FS2)

Returns the current LX number for file creation.

fcreate (FS2)

Creates afile and open it for writing.

fcreate unused (FS2)

Creates afile with an unused file number.

fopen rd (FS2)

Opens afilefor reading.

fopen wr (FS2)

Opens afile for writing (and reading).

fshift

Removes specified number of bytes from beginning of file.

fwrite (FS2)

Writesto afile starting at “current position.”

fread (FS2) Reads from the current file pointer.
fseek (FS2) Moves the read/write pointer.
ftell (FsS2) Returns the current offset of the file pointer.

fs_sync (FS2)

Flushes any buffers retained in RAM to the underlying
hardware device.

fflush (FS2)

Flushes buffers retained in RAM and associated with the
specified file to the underlying hardware device.

fs get flash 1x (FS2)

Returns the LX number of the preferred flash device (the
2nd flash if available).

fs get 1x size (FS2)

Returns the number of bytes of the specified LX.

fs get other 1x (FS2)

Returns LX # of the non-preferred flash (usually the first
flash).

fs get ram 1lx (FS2)

Return the LX number of the RAM file system device.

fclose

Closes afile.

fdelete (FS2)

Deletes afile.

142

Dynamic C User’s Manual

11.3.1 FS2 API Error Codes

Thelibrary ERRNO . LIB contains alist of all possible error codes returnable by the FS2 API.
These error codes mostly conform to POSIX standards. If the return value indicates an error, then
the global variable errno may be examined to determine a more specific reason for the failure.
The possible errno codes returned from each function are documented with the function.

11.4 Setting up and Partitioning the File System

This step merits some thought before plowing ahead. The context within which the file system
will be used should be considered. For example, if the target board contains both battery-backed
SRAM and a second flash chip, then both types of storage may be used for their respective advan-
tages. The SRAM might be used for a small application configuration file that changes frequently,
and the flash used for alarge log file.

FS2 automatically detects the second flash device (if any) and will also use any SRAM set aside
for thefile system (if FS2_RAM RESERVE iS Set).

11.4.1 Initial Formatting

Thefilesystem must be formatted when it isfirst used. The only exception is when aflash memory
deviceis known to be completely erased, which is the normal condition on receipt from the fac-
tory. If the device contains random data, then formatting is required to avoid the possibility of
some sectors being permanently locked out of use.

Formatting is also required if any of the logical extent parameters are changed, such as changing
the logical sector size or re-partitioning. Thiswould normally happen only during application
devel opment.

The question for application developers is how to code the application so that it formats the file-
system only thefirst timeit isrun. There are several approaches that may be taken:

e A gpecial program that isloaded and run once in the factory, before the applicationis
loaded. The specia program prepares the filesystem and formats it. The application never
formats; it expects the filesystem to be in a proper state.

The application can perform some sort of consistency check. If it determines an inconsis-
tency, it callsformat. The consistency check could include testing for afile that should
exist, or by checking some sort of "signature" that would be unlikely to occur by chance.

Have the application prompt the end-user, if some form of interaction is possible.

A combination of one or more of the above.

Rely on aflash device being erased. Thiswould be OK for a production run, but not suit-
ableif battery-backed SRAM was being used for part of the filesystem.

Chapter 11: The Flash File System 143

11.4.2 Logical Extents (LX)

The presence of both “devices’ causes aninitial default configuration of two logical extents
(ak.a, LXs) tobeset up. An LX isanaogousto disk partitions used in other operating systems. It
represents a contiguous area of the device set aside for file system operations. An LX contains sec-
torsthat are all the same size, and all contiguously addressable within the one device. Thus aflash
device with three different sector sizes would necessitate at least three logica extents, and more if
the same-sized sectors were not adjacent.

Files stored by the file system are comprised of two parts: one part contains the actual application
data, and the other is afixed size area used to contain data controlled by the file systemin order to
track the file status. This second area, called metadata, is analogous to a “ directory entry” of other
operating systems. The metadata consumes one sector per file.

The dataand metadatafor afile are usually stored in the same L X, however they may be separated
for performance reasons. Since the metadata needs to be updated for each write operation, it is
often advantageous to store the metadata in battery-backed SRAM with the bulk of the dataon a
flash device.

Specifying Logical Extents

When afileis created, the logical extent(s) to use for the file are defined. This association remains
until the fileis deleted. The default LX for both data and metadata is the flash device (LX #1) if it
exists; otherwisethe RAM LX. If both flash and RAM are available, LX #1 is the flash device and
LX #2 isthe RAM.

When creating afile, the associated logical extents for the data and the metadata can be changed
from the default by calling £s_set 1x (). Thisfunctions takes two parameters, one to specify
the LX for the metadata and the other to specify the LX for the data. Thereafter, all created files
are associated with the specified LXsuntil anew call to fs_set 1x () ismade. Typicdly, there
will beacall to fs_set 1x () beforeeachfileiscreated, in order to ensure that the new file
gets created with the desired associations. The file creation function, fcreate (), may be used
to specify the LX for the metadata by providing avalid LX number in the high byte of the func-
tion’'s second parameter. Thiswill override any LX number set for the metadatain

fs set 1x().

Further Partitioning

Theinitia default logical extents can be divided further. This must be done before calling

fs init (). Thefunction to create sub-partitionsiscaled £s setup (). Thisfunction takes
an existing LX number, dividesthat LX according to the given parameters, and returns a newly
created LX number. The origina partition still exists, but is smaller because of the division. For
example, in asystem with LX#1 as aflash device of 256K and LX#2 as4K of RAM, an initial call
to fs_setup () might be made to partition LX#1 into two equal sized extents of 128K each.
LX#1 would then be 128K (the first half of the flash) and LX#3 would be 128K (the other half).
L X#2 is untouched.

Having partitioned once, £s_setup () may be called again to perform further subdivision. This
may be done on any of the original or new extents. Each call to £s_setup () in partitioning
mode increases the total number of logical extents. You will need to make surethat FS MAX LX
is defined to a high enough value that the LX array size is not exceeded.

144 Dynamic C User’s Manual

While developing an application, you might need to adjust partitioning parameters. If any parame-
ter is changed, FS2 will probably not recognize data written using the previous parameters. This
problem is common to most operating systems. The “solution” isto save any desired filesto out-
side the file system before changing its organization; then after the change, force aformat of the
file system.

11.4.3 Logical Sector Size

fs setup () canaso be used to specify non-default logical sector (LS) sizes and other parame-
ters. FS2 allows any logical sector size between 64 and 8192 bytes, providing the LS sizeisan
exact power of 2. Each logical extent, including sub-partitions, can have a different LS size. This
allows some performance optimization. Small L Ss are better for aRAM LX, since it minimizes
wasted space without incurring a performance penalty. Larger L Ss are better for bulk data such as
logs. If the flash physical sector size (i.e. the actual hardware sector size) islarge, it is better to use
acorrespondingly large LS size. Thisis especially the case for byte-writable devices. Large LSs
should also be used for large L Xs. This minimizes the amount of time needed to initialize the file
system and access large files. As arule of thumb, there should be no more than 1024 LSsin any
LX. Theideal LS size for RAM (which isthe default) is 128 bytes. 256 or 512 can al so be reason-
able values for some applications that have alot of spare RAM.

Sector-writable flash devices require: LS size > PS size. Byte-writable devices, however, may use
any alowable logical sector size, regardless of the physical sector size.

Sample program Samples\FileSystem\FS2DEMO2 illustratesuseof £s_setup (). This
sample also allows you to experiment with various file system settings to obtain the best perfor-
mance.

FS2 has been designed to be extensible in order to work with future flash and other non-volatile
storage devices. Writing and installing custom low-level device driversis beyond the scope of this
document, however see FS2 . LIB and FS_DEV.LIB for hints.

11.5 File Identifiers

There are two ways to identify a particular file in the file system: file numbers and file names.

11.5.1 File Numbers

The file number uniquely identifies afile within alogical extent. File numbers must be unique
within the entire file system. FS2 accepts file numbers in word format:

typedef word FileNumber

The low-order byte specifies the file number and the high-order byte specifies the LX number of
the metadata (1 through number of LXs). If the high-order byte is zero, then a suitable “ default”
LX will be located by the file system. The default LX will default to 1, but will be settable viaa
#define, for file creation. For existing files, a high-order byte of zero will cause the file system
to search for the L X that contains the file. This will require no or minimal changes to existing cus-
tomer code.

Only the metadata L X may be specified in the file number. Thisis called a“fully-qualified” file
number (FQFN). The LX number always applies to the file metadata. The data can reside on a dif-
ferent LX, however thisis always determined by FS2 once the file has been created.

Chapter 11: The Flash File System 145

11.5.2 File Names

There are several functionsin ZSERVER . LIB that can be used to associate a descriptive name
with afile. The file must exist in the flash file system before using the auxiliary functionslisted in
the following table. These functions were originally intended for usewithan HTTP or FTP server,
so some of them take a parameter called servermask. To use these functions for file naming
purposes only, this parameter should be SERVER USER.

For a detailed description of these functions please refer to the Dynamic C's TCP/IP User’'s Man-
ual, or use keyboard shortcut Ctrl+H in Dynamic C to use the Library Lookup feature.

Table 11-2. Flash File System Auxiliary Functions

Command

Description

sspec_addfsfile

Associate a name with the flash file system file number. The return
valueisanindex into an array of structures associated with the
named files.

sspec_readfile

Read afile represented by the return value of
sspec_addfsfile into abuffer.

sspec_getlength

Get the length (number of bytes) of thefile.

sspec _getfileloc

Get the file system file number (1- 255). Cast return value to
FILENUMBER.

sspec_findname

Find the index into the array of structures associated with named
files of the file that has the specified name.

sspec _getfiletype

Get file type. For flash file system files this value will be
SSPEC FSFILE.

sspec findnextfile

Find the next named file in the flash file system, at or following the
specified index, and return the index of thefile.

sSspec_remove

Remove the file name association.

Sspec_save

Savesto the flash file system the array of structures that reference
the named filesin the flash file system.

sspec_restore

Restores the array of structures that reference the named filesin the
flash file system.

146

Dynamic C User’s Manual

11.6 Skeleton Program Using FS2

Thefollowing program uses some of the FS2 API. It writes several stringsinto afile, readsthefile
back and prints the contents to the Stdio window.

#use "FS2.LIB"
#define TESTFILE 1

main ()

{

}

File file;
static char buffer[256];

fs_init (0, 0);
if (!fcreate(&file, TESTFILE) && fopen wr (&file, TESTFILE))

{

printf ("error opening TESTFILE %d\n", errno) ;
return -1;

}

fseek (&file, 0, SEEK END) ;
fwrite (&file, "hello",6) ;
fwrite (&file, "12345",6) ;
fwrite (&file, "67890",6) ;
fseek (&file, 0, SEEK SET) ;

while (fread (&file,buffer,6)>0)
printf ("$s\n",buffer) ;

}

fclose (&file) ;

For a more robust program, more error checking should be included. See the sample programsin
the Samples\FILESYSTEM folder for more complex examples, including error checking, for-
matting, partitioning and other new features.

Chapter 11: The Flash File System 147

148

Dynamic C User’'s Manual

12. Using Assembly L anguage

This chapter gives the rules for mixing assembly language with Dynamic C code. A reference
guide to the Rabbit Instruction Set is available from the Help menu of Dynamic C and is also doc-
umented in the Rabbit Microprocessor Instruction Reference Manual available on the Rabbit web-
site:

www .rabbitsemiconductor.com/docs/

12.1 Mixing Assembly and C

Dynamic C permits assembly language statements to be embedded in C functions and/or entire
functions to be written in assembly language. C statements may also be embedded in assembly
code. C-language variables may be accessed by the assembly code.

12.1.1 Embedded Assembly Syntax

Usethe #asm and #endasm directives to place assembly code in Dynamic C programs. For
example, the following function will add two 64-bit numbers together. The same program could
be written in C, but it would be many times slower because C does not provide an add-with-carry
operation (adc).

void eightadd(char *chl, char *ch2) {

#asm
1d hl, (sp+@SP+ch2) ; Qet source pointer
ex de,hl ; saveinregister DE
1d hl, (sp+@SP+chl) ; get destination pointer
1d b,s ; humber of bytes
Xor a ; Clear carry
loop:
14 a, (de) ; ch2 source byte
adc a, (hl) ; add chl byte
14 (hl) ,a ; Storeresult to chl address
inc hl ; increment chl pointer
inc de ; increment ch2 pointer
djnz loop ; do 8 bytes
; chl now pointsto 64 bit result

#endasm

}

The keywords debug and nodebug can be placed on the same line as #asm. Assembly code
blocks are nodebug by default. This saves space and unnecessary callsto the debugger kernel.

All blocks of assembly code within a C function are assembled in nodebug mode. The only excep-
tion to thisiswhen ablock of assembly code is explicitly marked with debug. Any blocks
marked debug will be assembled in debug mode even if the enclosing C function is marked
nodebug.

Chapter 12: Using Assembly Language 149

http://www.rabbitsemiconductor.com/docs/

12.1.2 Embedded C Syntax

A C statement may be placed within assembly code by placing a“c” in column 1. Note that which-
ever registers are used in the embedded C statement will be changed.

#asm

InitValues::

¢ start time = 0;

c counter = 256;
ret

#endasm

12.1.3 Setting Breakpoints in Assembly
There are two ways to enable breakpoint support in ablock of assembly code.

One way isto explicitly mark the assembly block as debug (the default condition isnodebug).
This causes the insertion of RST 0x28 instructions between each assembly instruction. These
RST 0x28 instructions may cause jump relative (i.e., j r) instructions to go out of range, but this
problem can be solved by changing the relative jump (5 r) to an absolute jump (3 p).

The other way to enable breakpoint support in ablock of assembly codeisto add a C statement
before the desired assembly instruction. Note that the assembly code must be contained in a debug
C function in order to enable C code debugging. Below is an example.

debug dummyfunction() {
#asm
function::

label:
c ; // addline of C code to permit a breakpoint before jump relative
jr nc, label

ret
#endasm

}

NOTE: Single stepping through assembly code is always allowed if the assembly
window is open.

150 Dynamic C User’s Manual

12.1.4 Assembly and 32-bit Pointer Registers (PW, PX, PY, PZ)
(Introduced in Dynamic C 10)

Assembly programmers should note that far variables defined in C are interpreted as physical
addresses by the assembler and near variables are interpreted as segmented logical addresses. Spe-
cificaly, the instruction:

1d pd, klmn ; wherepdisa32-bit pointer register, and kimn is a 32-bit constant

does not work as would first be expected if used with avariable. For example, the following code
snippet illustrates the problem:

Example (prints ‘Y’ not ‘X’ as may be expected):

char far * ptr;
char far foo;

int main ()

{

foo = 'Y';
ptr = &foo;
#asm
; Thefollowing code is INCORRECT!!!
1d px, ptr ; ptrisinroot, so px gets segmented version of ptr’'s address
1d a, 'X!

1d (px), a ; ThisdoesNOT storeregister as contents to the address “ & ptr” (i.e., foo)
#endasm

o

printf ("$c\n", foo);

}

The incorrect code shown above illustrates how a programmer might write inline assembly to
access a variable via a pointer. However, since the assembler treats near addresses as |ogical
addresses, the format of the value produced by loading the variable ptr directly into a pointer reg-
ister is not correct for the subsequent store instruction. To correctly implement the assembly in the
above sample, the programmer should use the following:

#asm
; Corrected version of incorrect code above
1d hl, ptr ;ptrisinroot, soloadto a 16-hit register
1d1 px, hl ; this does appropriate conversion of ptr to a physical address
1d a, ‘X’
1d (px), a
#endasm

Replacing the assembly block from the first example with the above listing will produce the
expected result of printing ‘X’. Asis shown in the example, to load a near variable into a pointer
register (PX, PY, etc....), it should first be loaded to HL, then an “Idl” (load logical) register trans-
fer instruction or conversion instruction (“convc” for code and “ convd” for data) should be used to
convert the logical addressinto its physical equivalent.

Chapter 12: Using Assembly Language 151

12.2 Assembler and Preprocessor

The assembler parses most C language constant expressions. A C language constant expression is one
whose value is known at compile time. All operators except the following are supported:

Table 12-1. Operators Not Supported By The Assembler

Operator Symbol |Operator Description
?: conditional
dot
-> pointsto
* dereference

12.2.1 Comments
C-style comments are allowed in embedded assembly code. The assembler will ignore comments
beginning with

; — text from the semicolon to the end of line isignored.

// — text from the double forward slashes to the end of line isignored.
/* ... */ —text between dash-asterisk and asterisk-dash isignored.

12.2.2 Defining Constants

Constants may be created and defined in assembly code with the assembly language keyword db
(define byte). db should be followed immediately by numerical values and strings separated by
commas. For example, each of the following lines al define the string "aBC."

db 'A', 'B', '¢!
db "ABC"
db 0x41, 0x42, 0x43

The numerical values and characters in strings are used to initialize sequential byte locations.

If separate |& D space is enabled, assembly constants should either be put in their own assembly
block with the const keyword or be donein C.

#asm const
myrootconstants: :
db 0x40, 0x41, 0x42

#endasm

or

const char myrootconstants[] = {‘\x40’, ‘\x41’, ‘\x42’}

152 Dynamic C User’s Manual

If separate |&D space is enabled, db places bytesin the base segment of the data space when itis
used with const. If the const keyword is absent, i.e.,

#asm
myrootconstants: :
db 0x40, 0x41, 0x42

#endasm

the bytes are placed somewhere in the instruction space. If separate 1& D space is disabled (the
default condition), the bytes are placed in the base segment (aka, root segment) interspersed with
code.

Therefore, so that datawill be treated as data when referenced in assembly code, the const key-
word must be used when separate 1& D space is enabled. For example, thiswon't work correctly
without const:

#asm const
label: :
db 0x5a
#endasm
main () {
#asm
1d a, (label) // ldOx5atoreg a
#endasm

}

The assembly language keyword dw defines 16-bit words, least significant byte first. The keyword
dw should be followed immediately by numerical values:

dw 0x0123, OxXFFFF, Xyz

This example defines three constants. The first two constants are literals, and the third constant is
the address of variable xy z.

The numerical valuesinitialize sequential word locations, starting at the current code address.

Chapter 12: Using Assembly Language 153

12.2.3 Multiline Macros

The Dynamic C preprocessor has a special feature to allow multiline macrosin assembly code.
The preprocessor expands macros before the assembler parses any text. Putting a $\ at the end of
alineinserts anew linein the text. This only works in assembly code. Labels and comments are
not allowed in multiline macros.

#define SAVEFLAG S\
1d a,b s\
push af s\
pop bc

#asm

1d b, 0x32
SAVEFLAG

#endasm

12.2.4 Labels

A label isaname followed by one or two colons. A label followed by asingle colonislocal,
whereas one followed by two colonsis global. A local label is not visible to the code out of the
current embedded assembly segment (i.e., code before the #asm or after the #endasm directive).

Unlessit isfollowed immediately by the assembly language keyword equ, the label identifies the
current code segment address. If the label isfollowed by equ, the label “equates’ to the value of
the expression after the keyword equ.

Because C preprocessor macros are expanded in embedded assembly code, Rabbit recommends
that preprocessor macros be used instead of equ whenever possible.

12.2.5 Special Symbols
Thistable lists special symbolsthat can be used in an assembly language expression.

Table 12-2. Special Assembly Language Symbols

Symbol Description

Indicates the amount of stack space (in bytes) used for stack-

@sP based variables. This does not include arguments.
Constant for the current code location. For example:
@pC 1d hl, @PC

|oads the code address of the instruction. Id hl,@PC+3 loads
the address after the instruction sinceit isa 3 byte instruction.

Evaluates the offset from the frame reference point to the
@RETVAL stack space reserved for the st ruct function returns. See
Section on page 158 for more information.

Determines the next reference address of avariable plusits

@LENGTH
Slze.

154 Dynamic C User’s Manual

12.2.6 C Variables

C variable names may be used in assembly language. What a variable name represents (the value
associated with the name) depends on the variable. For aglobal or static local variable, the name
represents the address of the variable in root memory. For an auto variable or formal argument,
the variable name represents its own offset from the frame reference point.

The following list of processor register names are reserved and may not be used as C variable
namesin assembly: A, B, C, D, E, F H, L, AF, HL, DE, BC, I1X, 1Y, SP, PC, XPC, IR, IIR and
EIR. Both upper and lower case instances are reserved.

The name of a structure element represents the offset of the element from the beginning of the
structure. In the following structure, for example,

struct s {
int x;
int y;
int z;

b

the embedded assembly expression s+x evaluatesto 0, s+y evaluatesto 2, and s+z evaluates to
4, regardless of where structure s may be.

In nested structures, offsets can be composite, as shown here.

struct s {

int x; // s+x=0

struct af{ // s+a=2
int b; // atb=0s+a+b=2
int c¢; // a+tc=2s+a+c=4

b

b

Chapter 12: Using Assembly Language 155

12.3 Stand-Alone Assembly Code

A stand-alone assembly function is one that is defined outside the context of a C language func-
tion.

A stand-alone assembly function has no auto variables and no formal parameters. It can, how-
ever, have arguments passed to it by the calling function. When a program calls a function from C,
it putsthefirst argument into aprimary register. If the first argument has one or two bytes (int,
unsigned int, char, pointer),theprimary register isHL (with register H containing
the most significant byte). If the first argument has four bytes (1ong, unsigned long,
float), the primary register is BC:DE (with register B containing the most significant byte).
Assembly-language code can use the first argument very efficiently. Only the first argument is put
into the primary register, while all arguments—including the first, pushed last—are pushed on the
stack.

C function values return in the primary register, if they have four or fewer bytes, either in HL or
BC.DE.

Assembly language allows assumptions to be made about arguments passed on the stack, and auto
variables can be defined by reserving locations on the stack for them. However, the offsets of such
implicit arguments and variables must be kept track of. If afunction expects arguments or needsto
use stack-based variables, Rabbit recommends using the embedded assembly techni ques described
in the next section.

12.3.1 Stand-Alone Assembly Code in Extended Memory

Stand-alone assembly functions may be placed in extended memory by adding the xmem keyword
asaqualifier to #asm, as shown below. Care needs be taken so that branch instructions do not
jump beyond the current xmem window. To help prevent such bad jumps, the compiler limits
xmem assembly blocks to 4096 bytes. Code that branches to other assembly blocksin xmem
should awaysuse 1jp or 1call.

#asm xmem
main: :

lcall fcn in xmem
lret
#endasm

#asm xmem
fcn in xmem: :
lret

#endasm

156 Dynamic C User’s Manual

12.3.2 Example of Stand-Alone Assembly Code
The stand-alone assembly function £oo () can be called from a Dynamic C function.

int foo (int); // A function prototype can be declared for stand-alone
// assembly functions, which will cause the compiler
// to perform the appropriate type-checking.
main () {
int 1i,7;
=1l g
j=foo (i) ;

}

#asm
foo::

1d hl,>2 // Thereturn value expected by main() is put
ret // in HL just before foo() returns
#endasm

The entire program can be written in assembly.

#asm
main: :

ret
#endasm

12.4 Embedded Assembly Code

When embedded in a C function, assembly code can access arguments and local variables (either

auto or static) by name. Furthermore, the assembly code does not need to manipulate the

stack because the functions prolog and epilog aready do so.

12.4.1 The Stack Frame

The purpose and structure of a stack frame should be understood before writing embedded assem-
bly code. A stack frame is a run-time structure on the stack that provides the storage for all auto
variables, function arguments and the return address for a particular function. If the IX register is

used for a frame reference pointer, the previous value of 1X isalso kept in the stack frame.

Figure 12.1 shows the general appearance of a stack frame.

Chapter 12: Using Assembly Language

157

Stack Frame

= Last Auto Variable -
o
Optional — °
| O -
= First Auto Variable —
< Frame Reference
Point

Optional — - IX Register -

Return Address

First Parameter
— (pushed last) -
: L o i
Optional .

- o -
— Last Parameter - (stack grows down)
(pushed first)

Lower Addresses

; | Structure Return
Optional B Space _ Higher Addresses

Figure 12.1. General Appearance of Assembly Code Stack Frame

The return address is always necessary. The presence of auto variables depends on the function
definition. The presence of arguments and structure return space depends on the function call.
(The stack pointer may actually point lower than the indicated mark temporarily because of tem-
porary information pushed on the stack.)

The shaded area in the stack frame is the stack storage allocated for aut o variables. The assem-
bler symbol @sP represents the size of thisarea.

The Frame Reference Point

The frame reference point is alocation in the stack frame that immediately follows the function’s
return address. The IX register may be used as a pointer to thislocation by putting the keyword
useix before the function, or the request can be specified globally by the compiler directive
#useix. Thedefaultis #nouseix. If the IX register is used as aframe reference pointer, its pre-
vious valueis pushed on the stack after the function’s return address. The frame reference point
moves to encompass the saved | X value.

158 Dynamic C User’s Manual

12.4.2 Embedded Assembly Example

The purpose of the following sample program, asm1l . c, is to show the different ways to access
stack-based variables from assembly code.

void func(char ch, int i, long 19);

main () {

}

char ch;

int 1i;

long 1lg;

ch = 0x11;

i = 0x2233;

1lg = 0x44556677L;
func(ch,i, 1g) ;

void func(char ch, int i, long 1g){

auto int x;
auto int z;

0x8888;
0x9999;

X
Z

#asm

// Thisisequivalent to the C statement: x = 0x8888
1d hl, 0x8888
1d (sp+@SP+x), hl

// Thisisequivalent to the C statement: z = 0x9999
1d hl, 0x9999
1d (sp+@SP+z), hl

// @SP+i givesthe offset of i from the stack frame on entry.
// On the Rabbit, thisis how HL isloaded with the valueini.
1d hl, (sp+@SP+1i)

// Thisworksif func() is useix; however, if the I X register
// hasbeen changed by the user code, this code will fail.
1d hl, (ix+1)

// This method worksin either case because the assembler adjusts the
// constant @SP, so changing the function to nouseix with the keyword

// nouseix, or the compiler directive #nouseix will not break the code.

// But, if SP has been changed by user code, (e.g., a push) it won't work.
1d hl, (sp+@SP+1g+2)

1d b,h
1d c,L
14 hl, (sp+@SP+1g)
ex de, hl
#endasm

}

Chapter 12: Using Assembly Language

159

12.4.3 The Disassembled Code Window

A program may be debugged at the assembly level by opening the Disassembled Code window
(aka, the Assembly window). Single stepping and breakpoints are supported in this window. When
the “Disassembled Code” window is open, single stepping occurs instruction by instruction rather
than statement by statement. The figure below shows the “ Disassembled Code” window for the
example code, asmil . c.

Eﬂefault - Dynamic C Dist. 8.00Beta2

File Edit Comple Bun Inzpect Options Window Help

(FC o I [B e A (el 5 [il ([A S R
E Dizassembled Code
Address | Machine Code | Opcode Cycles
Y
1e09 D9 er0x 2 [
le=0a 2100040 14 hl,0=x0000 &
le0d CD7E1E call sspixffn 12
lelin EF rst Q=25 g
[aswl.c(7)]: ch = 0Ox11;
a,0=x11
1=13 3Z9EC3 14 [OxC39E) ,a 10
leld EF rst Q=25 g
[aswl.c(8)]: 1 = 0Ox2233;
1=17 213322 14 hl,0x2233 &
lela 229CC3 14 [0xC39C) k1l 13
leid EF rst Q=25 g
[aswl.c(9)]: lg = O0x44556677L;
l=le 117766 14 de, 0x&677 & o
l=21 015544 14 be, 0x4455 &
l=24 ED5393C3 14 [0xZC398) ,de 15
1=25 ED4394C3 14 [0xC394) b 15
leic EF rst Q=25 g
[aswl.c(10)] : funeich,i, lqg):;
lez2d EDSESSCS 14 de, (0xC328) 13
le31 ED4ESQLCS 14 beo, (0xC394) 13
1e35 Ch push he 10
le36 b5 push de 10
1=37 ZA9CC3 14 hl, (OxC39C) 11
le3a ES push hl 10
le3b ZA9ECT 14 hl, (OxC39E) 11
lede 2600 14 h,0x00 4
1le40 ES push hl 10
le=41 CDEO1E call func 1z
ledd oo nop 2
le=45 2705 add sp,0x058 4 ;I

Figure 12.2. Disassembled code window

160 Dynamic C User’s Manual

Instruction Cycle Time

The Disassembled Code window shows the memory address on the far left, followed by the code
bytes for the instruction at the address, followed by the mnemonics for the instruction. The last
column shows the number of cycles for the instruction, assuming no wait states. The total cycle
time for a block of instructions will be shown at the lowest row in the block in the cycle-time col-
umn, if that block is selected and highlighted with the mouse. The total assumes one execution per
instruction, so the user must take looping and branching into consideration when evaluating exe-
cution times.

12.4.4 Local Variable Access
Accessing static local variablesis simple because the symbol evaluatesto the address directly. The
following code shows, for example, how to load static variable y into HL.

1d hl, (y) ; load hl with contents of y

12.4.4.1 Using the IX Register as a Frame Pointer

Using IX as aframe pointer is a convenient way to access stack variables in assembly. Using SP
requires extra bookking when values are pushed on or popped off the stack.

Now, access to stack variablesis easier. Consider, for example, how to load ch into register A.

1d a, (ix+ch) ; a«ch

The I X+offset load instruction takes 9 clock cycles and opcode isthree bytes. If the program needs
to load a four-byte variable such as 1g, the | X+offset instructions are as follows.

1d hl, (ix+1g+2) ; load LSB of Ig

1d b,h ; longs are normally stored in BC:DE
1d ¢, L

1d hl, (ix+19) ; load MSB of Ig

ex de,hl

Thistakes atotal of 24 cycles.

The offset from X isasigned 8-hit integer. To use | X+offset, the variable must be within +127 or
—128 bytes of the frame reference point. The @sP method is the only method for accessing vari-
ables out of thisrange. The @sP symbol may be used even if IX isthe frame reference pointer.

12.4.4.2 Using Index Registers as Pointers to Aggregate Types

The members of Dynamic C aggregate types (structures and unions) can be accessed from within
an assembly block of code using any of the index registers:

e |X, 1Y, SP (available on all Rabbit processors)
e PW, PX, PY or PZ (available on the Rabbit 4000)

Thelibrary pool . 11ib has codethat illustrates using an index register in assembly to access the
member of a structure that was defined in Dynamic C. Refer to the function palloc fast ().

Chapter 12: Using Assembly Language 161

Here is another example:

typedef struct({
int x;
int y;
long time;
}TStruct;
void func(int x, int y, TStruct *s)
#asm
1d ix, (sp+@SP+s)
1d hl, (ix+[TStruct] +y)

#endasm

}

12.4.4.3 Functions in Extended Memory

If the xmem keyword is present, Dynamic C compiles the function to extended memory. Otherwise,
Dynamic C determines where to compile the function. Functions compiled to extended memory have a 3-
byte return address instead of a 2-byte return address.

Because the compiler maintains the offsets automatically, thereis no need to worry about the
change of offsets. The @S P approach discussed previously as a means of accessing stack-based
variables works whether a function is compiled to extended memory or not, as long as the C-lan-
guage names of local variables and arguments are used.

A function compiled to extended memory can use X as aframe reference pointer aswell. This
adds an additional two bytes to argument offsets because of the saved I X value. Again, the | X+off-
set approach discussed previously can be used because the compiler maintains the offsets automat-
icaly.

12.5 C Calling Assembly

Dynamic C does not assume that registers are preserved in function calls. In other words, the func-
tion being called need not save and restore registers.

12.5.1 Passing Parameters

When a program calls afunction from C, it puts the first argument into HL (if it has one or two
bytes) with register H containing the most significant byte. If the first argument has four bytes, it
goesin BC:DE (with register B containing the most significant byte). Only the first argument is
put into the primary register, while all arguments—including the first, pushed last—are pushed on
the stack.

12.5.2 Location of Return Results

If a C-callable assembly function is expected to return aresult (of primitive type), the function
must pass the result in the “primary register.” If theresultisan int, unsigned int, char,
or apointer, return the result in HL (register H contains the most significant byte). If theresult isa
long, unsigned long, or float, return theresult in BCDE (register B contains the most
significant byte). A C function containing embedded assembly code may, of course, useaC

162 Dynamic C User’s Manual

return statement to return avalue. A stand-alone assembly routine, however, must load the pri-
mary register with the return value before the ret instruction.

12.5.3 Returning a Structure

In contrast, if afunction returns a structure (of any size), the calling function reserves space on the
stack for the return value before pushing the last argument (if any). Dynamic C functions contain-
ing embedded assembly code may use aC return statement to return avalue. A stand-alone
assembly routine, however, must store the return value in the structure return space on the stack
before returning.

Inline assembly code may access the stack area reserved for structure return values by the symbol
@RETVAL, which is an offset from the frame reference point.

The following code shows how to clear field £1 of a structure (as areturned value) of type
struct s.

typedef struct ss {

int £0; // firstfied
char f1; // second field
} XYZzj

Xyz my struct;
my struct = func() ;

xyz func () {

#asm
Xor a ; Clear register A.
1d hl,@SP+@RETVAL+ss+f1l ; hl « theoffset from SP to the
; flfield of the returned structure.
add hl,sp ; hl now pointsto f1.
1d (hl),a ; load a(now 0) to f1.
#endasm

}

It iscrucial that @SP be added to @RETVAL because @RETVAL is an offset from the frame refer-
ence point, not from the current SP.

Chapter 12: Using Assembly Language 163

12.6 Assembly Calling C

A program may call a C function from assembly code. To make this happen, set up part of the
stack frame prior to the call and “unwind” the stack after the call. The procedure to set up the stack

frame is described here.

1

o gk~ w

Save al registers that the calling function wants to preserve. A called C function may change
the value of any register. (Pushing registers values on the stack is agood way to save their val-

ues.)

If the functionreturnisa struct, reserve space on the stack for the returned structure. Most
functions do not return structures.

Compute and push the last argument, if any.

Compute and push the second to last argument, if any.

Continue to push arguments, if there are more.

Compute and push the first argument, if any. Also load the first argument into the primary reg-
ister (HL for int, unsigned int, char, and pointers, or BCDE for 1ong,
unsigned long, and float) if itisof aprimitivetype.

7. lIssuethe call instruction.

The caller must unwind the stack after the function returns.
1. Recover the stack storage allocated to arguments. With no more than 6 bytes of arguments, the

program may pop data (2 bytes at time) from the stack. Otherwise, it is more efficient to com-
pute anew SP instead. The following code demonstrates how to unwind arguments totaling

36 bytes of stack storage.

; Notethat HL is changed by this code!
Use “ex dehl” to save HL if HL hasthereturn value

!

;;:;ex de,hl ; save HL (if required)
1d hl,36 ; Want to pop 36 bytes
add hl,sp ; compute new SP value
1d sp,hl ; put value back to SP

;;:ex de,hl ; restore HL (if required)

2. If thefunction returnsastruct, unload the returned structure.
3. Restoreregisters previously saved. Pop them off if they were stored on the stack.
4, |f the function return was not a st ruct, obtain the returned value from HL or BCDE.

164 Dynamic C User’s Manual

12.7 Interrupt Routines in Assembly

Interrupt Service Routines (ISRs) may be written in Dynamic C (declared with the keyword
interrupt). But since an assembly routine may be more efficient than the equivalent C func-
tion, assembly is more suitable for an ISR. Even if the execution time of an ISR is not critical, the
latency of one ISR may affect the latency of other ISRs.

Either stand-alone assembly code or embedded assembly code may be used for ISRs. The benefit
of embedding assembly code in a C-language ISR is that there is no need to worry about saving
and restoring registers or reenabling interrupts. The drawback is that the C interrupt function does
save al registers, which takes some amount of time. A stand-alone assembly routine needsto save
and restore only the registers it uses.

12.7.1 Steps Followed by an ISR

The CPU loads the Interrupt Priority register (IP) with the priority of the interrupt before the ISR
iscalled. This effectively turns off interrupts that are of the same or lower priority. Generaly, the
ISR performs the following actions:

1. Saveall registersthat will be used, i.e. push them on the stack. Interrupt routines writtenin C
save all registers automatically. Stand-alone assembly routines must push the registers explic-
itly.

2. Determine the cause of the interrupt. Some devices map multiple causes to the same interrupt
vector. An interrupt handler must determine what actually caused the interrupt.

3. Remove the cause of the interrupt.

4. If aninterrupt has more than one possible cause, check for al the causes and remove al the
causes at the same time.

5. When finished, restore registers saved on the stack. Naturally, this code must match the code
that saved the registers. Interrupt routines written in C perform this automatically. Stand-alone
assembly routines must pop the registers explicitly.

6. Restoretheinterrupt priority level so that other interrupts can get the attention of the CPU.
ISRswrittenin C restore the interrupt priority level automatically when the function returns.
However, stand-alone assembly 1SRs must restore the interrupt priority level explicitly by call-
ing ipres.

Theinterrupt priority level must be restored immediately before the return instructions ret or
reti. If the interrupts are enabled earlier, the system can stack up the interrupts. This may or
may not be acceptable because there is the potential to overflow the stack.

7. Return. There are two types of interrupt returns: ret and reti.

The valuein IPis shown in the status bar at the bottom of the Dynamic C window. If a breakpoint
is encountered, the IP value shown on the status bar reflects the saved context of | P from just
before the breakpoint.

Chapter 12: Using Assembly Language 165

12.7.2 Modifying Interrupt Vectors

Prior to Dynamic C 7.30, interrupt vector code could be modified directly. By reading the internal
and external interrupt registers, 1R and EIR, the location of the vector could be calculated and
then written to because it was located in RAM. This method will not work if separate 1&D spaceis
enabled because the vectors must be located in flash. To accommodate separate 1& D space, the
way interrupt vectors are set up and modified has changed dightly. Please see the Rabbit 3000
Designer’s Handbook for detailed information about how the interrupt vectors are set up. This sec-
tion will discuss how to modify the interrupt vectors after they have been set up.

For backwards compatibility, “modifiable” vector relays are provided in RAM. In C, they can be
accessed through the SetVectintern and SetVectExtern functions. In assembly, they are accessed
through INTVEC BASE + <vector offset> or XINTVEC BASE + <vector offset>. The values for
<vector offset> are defined in sysio. 1ib, and arelisted here for convenience.

Table 12-3. Internal Interrupts and their offset from INTVEC BASE

PERIODIC OFS SERA_OFS
RST10_OFS SERB_OFS
RST18_ OFS SERC_OFS
RST20_OFS SERD_OFS
RST28_ OFS SERE_OFS
RST38_OFS SERF_OFS
SLAVE_OFS QUAD OFS
TIMERA OFS INPUTCAP OFS
TIMERB_OFS

Table 12-4. External Interrupts and their offset from XINTVEC BASE

EXTO_ OFS

EXT1 OFS

166 Dynamic C User’s Manual

The following example from RS232 . LIB illustrates the new |& D space compatible way of mod-
ifying interrupt vectors.

The following code fragment to set up the interrupt service routine for the periodic interrupt from
Dynamic C 7.25 isnot compatible with separate 1& D space:

#asm xmem

;*** Old method ***
1d a,iir ; get the offset of interrupt table
1d h,a
1d 1,0x00
1d iy,hl
1d (iy),0c3h ; jpinstruction entry
inc iy
1d hl,periodic isr ; Set service routine
1d (iy),hl
#endasm

The following code fragment shows an |& D space compatible method for setting up the ISR for
the periodic interrupt in Dynamic C 7.30:

#asm xmem

; *** New method ***
1d a, 0xc3 ; jp instruction entry
1d hl, periodic_isr ; Set service routine
1d (INTVEC BASE+PERIODIC OFS), a ;writetotheinterrupt table
1d (INTVEC_BASE+PERIODIC OFS+1), hl
#endasm

When separate 1& D space is enabled, INTVEC_BASE pointsto a proxy interrupt vector tablein
RAM that is modifiable. The code above assumes that the actual interrupt vector table pointed to
by the IIR is set up to point to the proxy vector. When separate 1& D space is disabled,

INTVEC_ BASE and the lIR point to the same location. The code above is an example only, the
default configuration for the periodic interrupt is not modifiable.

Chapter 12: Using Assembly Language 167

The following example from Rs232 . LIB illustrates the new |& D space compatible way of mod-
ifying interrupt vectors.

The following function serAclose () from Dynamic C 7.25, is not compatible with separate
& D space:

#asm xmem

serAclose::
1d a,iir
1d h,a
1d 1, 0xco0
14 a, 0xc9 ; retinfirs byte
ipset 1
1d (hl) ,a
1d a, 0x00 ; disableinterrupts for port
1d (SACRShadow), a
ioi 1d (SACR), a
ipres
lret

; hl=spaisr_start, de={iir,0xe0}

#endasm

Thisversion of serAclose () in Dynamic C 7.30 is compatible with separate 1& D space:

#asm xmem

serAclose::
1d a, 0xc9
ipset 1
1d (INTVEC BASE + SERA OFS), a ; retinfirst byte of spaisr_start
14 a, 0x00 ; disableinterrupts for port

1d (SACRShadow) ,a
ioi 1d (SACR),a

ipres

lret

#endasm

168 Dynamic C User’s Manual

If separate |& D space is enabled, using the modifiable interrupt vector proxy in RAM adds about
80 clock cycles of overhead to the execution time of the ISR. To avoid that, the preferred way to
Set up interrupt vectorsis to use the new keyword, interrupt vector, to set up the vector
location at compile time.

When compiling with separate 1& D space, modify applicationsthat use SetvectIntern (),
SetVectExtern2000 () Or SetVectExtern3000 () touse interrupt vector
instead.

The following code, from /Samples/TIMERB/TIMER B.C, illustrates the change that should
be made.

void main ()

{

#if SEPARATE INST DATA

interrupt vector timerb intvec timerb isr;
#else

SetVectIntern (0x0B, timerb isr); // setup ISR
#endif

}

If interrupt vector isused multiple timesfor the same interrupt vector, the last one
encountered by the compiler will override all previous ones.

interrupt vector issyntactic sugar for using the origin directives and assembly code. For
example, theline:

interrupt vector timerb intvec timerb isr;

isequivalent to:
#rcodorg timerb intvec apply

#asm
jp timerb isr
#endasm

#rcodorg rootcode resume

Chapter 12: Using Assembly Language 169

The following table lists the defined interrupt vector names that may be used with
interrupt vector, aong with their ISRs.

Table 12-5. Interrupt Vector and ISR Names

Interrupt Vector Name

ISR Name

Default Condition

periodic_intvec

periodic_isr

Fast and nonmodifiable

rstl0_intvec

User defined name

User defined

rstl8_ intvec

rst20_intvec

rst28 intvec

These interrupt vectors and their I1SRs should never be altered
by the user because they are reserved for the debug kerndl.

rst38_ intvec

User defined name

User defined

slave intvec

slave isr

Fast and nonmodifiable

timera intvec

User defined name

User defined

timerb intvec

User defined name

User defined

DevMateSerialISR |Fast and nonmodifiable
sera_intvec® : .
spa_isr User defined
serb intvec spb_isr
serc_intvec spc_isr
serd_intvec spd_isr
sere_intvec spe isr
serf intvec spf_isr User defined

inputcap intvec

User defined name

quad_intvec

gd _isr

ext0_ intvec

User defined name

extl intvec

User defined name

a. Please note that this ISR shares the sameinterrupt vector asDevMateSerialISR. Using
spa_ isr precludes Dynamic C from communicating with the target.

170

Dynamic C User’s Manual

12.8 Common Problems

Unbalanced stack. Ensure the stack is “baanced” when aroutine returns. In other words, the SP
must be same on exit as it was on entry. From the caller’s point of view, the SP register must be
identical before and after the call instruction.

Using the @sP approach after pushing temporary information on the stack. The @sp
approach for inline assembly code assumes that SP points to the low boundary of the stack frame.
This might not be the case if the routine pushes temporary information onto the stack. The space
taken by temporary information on the stack must be compensated for.

The following code illustrates the concept.

; SPtill points to the low boundary of the call frame
push hl ; SaveHL

; SP now two bytes below the stack frame!

1d hl, @SP+x+2 ; Add 2 to compensate for altered SP
add hl,sp ; compute as normal

1d a, (hl) ; get the content

pop hl ; restore HL

; SPagain points to the low boundary of the call frame

Registersnot preserved. In Dynamic C, the caller is responsible for saving and restoring all reg-
isters. An assembly routine that calls a C function must assume that all registers will be changed.

Unpreserved registersin interrupt routines cause unpredictable and unrepeatable problems. In con-
trast to normal functions, interrupt functions are responsible for saving and restoring al registers
themselves.

Chapter 12: Using Assembly Language 171

172 Dynamic C User’s Manual

13. Keywords

A keyword isareserved word in C that represents a basic C construct. It cannot be used for any
other purpose.

abandon

Used in single-user cofunctions, abandon { } must be thefirst statement in the body of the
cofunction. The statements inside the curly braces will be executed only if the cofunction isforc-
ibly abandoned and if acall to 1oophead () ismadein main () before calling the single-user
cofunction. See Samples\Cofunc\Cofaband. ¢ for an example of abandonment handling.

abort

Jumps out of a costatement.

for (;;){
costate {

if (condition) abort;

Chapter 13: Keywords 173

align

Used in assembly blocks, the a1 ign keyword outputs a padding of nops so that the next instruc-
tion to be compiled is placed at the boundary based on VALUE.

#asm
align <VALUE>
#endasm
VALUE can have any (positive) integer expression or the special operands even and odd. The

operand even alignsthe instruction on an even address, and odd on an odd address. Integer
expressions align on multiples of the value of the expression.

Some examples:

align odd ; Thisaignson the next odd address

align 2 ; Alignson a 16-bit (2-byte) boundary

align 4 ; Alignson a 32-bit (4-byte) boundary

align 100h ; Alignsthe code to the next addressthat isevenly divisible by 0x100
align sizeof (int)+4 ; Complex expression, involving sizeof and integer constant

Note that integer expressions are treated the same way as operand expressions for other asm oper-
ators, so variable labels are resolved to their addresses, not their values.

always on

The costatement is always active. Unnamed costatements are always on.

anymem

Allows the compiler to determine in which part of memory afunction will be placed.

anymem int func () {

}

#memmap anymem
#asm anymem

#endasm

174 Dynamic C User’s Manual

asm

Use in Dynamic C code to insert one assembly language instruction. If more than one assembly
instruction is desired use the compiler directive #asm instead.

int func() {
int x,v,2;

asm 1d hl,0x3333

auto

A functions'slocal variable islocated on the system stack and exists as long as the function call
does.

int func () {
auto float x;

bbram

Identifies a variable to be placed into a second data area reserved for battery-backed RAM with
boards with more than one RAM device. Generally, the battery-backed RAM is attached to CS1
due to the low-power requirements. In the case of areset or power failure, the value of abbram
variable is preserved, but not atomically like with protected variables. No software check is
possible to ensure that the RAM is battery-backed. This requirement must be enforced by the user.

See the Rabbit 3000 Microprocessor Designer’s Handbook for information on how the second
data areais reserved.

On boards with asingle RAM, bbram variables will be treated the same as normal root variables.
No warning will be given; the bbram keyword is simply ignored when compiling to boardswith a
single RAM.

Chapter 13: Keywords 175

break

Jumps out of aloop, if, or case statement.
while(expression) {
if% condition) break;
iwitch(expression) {
case 3:

break;

(o]

Use in assembly block to insert one Dynamic C instruction.

#asm

InitValues::

¢ start time = 0;

c counter = 256;
1d hl, 0xa0;
ret

#endasm

case

Identifies the next casein a switch statement.

switch(expression) {
case constant:

case constant:

case constant:

176

Dynamic C User’s Manual

char

Declaresavariable or array element as an unsigned 8-bit character.

char ¢, x, *string = "hello";
int 1i;
¢ = (char)i; // type casting operator

Chapter 13: Keywords 177

const

This keyword declares that a value will be stored in flash, thus making it unavailable for modifica-
tion. const isatype qualifier and may be used with any static or global type specifier (char,
int, struct, etc.). The const qualifier appears before the type unlessit is modifying a
pointer. When modifying a pointer, the const keyword appears after the “ *.”

In each of the following examples, if const was missing the compiler would generate atrivial
warning. Warnings for const can be turned off by changing the compiler options to report seri-
ouswarnings only. The use of const isnot currently permitted with return types, auto variables

or parametersin afunction prototype.

Example 1:

// ptr_to_x isaconstant pointer to an integer
int x;
int * const cptr to x = &Xx;

Example 2:

// cptr_to i isaconstant pointer to a constant integer
const int 1 = 3;
const int * const cptr to i = &i;

Example 3:

// axisaconstant 2 dimensional integer array
const int ax[2][2] = {{2,3}, {1.,2}};

Example 4:

struct rec {
int a;
char b[10];
[
// zedisaconstant struct
const struct rec zed = {5, “abc”};

Example 5:

// cptrisaconstant pointer to an integer

typedef int * ptr to int;

const ptr to int cptr = &i;

// thisdeclaration is equivalent to the previous one
int * const cptr = &i;

NOTE: Thedefault storage classisauto, so the above code would haveto be
outside of a function or would have to be explicitly set to static.

178

Dynamic C User’s Manual

continue

Skip to the next iteration of aloop.

while(expression) {
if (nothing to do) continue;

costate

Indicates the beginning of a costatement.

costate [name [state]] {

}

Name can be absent. If nameispresent, state canbealways onorinit on. If stateis
absent, the costatement is initially off.

debug

Indicates afunction isto be compiled in debug mode. This is the default case for Dynamic C func-
tions with the exception of pure assembly language functions.

Library functions compiled in debug mode can be single stepped into, and breakpoints can be set
in them.

debug int func () {

}

#asm debug
#endasm
The debug keyword in combination with the norst keyword will give you run-time checking

without debug. For example,
debug norst foo() {

}

will perform runtime-checking if enabled, but will not have rst instructions.

Chapter 13: Keywords 179

default

Identifies the default case in a switch statement. The default case is optional. It executes only
when the switch expression does not match any other case.

switch(expression) {
case constl:

case const2:

default:

do

Indicates the beginning of ado loop. A do loops tests at the end and executes at |east once.
do

while(expression) ;

The statement must have a semicolon at the end.

else
The false branch of an i £ statement.
if (expression)
statement // statement executeswhen expression istrue
else
statement // statement executeswhen expression isfalse

180 Dynamic C User’s Manual

enum

Defines alist of named integer constants:

enum foo ({

white, // default is O for thefirst item
black, // will bel
brown, // will be2
spotted = -2, // will be-2
striped, // will be-3

}i
Anenum canbedeclaredinlocal or global scope. Thetag foo isoptional; but it allows further
declarations:

enum foo rabbits;

To see a colorful sample of the enum keyword, run /samples/enum. c.

extern

Indicates that a variableis defined in the BIOS, later in alibrary file, or in ancther library file. Its
main use is in module headers.

/*** BeginHeader ..., var */
extern int var;
/*** EndHeader */
int wvar;

Chapter 13: Keywords 181

far

This keyword, when used in a variable declaration, tells the compiler to alocate storage for that
variable from the far memory space (xmem). The far qualifier, available only on the Rabbit 4000
or later processors, indicates that physical addressing will be used with all occurrences of the vari-
able. The far type qualifier may be used with any static or global type specifier (char, int, struct,
etc.). The far qualifier may appear before or after abasic or aggregate type. When modifying a
pointer, the far keyword appears after the “ *” in the declaration.

Theuse of far isvery similar to that of the const qualifier in that it may only be applied to glo-
bal or static variables. However, as shown in Example 1, far may come before or after the basic
type (allowing far after the type is compatible with some other compilers that support the far
qualifier). An error will be generated if far isapplied to auto variables, function parameters, or
function return values. This restriction does not apply to pointer-to-far as shown in the examples
below.

Example 1

// Xisaninteger variablein xmem

// Yy isalsoaninteger variable in xmem
static far int x;

static int far y;

// Thefollowing is prohibited
static far int far z;

The exception is pointers—if apointer to far isdeclared, asis shown in Example 2, it can be
used anywhere a“normal” pointer may be used (including autos, parameters and return types).
Example 2 aso shows how to place a pointer in xmem—as with const, the storage qualifier
comes after the “*”, indicating that the pointer itself isin xmem. The pointers in the example are
each 4 bytes, for the physical addresses they represent (effective 24-bit physical address—see the
Rabbit 4000 Designer’s Manual for more information).

182 Dynamic C User’s Manual

Example 2

// Xisaninteger variable in xmem
// ptr_to_x isapointer in root to an integer in xmem (pointer to far)
// far_ptr_to xisapointer in xmem to an integer in xmem

static far int x;
static far int * ptr to x = &x;
static far int * far far ptr to x = &x;

// Thefollowing are alowed

far int * foo(){ .. } // Returns pointer to far
void foo (far int * px) { .. } // Takes pointer-to-far as a parameter
auto far int *x; // 4 byte pointer-to-far on stack

// Thefollowing are prohibited
far int foo(){ .. }

void foo (far int x) { .. }
auto far int x;

You can also declare a pointer variable in xmem to a near (logical) address, as shown in Example
3. The size of this pointer variableis 2 bytes —for the 16-bit logical address it represents, but the
pointer itself isin xmem.

Example 3

// Xisavariablein root (may be auto or static)

// PX, apointer variable in xmem, points to an integer variable in root; px must be global or
static

int x;

static int * far px = &X;

The far qualifier can also be used to put structures and arrays directly in xmem. In Example 4, we
have a structure defined, and followed by a declaration. The declaration uses the far qualifier to
place the entire structure in xmem. Also note that “far” is not allowed for individual structure
members since this does not make any sense. However, asin the case of function parameters and
auto variables, pointersto far are allowed (see Example 4). Note that arraysin xmem can be made
much larger than root arrays and can be indexed using long values in addition to integers.

Chapter 13: Keywords 183

Example 4

struct rec f{

int a;

char b[10];

far int *p; // Thisisalowed

// far int c; // Thisisnot alowed

// int * far np; // Thisisaso not allowed

[

// myrecisastruct in xmem

far struct rec myrec;

// array isan array of integersin xmem
far int array[4000];

The far qualifier can be used in typedefs aswell. In Example 5, we declare a t ypedef for a
pointer-to-far type, which can be further modified as shown.

Example 5

// fptrisapointer to an integer in xmem
typedef far int * far ptr to int;
far ptr to int fptr = &i;

// cptrisapointer to an integer in xmem
typedef int * ptr to int;

far ptr to int cptr = &i;

// thisdeclarationis equivalent to the previous two
far int * cptr = &i;

The keyword far can aso be used in conjunction with const, allowing variables to be declared in
the xmem space in flash. Example 6 shows an example declaration of a far constant.

Example 6

// cisaconstant integer variable stored in xmem on the flash device
const far int cptr = 0x1234;

NOTE: The default storage classis auto, so any of the above code not
explicitly marked asstatic or auto (and not a pointer to far) would
have to be outside of afunction or would have to be explicitly set to
static.

184 Dynamic C User’s Manual

firsttime

firsttime infront of afunction body declares the function to have an implicit *CoData
parameter as the first parameter. This parameter should not be specified in the call or the proto-
type, but only in the function body parameter list. The compiler generates the code to automati-
cally passthe pointer to the CoData structure associated with the costatement from which the call
ismade. A firstime function can only be called from inside of a costatement, cofunction, or
dlice statement. The DelayTick function from COSTATE . LIB below is an example of a
firsttime function.

firsttime nodebug int DelayTicks (CoData *pfb, unsigned int ticks)

{

if (ticks==0) return 1;
if (pfb->firsttime) {
fb->firsttime=0;

/* savecurrent ticker */
fb->content.ul=(unsigned long)TICK TIMER;

}

else if (TICK TIMER - pfb->content.ul >= ticks)
return 1;

return O0;

float

Declares variables, function return values, or arrays, as 32-bit IEEE floating point.

int func ()
float x, y, *p;
float PI = 3.14159265;

}

float func(float par) {

}

Chapter 13: Keywords 185

for

Indicates the beginning of a for loop. A for loop has an initiaizing expression, alimiting
expression, and a stepping expression. Each expression can be empty.

for(;;) { // anendlessloop

}

for(i = 0; 1 < n; i++) { // counting loop

}

goto

Causes a program to go to alabeled section of code.

if(condition) goto RED;

RED:

Use goto to jump forward or backward in a program. Never use goto to jump into aloop body
or aswitch case. Theresults are unpredictable. However, it is possible to jump out of aloop
body or switch case.

186 Dynamic C User’s Manual

if

Indicates the beginning of an i £ statement.

if(tank full) shut off water();

if (expression) {
statements

}Jelse if(expression) {
statements

}Jelse if(expression) {
statements

}Jelse if(expression) {
statements

}else{
statements
}

If one of the expressionsistrue (they are evaluated in order), the statements controlled by that
expression are executed. An if statement can have zero or moreelse if parts. Theelse s
optional and executes only when none of the 1 £ or else 1if expressions aretrue (non-zero).

init on

The costatement isinitially on and will automatically execute the first timeit is encountered in the
execution thread. The costatement becomes inactive after it completes (or aborts).

Chapter 13: Keywords 187

int

Declares variables, function return values, or array elementsto be 16-bit integers. If nothing elseis
specified, int implies a 16-bit signed integer.

int 1, J, *k; // 16-bit signed
unsigned int x; // 16-bit unsigned
long int z; // 32-hit signed
unsigned long int w; // 32-bit unsigned
int funct (int arg) {
}
interrupt
Indicatesthat afunction isan interrupt service routine (ISR). All registers, including alternates, are

saved when an interrupt function is called and restored when the interrupt function returns. Writ-

ing

ISRsin C is never recommended, especially when timing is critical.

interrupt isr () {

}

An interrupt service routine returns no value and takes no arguments.

188

Dynamic C User’s Manual

interrupt vector

This keyword, intended for use with separate 1& D space, sets up an interrupt vector at compile
time. Thisisits syntax:

interrupt vector <INT VECTOR NAME> <ISR NAME>
A listof INT VECTOR NAMEs and ISR_NAMEsisfound in Table 12-5 on page 170. The fol-
lowing code fragment illustrates how interrupt vector isused.

// Setup an Interrupt Service Routine for Timer B
#asm

timerb isr::

; ISR code

ret
#endasm

main () {
// Variables

// Setup ISR
interrupt vector timerb intvec timerb isr; // Compiletime setup

// Code

}

interrupt vector overridesrun time setup. For run time setup, you would replace the
interrupt vector statement above with:
#rcodorg <INT VEC NAME> apply

#asm
INTVEC RELAY SETUP (timerb intvec + TIMERB OFS)

#endasm
#rcodorg rootcode resume

Thisresultsin aslower interrupt (80 clock cycles are added), but an interrupt vector that can be
modified at run time. Interrupt vectors that are set up using interrupt vector arefast, but
can’'t be modified at run time since they are set at compile time.

Chapter 13: Keywords 189

__lcall

When used in afunction definition, the 1call function prefix forceslong call and return
(Icall and Iret) instructions to be generated for that function, even if the function isin root. This
allowsroot functions to be safely called from xmem. In addition to root functions, this prefix also
workswith function pointers. The 1call prefix works safely with xmem functions, but has
no effect on code generation. Its use with cofunctionsis prohibited and will generate an error if
attempted.

root _ lcall int foo(void) {
return 10; // Generates an Iret instruction, even though we are in root
}
main() {
foo () ; // Thisnow generates an Icall instruction
}
long

Declares variables, function return values, or array e ementsto be 32-bit integers. If nothing elseis
specified, 1ong implies asigned integer.

long i, j, *k; // 32-bit signed

unsigned long int w; // 32-bit unsigned

long funct (long arg) {

}

main

Identifiesthemain function. All programs start at the beginning of themain function. (mainis
actually not a keyword, but is afunction name.)

nodebug

Indicates a function is not compiled in debug mode. Thisis the default for assembly blocks.

nodebug int func () {

}

#asm nodebug

#endasm

190 Dynamic C User’s Manual

See dso debug and directives #debug #nodebug.

norst

Indicates that a function does not use the RST instruction for breakpoints.

norst void func () {

}

Thenorst keyword in combination with the debug keyword will give you run-time checking
without debug. For example,

debug norst foo() {
}

will perform runtime-checking if enabled, but will not have rst instructions.

nouseix

Indicates a function does not use the I X register as a stack frame reference pointer. Thisis the
default case.

nouseix void func () {

}

NULL

The null pointer. (Thisisactually amacro, not akeyword.) Sameas (void *) 0.

protected

An important feature of Dynamic C is the ability to declare variables as protected. Such avariable
is protected against loss in case of a power failure or other system reset because the compiler gen-
erates code that creates a backup copy of a protected variable before the variable is modified. If
the system resets while the protected variable is being modified, the variable's value can be
restored when the system restarts. This operation requires battery-backed RAM and the use of the
main system clock. If you are using the 32 kHz clock you must switch back to the main system
clock to use protected variables because the atomicity of the write cannot be ensured when using
the 32 kHz clock.

Chapter 13: Keywords 191

main () {
protected int statel, state2, state3;

_sysIsSoftReset () ; // restore any protected variables
}

Thecal to sysIsSoftReset checksto seeif the previous board reset was due to the com-
piler restarting the program (i.e., a soft reset). If so, then it initializes the protected variable flags
and calls sysResetChain (), afunction chain that can be used to initialize any protected vari-
ables or do other initialization. If the reset was due to a power failure or watchdog time-out, then
any protected variables that were being written when the reset occurred are restored.

A system that shares data among different tasks or among interrupt routines can find its shared
data corrupted if an interrupt occurs in the middle of awrite to a multi-byte variable (such astype
int or float). Thevariable might be only partially written at its next use. Declaring a multi-
byte variable shared means that changes to the variable are atomic, i.e., interrupts are disabled
while the variable is being changed. You may declare a multi-byte variable as both shared and pro-
tected.

register

The register keyword is not currently implemented in Dynamic C, but is reserved for possible
future implementation. It is currently synonymous with the keyword auto.

192 Dynamic C User’s Manual

return

Explicit return from a function. For functions that return values, thiswill return the function result.
void func () {

if (expression) return;

}

float func (int x){
float temp;

return (temp * 10 + 1);

root

Indicates a function is to be placed in root memory. This keyword is semantically meaningful in
function prototypes and produces more efficient code when used. Its use must be consistent

between the prototype and the function definition.

root int func () {

}

#memmap root
#asm root

#endasm

Chapter 13: Keywords 193

segchain

Identifies a function chain segment (within a function).

int func (int arg){
int vec[10];

segchain GLOBAL INIT{
for(i = 0; 1i<10; i++){ vecl[i]l = 0; }
}

}

This example adds a segment to the function chain _ GLOBAL INIT. Using segchainis
equivalent to using the #GLOBAL INIT directive. When this function chain executes, this and
perhaps other segments elsewhere execute. The effect in thisexampleisto reinitialize vec [].

shared

Indicates that changes to a multi-byte variable (such asa f1oat) are atomic. Interrupts are dis-
abled when the variable is being changed. Local variables cannot be shared. Note that you must be
running off the main system clock to use shared variables. This is because the atomicity of the
write cannot be ensured when running off the 32 kHz clock.

shared float x, y, z;
shared int j;

mai;'l'(.) {

}

If i isashared variable, expressions of theform i++ (or i = i+ 1) constitute two atomic ref-
erencesto variable i, aread and awrite. Be careful because i ++ isnot an atomic operation.

short

Declaresthat avariable or array is short integer (16 bits). If nothing elseis specified, short implies
a 16-bit signed integer.

short i, j, *k; // 16-bit, signed
unsigned short int w; // 16-bit, unsigned
short funct (short arg) {

}

194 Dynamic C User’s Manual

size

Declares afunction to be optimized for size (as opposed to speed).

size int func () {

}

sizeof

A built-in function that returns the size in bytes of avariable, array, structure, union, or of a data
type. sizeof () can beused inside of assembly blocks.

int 1list[] = { 10, 99, 33, 2, -7, 63, 217 };
x = gizeof (list) ; // xwill beassigned 14
speed

Declares afunction to be optimized for speed (as opposed to size).

speed int func () {

}

static

Declares alocal variable to have a permanent fixed location in memory, as opposed to auto,
where the variable exists on the system stack. Global variables are by definition static. Loca
variables are auto by default.

int func () {
int 1i; // auto by default
static float x; // explicitly static

Chapter 13: Keywords 195

struct

This keyword introduces a structure declaration, which defines atype.
struct {
int x;
int y;

int z;
} thingl; // definesthe variable thingl to be a struct

struct speed{

int x;

int vy;

int z;
}i // declares astruct type named speed
struct speed thing2; // defines variable thing2 to be of type speed

Structure declarations can be nested.

struct {
struct speed slow;

struct speed slower;
} tortoise; // definesthe variable tortoise to be a nested struct

struct rabbit
struct speed fast;

struct speed faster;
}i // declares anested struct type named rabbit

struct rabbit chips; // definesthe variable chipsto be of type rabbit

196 Dynamic C User’s Manual

switch

Indicates the start of a switch statement.

switch(expression) {
case constl:

break;
case const2:
break;
case const3:
break
default
}
The switch statement may contain any number of cases. The constants of the case statements
are compared with expression. If thereisamatch, the statements for that case execute. The

default case if itispresent, executesif none of the constants of the case statements match
expression.

If the statementsfor acase donot includeabreak, return, continue, or some means of
exiting the switch statement, the cases following the selected case will also execute, regardless
of whether their constants match the swit ch expression.

typedef

This keyword provides away to create new names for existing data types.

typedef struct {

int x;

int y;
} xyz; // definesastruct type...
xyz thing; // ...and athing of type xyz
typedef uint node; // meaningful type name

node master, slavel, slave2;

Chapter 13: Keywords 197

union

Identifies avariable that can contain objects of different types and sizes at different times. Itemsin
aunion havethe same address. The size of aunion isthat of itslargest member.

union {
int x;
float y;
} abc; // overlaysafloat and an int

unsigned

Declaresavariable or array to be unsigned. If nothing elseis specified in a declaration,
unsigned means 16-bit unsigned integer.

unsigned i, j, *k; // 16-bit, unsigned
unsigned int x; // 16-bit, unsigned
unsigned long w; // 32-bit, unsigned
unsigned funct (unsigned arg) {

}
Valuesin a 16-bit unsigned integer range from 0 to 65,535 instead of —32768 to +32767. Valuesin

an unsigned long integer range from 0 to 232 — 1.

useix

Indicates that afunction uses the I X register as a stack frame pointer.

useix void func () {

}

Seedsonouseix and directives #useix #nouseix.

198 Dynamic C User’s Manual

waitfor

Used in a costatement or cofunction, this keyword identifies a point of suspension pending the
outcome of a condition, completion of an event, or some other delay.

for(;;){
costate {
waitfor (input(l) == HIGH);
}

waitfordone
(wfd)

Thewaitfordone keyword can be abbreviated aswfd. It ispart of Dynamic C's cooperétive
multitasking constructs. Used inside a costatement or a cofunction, it executes cofunctions and
firsttime functions. When al the cofunctionsand £ i rsttime functionsinthe wfd state-
ment are complete, or one of them aborts, execution proceeds to the statement following wfd.
Otherwise ajump is made to the ending brace of the costatement or cofunction wherethe wfd
statement appears; when the execution thread comes around again, control is given back to the
wfd statement.

The wfd statements below are from Samples\cofunc\cofterm.c

x = wfd login() ; // wfd with one cofunction
wfd { // wifd with severa cofunctions
clrscr () ;

putat (5,5, "name:") ;
putat (5,6, "password:") ;
echoon () ;

}

wfd may return avalue. In the example above, the variable x issetto 1 if 1ogin () completes
execution normally and set to -1 if it aborts. This scheme is extended when there are multiple
cofunctionsinside the wf d: if no abort has taken place in any cofunction, wfd returns 1, 2, ..., nto
indicate which cofunction inside the braces finished executing last. If an abort takes place, wfd
returns -1, -2, ..., -n to indicate which cofunction caused the abort.

Chapter 13: Keywords 199

while

Identifiesthe beginning of a while loop. A while loop testsat the beginning and may exe-
cute zero or more times.

while(expression) {

}

xdata

Declares ablock of datain extended flash memory.

xdata name { value 1, ... value n };

The 20-bit physical address of the block is assigned to name by the compiler as an unsigned long
variable. The amount of memory allocated depends on the data type. Each char isallocated one
byte, and each int isalocated two bytes. If an integer fitsinto one byte, it is still allocated two
bytes. Each f1oat and 1ong cause four bytes to be alocated.

The value list may include constant expressions of type int, float, unsigned int, long,
unsigned long, char, and (quoted) strings. For example:

xdata
xdata
xdata
xdata

namel
name2
name3
name4

{'\X46','\X47','\x48','\X49','\X4A','\X20','\X20'};
{'R','a','b','b','i','t'};

{" Rules! "};

{1.0,2.0, (float)3,40e-01,5e00, .6el};

The data can be viewed directly in the dump window by doing a physical memory dump using the
20-bit address of the xdata block. See Samples\Xmem\xdata . c for more information.

200

Dynamic C User’s Manual

Xxmeim

Indicates that afunction isto be placed in extended memory. This keyword is semantically mean-
ingful in function prototypes. Good programing style dictates its use be consistent between the
prototype and the function definition. That is, if afunction is defined as:

xmem int func() {}
the function prototype should be;

xmem int func() ;

Any of the following will put the function in xmem:

xmem int func() ;
xmem int func() {}
or
xmem int func() ;
int func() {}
or

int func() ;
xmem int func() {}

In addition to flagging individual functions, the xmem keyword can be used with the compiler
directive #memmap to send all functions not declared as root to extended memory.

#memmap xmem
This construct is helpful if an application is running out of root code space. Another strategy is to
use separate & D space. Using both #memmap xmem and 1& D space is not advised and might

cause an application to run out of xmem, depending on the size of the application and the size of
the flash.

Chapter 13: Keywords 201

xstring

Declares atable of strings in extended memory. The strings are allocated in flash memory at com-
pile time which means they can not be rewritten directly.

The table entries are 20-bit physical addresses. The name of the table represents the 20-bit physi-
cal address of the table; this address is assigned to name by the compiler.

xstring name { “string 1”, . . . “string n” };

yield

Used in a costatement, this keyword causes the costatement to pause temporarily, allowing other
costatements to execute. The yield statement does not alter program logic, but merely postpones
it.

for (;;){
costate {

yield;

202 Dynamic C User’s Manual

13.1 Compiler Directives

Compiler directives are specia keywords prefixed with the symbol #. They tell the compiler how
to proceed. Only one directive per lineisallowed, but a directive may span more than onelineif a
backslash (\) is placed at the end of the line(s).

There are some compiler directives used to decide where to place code and datain memory. They
are caled origin directives and include #rcodorg, #rvarorg and #xcodorg. A detailed
description of origin directives may be found in the Rabbit 3000 Designer’s Handbook (look in
the index under “origin directives’).

#asm

Syntax: #asm options
Begins a block of assembly code. The available options are:
e const: When seperate |&D spaceis enabled, assembly constants should be placed in their

own assembly block (or done in C). For more information, see Section 12.2.2, “ Defining Con-
stants.”

e debug: Enables debug code during assembly.

e nodebug: Disables debug code during assembly. Thisis the default condition. It isstill possi-
ble to single step through assembly code as long as the assembly window is open.

e xmem: Places ablock of code into extended memory, overriding any previous memory direc-
tives. The block is limited to 4KB.

If the #asm block isunmarked, it will be compiled to root.

#class

Syntax: #class options
Controlsthe storage class for local variables. The available options are:

e suto: Placeloca variables on the stack.

e static: Placelocal variablesin permanent, fixed storage.

The default storage classis auto.

Chapter 13: Keywords 203

#debug
#nodebug

Enables or disables debug code compilation. #debug isthe default condition. A function'slocal
debug or nodebug keyword overrides the global #debug and #nodebug directives. The
#debug and #nodebug directives only override the default debug compile mode for functions
whose debug/nodebug compile mode is unspecified. #nodebug prevents RST 28h instructions
from being inserted between C statements and assembly instructions.

NOTE: These directives do nothing if they are inside of afunction. Thisis
by design. They are meant to be used at the top of an application file.

#define

Syntax: #define nametext or #define name (parameters. ..) text

Defines a macro with or without parameters according to ANSI standard. A macro without param-
eters may be considered a symbolic constant. Supportsthe # and ## macro operators. Macros can
have up to 32 parameters and can be nested to 126 levels.

#endasm

Ends a block of assembly code.

#fatal

Syntax: #fatal “..."

Instructs the compiler to act asif afatal error. The string in quotes following the directive isthe
message to be printed

204 Dynamic C User’s Manual

#GLOBAL INIT

Syntax: #GLOBAL_ INIT { variables}

#GLOBAL_ INIT sectionsare blocks of code that are run once beforemain () iscalled. They
should appear in functions after variable declarations and before the first executable code. If a
local static variable must be initialized once only before the program runs, it should be donein a
#GLOBAL_INIT section, but other inititialization may also be done. For example:

// Thisfunction outputs and returns the number of times it has been called.
int foo () {
char count;
#GLOBAL INIT{
// initialize count
count = 1;
// make port A output
WrPortI (SPCR, SPCRShadow, 0x84) ;

}

// output count
WrPortI (PADR,NULL, count) ;

// increment and return count
return ++count;

#ferror

Syntax: error "...

Instructs the compiler to act asif an error was issued. The string in quotes following the directive
is the message to be printed

#funcchain

Syntax: #funcchain chainname name
Adds afunction, or another function chain, to afunction chain.

Chapter 13: Keywords 205

#if
#elif
#else

#endif

Syntax: #1 £ constant_expression
#elif constant_expression
#else
#endif

These directives control conditional compilation. Combined, they form a multiple-choice i f.
When the condition of one of the choices is met, the Dynamic C code selected by the choiceis
compiled. Code belonging to the other choicesis ignored.

main () {
#if BOARD TYPE == 1
#define product "Ferrari"
#elif BOARD TYPE == 2

#define product "Maserati"

#elif BOARD TYPE ==
#define product "Lamborghini"

#else
#define product "Chevy"

#tendif

}

The#elif and #else directivesare optional. Any code between an #else and an #endif is
compiled if al valuesfor constant expression arefase.

#ifdef

Syntax: #ifdef name

This directive enables code compilation if name has been defined with a#de f ine directive. This
directive must have amatching #endif.

206 Dynamic C User’s Manual

#ifndef

Syntax: #ifndef name

This directive enables code compilation if name has not been defined with a #de f ine directive.
This directive must have amatching #endif.

#interleave
#nointerleave

Controls whether Dynamic C will intersperse library functions with the program’s functions dur-
ing compilation together, separately from the library functions.

#nointerleave forcesthe user-written functions to be compiled first. The #nointerleave
directive, when placed at the top of application code, tells Dynamic C to compile all of the appli-
cation code first and then to compile library code called by the application code afterward, and
then to compile other library code called by theinitial library code following that, and so on until
finished.

Note that the #nointerleave directive can be placed anywhere in source code, with the effect
of stopping interleaved compilation of functions from that point on. If #nointerleave is
placed in library code, it will effectively cause the user-written functions to be compiled together
starting at the statement following the library call that invoked #nointerleave.

#makechain

Syntax: #makechain chainname

Creates afunction chain. When a program executes the function chain named in this directive, all
of the functions or segments belonging to the function chain execute.

Chapter 13: Keywords 207

#memmap

Syntax: #memmap options
Controls the default memory areafor functions. The following options are available.

e anymem NNNN: When code comeswithin NNNN bytes of the end of root code space, start
putting it in xmem. Default memory usageis #memmap anymem 0x2000.

e root: All functions not declared as xmem go to root memory.

e xmem: C functionsnot declared as root go to extended memory. Assembly blocks not marked
as xmem go to root memory. See the description for xmem for more information on this key-
word.

#pragma

Syntax: #pragma nowarn [warnt|warns]

Trivial warnings (warnt) or trivial and serious warnings (warns) for the next physical line of
code are not displayed in the Compiler Messages window. The argument is optional; default
behavior iswarnt.

Syntax: #pragma nowarn [warnt|warns] start

Trivial warnings (warnt) or trivial and serious warnings (warns) are not displayed in the Com-
piler Messages window until the #pragma nowarn end statement isencountered. The argu-
ment is optional; default behavior iswarnt. #pragma nowarn cannot be nested.

208 Dynamic C User’s Manual

#precompile

Allows library functions in a comma separated list to be compiled immediately after the BIOS.

The #precompile directive isuseful for decreasing the download time when developing your
program. Precompiled functions will be compiled and downloaded with the BIOS, instead of each
time you compile and download your program. The following limitations exist:

e Precompile functions must be defined nodebug.

e Any functionsto be precompiled must be in alibrary, and that library must beincluded either in
the BIOSusinga #use, or recursively included by those libraries.

e [nternal BIOS functions will precompile, but will not result in any improvement.

e Librariesthat require the user to define parameters before being used can only be precompiled
if those parameters are defined before the #precompile statement. An example of thisis
includedinprecompile.lib.

e Function chains and functions using segment chains cannot be precompiled.
e Precompiled functions will be placed in extended memory, unless specifically marked root.

e All dependencies must be resolved (Macros, variables, other functions, etc.) before afunction
can be precompiled. This may require precompiling other functionsfirst.

Seeprecompile.lib for moreinformation and examples.

Chapter 13: Keywords 209

#undef

Syntax: #undef identifier
Removes (undefines) a defined macro.

#use

Syntax: #use pathname

Activatesalibrary named in 1ib . dir so modulesin the library can be linked with the applica-
tion program. This directiveimmediately readsin all the headers in the library unless they have
aready been read.

#useix
#nouseix

Controls whether functions use the I X register as a stack frame reference pointer or the SP (stack
pointer) register. #nouseix isthe default.

Note that when the I X register is used as a stack frame reference pointer, it is corrupted when any
stack-variable using function is called from within a cofunction, or if a stack-variable using func-
tion contains a call to a cofunction.

#warns

Syntax: #warns “...

Instructs the compiler to act asif a serious warning was issued. The string in quotes following the
directive is the message to be printed.

#warnt

Syntax: #warnt “..”

Instructs the compiler to act asif atrivial warning was issued. The string in quotes following the
directive is the message to be printed.

210 Dynamic C User’s Manual

#ximport

Syntax: #ximport “filename” symbol

This compiler directive places the length of filename (stored as a 1 ong) and its binary contents at
the next avail able place in xmem flash. filename is assumed to be either relative to the Dynamic C
installation directory or afully qualified path. symbol is a compiler generated macro that givesthe
physical address where the length and contents were stored.

The sample program ximport . c illustrates the use of this compiler directive.

#zimport

Syntax: #zimport “filename’ symbol

This compiler directive extends the functionality of #ximport toinclude file compression by an
external utility. filenameisthe input file (and must be relative to the Dynamic C installation direc-
tory or be afully qualified path) and symbol represents the 20-hit physical address of the down-
loaded file.

The external utility supplied with Dynamic C is zcompress . exe. It outputs the compressed
file to the same directory asthe input file, appending the extension . DCZz. E.g., if theinput fileis
named test . txt, the output file will be named test . txt .dcz. Thefirst 32 bits of the out-
put file contains the length (in bytes) of the file, followed by its binary contents. The most signifi-
cant bit of the length is set to one to indicate that the file is compressed.

The sample program z import . c illustrates the use of this compiler directive. Please see Appen-
dix C.2.2 for further information regarding file compression and decompression.

Chapter 13: Keywords 211

212 Dynamic C User’s Manual

14. Operators

An operator isasymbol such as +, —, or & that expresses some kind of operation on data. Most
operators are binary—they have two operands.

a + 10 // two operands with binary operator "add"
Some operators are unary—they have a single operand,
-amount // single operand with unary “minus’

although, like the minus sign, some unary operators can also be used for binary operations.

There are many kinds of operators with operator precedence. Precedence governs which oper-
ations are performed before other operations, when there is a choice.

For example, given the expression
a =b + c * 10;

will the + or the * be performed first? Since * has higher precedence than +, it will be performed
first. The expression is equivalent to

a=>b + (c * 10);
Parentheses can be used to force any order of evaluation. The expression
a= (b + c) * 10;

uses parentheses to circumvent the normal order of evaluation.

Associativity governs the execution order of operators of equal precedence. Again, parentheses
can circumvent the normal associativity of operators. For example,

a=D>b+c+ d; // (b+c) performed first

a =Db + (c + 4d); // now c+d is performed first

int *a(); // function returning a pointer to an integer
int (*a) () ; // pointer to afunction returning an integer

Unary operators and assignment operators associate from right to left. Most other operators associ-
ate from left to right.

Certain operators, namely *, &, (), [1, -> and . (dot), can be used on the left side of an
assignment to construct what is called an Ivalue. For example,

float x;
* (char*)&x = 0x17; // low byte of x gets value

Chapter 14: Operators 213

When the data types for an operation are mixed, the resulting type is the more precise.

float x, vy, z;
int 1, j, k;

char c;
z = 1i / x; // same as (float)i / x
J =k + c; // sameask + (int)c

By placing atype namein parenthesesin front of avariable, the program will perform type casting
or type conversion. In the example above, theterm (£1loat) i meansthe “the value of i con-
verted to floating point.”

The operators are summarized in the following pages.

14.1 Arithmetic Operators

+

Unary plus, or binary addition. (Standard C does not have unary plus.) Unary plus does not really
do anything.

a =Db + 10.5; // binary addition
Z = +Y; // just for emphasis!

Unary minus, or binary subtraction.

a =Db - 10.5; // binary subtraction
Z = -Y; // zgetsthe negative of y

214 Dynamic C User’s Manual

*

Indirection, or multiplication. As aunary operator, it indicates indirection. When used in a declara-
tion, * indicates that the following item is a pointer. When used as an indirection operator in an
expression, * provides the value at the address specified by a pointer.

int *p; // pisapointer to an integer
const int j = 45;
p = &J; // pnow pointstoj.
k = *p; // Kk getsthe value to which
// ppoints, namely 45.
*p = 25; // Theinteger to which p points gets 25.

// Sameasj =25, since p pointstoj.

Beware of using uninitialized pointers. Also, theindirection operator can be
used in complex ways.

int *1ist[10] // array of 10 pointersto integers
int (*list) [10] // pointer to array of 10 integers
float** vy; // pointer to apointer to afloat
Z = **y; // zgetsthevaueof y
typedef char **stp;

stp my stuff; // my_stuff istyped char**

Asabinary operator, the * indicates multiplication.

a=D>b * c; // agetsthe product of b and c
/
Divideis abinary operator. Integer division truncates; floating-point division does not.
const int i = 18, const j = 7, k; float x;
k =1/ 3; // resultis2;
X = (float)i / 3; // resultis2.591...

Chapter 14: Operators 215

++

Pre- or post-increment is a unary operator designed primarily for convenience. If the ++ precedes
an operand, the operand is incremented before use. If the ++ operator follows an operand, the
operand is incremented after use.

int i, all12];

i = 0;

q = ali++]; // qgetsa0], theni becomes 1
r = ali++]; // rgetsg 1], theni becomes2
S = ++1; // ibecomes3, thens=i
1+4+4; // 1becomes4

If the ++ operator is used with a pointer, the value of the pointer increments by the size of the
object (in bytes) to which it points. With operands other than pointers, the value increments by 1.

Pre- or post-decrement. If the —- precedes an operand, the operand is decremented before use. If
the — - operator follows an operand, the operand is decremented after use.

int j, al12];

j = 12;
qg=al--j1; //] becomes1l, then q getsa[1l]
r = al--j1; //] becomes 10, thenr gets a[10]
s = j-—; // s=10, thenj becomes 9
j--; // jbecomes8
If the —- operator is used with a pointer, the value of the pointer decrements by the size of the

object (in bytes) to which it points. With operands other than pointers, the value decrements by 1.

[)

)

Modulus. Thisisabinary operator. The result is the remainder of the left-hand operand divided by
the right-hand operand.

const int i = 13;
j =i % 10; // joetsi mod 10 or 3
const int k = -11;
j =k % 7; // jgetskmod7or-4

216 Dynamic C User’s Manual

14.2 Assignment Operators

Assignment. This binary operator causes the value of the right operand to be assigned to the left
operand. Assignments can be “ cascaded” as shown in this example.

a =10 * b + ¢; // agetstheresult of the calculation
a=b = 0; // bgetsOandagetsO

Addition assignment.
a += 5; // Add5toa Sameasa=a+5

Subtraction assignment.
a -= 5; // Subtract5froma Sameasa=a-5

Multiplication assignment.
a *= 5; // Multiply aby 5. Sameasa=a* 5

Division assignment.
a /= 5; // Divideaby 5. Sameasa=a/5

Modulo assignment.
a %= 5; // amod5. Sameasa=a%5

L eft shift assignment.
a <<= 5; // Shift aleft 5 bits. Sameasa=a<<5

Right shift assignment.
a >>= 5; // Shiftaright 5 bits. Sameasa=a>>5

~

Chapter 14: Operators 21

Bitwise AND assignment.
a &= b; // AND awithb. Sameasa=a& b

Bitwise XOR assignment.
a *= b; // XORawithbh. Sameasa=a”b

Bitwise OR assignment.
a |= b; // ORawithb. Sameasa=a|b

14.3 Bitwise Operators

Shift left. Thisis abinary operator. The result isthe value of the |eft operand shifted by the num-
ber of bits specified by the right operand.

int 1 = OxFOOF;
j = 1 << 4; //] gets 0x00FO0

The most significant bits of the operand are lost; the vacated bits become zero.

Shift right. Thisis a binary operator. The result isthe value of the |eft operand shifted by the num-
ber of bits specified by the right operand:

int 1 = OxFOOF;

j =1 >>4; // j gets OXFFOO
The least significant bits of the operand are lost; the vacated bits become zero for unsigned vari-
ables and are sign-extended for signed variables.

Address operator, or bitwise AND. As a unary operator, this provides the address of avariable:

int x;
zZ = &X; // zgetsthe address of x
Asabinary operator, this performs the bitwise AND of two integer (char, int, or 1ong) vaues.
int 1 = OxFFFO;
int j = O0xXOFFF;
z =1 & j; // z gets OXOFFO

218 Dynamic C User’s Manual

Bitwise exclusive OR. A binary operator, this performs the bitwise XOR of two integer (8-bit, 16-
bit or 32-hit) values.

int 1 = OxFFFO;
int j = OxOFFF;
z =1 " 3; // Z gets OxFOOF

Bitwise inclusive OR. A binary operator, this performs the bitwise OR of two integer (8-bit, 16-bit
or 32-bit) values.
int i = 0xFF00;

int j 0xO0FFO0;
z =1 | 3; // Zgets OxFFFO

Bitwise complement. Thisisaunary operator. Bitsin achar, int, or long vaue are inverted:

int switches;
switches = OXFFFO;
j = ~switches; // | becomes OxO00F

14.4 Relational Operators

Lessthan. Thishinary (relational) operator yields a Boolean value. The result is 1 if the left oper-
and is less than the right operand, and O otherwise.
ifF(1< 3§){
body // executesifi <]

}

OK = a < b; // truewhena<b

Lessthan or equal. This binary (relational) operator yields a boolean value. The result is 1 if the
left operand isless than or equal to the right operand, and O otherwise.

if(i <=3)
body // executesifi<=j

OK = a <= b; // truewhena<=Db

Chapter 14: Operators 219

>

Greater than. This binary (relational) operator yields a Boolean vaue. Theresult is 1 if the left
operand is greater than the right operand, and O otherwise.

if(i > 3)f
body // executesifi > |

OK = a > b; // truewhena>Db

Greater than or equal. This binary (relational) operator yields a Boolean value. Theresult is 1 if
the left operand is greater than or equal to the right operand, and O otherwise.
if(1 >= 3){
body // executesifi>=|

OK = a >= b; // truewhena>=b

14.5 Equality Operators

Equal. This binary (relational) operator yields a Boolean value. The result is 1 if the left operand
equals the right operand, and O otherwise.

if(i == 3){
body // executesifi=j
}

OK = a == b; // truewhena=Db

Note that the == operator is not the same as the assignment operator (=). A common mistake isto
write

if(i =3)f
body
}

Here, 1 getsthe value of j, and the i £ condition istrue when i isnon-zero, not when i equals j.

Not equal. Thisbinary (relational) operator yields a Boolean value. The result is 1 if the left oper-
and is not equal to the right operand, and O otherwise.

if(i 1= 3)
body // executesifil=]j

OK = a != b; // truewhenal=b

220 Dynamic C User’s Manual

14.6 Logical Operators

Logical AND. Thisisahbinary operator that performs the Boolean AND of two values. If either
operand is O, the result is O (FALSE). Otherwise, theresult is 1 (TRUE).

Logical OR. Thisisabinary operator that performs the Boolean OR of two values. If either oper-
and is non-zero, theresult is1 (TRUE). Otherwise, the result isO (FALSE).

Logical NOT. Thisisaunary operator. Observe that C does not provide a Boolean datatype. In C,
logical falseisequivaent to 0. Logical trueis equivalent to non-zero. The NOT operator resultis 1
if the operand is 0. The result is O otherwise.

test = get input(...);
if(!test){

}

14.7 Postfix Expressions

Grouping. Expressions enclosed in parentheses are performed first. Parentheses also enclose func-
tion arguments. In the expression

a= (b +c¢c) * 10;
thetermb + cisevaluated first.

Array subscripts or dimension. All array subscripts count from O.

int all2]; // aray dimensionis 12
j = alil; // referencestheith element

Chapter 14: Operators 221

The dot operator joins structure (or union) names and subnames in a reference to a structure (or
union) element.

struct {
int x;
int y;

} coord;

m = coord.x;

Right arrow. Used with pointers to structures and unions, instead of the dot operator.
typedef struct({

int x;
int vy;
} coord;
coord *p; // pisapointer to structure
m = p->X; // reference to structure element

14.8 Reference/Dereference Operators

Address operator, or bitwise AND. As a unary operator, this provides the address of a variable:
int x;

Z = &X; // zZgetsthe address of x

As abinary operator, this performs the bitwise AND of two integer (char, int, or long) val-
ues.

int i = 0xFFFO;
int j = OxOFFF;
z =1 & 3j; // zgets OxOFFO

222 Dynamic C User’s Manual

*

Indirection, or multiplication. As aunary operator, it indicates indirection. When used in a declara-
tion, * indicates that the following item is a pointer. When used as an indirection operator in an
expression, * provides the value at the address specified by a pointer.

int *p; // pisapointer to an integer

int j = 45;

p = &Jj; // pnow pointstoj.

k = *p; // k getsthe value to which p points, namely 45.
*p = 25; // Theinteger to which p points gets 25.

// Sameasj =25, since p pointstoj.

Beware of using uninitialized pointers. Also, theindirection operator can be
used in complex ways.

int *list[10] // array of 10 ptrstoint
int (*1list) [10] // ptrtoarray of 10 ints
float** vy; // ptrtoaptrto afloat

Z = **y; // zgetsthevalueof y
typedef char **stp;

stp my stuff; // my_stuff istyped char**

Asabinary operator, the * indicates multiplication.
a=>b * c; // agetsthe product of b and ¢

14.9 Conditional Operators

Conditional operators are athree-part operation unique to the C language. The operation has three
operands and the two operator symbols ? and :.

? °

If the first operand evaluates true (non-zero), then the result of the operation isthe second operand.
Otherwise, the result is the third operand.

int i, j, k;
i=3 <k? 3 : k;
The 2 : operator isfor convenience. The above statement is equivalent to the following.

if(§ < k)
i=73;
else
i = k;

If the second and third operands are of different type, the result of this operation is returned at the
higher precision.

Chapter 14: Operators 223

14.10 Other Operators

(type)

The cast operator converts one data type to another. A floating-point value is truncated when
converted to integer. The bit patterns of character and integer data are not changed with the cast
operator, although high-order bits will be lost if the receiving value is not large enough to hold the
converted value.

unsigned i; float x = 10.5; char c;

i = (unsigned)x; // igets1o;

c = *(char*) &x; // cgetsthelow byte of x
typedef ... typedA;

typedef ... typeB;

typeA iteml;
typeB item2;

item2 = (typeB)iteml; // forcesiteml to be treated as atypeB

sizeof

The sizeof operator isaunary operator that returns the size (in bytes) of a variable, structure,
array, or union. It operates at compile time asif it were a built-in function, taking an object or a
type as a parameter.

typedef struct{
int x;
char y;
float z;

} record;

record array[100];
int a, b, ¢, d;

char cc[] = "Fourscore and seven'";

char *1list[] = { "ABC", "DEFG", "HI" };

#define array size sizeof (record)*100 // number of bytesin array
a = sizeof (record) ; Y

b = array size; // 700

¢ = sizeof (cc); // 20

d = sizeof(list); // 6

Why issizeof (1ist) equa to6? 1ist isanarray of 3 pointers (to char) and pointers have
two bytes.

Why issizeof (cc) equa to 20 and not 19? C strings have aterminating null byte appended by
the compiler.

224 Dynamic C User’s Manual

/4

Comma operator. This operator, unique to the C language, is a convenience. It takes two operands:
the left operand—typically an expression—is evaluated, producing some effect, and then dis-
carded. The right-hand expression is then evaluated and becomes the result of the operation.

This example shows somewhat complex initialization and stepping in a for statement.

for(i=0,j=strlen(s)-1; i<j; i++,3—){

}

Because of the comma operator, the initialization has two parts: (1) set i to 0 and (2) get the
length of string s. The stepping expression also has two parts: increment i and decrement 5.

The comma operator exists to allow multiple expressionsin loop or i £ conditions.

The table below shows the operator precedence, from highest to lowest. All operators grouped
together have equal precedence.

Table 14-1. Operator Precedence

Operators Associativity Function
0O 1 -> left to right member
!(ty;e)H* _; cigeot right to left unary
* /% left to right multiplicative
+ - left to right additive
<< >> left to right bitwise
< <= > >= left to right relational
== I= left to right equality
& left to right bitwise
» left to right bitwise
| left to right bitwise
&& left to right logical
|| left to right logical
? right to left conditional
:<=*_»:= &9:= A:= ;= right to left assignment
, (comma) left to right series

Chapter 14: Operators

225

226 Dynamic C User’s Manual

15. Graphical User Interface

Dynamic C can be used to edit source files, compile and run programs, and choose options for
these activities using pull-down menus or keyboard shortcuts. There are two modes: edit mode and
run mode (run mode is a so known as debug mode). Various debugging windows can be viewed in
run mode. Programs can compile directly to atarget controller for debugging in RAM or flash.
Programs can also be compiled to a . bin file, with or without a controller connected to the PC.

To debug a program, a controller must be connected to the PC, either directly via a programming
cable or indirectly viaan Ethernet connection and a RabbitLink board. Multiple instances of
Dynamic C can run simultaneously. This means multiple debugging sessions are possible over dif-
ferent serial ports. Thisis useful for debugging boards that are communi cating among themsel ves.

15.1 Editing

A fileisdisplayed in atext window when it is opened or created. More than one text window may
be open. If the same file is in multiple windows, any changes made to the file in one window will
be reflected in all text windows that display that file. Dynamic C supports normal Windows text
editing operations.

A mouse (or other pointing device) may be used to position the text cursor, select text, or extend a
text selection. The keyboard may be used to do these same things. Text may be scrolled using the
arrow keys, the PageUp and PageDown keys, and the Home and End keys. The up, down, |eft and
right arrow keys move the cursor in the corresponding direction.

The Ctrl key works in conjunction with the arrow keysthis way

Ctrl+Left Move cursor to previous word.
Ctrl+Right Move cursor to next word.

Move editor window up, text moves down one line. Cursor is
Ctrl+Up

not moved.

Move editor window down, text moves up oneline. Cursor is
Ctrl+Down

not moved.

The Home key may be used alone or with other keys.

Home Move to beginning of line.
Ctrl+Home Move to beginning of file.
Shift+Home Select to beginning of line.
Shift+Ctrl+Home | Select to beginning of file.

Chapter 15: Graphical User Interface 227

The End key may be used alone or with other keys.

End Move to end of line.
Ctrl+End Move to end of file.
Shift+End Select to end of line.

Shift+Ctrl+End | Select to end of file.

15.2 Menus

Dynamic C’'s main menu has 8 command menus, as well as the standard Windows system menus.

- An available command can be exe-
i3 Dynamic C Dist. 9.00 cuted from amenu by clicking the
File Edit Compile Run Inspect Options Window Help menu and then clicking the command
or by (1) pressing the Alt key to acti-
vate the menu bar, (2) using the left and right arrow keys to select a menu, (3) and using the up or

down arrow keysto select acommand, and (4) pressing Enter.

It is usually more convenient to type keyboard shortcuts (such as <Ctrl+H> for the Library
Function Lookup option). Pressing the Esc key will make any visible menu disappear. A menu can
be activated by holding the Alt key down while pressing the underlined letter of the menu name.

For example, press <Alt+F> to activate the FILE menu.

15.2.1 File Menu
Click the menu title or press <Alt+F> to select the FILE menu.

% Dynamic C Dist. 8.00Beta2 New <Ctrl+N>

LR Edt Lompile Bum - Inspect Options Wit Creates a blank, untitled program in anew win-

[0 New Cr+ o4a M

= Open... Chrl+0

H Save Ctil+5

ﬂ Save fsg..

Bl Save sl ShifteChles commands.
E‘gg Lloze Chrl+F4

Open <Ctrl+O>

.....

Project OO Create.

Frint Setup § gpen...

Frinit Preview Ef DS

S Prirt G Save Az
- E0 Close

L Ext Alt+F4

dow, called the text window or the editor window.
If you right click anywhere in the text window a
popup menu will appear. It is available as a con-
venience for accessing some frequently used

Presents a dialog box to specify the name of afile
to open. To select afile, typein the file name
(pathnames may be entered), or browse and select
it. Unless thereis a problem, Dynamic C will
present the contents of the file in atext window.
The program can then be edited or compiled.
Multiple files can be selected by either holding

down <Ctrl> then clicking the left mouse on each filename you want to open, or by dragging

the selection rectangle over multiple filenames.

228

Dynamic C User’s Manual

Save <Ctrl+S>
The Save command updates an open file to reflect changes made since the last time the file
was saved. If the file has not been saved before (i.e., the fileis a new untitled file), the Save
As dialog will appear to prompt for a name. Use the Save command often while editing to
protect against loss during power failures or system crashes.

Save As
Presents a dialog box to save the file under anew name. To select afile name, typeit in the
File name field. The file will be saved in the folder displayed in the Save in field. You may, of
course, browse to another location. You may also select an existing file. Dynamic C will ask
you if you wish to replace the existing file with the new one.

Save All <Shift+Ctrl+S>
This command saves all maodified files that are currently open.

Close <Ctrl+F4>
Closesthe active editor window. If there is an attempt to close amodified file, Dynamic C will
ask you if you wish to save the changes. Thefileis saved when Yes isclicked or “y” istyped.
If thefileis untitled, there will be aprompt for afile namein the Save As dialog. Any changes
to the document will be discarded if No isclicked or “n” istyped. Choosing Cancel resultsin
areturn to Dynamic C with no action taken.

Project
Allows a project file to be created, opened, saved, saved as a different name and closed. See
Chapter 17 for al the details on project files.

Print Setup
Displaysthe Page Setup dialog box. Margins, page orientation, page numbers and header and

footer properties are all chosen here.

The Printer Setup button isin the bottom left of the dialog box. It brings up the Print Setup
dialog box, which allows a printer to be selected. The Network button allows printers to be
added or removed from the list of printers.

Print Preview
Displays whichever fileisin the active editor window in the Preview Form window, showing
how the text will look when it is printed. You can search and navigate through the printable
pages and bring up the Print dialog box.

Print
Brings up the Print dialog box, which allows you to choose a printer. Only text in an editor
window may be printed. To print the contents of debug wi ndows' the text must be copied and
pasted to an editor window. As many copies of the text as needed may be printed. If more than
one copy is requested, the pages may be collated or uncollated.

Exit <Alt+F4>
Close Dynamic C after prompting to save any unsaved changes to open files.

i. Dynamic C 9 introduces a new debug window for execution tracing. Text from this
debug window, as well as the contents of the Stdio window, can be automatically writ-
ten to afile, which can then be printed.

Chapter 15: Graphical User Interface 229

15.2.2 Edit Menu

Click the menu title or press <Alt+E> to select the EDIT menu.

% Dynamic C Dist. 8 00Beta2

File Enmpile Bun Inspect Options

” [¥ Undo Chil+2

e 4 Hedn) e B

| A

— X Cu Chrl+s
Copy Chrl+C
E Paste Chrl+4f

Inzert Code Template...
Ii Togale Bookrmark.
'-)Ii 3o ta Bookrmarl:,

&% Fird Ctrl+F
ﬂ Beplace F&
M Fird Meyt F2
ﬂ Reverze Find Nest Alt+F3
Eit Find in Files [Grep)... Shift+Chil+F
¥=] Gotao Line Mumber. . Ctil+G
"E Erewiats B [Eti{ el
;E [HEwt Errar [Etr{+E
abl| EditkMode F4

Paste <Ctrl+V>

Undo <Ctrl+zZ>

This option undoes recent changesin the active edit
window. The command may be repeated several times
to undo multiple changes. Undo operations have
unlimited depth. Two types of undo are supported—
applied to asingle operation and applied to a group of
the same operations (2 continuous del etes are consid-
ered asingle operation.

Dynamic C only discards undo information if the
“Undo after save” option is unchecked in the Editor
dialog under Environment Options.

Redo <Shift+Ctrl+z>

Redoes changes recently undone. This command only
works immediately after one or more Undo opera-
tions.

Cut <Ctrl+Xx>
Removes selected text and saves to the clipboard.

Copy <Ctrl+C>
Makes a copy of text selected in afile or in adebug
window. The text is saved on the clipboard.

Pastes text from the clipboard to the current insertion point. Nothing can be pasted in a debug-
ging window. The contents of the clipboard may be pasted virtually anywhere, repeatedly (as
long as nothing new is cut or copied into the clipboard), in the same or other sourcefiles, or
even in word processing or graphics program documents.

Insert Code Template <Ctrl+J>

Opens the code template list at the current cursor location. Clicking on alist entry or pressing
<Enter> inserts the selected template at the cursor location in the active edit window. The
arrow keys may be used to scroll the list. Pressing the first letter of the name of a code tem-
plate selects the first template whose name starts with that |etter. Pressing the same letter again
will go to the next template whose name starts with that letter. Continuing to press the same
letter cycles through all the templates whose name starts with that letter.

To create, edit or remove templates from the code template list, go to Environment Options

and click on the Code Templates tab.

Toggle Bookmark

Toggle one of 10 bookmarks in the active edit window.

Go to Bookmark

Go to one of 10 bookmarks in the active edit window. Executing this command again will take
you back to the location you were at before going to the bookmarked location.

230

Dynamic C User’s Manual

Find <Ctrl F>
Finds first occurrence of specified text. Text may be specified by selecting it prior to opening
the Find dialog box if the option “Find text at cursor” is checked in the Editor dialog under
Environment Options. Only one word may be selected; if more than one word is selected, the
last word selected appears as the entry for the search text. More than one word of text may be
specified by typing it in or selecting it from the available history of search text.

There are several waysto narrow or broaden the search criteria using the Find dialog box. For
example, if Case sensitive is unchecked, then “ Switch” and “ SWITCH” would match the
search text “switch.” If Whole words only is checked, then the search text “switch” would not
match “switches.” Selecting Entire scope will cause the whole document to be searched. If
Selected text is chosen and the Persistent blocks option was checked in the Editor tab in Envi-
ronment Options, the search will take place only in the sel ected text.

Replace <F6>
Finds and replaces the specified text. Text may be specified by selecting it prior to opening the
Replace Text dialog box. Only one word may be selected; if more than one word is selected,
the last word selected appears as the entry for the search text. More than one word of text may
be specified by typing it in or selecting it from the available history of search text. The
replacement text is typed or selected from the available history of replacement text.

Aswith the Find dialog box, there are several ways to narrow or broaden the search criteria.
An important option is Prompt on replace. If thisis unchecked, Dynamic C will not prompt
before making the replacement, which could be dangerous in combination with the choice to
Replace All.

Find Next <F3>
Once search text has been specified with the Find or Replace commands, the Find Next com-
mand will find the next occurrence of the same text, searching forward or in reverse, case sen-
sitive or not, as specified with the previous Find or Replace command. If the previous
command was Replace, the operation will be areplace.

Reverse Find Next <Alt+F3>
Behaves the same as Find Next except in the opposite direction. If Find Next is searching for-
ward in thefile, Reverse Find Next will search backwards, and vice versa.

Find in Files (Grep)... <Shift+Ctrl+F>
This option searches for text in the currently open file(s) or in any directory (optionally includ-
ing subdirectories) specified. Standard Unix-style regular expressions are used.

A window with the search resultsis displayed with an entry for each match found. Double-
clicking on an entry will open the corresponding file and place the cursor on the search string
in that file. Multiple filetypes can be separated by semicolons. For example, entering
C:\mydirectory*.lib;*.cwill searchall .1ib and .c filesinmydirectory.

Go to Line Number
Positions the insertion point at the beginning of the specified line.

Previous Error <Ctrl+Alt+P>
L ocates the previous compilation error in the source code. Any error messages will be dis-
played in alist in the Compiler Messages window after a program is compiled. Dynamic C
selectsthe previous error in the list and displays the offending line of codein the text window.

Chapter 15: Graphical User Interface 231

Next Error <Ctrl+Alt+N>
L ocates the next compilation error in the source code. Any error messages will be displayed in
alist in the Compiler Messages window after a program is compiled. Dynamic C selects the
next error in the list and displays the offending line of code in the text window.

Edit Mode <F4>
Switches to edit mode from run, aso known as debug, mode. After successful compilation or
execution, no changes to the file are allowed unless in edit mode. If the compilation fails or a
runtime error occurs, Dynamic C comes back already in edit mode.

Starting with Dynamic C 9, you can reenter debug mode directly from edit mode without a
program compile and download. Thisis useful for debugging a program that crashes unex-
pectedly or loses communication with Dynamic C. A program recompile will only be required
when a source file has been edited.

Editor Window Popup Menu
Right click anywhere in the editor window and a popup menu will appear.

% Dynamic C Dist. 8.01Beta2

File Edit Compile Fun Inspect Option: ‘Window Help

DSNSG =R aME L R>EASR
% E:ADC 875 amples\Demol c
;ffs(-s(-s(-fs(-s(-s(-fs(-s(-s(-fs(-**fs{-*ffs(-s(-fisés(-fsés(-s(-féf*féé*fé**fé**fé**fé
demol. c
S World, 2000 e Ctrhe
Open File at Curzor Cr+E nter
Sample program for Dves Clase Ctrk+F4
LR EEEESEEEEEEES EEEEEEE R EESEEE] lnSErtEDdETEmthE... ;f
Toggle Bookmark 3
main() { Go to Bookmark. b |k main
int i,. j.: Eu_t [t
[Eapy [EtrlE
i = 0: Easte [Etrlss
Find Chrl+F
while (1) { Edit ilods P b
i++: eld ateb., (Bl =
for (j=0; j<20000; j++) Options. 20,000
printf(™i = sdyn"™, i): A4 Print out counter
}
¥

|Defait |Lires 14 |Cok: 33 [[Insert [[o

All of the menu options, with the exception of Open File at Cursor, are available from the main
menu, e.g., New is an option in the File menu and was described earlier with the other options for
that menu.

232 Dynamic C User’s Manual

Open File at Cursor <Ctrl+Enter>
Attempts to open the file whose name is under the cursor. The file will be opened in a new edi-
tor window, if thefile nameislistedin 1ib.dir aseither an absolute path or a path relative
to the Dynamic C root directory or if the fileisin Dynamic C’'sroot directory. As alast resort,
an Open diaog box will appear so that the file may be manually chosen.

15.2.3 Compile Menu
Click the menu title or press <Alt+C> to select the COMPILE menu.

«= Default - Dynamic C Dist. 9.30

File Edit | Compile Run Inspect Ophions Window Help

[& oot il YT

88| Compils to Target [Compile ko Flash
il > TR :
Wi Compile to Jbin File v [E} compile to RAM
|'I= Campile ba Flash, Funin RAM

Reload RabbitSys binary

W% Compile BIOS Chrl+y

Compile <F5>
Compiles a program and loads it to the target or to a.bin file. When you press <F5> or select
Compile from the Compile menu, the active file will be compiled according to the current
compiler options. Compiler options are set in the Compiler tab of the Project Options dialog.
When compiling directly to the target, Dynamic C queries the attached target for board infor-
mation and creates macros to automatically configure the BIOS and libraries.

Any compilation errors are listed in the automatically activated Compiler M essages window.
Press <F1> to obtain more information for any error message that is highlighted in this win-
dow.

Compile to Target
Expands to one of three choices. They override any BIOS Memory Setting choice made in the
Compiler tab of the Project Options dialog.

e Compile to Flash
e Compile to RAM
e Compile to Flash, Run in RAM

Sarting with

Dynamic C 9, the
E:%DCinProgtbioshA abbitbioz.c

compiler will show
Board: 0x1e00 - 22MHz ACMIG00, 512K SRAM, 512K Flash
board type and 1570 lines compiled

other board spe-
cific information
while doing a
compile to target.
The information shown will be identical to what the compiler already shows when compiling
toa.bin file

Chapter 15: Graphical User Interface 233

Compile to .bin File
Compiles a program and writestheimageto a . bin file. There are 2 choices available with
this option, Compile to Flash and Compile to Flash, Run in Ram.

The target configuration used in the compileis determined in the Compiler tab of the Project
Options dialog. From there, under Default Compile Mode you can choose to use the attached
target or a defined target configuration. The defined target configuration is accessed by click-
ing on the Targetless tab which will reveal three additional tabs. RTI File, Specify Parameters
and Board Selection. To learn more about these tabs see page 271.

The . bin file may be used with a device programmer to program multiple targets; or the
Rabbit Field Utility (RFU) can be used to load the . bin file to the target.

If you are creating specia a program such as a cold loader that starts at address 0x0000 you
can exclude the BIOS from being compiled into the . bin file by unchecking the option to
includeit. Thisis done by choosing Options | Project Options | Compiler and clicking on the
Advanced... button.

In addition to the .bin file, several other files are generated with this compile option. For
example, if you compile demol.c toa .bin file the following fileswill bein the same
folder asdemo1l . c:

e DEMOL.bak - backup of the application source file (made at compile time, when this
option is enabled).

e demol.bdl - binary image download file (used when loading the application to a
connected target).

e DEMO1.brk - debugger breakpoint information.
e demol.hdl - nolonger used.

e demol.hex - simplelntel HEX format output image file; the serial DLM samples
download a DLP's HEX file and load the image to flash.

e DEMO1.map - the application's code/data map file (RabbitBios .map isalso gen-
erated, separately). For more information on the map file, see Appendix B, "Map File
Generation.”

e DEMO1.rom- ROM "output" file, containing redundant addresses (due to fixups); it's
used to generate the BDL, BIN, HEX, and HDL files.

Reload RabbitSys binary
This option executes the command line RFU to rel oad the RabbitSys binary. You must have a
target board with preloaded driversto run RabbitSys.

Compile BIOS <Ctrl+Y>
This option rel oads the BIOS to RAM or flash, depending on the choice made under BIOS
Memory Setting in the Compiler dialog (viewable from Options | Project Options).

The following message will appear upon successful compilation and loading of BIOS code.

234 Dynamic C User’s Manual

BIOS Successfully Compiled
Ready to Compile User Programs

15.2.4 Run Menu
Click the menu title or press <Alt+R> to select the RUN menu.

RFun Inspect Ophions Wndow Help

B Run Fg Run <F9>

Starts program execution from the current breakpoint. Regis-
& Run witio Faling licEg ters.are reﬁoreq, including interrupt §tatus, bgfore execution
- begins. If in Edit mode, the program is compiled and down-
€3 Step nko Fé loaded.
(}I’ Step Owver F&
€3 Source |race Lnto alE++ ¢ Stop <Ctrl+Q>
0¥ S Sen S AlbHFE The Stop command stops the program at the current point of
s | execution. Usualy, the debugger cannot stop within nodebug
igh Togge Breskpoink Fz d
o : code. On the other hand, the target can be stopped a an RST
19 Tooge Hard Erealpoint AHEZ 5 g1 ngtruction if an RST 028h assembly code is inserted
g CleardllBreskpaits LA | osinline assembly codein nodebug code. However, the
= Pull Taryet, cultL | debugger will never be able to find and place the execution

; | cursor in nodebug code.
Feset Program Ckel+F2 g

- Run w/ No Polling <Alt+F9>
A Close Connection This command isidentical to the Run command, with one
7 exception. The PC pollsthe target every 3 seconds by default
to determine if the target has crashed. When debugging via RabbitLink, polling is used to
make the RabbitLink keep its connection to the PC open. Polling does have some overhead,
but it is very minimal. If debugging ISRs, it may be helpful to disable polling.

Step Into <F7>
Executes one C statement (or one assembly language instruction if the assembly window is

displayed) with descent into functions. If nodebug isin effect and the Assembly window is
closed, execution continues until code compiled without the nodebug keyword is encoun-
tered.

Step Over <F8>
Executes one C statement (or one assembly language instruction if the assembly window is

displayed) without descending into functions.

Source Step Into <Alt+F7>
Executes one C statement with descent into functions when the assembly window is open. If

nodebug isin effect, execution continues until code compiled without the nodebug key-
word is encountered.

Chapter 15: Graphical User Interface 235

Source Step Over <Alt+F8>
Executes one C statement without descending into functions when the assembly window is
open.

Toggle Breakpoint <F2>
Toggles aregular (“soft”) breakpoint at the current cursor location. Soft breakpoints do not
affect the interrupt state at the time the breakpoint is encountered, whereas hard breakpoints
do.

Starting with Dynamic C 9, breakpoints can be toggled in edit mode as well asin debug mode.
Breakpoint information is not only retained when going back and forth from edit mode to
debug mode, it is stored when afileis closed and restored when the file is reopened.

Toggle Hard Breakpoint <Alt+F2>
Toggles a hard breakpoint at the current cursor location. A hard breakpoint differs from a soft

breakpoint in that interrupts are disabled when the hard breakpoint is reached.

Starting with Dynamic C 9, breakpoints can be toggled in edit mode aswell asin debug mode.
Breakpoint information is not only retained when going back and forth from edit mode to
debug mode, it is stored when afileis closed and restored when the file is reopened.

Clear All Breakpoints <Ctrl+A>
Self explanatory.

Poll Target <Ctrl+L>
This menu option used to be named Toggle Polling. A check mark indicates that Dynamic C
will poll the target. The absence of a check mark indicates that Dynamic C will not poll the
target. This differs from Toggle Polling in that Dynamic C will not restart polling without the
user explicitly requesting it.

Reset Program <Ctrl+F2>
Resets program to itsinitial state. The execution cursor is positioned at the start of the main
function, prior to any global initialization and variable initialization. (Memory locations not
covered by normal program initialization may not be reset.)

Theinitial state includes only the execution point (program counter), memory map registers,
and the stack pointer. The Reset Program command will not reload the program if the previ-
ous execution overwrites the code segment. That is, if your code is corrupted, the reset will not
be enough; you will have to reload the program to the target.

Debug Mode <Shift+F5>
Dynamic C 9 introduces
the ability to switch back to e
debug mode from edit
mode without having to
recompile and download Yes | N |
the program. If the source
file has been modified
whilein edit mode, a popup dialog lets you choose whether to run the non-modified code or to
go ahead and recompile and download again.

Source code has been modified - continue with switch to debug mode?

236 Dynamic C User’s Manual

Close Connection
If using aseria connection, disconnects the programming serial port between PC and target so
that the target serial port is accessible to other applications.

If using a TCP/IP connection, closes the socket between the PC and the RabbitLink.

15.2.5 Inspect Menu
Click the menu title or press <Alt+1> to open the INSPECT menu.

=@l Cptions “Window Help

of Addwatch... Clrlid
i Delete Watch

i Delete Al atches

Q'ﬁ' Update ' atch Wwindow Ctrl+LJ
Q"‘ Ewvaluate Expreszsion...

fm Dizazzemble at Cursor Chrl+F10
::ﬁ Dizazzemble at Addreszs... Al+F10
I Durnp & Address. .. Ctrl+D
E StoE racig [t)
LE Start Tracing Shift+Chrl+T
|Gl =t f = o L [Etr|+E

If the cursor in the active win-
dow is positioned over a vari-
able or function name, that
name will appear in the Watch
Expression text box when the
Add Watch Expression dialog

The INSPECT menu provides commands to manipulate
watch expressions, view disassembled code, and produce
hexadecima memory dumps. The INSPECT menu com-
mands and their functions are described here.

Add Watch <Ctrl+W>
This command displays the Add Watch Expression dia-
log. Enter watch expressions with this dialog box.

A watch expression may be any valid C expression,
including assignments, function calls, and preprocessor
macros. (Do not include a semicolon at the end of the
expression.) If the watch expression is successfully com-
piled, it and its outcome will appear in the Watches win-
dow.

CIET— x
Wwatch Exprezsion ii++ _v_i
aad | [ok || comcel | Heb |

box appears. Clicking the Add button will add the given watch expression to the watch list,
and will leave the Add Watch Expression dialog open so that more watches can be added.
Clicking the OK button will add the given watch expression to the watch list, and close the

Add Watch Expression dialog.

To add alocal variable to the Watch window, the target controller’s program counter (PC)
must point to the function where the local variableis defined. If the PC points outside the
function, an error message will display when Add or OK is pressed, stating that the variableis

out of scope or not declared.

An example of the results displayed in the Watches window appears below.

% watches M=l E3
Ei int 47 (0x002F)
3 int 126 (0x0028)

Chapter 15: Graphical User Interface

237

If the evaluation of awatch expression causes a run-time exception, the exception will be
ignored and the value displayed in the Watches window for the watch expression will be unde-
fined.

Starting with Dynamic C 9, structure members are displayed whenever awatch expression is
set on astruct. Prior to Dynamic C 9, separate watch expressions had to be added for each
member. Introduced in Dynamic C 8.01, the Debug Windows tab of the Environment Options
menu lets you set flyover hint evaluation of any expression that can be watched without hav-
ing to explicitly set the watch expression. See “Watch” on page 274 and “Watch Window” on
page 256 for more details.

Delete Watch
Removes highlighted entry from the Watches window.

Delete All Watches
Removes all entries from the Watches window.

Update Watch Window <Ctrl+U>
Forces expressions in the Watches window to be evaluated. If the target is running nodebug
code, the Watches window will not be updated, and the PC will lase communication with the
target. Inserting an RST 02 8h ingtruction into frequently executed nodebug code will allow
the Watches window to be updated while running in nodebug code. Normally the Watches
window is updated every time the execution cursor is changed, that is, when asingle step, a
breakpoint, or a stop occursin the program.

Evaluate Expression
Brings up the Evaluate Expression dialog where you can enter asingle expression in the
Expression dialog. The result is displayed in the Result text box when Evaluate is clicked.
Multiple Evauate Expression dialogs can be active at the same time.

Disassemble at Cursor <Ctrl+F10>
L oads, disassembles and displays the code at the current editor cursor location. This command
does not work in user application code declared as nodebug. Also, this command does not
stop the execution on the target.

Disassemble at Address <Alt+F10>
Brings up the Disassemble at Address dialog where you can enter an address at which to begin

disassembly. The format of the addressis either the logical address specified as a hex number
(Oxnnnn or just nnnn) or as an xpc:offset pair separated by a colon (nn:mmmm).

The Disassembled Code window displays the result. See “Assembly (F10)” on page 275 for
details about this window.

Dump at Address <Ctrl+D>
Allows blocks of raw values in any memory location to be displayed. Values are displayed on
the screen or written to afile. If separate 1& D space is enabled, you can choose which logical

space to examine: instruction space or data space.
Dynamic C 9 introduced differences highlighting when displaying to the screen: each time

you single step in C or assembly changed data is highlighted in reverse video in the Memory
Dump window. (Thisis aso true for the Stack and Register windows.)

238 Dynamic C User’s Manual

When writing to afile, the option Save

to file requires afile pathname and the temory Lump Setup

number of bytesto dump. The option — Memary Dump

Save entire flash to file requires afile Dump Address | 0+0000 =]
pathname. If you are running in RAM,

L : [T Save entire flazh to fil
then it will be RAM that is saved to a [FlEEraE

file, not Flash, because this option sim-
ply starts dumping physical memory at _
address zero. bl ez I J

When displaying on a screen, aMem- oK |
ory Dump window is opened. A typica
screen display appears below. Although
the cursor is not visible in this screen capture, it is hovering over logical memory location
0x0022, which has avalue of OxFF. Thisinformation is given in the fly-over text and also in
the titlebar. Either or both of these options may be disabled by right clicking in the Memory
Dump window or in the Options | Environment Options, Debug Windows tab, under Specific
Preferences for the Memory Dump window.

Murnber of bytes I

Cancel Help |

ﬁMemuw Dump - 00022 : FF

Update button ||IJ:<2D 'IEI?I;

0oa
oooooo C3 72 oo 77 1D 00 00 12 FF FF FF FF FF FF FF FF i w ﬂ
oooolo FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

aoooozo FF FF FF FF FF FF FF FF C7 00 E1 F2 CF 4% E4 F& E
ooooz0 Cr 1F 1D CF E1 EE F2 C3 ZC 00 EIr 5E CF EBA EZ F&2 P
oooo040 EDR 46 3E 20 3F 44 Ce CF F& E1 F2 C3 77 1D FD £1 F= 27 L
000050 11 c2 100022 FF|oo CE 7F 22 05 CI» BES 11 18 12 CE H

ooooe0 &F 22 05 CDr 74 14 12 OF 34 3B C2 BY 22 08 CD 74 {1 ¢ - [S
oooo70 14 12 04 D3 3F C3 00 C9 ED 76 FE 02 F5 ED 77 FE z w o
oooos0 C5 DE ES DD ES FDr ES D3 CH DE ES CDr 4E 00 E1 Dl N
oooo20 C1 09 F©r E1 DI E1 E1 D1 C1 F1 EDI &7 F1 02 F1 ED o
0000a0 7E ED ED» C2 D3 3234 C3 00 CE 7F C2 D3 24 CO 00 C9 ~ H H
oooob0 2E O7 D2 32 C2 00 C2 D3 34 C3 00 CE EF CO 79 D3 = 2 H _ 7
oo00e0 3E CO OO0 C2 44 79 6E &1 6D &% 43 55 BE 69 76 65 2 Dynami Clinive
oooodo 7E 73 61 6C Z0 B2 Bl &E 6Z &5 74 20 42 49 4F &3 rsal Babbhit BIOS
0000e0 Z0 L& &5 72 73 69 &F &E 20 37 ZE 323 32 3B ED &4 WVersion 7.32; T
oooof0 &F 7C ED &7 YD ED E4 33 33 C9 F& 2E EA D3 3Z 08 ol o} T332 =2 E
ooolo0 00 F1 C2 CF &2 EA F2 C9 FL 32 E4 CE CE E7 CE EF h H

0oollo 3 E4 CL 32 ES CE CE 27 CEB EF CE C7 32 EE CE 3E & - z >LI

Memory Dump windows may be scrolled. Scrolling causes the contents of other memory
addresses to appear in the window. Hotkeys ArrowUp, ArrowDown, PageUp, PageDown are
active in the Memory Dump window. The window always displays as many lines of 16 bytes
and their ASCII equivaent aswill fit in the window.

Vauesin the Dump window are updated automatically either when Dynamic C stops or comes
to a breakpoint. Updates only occur if the window is updateable. This can be set either by right
clicking in the Memory Dump window and toggling the updateable menu item, or by clicking
on the Debug Windows tab in Options | Environment Options. Select Memory Dump under
Specific Preferences, then check the option “ Allow automatic updates.” The Memory Dump
window can be updated at any time by clicking the Update button on the tool bar or by right
clicking and choosing Update from the popup menu.

Chapter 15: Graphical User Interface 239

The Memory Dump window is capable of displaying three different types of dumps. A dump
of alogical address ([Ox]mmmm) will result in a 64k scrollable region (0x0000 - Oxffff). A
dump of a physical address ([Ox]mmmmm) will result in adump of a 1M region (0x00000 -
Oxfffff). A dump of an xpc:offset address (nn:mmmm) will result in either a 4k, 64k, or 1M
dump range depending on the option set on the Debug Windows tab under Options | Environ-
ment Options.

Note that adding aleading zero to alogical address makesit a physical address.

Any number of dump windows may be open at the same time. The type of dump or dump
region for a dump window can be changed by entering a new address in the toolbar’s text
entry area. To the right of the this areais a button that, when clicked, will cause the addressin
thetext entry areato bethefirst address in the Dump window. The toolbar for adump window
may be hidden or visible.

Stop Tracing <Ctrl+Alt+T>
This command causes the target to stop sending trace information to Dynamic C. You can also
do this from within your program with the TRACEOFF macro. The sample program
Samples/Demo4 . c describes and uses this trace macro.

Start Tracing <Shift+Ctrl+T>
This command causes the target to send execution tracing information to Dynamic C based on
the trace options you choose in the Debugger tab of the Project Options dialog. You can also
do this from within your program with the TRACE and _TRACEON macros. The sample pro-
gram Samples/Demo4 . ¢ describes and uses these trace macros.

Trace entries received are displayed in the Trace window (see “ Trace (Alt+ F12)” on
page 277). This menu command is only availableif tracing is enabled in Project Options and
Dynamic Cisin run mode.

Note that turning on tracing causes a performance hit to your program because of the extra
communication required between Dynamic C and the target. If your program requires precise
timing, tracing may interfere.

Goto execution point <Ctrl+E>
When stopped in debug mode, this option places the cursor at the statement or instruction that
will execute next.

240 Dynamic C User’s Manual

15.2.6 Options Menu

Click the Options menu title or press <Alt+O> to select the Options menu.

Environment Options
Dynamic C comes with abuilt-in, full-featured text editor.
It may be customized to suit your style using the Environ-

ous aspects of the editor.

Editor Tab

Click on the Editor tab to display the following dialog. Installation defaults are shown.

Dptions

Inzpect

Window Help
ment Options dialog box. The dialog box hastabs for vari- ¥ [z § &% Enviranment Optins
Project Optionz

T oolbarz

Environment Options

— Editar optionz
v Auto indent mode

[~ Use previous indention
[~ Cursar through tabs (3]
[¥ Backspace unindents

[~ Keep trailing blanks
[~ Persistent blocks
¥ Owvenarite blocks
[~ Double click line
¥ Find text at cursor
[~ Select found text
v Use sprtax highlight

[~ Show line numbers

[| Shoavlite aumbers arauter
[~ Maotepad style cursar [1]

[~ Cursor beyond EOE

v Cursor beyond EOL

v Selection beyond EOL

[~ Block ovenarite cursor
[~ Undo after zave [£]
v Group undo

[~ Dizable dragaing
[~ Center Bookmarks [2]

Black, indent: Tab stops:

Keymapping:

|3 |3,5

IDefauIt j

#define N 1000
const float 3QRT PI = 1.77245355;

const char label =
raing)
{
int i:
for (i = 0; 1 < N; ++1)
{
printf ("%= fV\n",

1| i

lakel, SQRT PIj;

F4 the aguare root
"The scgquare root of pi is: ";

-

| Gutter & Margin I Displa_l,ll Syntax Colors I Code Templatesl D ebug YWindows I Frint # Alerts

Cancel |

The Editor options are detailed here. All actions taken are immediately reflected in the

text area at the bottom of the dialog, and in any open editor windows.

Auto indent mode

Checking this causes a new line to match the indentation of the previous line.

Chapter 15: Graphical User Interface

241

Use previous indention
Uses the same characters for indentation that were used for the last indentation. If the
last indentations was 2 tabs and 4 spaces, the next indentation will use the same com-
bination of whitespace characters.

Cursor through tabs
With this option checked, the right and left arrow keys will move the cursor through
the logical spaces of atab character. If thisis unchecked the cursor will move the
entire length of the tab character.

Backspace unindents

Check this to backspace through indentation levels. If thisis unchecked, the back-
space will move one character at atime.

Show line numbers

Check this to display line numbersin the text window. This must be checked to acti-
vate the option Show line numbers on gutter.

Show line numbers on gutter
If gutters are visible, check this to display line numbers in the gutter.

Notepad style cursor
Checking this causes the cursor to behave similar to Notepad.

Cursor beyond EOF
Check this option to move the cursor past the end of the file.

Cursor beyond EOL
Check this option to move the cursor past the end of the line.

Selection beyond EOL
Check this option to select text beyond the end of the line.

Keep trailing blanks

Check this option to keep extra spaces and tabs at the end of alinewhen anew lineis
started.

Persistent blocks
Check this option to keep selected text selected when you move the cursor using the
arrow keys. Using the mouse to move the cursor will deselect the block of text. Using
menu commands or keyboard shortcuts will affect the entire block of selected text.
For example, pressing <Ctrl+X> will cut the selected block. But pressing the delete
key will only delete one character to the right of the cursor. If this option was
unchecked, pressing the delete key would delete al the selected text.

If this option is checked and the Find or Replace diaog is opened with a piece of text
selected in the active edit window, the search scope will default to that bit of selected
text only.

242

Dynamic C User’s Manual

Overwrite blocks
Check this option to enable overwriting a selected block of text by pressing akey on
the keyboard. The block of text may be overwritten with any character, including
whitespaces or by pressing delete or backspace.

Double click line
Check this option to allow an entire line to be selected when you double click at any
position in the line. When this option is unchecked, double clicking will select the
closest word to the left of the cursor.

Find text at cursor
When either the Search or Replace dialogs are opened, if this option is checked the
word at the cursor location in the active editor window will be placed into the “ Text to
Find” edit box. If this option is unchecked, the edit box will contain the last search
string.

Select found text
The color of found text can be set in Options | Environment Options, on the Syntax
Colors page. Select “ Search Match” from the Element list box, then set the foreground
and background colors.

If this box is unchecked the Search Match color scheme will be used when amatch is
found, but the text will not be selected for copy or delete operations. If this optionis
checked, the matched text will automatically be selected so that it may be copied or
deleted.

Use syntax highlight
Check this option to enable the Display and Syntax Color choices to be active.

Block overwrite cursor

Check this option to show the cursor as a block when an editor is placed in overwrite
mode.

Undo after save

Check this option to enable undo operations after afile has been saved. With this
option unchecked, the undo list for afile is erased each time the file is saved.

Group undo
Check this option to undo changes one group at atime. With this option unchecked,
each operation is undone individualy.

Disable dragging
Checking this option disables drag and drop operations: i.e., the ability to move
selected text by pressing down the left mouse button and dragging the text to a new
location.

Center Bookmarks

Check this option so that when you jump to a bookmark it is centered in the editor
window.

Chapter 15: Graphical User Interface 243

Block indent
The number of spaces used when a selected block is indented using <Ctrl+k+i> or
unindented using <Ctrl+k+u>.

Tab stops
Thisis acomma separated list of numbers which indicate the number of spaces per
tab stop. If only one number is entered, say “3,” then thefirst tab stop is 3 spaces, asis
each additional tab stop. Every additional number in the list indicates the number of
spaces for all subsequent tabs. E.g., if the list consists of “3,6,12" thefirst tab stop is 3
spaces, the second tab stop is 3 more spaces and all subsequent tab stops are 6 spaces.

Keymapping
The keyboard has 5 different default key mappings: Default, Classic, Brief, Epsilon
and Visual Studio. Change the keymapping with this pulldown menu.

244 Dynamic C User’s Manual

Gutter & Margin Tab
Click on the Gutter & Margin tab to display the following dialog.

Environment Options E2

| Displa_l,ll Syntax EDID[SI Code Templatesl [Debug Winduwsl Print .-’.i".lertsl

— Editar gutter — Editar margir

V¥ Visitle Wfidth: |32 3. v | Wisible Wafidth: |1 3-
Calor: ||:|BtnFace j@l Calor: I-':’L"E'-"’TE"Ct = @I

— Line Mumbers Colors

Shyle: =
Foreground: I- Black. j @l | -
Backaraund: |] Whie =] @| Position: |BD B

#odefine N 1000 =

const fleat ZQRT PI = 1.77245385; /7 the sguare roob

const char lakel = "The sguare root of pi is: ';

tain ()

{

int i;

for (i = 0; i < N; ++i)
i

printf ("ss %£yn”, label, SQRT PI):
H

0. LCancel | Help |

Editor gutter

Check the Visible box to create a gutter in the far left side of the text window. Use the
Width scroll bar to set the width of the gutter in pixels. The button to the right updates
the width parameter. Changing the width and clicking on OK at the bottom of the dia-
log does not update the gutter width; you must click on the button. Use the Color pull-
down menu to set the color. The button to the right brings up more color choices.

Editor margin

Check the Visible box to create a right-hand margin in the text window. Use the Width
scroll bar and the Color pulldown menu to set the like-named attributes of the margin
line. The Style pulldown menu displays the line choices available: a solid line and var-
ious dashed lines. The Position scroll box is used to place the margin at the desire
location in the text window.

Chapter 15: Graphical User Interface 245

Line Number Colors

If line numbers are set to visible and are not placed on the gutter, the Foreground color
will set the color of the line numbers and the Background color will set the color on
which the line numbers appear.

Display Tab
Click on the Display tab to display the following dialog.

Environment Options |
Editar | Gutter & Margin ay | Syntax |:l:l|l:ll$| Caode Templatesl Debug 'W'indu:uwsl Frint .f'a'-‘n.lertsl
— Editar Faont — Backaround Calars
Hame: W Use monofont Size: E ditar [E dit Mode]:
IEu:uurier Mew =] |1 0 =l ||:| “Window =] @I
— Special Symbols Editor [Debug kode):

- ||:| "wiindow j @I

EmE |1 GpaGe; I Wiorkspace:
EOF: I_— Tab: I— I- AppwiorkSpace j @I

#define N 1000 -
const £loat SQRT_PI = 1.77245385; A4 the sguare root
const char label = "The sgquare root of pi is: ';
maini)
{

int i:

for (i = 0; 1 < HN: ++1i)
{

printf ("%s $f\n", lakel, S0RT _PI);
}

Editor Font

This area of the dialog box is for choosing the font style and size. Check
Use mono font for fixed spacing with each character; note that this option limits the
available font styles.

Special Symbols

Check Use to view end of line, end of file, space and/or tab symbolsin the editor win-
dow.

246 Dynamic C User’s Manual

Background Colors

This area of the dialog box is for choosing background colors for editor windows and
the main Dynamic C workspace. The editor window can have a different background
color in edit mode than it does in run mode. Each pulldown menu has an icon to the

right that brings up additional color choices.

Syntax Colors Tab
Click on the Syntax Colors tab to display the following dialog.

Environment Options E2

E ditor I Gutter & Malginl Drizplay

| Code Templates I Debug "Windows I Frint ¢ Alerts I

Element Errearommd calan Text attibutes
o [I Biack = I~ Eold
fing :
::Tmment B achanoum calan I ltalic
Frruzgtler ||:| Wirdaw j [T UnderLine
Reserved words
Defines |Jze defaults for
Identifier ¥ Foreground Open |
Delimiters
Assembler =] v Backaiound Save |
#odefine N 1000 =
const fleat ZQRT PI = 1.77245385; /7 the sguare roob
const char lakbel = "The sguare root of pi is: '™;
main ()
{
int i:
for (i = 0: i < H; ++i)
{
printf ("&= $f£yn", label, SQRT PI):
H
'
-
T of
0. LCancel | Help |

Chapter 15: Graphical User Interface

247

Element

In thistext box are the different elements that may bein afile (strings, comments,
integers, etc.). For each one you may choose a foreground and a background color.
You may also opt to use the default colors: black for foreground and white for back-
ground. In the Text attribues area of the dialog box, you may set Bold, Italic and/or
Underline for the any of the elements.

Open / Save Buttons

These buttons load and save color stylesinto files with a.rgb extension. Clicking the
Open button will bring up an Open File dialog box, where you choose a .rgb file that
will set al of the syntax colors. Thereis a subdirectory titled Schemes under the root
Dynamic C directory that has some predefined color schemes that can be used. Open-
ing a .rgb file makes its colors immediately active in al open editor windows. If you
close the Environment Options window without saving the changes, the colors will go
back to whatever they were before you opened the .rgb file.

248

Dynamic C User’s Manual

Code Templates Tab
Click the Code Template tab to display the following dialog.

Environment Options]
Editar | Gutter & Marginl Displa}ll Syntas Colors Code Templates | Debug 'W'indu:uwsl Frint .f'a'-‘n.lertsl
Templates
M ame IDexcriptiun | Edit |
forb for staterment
function function declaration Delete |
ffb ff statement Add.,
ifeb if elze
structure declaration
awitch statement
whileb while statenment
libheader Libramy Header
libdeszcription Library Description
funcdescription Function D escription
hd ain kain program
Code
switch [|) |
{
case : ;
break:
case :
break;
default: ;
H
|
ak. LCancel Help |

Asyou can see, there are several predefined templates. The Edit and Delete buttons allow
the like-named operations on existing templates. The Add button gives the ability to create
custom templ ates.

To bring up thelist of defined templates, Dynamic C must bein edit mode. Then you must
do one of the following: press <Ctrl+j> or right click in the editor window and choose
“Insert Code Template” from the popup menu or choose the Edit command menu and
select “Insert Code Template.” Clicking on the desired template name inserts that template
at the cursor location.

Chapter 15: Graphical User Interface 249

Debug Windows Tab
Click on the Debug Windows tab to display the following dialog. Here is where you
change the behavior and appearance of Dynamic C debug windows.

Environment Options ﬂ

E ditar I Gutter&MarginI Displa_l,ll Syntax Eolorsl Code Templates Debug Mindows IF'rintf"AIerts

— General Preferences

(" Do naot automatically open (% Dpengelected E :ssgmhly F S;d'mh
" Open last used windows r Eteglitem r aatiT

: ack ack Trace
" Open all debug windows B o Timse

— Specific Preferences

— Fonts and Colors

Debug Windomwms
Foreground Color
Azzembly |- Black j @l
Eit:gl,:ils(ters Backgraund Calor
tdemary Dump ||:| “ihite j @l
Wiatch
Fort [~ Usze fived pitch

Execution Trace

Stack Trace LI |I:|:uurier Hew j _I

bl peeanes
_| &pply Settings ko All

— Optiohz
¥ Automatic open Row: IW
[~ Automatic Yertical Scrall

v Automatic Horizontal Scroll
[LogtoFile [T Append Spaces In Tak:

|-:Ic.u:|ut _I

Columns:

]

g8

Ok LCancel Help |

Under General Preferences iswhere you decide which debug windows will be opened
after a successful compile. You may choose one of the radio buttonsin this category.
Selecting “ Open last used windows’ makes Dynamic C 8 act like Dynamic C 7.x.

Under Specific Preferences is where you customize each window. Colors and fonts are
chosen here, aswell as other options.

250 Dynamic C User’s Manual

Stdio Window

The previous screen shows the options available for the Stdio wi ndow'. They are
described here. You may modify or check as many as you would like.

Automatic open

Check this to open the Stdio window thefirst timeprint£ () isencoun-
tered.

Automatic Vertical Scroll
Check thisto force vertical scroll when text is displayed outside the view of
the window. If this option is unchecked, the text display doesn’t change when
the bottom of the window is passed; you have to use the scroll bar to see text
beyond the bottom of the window.

Automatic Horizontal Scroll
Check this to force horizontal scroll when text is displayed outside the view
of the window.

Log to File
Check thisto direct output to afile. If the file does not exist it will be created.
If it does exist it will be overwritten unless you aso check the option to
append thefile.

Rows
Specifies the maximum number of rows that can hold Stdio data.

Columns
Specifies the maximum number of columns that can hold Stdio data. When
the maximum column is reached, output automatically wraps to the next row.

Spaces In Tab
Tab stops display as the number of spaces specified here.

Starting with Dynamic C 9, the various Find commands available on the Edit menu
can be used directly in the Stdio window.

i. Themacro STDIO DEBUG_SERIAL may be defined to redirect Stdio output to a des-
ignated serial port—A, B, C or D. For more information, please see the sample program
Samples/STDIO_ SERIAL.C.

Chapter 15: Graphical User Interface 251

Assembly Window
The Assembly window displays the disassembled code from the program just com-

piled. All but the opcode information may be toggled off and on using the checkboxes

shown bel
page 160.

ow. For more information about this window see Section 12.4.3 on

— Specific

Debug

Freferences
Wwindows

— Fontz and Colors

Earearaund Ealon

Stack

Reqisters
b ey Durnp ||:| “white Li _‘@_l
Watch
Execution Trace = Font [T Wse fined pitch
Stack Trace T
b recanas ;i |LULIIEI L LI _I
_| &pply Settings to &l
— Options
¥ Show Addresses v Use Syrtax Highlighting
[+ Show Machine Code v Show Source
v Show Clock Cycles [Show File Mame in S ource Line

v Sum Clack Cyeles

[N Back = &

Backaround Caolor

Show Addresses
Check thisto show thelogical address of the instruction in the far left column.

Show Machine Code
Check this to show the hexidecimal number corresponding to the opcode of

the instruction.

Show Clock Cycles

Check this to show the number of clock cycles needed to execute the instruc-
tion in the far right column. Zero wait states is assumed. Two numbers are
shown for conditional return instructions. Thefirst is the number of cycles if
the return is executed, the second is the number of cyclesif the return is not

executed.

Sum Clock Cycles

Check this to total the clock cycles for a block of instructions. The block of
instructions must be selected and highlighted using the mouse. Thetotal is

displayed to the right of the number of clock cycles of the last instruction in
the block. This value assumes one execution per instruction, so looping and

branching must be considered separately.

252

Dynamic C User’s Manual

Use Syntax Highlighting
Toggle syntax highlighting. Click on the Syntax tab to set the different colors.

Show Source
Check thisto display the Dynamic C statement corresponding to the assembly
code.

Show File Name in Source Line
Check this to prepend the file name to the Dynamic C statements correspond-
ing to the assembly code.

Register Window
For this window you must choose one of the following conditions: “ Show register his-
tory” or “ Show registers as editable.” When the Register Contents window opens it
will be in editable mode by default. Selecting “ Show Register history” will override
the default setting.

Show register history
In this mode, a snapshot of the register and flag valuesis displayed every time
program execution stops. Theline (L:) and column (C:) of the cursor is noted,
followed by the register and flag values. The window is scrollable and sec-
tions may be selected with the mouse, then copied and pasted.

Starting with Dynamic C 9, each time you single step in C or assembly
changed datais highlighted in the Register window. (Thisis also true for the
Stack and Memory Dump windows.)

2 Dynamic C Dist. 8.00Beta2

File Edt Comple RBun Inzpect Options ‘Window Help

o= [| = e A [|

v

St -
==5 Register Contents

L: 12 C:3 -

z HPC 00
2 aa AF' F&00
EC 0&CZz EC' 0000 LChange Reqister Walug(z)... Chil+alt+R
DE Z7ED DE' 1000 Copy Chil+C
HL 472E HL' DFFD
I¥ CEg IY LlEla Switch to Editable Yiew Chil+&J+E
PC 1E11 &P DFFD
e
L: 12 C:1=2

b= . XPC 00
B F& AF' 9040
EC 0005 EC' 000s
DE CEZ0 DE' 0000
HL 4%5%4¢& HL' 0000

IX CE8D IY C2l1l

PC 1E3Z &SP DFFD

-

A click of the right mouse button brings up the menu pictured above. Choos-
ing Change Register Value(s)... brings up a dialog where you can enter new
values for any of the registers, except SP, PC and XPC.

Chapter 15: Graphical User Interface 253

Show registers as editable
In this mode, you can increment or decrement most of the registers, all but the
SP, PC and XPC registers.

This screen shows the Register Contents window in editable mode. It is
divided into registers on the |eft and flags on the right.

% Dynamic C Dist. 8.00Beta2

File Edit Compile Bun lnzpect Options Window Help

[[o=w s

R

A - 0OxF7

BC : 0Ox00E7
DE : 0OxCEEZ0
HL : 0OxE7CC
AF': 0Ox%040
EC': 0Ox000%2
DE': 0x0000
HL': 0x0000
¥ : 0xCEsD

f - OxC=lo

5P : 0OxDFFD
PC : 0OxlE3:Z

E Register Contents

Decrement Register Chil+Alt+D
WPC- Ox0000 Increment B egister Clrl+Alt+
Mew Register Walue... Chl+alt+H

M E e " E OH O
|l e T e e R o e Y O}

Switch to Historg View Chil+<+H

A click of the right mouse button on the register side will bring up the menu
pictured here. You can switch to history view or change register values for all
but the SP, PC and XPC registers.

Theoption New Register Value

Enter new value for I'Y

X] will bring up adialog to enter

Mew Reqister Walue ||

oK.

the new register value. Hex
values must have “0x”
Carcel | prepended to the value. Values

without aleading “0x” are
treated as decimal.

A click of the right mouse button on the flags side of the window will bring
up amenu that lets you toggle the selected flag (Ctrl+Alt+T) or switch to his-
tory view (Ctrl+Alt+H).

254

Dynamic C User’s Manual

Memory Dump Window
For more information on using the Memory Dump window go to page 239.

— Specific Preferences

— Fonts and Colors

Debug wWindows
o Foreground Colar
io a
Azzemnbly |- Black j @!
at:CiZ\ters Background Color
[white -] @l
Wwhatch | E ‘J
Execution Trace Faont I” Use fixed pitch
E‘tack Trace ll ID:nuriEI Mew LI |
_| Apply Settings ta Al
— Options
v &pply changes to &l v Show address while scrolling S(EqTfntEd Dump Range : |
v Allow autamatic updates W Show current bte in kit Edk
[Show tool bar v Show curent byte infitle bar | ¢ Full Range
¥ Enable difference highlighting: [Use reversed font colars
Customized Colors
v Bold foreground Eoreground; I- Black _ﬂ @i
v Use window background Backaraurd: ||:| white L‘ &)

The following are the options relevant to the Memory Dump window.

Apply changes to all
Changes made in this dialog will be applied to all memory dump windows.

Allow automatic updates
The memory dump window will be updated every time program execution
stops (breakpoint, single step, etc.). Starting with Dynamic C 9, eachtimeyou
single step changed data in the memory dump window is highlighted in
reverse video.

Show tool bar
Each dump window has the option of atool bar that has a button for updating
the dumped region and atext entry box to enter a new starting dump address.

Show address while scrolling
While using the scroll bar, asmall popup box appearsto the right of the scroll
bar and displays the address of the first byte in the window. This alows you
to know exactly where you are as you scroll.

Show current byte in hint
The address and value of the byte that is under the cursor is displayed in a
small popup box.

Show current byte in title bar
The address and value of the byte that is under the cursor is displayed in the
title bar.

Chapter 15: Graphical User Interface

255

Segmented Dump Range

The memory dump window can display 3 different types of dumps. A dump
of alogical addresswill result in a 64k scrollable region (0x0000 - Oxffff). A
dump of a physical addresswill result in adump of a 1M region (0x00000 -
Oxfffff). A dump of an xpc:offset address will result in either a4k, 64k or 1M
dump range, depending on how this option is set.

If a4k or 64k range is selected, the dump window will dump a 4k or 64k
chunk of memory using the given xpc. If “Full Range” is selected, the win-
dow will dump 00:0000 - ff:ffff. To increment or decrement the xpc, use the
“+" and “-” buttons located below and above the scroll bar. These buttons are

visible only for an xpc:offset dump where the range is either 4k or 64k.

Watch Window
The Watches window configuration options, Enable watch expression evalution in
flyover hint and Show watch expression evaluation errors in flyover hint, do not actu-
ally affect the Watches window. When checked, they allow you to use flyover hintsin
the source code window to see the value of watchable expressions.

Move the cursor over avariable to seeits current value and over afunction to seeits
logical address or itsreturn value. If you highlight the name of a function (e.g.,

my function)youwill seethelocation of the codein memory. If you highlight the
function call (e.g.,, my function (my_parm)) the function will be called and you
will seeitsreturn value. If the cursor is over a structure member, the flyover hint will
only contain information about the structure, not the individual member.

Trace Window
The Trace window configuration options control automatic scrolling of trace entries
and whether or not the full path is displayed in the Trace window when the file name
is displayed. These options can be set here at compile time or toggled at runtime from
aright-click pop-up menu accessible in the Trace window. See “ Trace (Alt+ F12)” on
page 277 for details.

Stack Trace Window
There are no configuration options for the Stack Trace window.

256 Dynamic C User’s Manual

Print/Alerts Tab
Click on the Print/Alerts tab to display the following dialog. You may access both the Page
Setup dialog and Print Preview from here.

Environment Options E

Editor I Gutter&MarginI Displa_l,ll Syntan Eolor&l Code Templatesl Debug Windows Frint / Alerts

i Print Dptions

¥ Use Left Margin |1
o Lz Zoi v Usze Right kargin I'I

W Mumber Pages

¥ Swyntax Print & sz Lo bizcin |1

I~ ‘Wiap Lines ¥ Usze Bottam Margin |1
i Editor Font
Harne: Size:
ICourier Mew j |1 0 j
Setup Preview
i Alerts

[~ Flashicon in taskbar after successful compile and download
[~ Beep after successtul compile and download
v Detect changes made to open file outside of IDE and prampt far reload

[Confirm compilation of ibrany files

0k, I LCancel

The Page Setup dialog works in conjunction with the Print/Alerts dialog. The Page Setup
dialog is where you define the attributes of headers, footers, page numbering and margins
for the printed page. The Print/Alerts dialog is where you enable and disable these set-
tings. You may also change the font family and font size that will be used by the printer.
This does not apply to the fonts used for headers and footers, those are defined in the Page
Setup dialog.

There are 4 checkboxes in the Alerts area of thisdialog. The first 2 signal a successful
compile and download, one with avisual signal, the other auditory. The 3rd checkbox
detectsif afile that is currently open in Dynamic C has been modified by an external
source, i.e., a 3rd party editor; and if checked, will bring up a dialog box asking if you
want to rel oad the modified file so that Dynamic C is working with the most current ver-
sion. The last checkbox, if checked, causes Dynamic C to query when an attempt is made
to compile alibrary file to make sure that iswhat is desired.

You may choose zero or more of these alerts.

Chapter 15: Graphical User Interface 257

Project Options
Settings used by Dynamic C to communicate with atarget, and to compile and run programs
are accessible by using the Project Options dialog box. The dialog box has tabs for various
aspects of communicating with the target, the BIOS and the compiler.

Communications Tab

x
Communications | Compiler I Debugger I Defines I Targetless I
— Connection Type—— 1 Sernial Options
" Use Serial Connection Baud Rates
Debug Baud Rate 115200 =
Wew Dovirload Baud Rate | 460200 =
[~ Dizable Baud Hegotiation

Seral Bart ICDME VI Stop Bits |2 "I

[¥# Enable Pracessor verification, Wenhythe processar,
[Ty dizabling i pou cant get

the PL toifind the target
¥ Use ISE toSeral Corverter : RHTEAE

* Use TCP/R Connection [1ER - ptons

f+ FabbitSys Rabbitlink
Metwork, Address ||

Cantral Part |32023

User Mame I

Pazsword I

0K I Cancel Help

Connection Type
Choose either a seria connection or a TCP/IP connection.

258 Dynamic C User’s Manual

Serial Options
Thisiswhere you setup for serial communication. The following options are available
when the Use Serial Connection radio button is selected.

Debug Baud Rate

This defaultsto 115200 bps. It is the baud rate used for target communica-
tions after the program has been downloaded.

M ax Download Baud Rate

When baud negotiation is enabled, Dynamic C will start out at the selected
baud rate and work downwards until it reaches one both it and the target can
handle.

Disable Baud Negotiation

Dynamic C negotiates a baud rate for program download. (This helps with
USB or anyone who happens to have a high-speed serial port.) This default
behavior may be disabled by checking the Disable Baud Negotiation check-
box. When baud negotiation is disabled, the program will download at 115k
baud or 56k baud only. When enabled, it will download at speeds up to 460k
baud, as specified by Max Download Baud Rate.

Serial Port

Thisisthe COM port of the PC that is connected to the target. It defaults to
COM1.

Sop Bits
The number of stop bits used by the serial drivers. Defaultsto 2.

Enable Processor Verification

Processor detection is enabled by default. The connection is normally
checked with atest using the Data Set Ready (DSR) line of the PC serial con-
nection. If the DSR line is not used as expected, afalse error message will be
generated in response to the connection check.

To bypass the connection check, uncheck the Enable Processor Verification
checkbox. This allows custom designed systems to not connect the STATUS
pin to the programming port. Also disabling the connection check allows non-
standard PC ports or USB converters which might not implement the DSR
line to work.

Use USB to Serial Converter

Check this checkbox if a USB to serial converter cableis being used.
Dynamic C will then attempt to compensate for abnormalitiesin USB con-
verter drivers. This mode makes the communications more USB/RS232 con-
verter friendly by allowing higher download baud rates and introducing short
delays at key pointsin the loading process. Checking this box may also help
non-standard PC ports to work properly with Dynamic C.

Chapter 15: Graphical User Interface 259

TCP/IP Options
In order to program and debug a controller across a TCP/IP connection, the Network
Address field must have the | P address of either the RabbitLink board that is attached
to the controller, or the | P address of acontroller that has its own Ethernet interface.

To accept control commands from Dynamic C, the Control Port field must be set to
the port used by the Ethernet-enabled controller. The Controller Name isfor informa-
tional purposes only. The Discovery button makes Dynamic C broadcast a query to
any RabbitLinks attached to the network. Any RabbitLinks that respond to the broad-
cast can be selected and their information will be placed in the appropriate fields.

Compiler Tab
Click on the Compiler tab to display the following dialog.

Project Options I

Communications Debuggerl Definesl Targetless!

— Bun-Time Checking — Twpe Checking — Optimize Far

v Amay Indices [+ Prototype {~ Size

[+ Puointers [+ Demotion {* Speed

[+ Puoirter

— wiarning Reports — BIOS Memomy Seting————— [Max Shown

fe Al £~ Code and BIOS in Flash Errors: 10 |&

£ Serous Only " Code and BIOS in RAM

€ Mone & Code and BIOS nFlash, FuninfiaM | | Wamings [10 2]
r— List Files Separate [nstiuction & Data Space

[~ Generate assembly list file for each compile ’7|7 Eratle separate instiiction and data spaces

— Default Compile Mode
& Compile o attached target

" Compile defined target configuration ta ki file
€ Eompile ta) kit file using attached target

— Ireline 140
I~ Inline buftin /0 functions

— RabhitSys — RabbitSys 1/0 Mode
¥ Compile program in RabbitSys user mode Pratected

+ Unpratected

Advanced... |

ak. LCancel i Help |

260 Dynamic C User’s Manual

Run-Time Checking
These options, if checked, can allow afata error at run time. They also increase the
amount of code and cause slower execution, but they can be valuable debugging tools.

e Array Indices—Check array bounds. Thisfeature adds code for every array ref-
erence.

e Pointers—Check for invalid pointer assignments. A pointer assignment is
invalid if the code attempts to write to alocation marked as not writable. Loca
tions marked not writable include the entire root code segment. This feature
adds code for every pointer reference.

Type Checking
This menu item allows the following choices:

e Prototypes—Performs strict type checking of arguments of function calls
against the function prototype. The number of arguments passed must match
the number of parametersin the prototype. In addition, the types of arguments
must match those defined in the prototype. Z-World recommends prototype
checking because it identifies likely run-time problems. To use this feature
fully, all functions should have prototypes (including functionsimplemented in
assembly).

e Demotion—Detects demotion. A demotion automatically converts the value of
alarger or more complex typeto the value of asmaller or less complex type.
Theincreasing order of complexity of scalar typesis:

char

unsigned int
int

unsigned long
long

float

A demotion deserves awarning because information may belost in the conver-
sion. For example, when a1 ong variable whose value is 0x10000 is converted
to an int value, the resulting valueis 0. The high-order 16 bits are lost. An
explicit type casting can eliminate demotion warnings. All demotion warnings
are considered non-serious as far as warning reports are concerned.

e Pointer—Generates warningsif pointersto different types are intermixed with-
out type casting. While type casting has no effect in straightforward pointer
assignments of different types, type casting does affect pointer arithmetic and
pointer dereferences. All pointer warnings are considered non-serious as far as
warning reports are concerned.

Warning Reports
This tells the compiler whether to report all warnings, no warnings or serious warn-
ings only. It is advisable to let the compiler report all warnings because each warning
isapotential run-time bug. Demotions (such as convertingalong toan int) are
considered non-serious with regard to warning reports.

Chapter 15: Graphical User Interface 261

Optimize For

Allows for optimization of the program for size or speed. When the compiler knows
more than one sequence of instructions that perform the same action, it selects either
the smallest or the fastest sequence, depending on the programmer’s choice for opti-
mization.

The difference made by this option isless obvious in the user application (where most
code is not marked nodebug). The speed gain by optimizing for speed is most obvi-
ous for functions that are marked nodebug and have no auto local (stack-based)
variables.

BIOS Memory Setting

A single, default BIOS source file that is defined in the system registry when install-
ing Dynamic C is used for both compiling to RAM and compiling to flash. Dynamic
C definesapreprocessor macro, FLASH , RAM or FAST RAM dependingon
which of the following optionsis selected. This macro is used to determine the rele-
vant sections of code to compile for the corresponding memory type.

e Code and BIOS in Flash—If you select this option, the compiler will load the
BIOS to flash when cold-booting, and will compile the user program to flash
where it will normally reside.

e Code and BIOS in RAM—If you select this option, the compiler will load the
BIOSto RAM on cold-booting and compile the user program to RAM. This
option is useful if you want to use breakpoints while you are debugging your
application, but you don’t want interrupts disabled while the debugger writes a
breakpoint to flash (this can take 10 ms to 20 ms or more, depending on the
flash type used). Itisalso possibleto have atarget that only has RAM for use
as a slave processor, but this requires more than checking this option because
hardware changes are necessary that in turn require a special BIOS and cold-
loader.

e Code and BIOS in Flash, Run in RAM—If you select this option, the compiler
will load the BIOS to flash when cold-booting, compile the user program to
flash, and then the BIOS will copy the flash image to the fast RAM attached to
CS2. This option supports a CPU running at a high clock speed (anything
above 29 MH2).

Thisisthe same as the command line compiler -mf r option.

Max Shown

This limits the number of error and warning messages displayed after compilation.

List Files

Checking this option generates an assembly list file for each compile. A list file con-
tains the assembly code generated from the source file.

Thelist fileis placed in the same directory as your program, with the name
<Program Name>.LST. Thelist file has the same format as the Disassembled
Code window. Each C statement is followed by the generated assembly code. Each
line of assembly code is broken down into memory address, opcode, instruction and
number of clock cycles. See page 275 for a screen shot of the Disassembled Code
window.

262

Dynamic C User’s Manual

Separate Instruction and Data Space
When checked, this option enables separate & D space, doubling the amount of root
code and root data space available.

Please note that if you are compiling to a 128K RAM, thereis only about 12K avail-
able for user code when separate 1& D space is enabled.

Default Compile Mode
One of the following options will be used when Compile | Compileis selected from
the main menu of Dynamic C or when the keyboard shortcut <F5> is used. The set-
ting shown here may be overridden by choosing a different option in the Compile
menu. The setup for targetless compile may differ for some board series. Please check
your user manual for differencesin setup.

e Compile to attached target - a program is compiled and loaded to the attached
target.

e Compile defined target configuration to .bin file - a program is compiled and
the image written to a .bin file. The target configuration used in the compileis
taken from the parameters specified in Options | Project Options. The Target-
less tab allows you to choose an aready defined board type or you may define
one of your own.

e Compileto .bin file using attached target - a program is compiled and the
image written to a . bin file using the parameters of the attached controller.

In-line I/O
If checked, the built-in I/O functions (WrPortI (),RdPortI (),BitWrPortI ()
and BitRdPortI ()) will have efficient inline code generated instead of function
callsif al arguments are constants, with the exception of the 3rd parameter of
BitWrPortI () and WrPortI (), which may beany valid expression.

If thisbox is checked, but acall to one of the aforementioned functions is made with

non-constant arguments, (with the exception of the 3rd parameter for the 2 write
functions) then anormal function call is generated.

RabbitSys
This option was added in Dynamic C 9.30. Checking it allows you to compile a pro-
gram to run on top of RabhitSys. The target board must be RabbitSys-enabled, which
means that it has the necessary preloaded drivers and the RabbitSys firmware.

For more information about RabbitSys, see the RabbitSys User’'s Manual.
RabbitSys 1/0 Mode

The radio buttons labeled “ Protected” and “Unprotected” choose between the avail-
able RabbitSys 1/0 protection modes.

Chapter 15: Graphical User Interface 263

Advanced... Button
Click on this button to reveal the Advanced Compiler Options dialog. The options are:

Default Project Source File

Use this option to set a default source file for your project. If thisbox is
checked, then when you compile, the source file named here will be used and
not the file that is in the active editor window. If the file named here is not
open, it will be opened into a new editor window, which will be the new
active editor window.

User Defined BIOS File

Use this option to change from the default BIOS to auser-specified file. Enter
or sdlect the file using the browse button/text box underneath this option. The
check box labeled use must be selected or else the default file BIOS defined
in the system registry will be used. Note that a single BIOS file can be made
for compiling both to RAM and flash by using the preprocessor macros
_FLASH or _RAM . Thesetwo macros are defined by the compiler based
on the currently selected radio button in the BIOS Memory Setting group box.

User Defined Lib Directory File

The Library Lookup information retrieved with <Ctrl+H> is parsed from the
librariesfoundinthe 1ib.dir file, whichis part of the Dynamic C installa-
tion. Checking the Use box for User Defined Libraries File, alowsthe parsing
of auser-defined replacement for 1ib . dir when Dynamic C starts. Library
filesmust belistedin 1ib.dir (or itsreplacement) to be availableto a pro-
gram.

If the function description headers are formatted correctly (See “ Function
Description Headers’ on page 45.), the functionsin the libraries listed in the
user-defined replacement for 1ib . dir will be available with <Ctrl+H> just
like the user-callable functions that come with Dynamic C.

Thisis the same as the command line compiler -1 £ option.

Watch Code

Allow any expressionsin watch expressions

This option causes any compilation of a user program to pull in al the utility
functions used for expression evaluation.

Restricting watch expressions (may save root code space)

Choosing this option means only utility code already used in the application
program will be compiled.

264

Dynamic C User’s Manual

Debug Instructions and BIOS Inclusion

Include RST 28 instructions

If thisis checked, the debug and nodebug keywords and compiler directives
work as normal. Debug code consists mainly of RST 28h instructionsinserted
after every C statement. This option aso controls the definition of a compiler-
defined macro symbol, DEBUG_RST. If the menu item is checked, then
DEBUG_RST is set to one, otherwise it is zero.

If the option is not checked, the compiler marks all code as nodebug and
debugging is not possible.

The only reason to check this option if debugging is finished and the program
isready to be deployed, isto allow some current (or planned) diagnostic capa-
bility of the Rabbit Field Utility (RFU) to work in a deployed system. This
option affects both code compiled to .bin files and code compiled to the tar-
get. To run the program after compiling to the target with this option, discon-
nect the target from the programming port and reset the target CPU.

Include BIOS

If thisis checked, the BIOS, as well as the user program, will beincluded in
the .bin file. If you are creating a special program such as a cold loader that
starts at address 0x0000, then this option should be unchecked.

Thisoption is not available when you are compiling a program to the attached
target controller.

Chapter 15: Graphical User Interface 265

Debugger Tab

Click on the Debugger tab to display the following dialog. This is where you enable/dis-
able debugging tools. Disabling parts of the debug kernel saves room to fit tight code

space requirements.

Project Options

Eommunicatinnsl Compiler Debugger |Defines| Targetlessl

— Debuagager Options

¥ Enable instruction level single stepping

v Enable breakpaints Max breakpoints: |32 |v|
¥ Enable watch expressions Max expressions: IB [vl “wéatch mermary: |512 [vi
¥ Enable stack tracing Stack trace Ql,ltes:|4095| vI

[+ Enable execution tracing

— Trace Buffer [PC]

Size [MBytes): IB |vi [‘wrap Entries: 262,144

— Trace Level
+ Full, Line breaks and function entm//exit

" Function entrydexit anly

1 Trace Window Fields to Trace

[w Action
[w Function nare
[+ Line/calumi

¥ File name
¥ Time [mzec)
[+ Beqister values

— Saving Trace “window ta a File
[~ Save on program termination

3 |

LCancel Help

Enable debug kernel

This option was added in Dynamic C 9.30. Leaving it unchecked allows you to com-
pile your application without the debug kernel. You must check this option to set any

of the other debug options.

Enable instruction level single stepping
If thisis checked when the assembly window is open, single stepping will be by
instruction rather than by C statement. Unchecking this box will disable instruction
level single stepping on the target and, if the assembly window is open, the debug ker-

nel will step by C statement.

Enable breakpoints

If this box is checked, the debug kernel will be able to toggle breakpoints on and off
and will be able to stop at set breakpoints. Thisis where you set the maximum number
of breakpoints the debug kernel will support. The debug kernel uses asmall amount of
root RAM for each breakpoint, so reducing the number of breakpoints will slightly

reduce the amount of root RAM used.

266

Dynamic C User’s Manual

If this box is unchecked, the debug kernel will be compiled without breakpoint sup-
port and the user will receive an error message if they attempt to add a breakpoint.

Enable watch expressions
If thisbox is checked, watch expressions will be enabled. Thisiswhere you set the
maximum number of watch expressions the debug kernel will support. The debug ker-
nel uses a small amount of root RAM for evaluating each watch expression, so reduc-
ing the number of watches will dightly reduce the amount of root RAM used.

With the watch expression box unchecked, the debug kernel will be compiled without
watch expressions support and the user will receive an error message if they attempt
to add awatch expression.

With Dynamic C 9, watch expressions are enhanced to automatically include the addi-
tion of structure members when awatch expression is set on a struct. Some extended
memory is reserved for handling watch expressions on structs. As shown in the above
screen shot, 512 bytes of xmem isreserved by default. This can be changed to any-
thing in the range 32 to 4096. Be aware that this watch memory is a tradeoff: not only
doesit dictate the number and complexity of watched structs, but also impacts the
amount of memory available for xalloc () calls.

Enable stack tracing
Dynamic C 9 introduces stack tracing. If this box is checked the Stack Trace window
isavailable to show the function call sequence leading to any point at which the pro-
gram is stopped. The Stack Trace window shows a concise history of the execution
path and values of local variables and function arguments that led to the current break-
point, all for avery small cost in execution time and BIOS memory.

To theright of the checkbox is a spin/edit box for entering the maximum number of
bytes of the current stack to transfer from the target at each breakpoint. The allowable
range is 32 bytes to 4096 bytes inclusive. The default is 4096 bytes. If the stack depth
is smaller than the number in this spin/edit box, only the depth number of bytesis
transferred.

With the “Enable stack tracing” box unchecked, the debug kernel and the user pro-
gram will be compiled without stack tracing support. Changing the status of the
checkbox or the number of stack trace bytes forces a recompilation of the BIOS the
next time the user program is compiled.

See “Stack Trace (Ctrl+T)” on page 278 for details on using this debug window.

Chapter 15: Graphical User Interface 267

Enable execution tracing
If thisis checked, the target will send trace information back to Dynamic C when you
turn on tracing by choosing Inspect | Start Tracing or when your program does so by
executinga TRACE or _TRACEON macro. Unchecking this box will disable the
menu command and macros.

Note that enabling tracing here will cause more code to be compiled into the BIOS,
meaning there is less memory available on the target for your program, so if you get
insufficient memory errors with your program, disabling tracing might help. Also,
when you turn on tracing from the menu or a macro, your program will suffer a per-
formance hit because of the extra communication required between Dynamic C and
the target.

Trace Buffer (PC)
Thetrace buffer allows you to specify how much memory isallocated on your
computer (the default is 64 megabytes) to hold trace entries received from the
target. If you check the “Wrap” box, new trace entries overwrite existing ones
when the buffer fills up, starting with the oldest. When “Wrap” is unchecked,
any entries received after the buffer fills up are discarded.

The number of entries displayed is the maximum number of trace entries the
buffer will hold given the size of the trace buffer you specify and the Trace
window information fields you select.

Trace Level

Choose which events will be captured by the trace. Full tracing captures all
debuggable statements plus function entries and exits. If you don’t want to
include all statements, you can choose to capture each function entry and exit
only.

Dynamic C statements are debuggable by default, while assembly codeis not.
You can toggle thiswith the debug and nodebug keywords for Dynamic C
functions, and with the debug and nodebug options of the #asm compiler
directive for blocks of assembly code.

Trace Window Fields to Trace

You can select the trace information captured from the target and displayed in
the Trace window. You can include the function name, file name, and line and
column where each trace entry originated; the type of action being performed;
the time stamp when the action was performed; and the contents of the regis-
ters. The more fields you select to be displayed in the Trace window, the
larger each entry, and so the fewer entries the trace buffer can hold.

268 Dynamic C User’s Manual

Saving Trace Window to a File

Checking the “ Save on program termination” box will cause Dynamic C to
write the contents of the trace buffer to a file when your program terminates.
When this box is checked, you must specify the filename and location where
you want to save.

Note that this feature saves the contents of the trace buffer at the time your
program terminates, so if the buffer fills up while your program is running not
all trace entries received will be written to thefile. If you want to save trace
entries before they are lost, you can do so at any time from the Trace window.
See “Trace (Alt+ F12)” on page 277 for details.

Defines Tab
The Defines tab brings up a dialog box with awindow for entering (or modifying) alist of
defines that are global to any source file programs that are compiled and run. The macros
that are defined here are seen by the BIOS during its compilation.

Syntax:
’ DEFINITION[DELIMETER DEFINITION[DELIMETER DEFINITION]I...]]]

DEFINITION: MACRONAME[[WS]=[WS]VALUE]
DELIMETER: "' or 'newline
MACRONAME: the same as for a macro name in a source file
WS: [SPACE[SPACE]...]]]
VALUE: CHR[CHR]...]]
CHR: any character except the delimeter character '; ', which is entered as the charac-
ter pair "\ ;"

Notes:

e Do not continue a definition in thiswindow with '\', smply continue typing as along
line will wrap.

¢ |nthiswindow hitting the Tab key will not enter atab character (\ t), but will tab to the
OK button.

e The command line compiler honors al macros defined in the project filethat it is
directed to use with the project file switch, -pf, ordefault .decpif -pf isnot used.
See command line compiler documentation.

e A macro redefined on the command line will supersede the definition read from the
project file.

Chapter 15: Graphical User Interface 269

Examples and File Equivalents:

Example:

DEF1;MAXN=10;DEF2

Equivalent:

#define DEF1
#define MAXN
#define DEF2

Example:

DEF1
MAXN = 10
DEF2

Equivalent:

#define DEF1
#define MAXN
#define DEF2

Example:

STATEMENT = A

Equivalent:

#define STATEMENT

#define DEF1
Example:

STATEMENT
FORMATSTR
DEF1=10

Equivalent:

#define STATEMENT
#define FORMATSTR

10

10

+

10

A + B
"name

#define DEF1 10

A + B

C\;

A + B
"mame

$s\n"

C\;;DEF1=10

C;
$s\n"

270

Dynamic C User’s Manual

Targetless Tab
Click on the Targetless tab to reveal three additional tabs: RTI File, Specify Parameters
and Board Selection. The setup for targetless compile may differ for some board series.
Please check your user manual for differencesin setup.

RTI File
Click on thistab to open a Rabbit Target Information (RTI) file for viewing. Thefile
isread-only. You may not edit RTI files, but you may create one by selecting an entry
in the Board Selection list and clicking on the button Save as RTI. Or you may define
aboard configuration in the Specify Parameters dialog and then save the information
inan RTI file. Details follow.

Specify Parameters
Thisiswhere you may define the parameters of acontroller for later usein targetless
compilations.

Project Options |

Enmmunicatinnsl Eu:umpilerl Del:uuggerl Defines Targetless |

RTIFile Specifty Parameters | Board Selection |

Board Configuratian

1D Code [0=<FFO0 - 0xFFFF):
=F

D ezcription;

CPL [revizion shawn on chip]:
IHabbit 2000 revision 14T

L

Baze Freguency [MHz]:

11.0532 =]
Bk [KBytes]:
512 =]

Prirary Flazh [FBytes]:
| 256

L

Update Board Selection | Save az RTI

ok Cancel | Help

Chapter 15: Graphical User Interface 271

Theterm “Primary Flash” refers to the flash device connected to /CS0, not the total
amount of flash available on the board.

The result may be saved to aRTI file for later use, or the result may be saved to the
list of board configurations.

Board Selection
Thelist of board configurationsis viewable from the Board Selection tab. The high-
lighted entry in thelist of board configurations is the one that will be used when the
compilation uses a defined target configuration, that is, when the Default Compile
Mode on the Compiler tab is set to “Compile defined target configuration to .bin file’
and Compile or Compile to .bin file is chosen from the Compile menu.

If you save to thelist of board configurations by clicking on the button Update Board
Selection, then you must fill in all fields of the dialog. The baud rate, calculated from
the value in the Base Frequency (MHz) field, only applies to debugging. The fastest
baud rate for downloading is negotiated between the PC and the target.

To saveto an RTI file only requires an entry in the CPU field. Please see Technical
Note 231 for information on the specifics of the Rabbit CPU revisions.

The correct choice for the CPU field isfound on the chip itself. The informationis
printed on the 3rd line from the top on the Rabbit 2000 and the 2nd line from the top
on the Rabbit 3000. The Rabbit 2000 revision is |Q#T, where # is the revision number
and the letters are associated information. The Rabbit 3000 revision is IL#T or | Z#T,
where # is the revision number and the letters are associated information.

: ‘ R T R P Trer

-TM

RABBIT 3000™
ATSCsSALIT Sl =S
U

2G4993A
0230

272 Dynamic C User’s Manual

Toolbars

Selecting thismenu item revea s alist of all menu button groups, i.e., the groups of icons that
appear in toolbars beneath the title bar and the main menu items (File, Edit, ...). Thisareais
called the control bar. Uncheck View Menu Buttons to remove the control bar from the
Dynamic C window. Any undocked toolbars (i.e., toolbars floating off the control bar) will
till be visible. You undock atoolbar by placing the cursor on the 2 vertical lines on the left
side of the toolbar and dragging it off the control bar.

Each menu button group (File, Tl #indew Help

Edit, Compile, Run, Options,
Watch, Debug Window, Win-
dowView and Help) has a
checkbox for choosing whether
to make its toolbar visible on
the control bar.

|$ Ervironment O ptions > m ” A S R
' Project Options

4 IT Wiew Menu Buttons

v File
IT Frrint
|v Edi
IT LCompile
|7 Bun

Inzpect

To quickly return to only show-

ing the icons visible by default, Options

select Default Toolbars. |v Debug Windows
Window Wiews

Select the option, Consolidate Belp
Eansolidated

visible buttons to one toolbar to
do exactly that—create one
toolbar containing all visible
icons. Doing this, enables the
option Consolidated, which tog-
glesthe visihility of the consoli-
dated toolbar, even when it is undocked from the control bar.

Default Toolbars
Show All Buttons

Consolidate vizible buttons to one toolbar

Cuztamize Button Groups. ..

Select Customize Button Groups to

Customize Menu Buttons bring up the Customize Menu But-
File [Croate a new fie 2| | tonswindow. Thiswindow alows
Frint = Openafie you to change which buttons are
gﬂf:p”e I Save curent fie associated with which button group
Inspect e on the toolbar. Choose a button
patns o] SR roup on the l&ft side of the win-
&?Eggm?:ﬁm E'El Create a new project with facton sett gOW'pthiS causes the icons for the
e £ Open Pm.'ECt”' = buttons in that group to display on

B Sl the right side of the window. Click

4= SaveProject .. _ILI and drag an icon from theright side

S L 1 of the window to the desired but-
Help | Close | ton group on the tool bar.

To remove an icon from its button group, click and drag the icon off the toolbar or to another
button group on the toolbar. The Customize Menu Buttons window must be open to change
the position of an icon on the toolbar.

Chapter 15: Graphical User Interface 273

15.2.7 Window Menu

Click the menu title or press <Alt+W> to display the Window menu.

Help

ﬂ | lul d il

You can choose to minimize, restore or close
al open windows or just the open debug win-

Minirize y “ ASR dow or just the open editor windows. The
Restare 2 second group of itemsisaset of standard
Close 4 Windows commands that allow the applica-

B Cascade tion windows to be arranged in an orderly

H Tile Horizontally way.

[0 TileVerticall The Compiler Messages option isatoggle for

=
== Arange lcons

IQ' [Eampierfleszanes

displaying that window. Thisis only avail-
ableif an error or warning occurred during

Debu RN) /ol compilation.
3 Information B Stdin The Debug Windows option opens a second-
A Assembly F10 ary menu, whose items are toggles for dis-
1DEMOT.C” R Regiter 11 | playing the like-named debug windows. You
S Sack F12 can scroll these windows to view larger por-
g T'race AlbE] 2 tions of data, or copy information from these
B Stack Trace CileT windows and paste the information as text

anywhere. More information is given below
for each window.

At the bottom of the Window menu isalist of current windows, including source code windows.
Click on one of these items to bring its window to the front, i.e., make it the active window.

Watch

Select Watch to activate or deactivate the Watches window. The Add Watch command on the
INSPECT menu will do thistoo. The Watches window displays watch expressions whenever
Dynamic C evaluates watch expressions. Starting with Dynamic C 9, awatch expression for a
structure will automatically include all members of the structure. Previous versions of
Dynamic C required each struct member to be added as a separate watch expression.

B3

= W atches

----- tm rd int (73 () 0xEF31

[rte struct tm 7 bytes
g----t.m_sec char VE (Dx0C) joffset 0}
----- tm min char troioxER) {offset 1)
----- tm hour char "int (Ox0A4) (offset 2Z)
----- tm mday char "“wxzlF' (0xlF) {offset 3)
----- Tt mon char a0l f0=x0L1) (offzet 4,
----- tm year char 'RPYOoDxs0) (offset o)
----- tm_wday char aldt (0x04) {offset o)

274 Dynamic C User’s Manual

Stdio
Select Stdio to activate or deactivate the Stdio window. The Stdio window displays output
fromcalstoprintf (). If theprogram calsprintf (), Dynamic C will activate the Stdio
window automatically if it is not already open, unless “ Automatic open” is unchecked in the
Debug Windows dialog in Options | Environment Options.

Starting with Dynamic C 9, the various Find commands available on the Edit menu can be
used directly in the Stdio window.

Assembly (F10)
Select Assembly to activate or deactivate the Disassembled Code window. The Disassembled
Code window (aka., the Assembly window) displays machine code generated by the compiler
in assembly language format.

The Disassemble at Cursor or Disassemble at Address commands from the Inspect menu
also activate the Disassembled Code window.

% Disassembled Code _ O] x|
| Address | Opcode Imstruction | Byvcles |
[DEMO1.C(13)]: i = 0O;: Py

1fe9 210000 1d hl,0x0000 =]

1f6e D40z 1d {sp+2) ,hl 11

1fae EF r=t O=xz25 3
[DEMO1.Z2(14)] : =xalloc stats(0);

1fef 210000 _ld hl,0x0000 =]

1£72 EL push hl Copy |

1£73 CF32E3F9 lcall xa Save ko File Chrlts

1?:; ;;DE ::: ;i: Move bo .ﬁ.u:lu:lresls . Ckrl-+
[DEMO1.C(16)]: while (1) { Mowe ko Execution Poink Chrl+E

1f7a aa nop v Show Source

1£7h EF rst B Shaw File Mame in Source Line
[DEMO1.C(16)]: while {1} | v Show Addresses

LEaC 10180 L) L v Show Machine Code

1L5e 5 l_mul ot v Show Clock Cyeles

1£50 CALEF1F ip z, |

1£53 EF r=t Ol Sum Clock Cwcles
[DEMOL1.C{17)] 2 i++; v Lse Syntax Highlighting

1f54 C40z 1d hl I TEPTET 9

1f&6 23 inc hl 2

1£57 D40z 1d {sp+2) ,hl 11 |
|Selected Clock Cycles Sum: 2 o

The Disassembled Code window displays Dynamic C statements followed by the assembly
instructions for that statement. Each instruction is represented by the memory address on the
far left, followed by the opcode bytes, followed by the mnemonics for the instruction. The last
column shows the number of cycles for the instruction, assuming no wait states. The total
cycletime for ablock of instructions will be shown at the lowest row in the block in the cycle-
time column, if that block is selected and highlighted with the mouse. The total assumes one

Chapter 15: Graphical User Interface 275

execution per instruction, so the user must take looping and branching into consideration
when eval uating execution times.

Use the mouse to select several lines in the Assembly window, and the total cycle time for the
instructions that were selected will be displayed to the lower right of the selection. If the total
includes an asterisk, that means an instruction with an indeterminate cycle time was sel ected,
suchasldir or ret nz.

Right click anywhere in the Disassembled Code window to display the following popup
menu:

Copy
. . . C Chl+C
Copies selected text in the Disas- =R "
bled Code window to the dli Save to File Clrl+5
Eemd odewindow to the clip- Move to Address Clrl+hd
oara. Move to Execution Point Ctrl+E
Saveto File

v Show Source

Opensthe Save Asdialog to save v Shaw File Mame in Source Line
text selected in the Disassembled v Show Addreszes

Code window to afile. If you do v Show bdachine Code

not specify an extension, . dasm w Show Clock Cucles

will be appended to the file name.

v Sum Clock Cycles
Moveto Address v |Jze Suntax Highlighting

Opensthe Disassemble at Address
dialog so you can enter a new address.

M ove to Execution Point

Highlights the assembly instruction that will execute next and displaysitin
the Disassembled Code window.

All but the last menu option of the remaining itemsin the popup menu toggle what is dis-
played in the Disassembled Code window. The last menu option, Use Syntax Highlighting, dis-
plays the colors that were set for the editor window in the Disassembled Code window as well.

To resize a column in the assembly window, move the mouse pointer to one of the vertical
bars that is between each of the column headers. For instance, if you move the mouse pointer
between "Address" and "Machine Code," the pointer will change from an arrow to avertica
bar with arrows pointing to the right and left. Hold the left mouse button down and drag to the
right or left to grow or shrink the column.

Register (F11)
Select Register to activate or deactivate the Register window. This window displays the pro-
cessor register set, including the status register. Letter codes indicate the bits of the status reg-
ister (also known as the flags register). The window also shows the source-code line and
column at which the snapshot of the register was taken.

It is possible to scroll back to see the progression of successive register snapshots. Register
values may be changed when program execution is stopped Registers PC, XPC, and SP may
not be edited as this can adversely affect program flow and debugging.

See “Register Window” on page 253 for more detail s on this window.

276 Dynamic C User’s Manual

Stack (F12)

Select Stack to activate or deactivate the Stack window. The Stack win-
dow displays the top 32 bytes of the run-time stack. It also shows the
line and column at which the stack “ snapshot” was taken. It is possible
to scroll back to see the progression of successive stack snapshots.

Dynamic C 9 introduced differences highlighting: each time you single
step in C or assembly, changed data can be highlighted in the Stack
window. (Thisis also true for the Memory Dump and Register win-

dows.)

Trace (Alt+ F12)

Select Trace to activate or deactivate the Trace window. Thefields dis-

played in thiswindow were specified in the Debugger dialog box that is
accessed viathe Options | Project Options menu (see “ Enable execution tracing” on

page 268).
% E:ADCINPROGASAMPLES\DEMO3.C Trace

Action | Function | File M arne | Line/Col | Timestamp |& : 0OxE3 cC: 0
Execute main E:"DCINPROGCYSAMPLEZADEMOZ.C 19,4 ZEldl EC : Ox0000 fx: 0
Execute main E:ZDCINPROGH SAMPLESNDEMOZ.C 20,4 23391 DE : 0OxC330 (0: 1
Execute main E:ZDCINPROGYSAMPLESSDEMOZ.C 20,12 z4L00 HL : 0xlF72 |x: O
Execute main E:\DCINPROGYSAMPLES\DEMOZ.C 25,3 ZE7Z7 AF': 0OxFg30 |x: 1
Execute main E:\DCINPROGY SAMPLESZDEMOZ.C 27,4 ZT24Z EC': Oxoooo |x: 1
khhit E:ZDCINPROGY LIEYSTDIC. LIE 3 ZEd38 DE': Oxl000 W

HL': OxDFFE ([5: 1
I : OxCEZE
IT : Ox1F07
SP : OxDFF3
IC : OxlFCe
HPC: 0Ox00320

The Trace window has aright-click pop-up menu.
An option on this menu controls the display of an
additional column in the Trace window. If Group
repeated statements is selected, the Show Repeat
Count may also be selected and will display in the
rightmost column of the Trace window that comes
before the register contents column. A value dis-
played under Show Repeat Count isthe number of
times the corresponding statement has been executed
and, therefore, traced. The Timestamp column is not
updated for subsequent traces of arepeated statement.

v Show Repeat Count

v Group repeated statements
Open Source

v Auta Scroll

v Full file pathniarme

Copy zelected traces Chrl+C

Copy with header Clrl+aslt+C

Save trace window ko file

The Group repeated statements option is useful when tracing statements inside a loop.

Therest of the pop-up menu options are more or less self-explanatory. You can choose to open
the source code for any function in the Trace window by selecting the function and choosing
Open Source. In the above screenshots, note that atrace statement for kbhit () isselected
in the Trace window. Choosing Open Source in this situation would open awindow for
STDIO.LIB, thelibrary filethat containsthe function kbhit ().

Chapter 15: Graphical User Interface

277

You can also toggle auto scroll, as well as decide whether to display the complete path in the
File Name column. The last three menu options are for saving Trace window contents to
another file. You can select trace statements in the window and then using Copy selected
traces or Copy with header you can paste the selected traces anywhere you can perform a
paste operation. You can also choose to copy the entire contents of the current Trace window
to anamed file. Thisis similar to the option in the Debugger tab of the Project Options dialog,
which allows saving the Trace window to afile upon program termination.

Stack Trace (Ctrl+T)

The Stack Tracewindow displaysthe .

call sequence and the values of func- Rk T _
tion arguments and local variables of [uain() secs=0x0
the currently running program. The
screenshot shown here is the Stack
Trace window when
Samples/Demo3 . c isrunning.
The window contentstell us that the
functionmain () hasbeen caled and that it has one loca variable named secs, which cur-
rently has a value of 0.

\Depth: 4 \Max Depth: 4 i

The Depth value along the bottom of the Stack Trace window is the current number of bytes
on the stack. The Max Depth value is the maximum number of bytes pushed on the stack at
any one time for the current run of the program or since the Max Depth value was reset. The
Max Depth value can be reset by aright click in the Stack Trace window to bring up some
menu options. Along with resetting the Max Depth value back to zero (think of it like a car
trip odometer) you can use the right click menu to copy text from the Stack Trace window or
to cause the source code file to become the active window. The source code file could be a
library file if alibrary function is executing at the time the menu option is requested.

Information

Select the Information menu option to activate the Information window, which displays how
the memory is partitioned and how well the compilation went.

Information B x|

| Bae Top Size
|R oot cade: 0000 4CES ACEE |Total codesize: 29519 bytes

|><h-1Eh-1 code; 0sO00 03B OZ6EH |T|:|tal data zize: 23471 bytes

[latch code: CCO0 COFE OIFF |Lines compiled: 7747

|Stack: DO00 DFFF 1000 |Compile time: 0 seconds
|F| oot data; CBFF Cz2DEB 1925 |E|:|m|:|ile speed; FE2000 linezdminute
|F| oot cohgtants: Only in Separate [&D |B oard |0 (=0700

278

Dynamic C User’s Manual

Table 15-1. Information Window

Name of Field

Description of Field

The begin (base), end (top) and size of the root code area,

Root code expressed in logical address format (16-bit).
The begin, end and size of the XMEM code area, expressed in
XMEM code | ol address format (20-bit).
The begin, end and size of the watch code area, expressed in
Waichcode 1ol address format (16-bit).
Stack The begin, end and size of the run-time stack, expressed in logical
address format (16-bit).
Root data The begin, end and size of the root data area, expressed in logica

address format (16-bit).

Root constants

The begin, end and size of the root constant area, expressed in
physical address format (20-bit).

Total code size

The number of code bytes (including both root and XMEM code
areas.

Total datasize

The number of data bytes (including both root and XMEM data
areas

Lines compiled

The number of lines compiled, including lines from library files.

Compiletime | The number of seconds taken to compile the program.

Compile speed A_/erage speed of compilation measured in lines compiled per
minute.

Board ID A number identifying the board type. A list of board typesis at

\Lib\default.h.

Note that some of the memory areas described here may be non-contiguous (e.g., 2 flash compiles
and the XMEM code area with separate |& D). If an application islarge enough to span into the
non-contiguous part of an area, the values presented in the Information window for that area are
not accurate.

Chapter 15: Graphical User Interface 279

15.2.8 Help Menu
Click the menu title or press <Alt+H> to select the HELP menu. The choices are given below:

Online Documentation
Opens a browser page and displays afile with links to other manuals. When installing

Dynamic C from CD, this menu item points to the hard disk; after a Web upgrade of Dynamic
C, thismenu item optionally points to the Web.

Keywords
Opens a browser page and displays an HTML file of Dynamic C keywords, with links to their

descriptionsin this manual.

Operators
Opens a browser page and displays an HTML file of Dynamic C operators, with links to their

descriptionsin this manual.

HTML Function Reference
Opens a browser page and displays an HTML file that has two links, one to Dynamic C func-

tions listed al phabetically, the other to the functions listed by functional group. Each function
listed islinked to its description in the Dynamic C Function Reference Manual.

Function Lookup
Displays descriptions for library functions. The keyboard shortcut is <Ctrl+H>.

TR N T TR R

ﬁLihraw Function Lookup

Function Search:

A

_glienulnitin E:ADC 8ALIBMDISPLAYSWGRAPHICWGLMEMLU LIE ;l +- GPS.LIB ;l
_aMenukevpad in EADC BALIBVDISPLAYSAGRAPHICAGLMEMULLIE | . GRAPHIC.LIE

gltenuSha i E:50C BALIBSDISPLAY SYGRAPHICAVGLMEML . LIE __ HDLC PACKET.LIE

ing in E:5C B\TCRIPSCHMP.LIE : — : 1
_prot_init in E:ADC 84LIBLSYS.LIE #-HTTF.LIB
_prot_recover in E:ADC 8SLIBNSYS.LIB - 12C.LIB
_send_ping in E:ADC 8MLIBSTCPIPS CMP.LIE - 12C_DEVICES LIE
_svelsSoftReset in EADC SALIBNSYS LIB - ICHMP LIE
abz in E:ADC SMLIBSMATH.LIE T .
acos in EADC S\LIB\MATH LI - _chk_ping
acot in E:A\DC SALIBYMATH.LIB . v _ping
aczzin EADC BALIBAMATH.LIE © L. _send_ping
ADSTAFAINE n E:ADC BASAMPLESASPIMADSYEFOLIE o IFAkA | ID hu
ADSTATIRead in EADC BVSAMPLESASPINVADSFEFOLIE ;l i | _h|_|

Help | ok Cancel |

Choosing afunction is done in one of several ways. You may type the function namein the
Function Search entry box. Notice how both scroll areas underneath the entry box display the
first function that matches what you type. The functionsto the left are listed alphabeticaly,
while those on the right are arranged in atree format, displaying the libraries alphabetically
with their functions collapsed underneath. You may scroll either of these two areas and have
whatever you select in one area reflected in the other area and in the text entry box. Click OK
or press <Enter> to bring up the Function Description window.

280 Dynamic C User’s Manual

If the cursor is on afunction when Help | Function Lookup is selected (or when <Ctrl+H> is
pressed) then the Library Function Lookup dialog is skipped and the Function Description
window appears directly.

% ping in E:\DC SALIBATCPIPAICMP.LIB

Function Description:

| ping <ICMF.LIB>

ISYNTJLX: int ping(longword host, longword sSegquence number |;

EETWORDS: topip, icmp, ping

DESCRIPTICON: generate an ICHMP request for host. NOTE: this is a macro

which ealls send ping

PARAMETERL: ip address to send ping

FPARAMETERZ @ user defined sequence nunber

RETUEN WALUE: 0O successful
1 failed when sending packet

-1 fsiled hecause could not resolve host hardware address.

SEE AL3O: _chk ping, send ping, ping.c

Help LCloze

Edit Browse

If you click the Edit button, the Function Description window will close and the library that
contains the function that was in the window will open in an editor window. The cursor will be
placed at the function description of interest.

Clicking on the Browse button will open the Library Function L ookup window to allow you to
search for anew function description. Multiple Function Description windows may be open at
the same time.

Chapter 15: Graphical User Interface 281

Instruction Set Reference
Invokes an on-line help system and displays the alphabetical list of instructions for the Rabbit

family of microprocessors.

I/O Registers
Invokes an on-line help system that provides the bit values for all of the Rabbit 1/0 registers.

Keystrokes
Invokes an on-line help system and displays the keystrokes page. Although a mouse or other

pointing device may be convenient, Dynamic C also supports operation entirely from the key-
board.

Contents
Invokes an on-line help system and displays the contents page. From here view explanations

of various features of Dynamic C.

Tech Support
Opens a browser window to the Rabbit Semiconductor Technical Support Center web page,
which contains links to user forums, downloads for Dynamic C and information about 3rd
party software vendors and developers.

Register Dynamic C
Allows you to register your copy of Dynamic C. A dialog is opened for entering your
Dynamic C serial number. From there you will be guided through the very quick registration
process.

Tip of the Day
Brings up awindow displaying some useful information about Dynamic C. There is an option
to scroll to another screen of Dynamic C information and an option to disable the feature. This
isthe same window that is displayed when Dynamic C initializes.

About
The About command displays the Dynamic C version number and the registered serial num-

ber.

282 Dynamic C User’s Manual

16. Command Line Interface

The Dynamic C command line compiler (dccl cmp . exe) performs the same compilation and
program execution as its GUI counterpart (dcrabxx . exe), but isinvoked as a console applica-
tion from a DOS window. It is called with a single source file program pathname as the first
parameter, followed by optional case-insensitive switches that alter the default conditions under
which the program is run. The results of the compilation and execution, al errors, warnings and
program output, are directed to the console window and are optionally written or appended to a
text file.

16.1 Default States

The command line compiler uses the values of the environment variablesthat arein the project file
indicated by the -pf switch, or if the -pf switch is not used, the values are taken from
default.dcp. For moreinformation, please see Chapter 17, “Project Files’ on page 305.

The command line compiler will compile and run the specified source file. The exception to thisis
when the project file “ Default Compile Mode” is one of the options which compilesto a .bin file,
in which case the command line compiler will not run the program but will only compile the
source to a.bin file. Command line help displayed to the console with

dcecl cmp
gives asummary of switches with defaults from the default project file, default . dcp, and
dccl cmp -pf specified project name.dcp

gives asummary of switches with defaults from the specified project file. All project options
including the default compile mode can be overridden with the switches described in Section 16.4.

16.2 User Input
Applications requiring user input must be called with the -i option:
dccl cmp myProgram.c -i myProgramInputs.txt

wheremyProgramInputs . txt isatext file containing the inputs as separate lines, in the
order inwhichmyProgram. ¢ expects them.

16.3 Saving Output to a File
The output consists of all program printf’s aswell as all error and warning messages.
Output to afile can be accomplished with the -0 option
dccl cmp myProgram.c -i myProgramInputs.txt -o myOutputs.txt
wheremyOutputs . txt isoverwritten if it existsor is created if it does not exist.
If the -0a option isused, myOutputs . txt isappended if it existsor is created if it does not.

Chapter 16: Command Line Interface 283

16.4 Command Line Switches

Each switch must be separated from the others on the command line with at least one space or tab.
Extra spaces or tabs are ignored. The parameter(s) required by some switches must be added as
separate text immediately following the switch. Any of the parameters requiring a pathname,
including the source file pathname, can have imbedded spaces by enclosing the pathnamein

quotes.

16.4.1 Switches Without Parameters

-b

Description:

Factory Default:
GUI Equivalent:

-bf-

Description:

Factory Default:
GUI Equivalent:

-br

Description:

Factory Default:
GUI Equivalent:

-h+

Description:

Factory Default:

Use compile mode: Compileto .bin file using attached target.
Compile mode: Compile to attached target.

Compile program (F5) with Default Compile Mode set to "Compileto .bin
file using attached target" in Compiler tab of Project Options dialog.

Undo user-defined BIOS file specification.
None.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Compiler tab of Project Options dial og.
Uncheck the “User Defined BIOS File” checkbox.

Use compile mode: Compile defined target configuration to .bin file
Compile mode: Compile to attached target.

Compile program (F5) with Default Compile Mode set to "Compile
defined target configuration to .bin file" in Compiler tab of Project
Options dialog.

Print program header information.

No header information will be printed.

284

Dynamic C User’s Manual

GUI Equivalent:

Example:

-h-

Description:

Factory Default:
GUI Equivalent:

-id+

Description:

Factory Default:
GUI Equivalent:

-id-

Description:

Factory Default:
GUI Equivalent:

-ini

Description:

None.

dccl cmp samples\demol.c -h -o myoutputs.txt

Header text preceding output of program:

khkkkhkkhkkhkkhkkhkhkhkhhkhhkhhkhkkhkhhkhhkhhkhkkhkhkhkhkhhkhkkhkkhkkkhkkhkkhkk k%%

4/5/01 2:47:16 PM

dccl_cmp.exe, Version 7.10P - English
samples\demol.c

Options. -h+ -0 myoutputs.txt
Program outputs:

Note: Version information refersto dcwd . exe with the same compiler
core.

Disable printing of program header information.
No header information will be printed.

None.

Enable separate instruction and data space.
Separate 1& D spaceis disabled.

Check “ Separate Instruction & Data Space” in Project Options | Compiler.

Disable separate instruction and data space.
Separate 1& D spaceis disabled.

Uncheck “ Separate Instruction & Data Space” in the Project Options |
Compiler dialog box.

Generatesinline code for WrPortI (),RdPortI (),BitWrPortI ()

and BitRdPortI () if al arguments are constants.

Chapter 16: Command Line Interface

Factory Default:

GUI Equivalent:

-If-

Description:

Factory Default:

GUI Equivalent:

-mf

Description:

Factory Default:

GUI Equivalent:

-mfr

Description:

Factory Default:
GUI Equivalent:

-mr

Description:

Factory Default:

GUI Equivalent:

Noinline code is generated for these functions.

Check “Inline builtin I/O functions” in the Project Options | Compiler dia-
log box.

Undo Library Directory file specification.
No Library Directory fileis specified.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box.
Uncheck “User Defined Lib Directory File.”

Memory BIOS setting: Flash.
Memory BIOS setting: Flash.

Select “Code and BIOS in Flash” in the Project Options | Compiler dialog
box.

The BIOS and code are compiled to flash, and then the BIOS copies the
flash image to RAM to run the code.

Memory BIOS setting: Flash

Select “Code and BIOS in Flash, Runin RAM” in the Project Options |
Compiler dialog box.

Memory BIOS setting: RAM.
Memory BIOS setting: Flash.

Select “Code and BIOS in RAM” in the Project Options | Compiler dialog
box.

286

Dynamic C User’s Manual

Description:

Factory Default:

GUI Equivalent:

Description:

Factory Default:
GUI Equivalent:

-rb+

Description:

Factory Default:
GUI Equivalent:

-rb-

Description:

Factory Default:
GUI Equivalent:

-rd+

Description:

Factory Default:

Null compile for errors and warnings without running the program. The
program will be downloaded to the target.

Programisrun.

Select Compile | Compile or use the keyboard shortcut <F5>.

Use compile mode: Compile to attached target.
Compile mode: Compile to attached target.

Run program (F9)

Include BIOS when compiling to afile.
BIOSisincluded if compiling to afile.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
“Include BIOS.”

Do not include BIOS when compiling to afile.
BIOSisincluded if compiling to afile.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box.
Uncheck “Include BIOS.”

Include debug code when compiling to afile.

RST 28 instructions are included

Chapter 16: Command Line Interface 287

GUI Equivalent:

-rd-

Description:

Factory Default:
GUI Equivalent:

-ri+

Description:

Factory Default:
GUI Equivalent:

-ri-

Description:

Factory Default:
GUI Equivalent:

_rp+

Description:

Factory Default:

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
“Include RST 28 instructions.”

Do not include debug code when compiling to afile. This option is
ignored if not compiling to afile.

RST 28 instructions are included.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box.
Uncheck “Include RST 28 instructions.”

Enable runtime checking of array indices.
Runtime checking of array indicesis performed.

Check “Array Indices’ in the Project Options | Compiler dialog box.

Disable runtime checking of array indices.
Runtime checking of array indicesis performed.

Uncheck “Array Indices’ in the Project Options | Compiler dialog box.

Enable runtime checking of pointers.

Runtime checking of pointersis performed.

GUI Equivalent: Check “Pointers’ in the Project Options | Compiler dialog box.
rp
Description: Disable runtime checking of pointers.
288 Dynamic C User’s Manual

Factory Default:
GUI Equivalent:

-rw+

Description:

Factory Default:
GUI Equivalent:

rW

Description:

Factory Default:
GUI Equivalent:

_Sp

Description:

Factory Default:
GUI Equivalent:

-SZ

Description:

Factory Default:
GUI Equivalent:

-td+

Runtime checking of pointersis performed.

Uncheck “Pointers’ in the Project Options | Compiler dialog box.

Restrict watch expressions—may save root code space.
Allow any expressions in watch expressions.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
“Restrict watch expressions. . ."

Don't restrict watch expressions.
Allow any expressions in watch expressions.

Thisisan advanced setting, viewable by clicking on the “ Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
“Allow any expressionsin watch expressions’

Optimize code generation for speed.
Optimize for speed.
Choose “ Speed” in the Project Options | Compiler dialog box.

Optimize code generation for size.
Optimize for speed.
Choose “Size” in the Project Options | Compiler dialog box.

Chapter 16: Command Line Interface 289

Description:

Factory Default:
GUI Equivalent:

-td-

Description:

Factory Default:
GUI Equivalent:

_tp+

Description:

Factory Default:
GUI Equivalent:

tp

Description:

Factory Default:
GUI Equivalent:

-tt+

Description:

Factory Default:
GUI Equivalent:

-tt-

Description:

Factory Default:

Enable type demotion checking.
Type demotion checking is performed.

Check “Demation” in the Project Options | Compiler dialog box.

Disable type demotion checking.
Type demotion checking is performed.

Uncheck “Demotion” in the Project Options | Compiler dialog box.

Enable type checking of pointers.
Type checking of pointersis performed.

Check “Pointer” in the Project Options | Compiler dialog box.

Disable type checking of pointers.
Type checking of pointersis performed.

Uncheck “Pointer” in the Project Options | Compiler dialog box.

Enable type checking of prototypes.
Type checking of prototypes is performed.
Check “Prototype” in the Project Options | Compiler dialog box.

Disable type checking of prototypes.
Type checking of prototypes is performed.

290

Dynamic C User’s Manual

GUI Equivalent: Uncheck “Prototype” in the Project Options | Compiler dialog box.

_Vp+
Description: Verify the processor by enabling a DSR check. This should be disabled if
acheck of the DSR line isincompatible on your system for any reason.
Factory Default: Processor verification is enabled.

GUI Equivalent: Check “Enable Processor verification” in the Project Options |
Communications dialog box.

Vp
Description: Assume avalid processor is connected.

Factory Default: Processor verification is enabled.

GUI Equivalent: Uncheck “Enable Processor verification” in the Project Options |
Communications dialog box.

-wa

Description: Report all warnings.
Factory Default: ~ All warnings reported.

GUI Equivalent: Select “All” under “Warning Reports’ in the Project Options | Compiler
dialog box.

-wn

Description: Report no warnings.
Factory Default: All warnings reported.

GUI Equivalent: Select “None” under “Warning Reports’ in the Project Options | Compiler
dialog box.

-WS

Description: Report only serious warnings.

Chapter 16: Command Line Interface 291

Factory Default: ~ All warnings reported.

GUI Equivalent: Select “Serious Only” under “Warning Reports” in the Project Options |
Compiler dialog box.

292 Dynamic C User’s Manual

16.4.2 Switches Requiring a Parameter

-bf BIOSFilePathname

Description: Compileusing aBIOSfilefound in BIOSFilePathname.
Factory Default: \Bios\RabbitBios.c

GUI Equivalent: Thisisan advanced setting, viewable by clicking on the “Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
the box under “User Defined BIOS File” and then fill in the pathname for
the new BIOSfile.

Example: dccl cmp myProgram.c -bf MyPath\MyBIOS.lib

-clf ColdLoaderFilePathname

Description: Compile using cold loader file found in ColdLoaderFilePathname.
Factory Default: \Bios\ColdLoad.bin
GUI Equivalent: None.

Example: dccl cmp myProgram.c -clf MyPath\MyColdloader.bin

-d MacroDefinition

Chapter 16: Command Line Interface 293

Description:

Factory Default:
GUI Equivalent:

Define macros and optionally equate to values. The following rules apply
and are shown here with examples and equivalent #define form:

Separate macros with semicolons.

dccl _cmp myProgram.c -d DEF1;DEF2
#define DEF1
#define DEF2

A defined macro may be equated to text by separating the defined macro
from the text with an equal sign (=).
dccl cmp myProgram.c -d DEF1=20;DEF2

#define DEF1 20
#define DEF2

Macro definitions enclosed in quotation marks will be interpreted as a sin-
gle command line parameter.
dccl cmp myProgram.c -d “DEFl=text with spaces;DEF2”

#define DEF1l text with spaces
#define DEF2

A backslash preceding acharacter will be kept except for semicolon, quote
and backdash, which keep only the character following the backslash. An
escaped semicolon will not be interpreted as a macro separator and an
escaped quote will not be interpreted as the quote defining the end of a
command line parameter of text.

dccl cmp myProgram.c -d DEFl=statement)\;;ESCQUOTE=\\\"

#define DEF1l statement;

#define ESCQUOTE \”

dccl _cmp myProg.c -d “FSTR = \”"Temp = %$6.2F DEGREES C\n\””
#define FSTR “Temp = %6.2f degrees C\n”

None.

Select the Defines tab from Project Options.

-d- MacroToUndefine

Description:

Factory Default:

Undefines a macro that might have been defined in the project file. If a
macro is defined in the project file read by the command line compiler and
the same macro name is redefined on the command line, the command line
definition will generate awarning. A macro previously defined must be
undefined with the -d- switch before redefining it. Undefining a macro that
has not been defined has no consequence and so is always safe although
possibly unnecessary. In the example, all compilation settings are taken
from the project file specified except that now the macro MAXCHARS was
first undefined before being redefined.

None.

294

Dynamic C User’s Manual

GUI Equivalent: None.

Example: dccl cmp myProgram.c -pf myproject -d- MAXCHARS -d
MAXCHARS=512

-eto EthernetResponseTimeout

Description: Time in milliseconds Dynamic C waits for aresponse from the target on
any retry while trying to establish Ethernet communication.

Factory Default: 8000 milliseconds.
GUI Equivalent: None.

Example: dccl cmp myProgram.c -eto 6000

-i InputsFilePathname

Description: Execute a program that requires user input by supplying the input in atext
file. Each input required should be entered into the text file exactly as it
would be when entered into the Stdio Window in dcwd . exe. Extrainput
isignored and missing input causesdccl cmp towait for keyboard
input at the command line.

Factory Default: None.
GUI Equivalent: Using -1i islike entering inputs into the Stdio Window.

Example dccl cmp myProgram.c -i MyInputs.txt

-If LibrariesFilePathname

Description: Compile using afile found in LibrariesFilePathname which lists all librar-
ies to be made available to your programs.
Factory Default: Lib.dir.

GUI Equivalent: Thisisan advanced setting, viewable by clicking on the “Advanced” radio
button at the bottom of the Project Options | Compiler dialog box. Check
the box under “User Defined Lib Directory File’ and then fill in the path-
name for the new Lib.dir.

Example dccl cmp myProgram.c -1f MyPath\MyLibs.txt

-ne maxNumberOfErrors

Chapter 16: Command Line Interface 295

Description:
Factory Default:
GUI Equivalent:

Example:

Change the maximum number of errors reported.
A maximum of 10 errors are reported.

Enter the maximum number of errorsto report under “Max Shown” in the
Project Options | Compiler dialog box.

Allows up to 25 errorsto be reported:
dccl cmp myProgram.c -ne 25

-nw maxNumberOfWarnings

Description:
Factory Default:

GUI Equivalent:

Example:

Change the maximum number of warnings reported.
A maximum of 10 warnings are reported.

Enter the maximum number of warnings to report under “Max Shown” in
the Project Options | Compiler dialog box.

Allows up to 50 warnings to be reported:

dccl cmp myProgram.c -nw 50

-0 OutputFilePathname

Description:

Factory Default:
GUI Equivalent:

Example

Write header information (if specified with -h) and all program errors,
warnings and outputs to atext file. If the text file does not exist it will be
created, otherwise it will be overwritten.

None.

Go to Option | Environment Options and select the Debug Windows tab.
Under “ Specific Preferences’ select “ Stdio” and check “Log to File” under
“Options.”

dccl cmp myProgram.c -o MyOutput.txt

dccl cmp myProgram.c -o MyOutput.txt -h

dccl cmp myProgram.c -h -o MyOutput.txt

-oa OutputFilePathname

Description:

Factory Default:

Append header information (if specified with -h) and all program errors,
warnings and outputs to atext file. If the text file does not exist it will be
created, otherwise it will be appended.

None.

296

Dynamic C User’s Manual

GUI Equivalent: Go to Option | Environment Options and select the Debug Windows tab.
Under “ Specific Preferences’ select “ Stdio” and check “Log to File” under
“Options,” then check “Append” and specify the filename.

Example dccl cmp myProgram.c -oa MyOutput.txt

-pbf PilotBIOSFilePathname

Description: Compileusing apilot BIOSfoundin Pi1otBIOSFilePathname.
Factory Default: \Bios\Pilot.bin
GUI Equivalent: None.

Example: dccl cmp myProgram.c -pbf MyPath\MyPilot.bin

-pf projectFilePathname

Description: Specify a project file to read before the command line switches are read.
The environment settings are taken from the project file specified with -pf,
ordefault.dcp if no other project fileis specified. Any switches on
the command line, regardless of their position relative to the -pf switch,
will override the settings from the project file.

Factory Default: Theproject filedefault .dep.
GUI Equivalent: Select File | Project | Open...

Example dccl cmp myProgram.c -ne 25 -pf myProject.dcp
dccl cmp myProgram.c -ne 25 -pf myProject

Note: The project file extension, . dcp, may be omitted.

-pw TCPPassPhrase

Description: Enter the passphrase required for your TCP/IP connection. If no pass-
phrase is required this option need not be used.

Factory Default: No passphrase.

GUI Equivalent: Enter the passphrase required at the dialog prompt when compiling over a
TCP/IP connection

Example: dccl cmp myProgram.c -pw “My passphrase’

Chapter 16: Command Line Interface 297

-ret Retries

Description: The number of times Dynamic C attempts to establish communication if
the given timeout period expires.

Factory Default: 3

GUI Equivalent: None.

Example: dccl cmp myProgram.c -ret 5

-rf RTIFilePathname

Description: Compileto a.bin file using targetless compilation parameters found in
RTIFilePathname. The resulting compiled file will have the same path-
name as the source (. ¢) file being compiled, but with a . bin extension.

Factory Default: None.
GUI Equivalent:

Example: dccl cmp myProgram.c -rf MyTCparameters.rti

dccl cmp myProgram.c -rf “My Long Pathname\MyTCpa-
rameters.rti”

-rti BoardID:CpulD:CrystalSpeed:RAMSize:FlashSize

298 Dynamic C User’s Manual

Description: Compileto a . bin file using parameters defined in a colon separated for-
mat of Boardl D:Cpul D:Crystal Speed:RAM Size:FlashSize. The resulting
compiled file will have the same pathname as the source (. ¢) file being
compiled, but with a . bin extension.

BoardID - Hex integer

Cpul D - 2000r# or 3000r# where # is the revision number of the CPU.

2000r0: correspondsto 1Q2T2
2000r1: correspondsto 1Q3T
2000r2: correspondsto 1Q4T
2000r3: correspondsto 1Q5T
3000r0: correspondsto ILIT or 1Z1T
3000r1: correspondsto IL2T

For backward compatibility, we also support:
2000: correspondsto 1Q2T

3000: correspondsto ILIT or 1Z1T
Crystal Speed - Base frequency, decimal floating point, in MHz
RAMSize - Decimal, in KBytes
FlashSize - Primary flash, decimal, in KBytes.
Factory Default: None.

GUI Equivalent: Select Options | Project Options | Targetless | Board Selection and choose
aboard from the list; then select Compile | Compile to .bin File | Compile
to Flash

Example: dccl cmp myProgram.c -rti
0x0700:2000r3:11.0592:512:256

a. 1Q*, IL* and 1Z* are explained on page 272.

-s Port:Baud:Stopbits

Description: Use serial transmission with parameters defined in a colon separated for-
mat of Port:Baud: Stopbits:BackgroundTx.
Port:1,2,3,4,5,6,7,8

Baud: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 12800, 14400,
19200, 28800, 38400, 57600, 115200, 128000, 230400, 256000

Stophits: 1, 2
Include all serial parametersin the prescribed format even if only oneis
being changed.

Chapter 16: Command Line Interface 299

Factory Default:

GUI Equivalent:

Example:

1:115200:1:0

Select the Communications tab of Project Options. Select the “Use Seridl
Connection” radio button.

Changing port from default of 1 to 2:
dccl cmp myProgram.c -s 2:115200:1:0

-sto SerialResponseTimeout

Description:

Factory Default:
GUI Equivalent:

Example:

Time in milliseconds Dynamic C waits for aresponse from the target on
any retry while trying to establish serial communication.

300 ms.
None.

dccl cmp myProgram.c -sto 400

-t NetAddress:TcpName:TcpPort

Description:

Factory Default:
GUI Equivalent:

Example:

16.5 Examples

Use TCP with parameters defined in a contiguous colon separated format
of NetAddress: TcpName: TcpPort. Include all parameters even if only one
is being changed.

netAddress: n.n.n.n

tcpName: Text name of TCP port

tcpPort: decimal number of TCP port
None.

Select the Communications tab of Project Options. Select the“Use TCP/IP
Connection” radio button.

dccl cmp myProgram.c -t 10.10.6.138:TCPName:4244

The following examples illustrate using multiple command line switches at the sametime. If the
switches on the command line are contradictory, such as -mr and -mf, the last switch (read left to

right) will be used.

Example 1

In this example, al current settings of default . dcp are used for the compile.

300

Dynamic C User’s Manual

dccl cmp samples\timerb\timerb.c

Example 2
In this example, al settings of myproject .dcp are used, except timer b.c iscompiled to
timer b.bin instead of to the target and warnings or errors are written to myouputs . txt.

dccl cmp samples\timerb\timer b.c -o myoutputs.txt -b -pf
myproject

Example 3

These examples will compile and run myProgram. ¢ with the current settingsin

default .dcp but using different defines, displaying up to 50 warnings and capture all output to
one file with a header for each run.

dccl cmp myProgram.c -d MAXCOUNT=99 -nw 50 -h -o myOutput.txt
dccl cmp myProgram.c -d MAXCOUNT=15 -nw 50 -h -oa myOutput.txt

dccl cmp myProgram.c -d MAXCOUNT=15 -d DEF1l -nw 50 -h -oa
myOutput. txt

The first run could have used the - oa option if myOutput . txt were known to not initially
exist. myProgram. c presumably uses aconstant MAXCOUNT and contains one or more com-
piler directives that react to whether or not DEF1 is defined.

16.6 Command Line RFU
There isalso acommand line version of the RFU. On the command line specify:

clRFU SourceFilePathName [options]

where SourceFilePathName isthe path name of the . bin fileto load to the connected tar-
get. The options are as follows:

-cl ColdLoaderPathName

Description: Select anew initial loader.
Default: \bios\coldload.bin

RFU GUI From the Setup | Boot Strap L oaders dia og box, type in a pathname or click
Equivalent: on the ellipses radio button to browse for afile.

Example: clRFU myProgram.bin -cl myInitialLoader.bin

Chapter 16: Command Line Interface 301

-d

Description: Run Ethernet discovery to select a RabbitLink on alocal area network
(LAN). Don't load the . bin file. This option isfor information gathering
and must appear by itself with no other options and no binary image file
name.

RFU GUI From the Setup | Communications dialog box, click on the “Use TCP/IP
Equivalent: Connection” radio button, then on the “Discover” button.

Example: clRFU -d

-fi Flash.ini PathName

Description: Select anew file that Dynamic C will use to externally define flash.
Default: flash.ini

RFU GUI From the “Choose File Locations...” dialog box, visible by selecting Setup |
Equivalent: File Locations, typein a pathname or click on the ellipses radio button to
browse for afile.

Example: clRFU myProgram.bin -fi myflash.ini

-pb PilotBiosPathName

Description: Select anew secondary |loader.
Default: \bios\pilot.bin

RFU GUI From the Setup | Boot Strap L oaders dial og box, type in a pathname or click
Equivalent: on the ellipses radio button to browse for afile.

Example: clRFU myProgram.bin -pb mySecondaryLoader.bin

_pW

Description: Passphrase for TCP/IP loader when using a RabbitLink.

Default: RabbitLink always promptsfor a passphrase. Press “Enter” if no passphrase
has been set.

RFU GUI None.

Equivalent:

Example: clRFU -pw mypassphrase

302 Dynamic C User’s Manual

Description:
Default:

RFU GUI
Equivalent:

Example:

Description:
Default:

RFU GUI
Equivalent:

Example:

Description:

Default:

RFU GUI
Equivalent:

Example:

_Vp+

Description:

Default:

RFU GUI
Equivalent:

Example:

-s port:baudrate

Select the comm port and baud rate for the serial connection.
COM1 and 115,200 bps

From the Setup | Communications dialog box, choose values from the Baud
Rate and Comm Port drop-down menus.

clRFU myProgram.bin -s 2:115200

-t ipAddress:tcpPort

Select the | P address and port.
Serial Connection

From the Setup | Communications dialog box, click on “Use TCP/IP Con-
nection,” then type in the I P address and port for the controller that is
receiving the .bin file.

clRFU myProgram.bin -t 10.10.1.100:4244

Causes the RFU version number and additional status information to be dis-
played.

Only error messages are displayed.

Status information is displayed by default and there is no option to turn it
off.

clRFU myProgram.bin -v

Verify the presence of the processor by using the DSR line of the PC serial
connection.

The processor is verified.

From the “ Communications Options’ dialog box, visible by selecting Setup
| Communications, check the “ Enable Processor Detection” option.

clRFU myProgram.bin -vp+

Chapter 16: Command Line Interface

303

Vp

Description: Do not verify the presence of the processor.
Default: The processor is verified.
RFU GUI From the “ Communications Options’ dialog box, visible by selecting
Equivalent: Setup | Communications, uncheck the “ Enable Processor Detection” option.
Example: clRFU myProgram.bin -vp-

-usb+
Description: Enable use of USB to serial converter.
Default: The use of the USB to serial converter is disabled.
RFU GUI From the “ Communications Options’ dialog box, visible by selecting
Equivalent: Setup | Communications, check the “Use USB to Serial Converter” option.
Example: clRFU myProgram.bin -usb+

-usb-
Description: Disable use of USB to serial converter.
Default: The use of the USB to serial converter is disabled.
RFU GUI From the “ Communications Options’ dialog box, visible by selecting
Equivalent: Setup | Communications, uncheck the “Use USB to Serial Converter”

option.

Example: clRFU myProgram.bin -usb-

304 Dynamic C User’s Manual

17. Project Files

In Dynamic C, aproject is an environment that consists of opened source files, aBIOSfile, avail-
able libraries, and the conditions under which the source files will be compiled. Starting with

Dynamic C 9.30, the File Open directory last used will be stored in the project fi e, Projects allow
different compilation environments to be separately maintained.

17.1 Project File Names
A project maintains a compilation environment in afile with the extension . dcp.

17.1.1 Factory.dcp

The environment originally shipped from the factory is kept in a project file named
factory.dcp. If Dynamic C cannot find thisfile, it will be recreated automatically in the
Dynamic C exe path. The factory project can be opened at any time and the environment changed
and saved to another project name, but factory . dep will not be changed by Dynamic C.

17.1.2 Default.dcp

This default project fileisoriginally acopy of factory.dcp and will be automatically recre-
ated as such in the exe path if it cannot be found when Dynamic C opens. The default project will
automatically become the active project with File | Project... | Close.

The default project is specia in that the command line compiler will use it for default values
unless another project fileis specified with the -pf switch, in which case the settings from the indi-
cated project will be used.

Please see chapter 16, “Command Line Interface” starting on page 283 for more details on using
the command line compiler.

17.1.3 Active Project

Whenever a project is selected, the current project related datais saved to the closing project file,
the new project settings become active, and the (possibly new) BIOS will automatically be recom-
piled prior to compiling a source file in the new environment.

The active project can be factory.dcp, default.dcp oOr any project you create with
File | Project... | Save As... When Dynamic C opens, it retrieves the last used project, or the
default project if being opened for the first time or if the last used project cannot be found.

If aproject is closed with the File | Projects... | Close menu option, the default project,
default .dcp, becomesthe active project.

i. If DCisstarted with acwd (current working directory) other than the exe directory, the cwd will
be used instead of the one saved in the project file. This can happen if Dynamic C is started from
a Windows shortcut with a specified “startsin” directory.

Chapter 17: Project Files 305

The active project file name, without path or extension, is always shown in the leftmost panel of
the status bar at the bottom of the Dynamic C main window and is prepended to the Dynamic C
version in the title bar except when the active project is the default project.

Changes made to the compilation environment of Dynamic C are automatically updated to the
active project, unless the active project is factory . dcp.

17.2 Updating a Project File

Unlessthe active project is factory . dep, changes made in the Project Options dialog will
cause the active project file to be updated immediately:

Opening or closing files will not immediately update the active project file. The project file state
of the recently used files appearing at the bottom of the File menu selection and any opened files
in edit windows will only by updated when the project closes or when File | Projects... | Save is
selected. The Message, Assembly, Memory Dump, Registers and Stack debug windows are not
edit windows and will not be saved in the project fileif you exit Dynamic C while debugging.

17.3 Menu Selections

The menu selections for project files are available in the File menu. The choices are the familiar
ones: Create..., Open..., Save, Save As... and Close.

Choosing File | Project | Open... will bring up adialog box to select an existing project filename
to become the active project. The environment of the previous project is saved to its project file
beforeit isreplaced (unlessthe previous projectis factory . dcp). The BIOS will automatically
be recompiled prior to the compilation of a source file within the new environment, which may
have adifferent library directory file and/or a different BIOSfile.

Choosing File | Project... | Save will save the state of the environment to the active project file,
including the state of the recently used filelist and any files openin edit windows. Thisselectionis
greyed out if the active project is factory . dep. Thisoption is of limited use since any project
changes will be updated immediately to the file and the state of the recently used filelist and open
edit windows will be updated when the project is closed for any reason.

Choosing File | Project... | Save as... will bring up adialog box to select a project file name. The
filewill be created or, if it exists, it will be overwritten with the current environment settings. This
environment will also be saved to the active project file before it is closed and its copy (the newly
created or overwritten project file) will become active.

Choosing File | Project... | Close first saves the environment to the active project file (unless the
active projectis factory . dcp) and then loads the Dynamic C default project, default . dep,
as the active project. Aswith Open..., the BIOS will automatically be recompiled prior to the com-
pilation of a source file within the new environment. The new environment may have a different
library directory file and/or adifferent BIOS file.

306 Dynamic C User’s Manual

17.4 Command Line Usage

When using the command line compiler, dccl cmp.exe, aproject fileisawaysread. The
default project, default . dcp, isused automatically unless the project file switch, -pf, specifies
another project file to use. The project settings are read by the command line compiler first even if
a-pf switch comes after the use of other switches, and then all other switches used in the com-
mand line are read, which may modify any of the settings specified by the project file.

The default behavior given for each switch in the command line documentation is with reference
tothe factory.decp settings, so the user must be aware of the default state the command line
compiler will actually use. The settings of default . dcp can be shown by enteringdccl cmp
alone on the command line. The defaults for any other project file can be shown by following
dccl cmp by athe project file switch without a source file. The command:

dccl cmp
showsthe current state of al default . dep settings. The command:
dccl cmp -pf myProject
shows the current state of all myProject . dep settings. And the command:

dccl cmp myProgram.c -ne 25 -pf myProject

readsmyProject . dcp, then compiles and runsmyProgram. ¢, showing a maximum of 25
errors.

The command line compiler, unlike Dynamic C, never updates the project file it uses. Any
changes desired to a project file to be used by the command line compiler can be made within
Dynamic C or changed by hand with an editor.

Making changes by hand should be done with caution. Use an editor that does not introduce car-
riage returns or line feeds with wordwrap, which may be a problem if the global defines or any file
pathnames are lengthy strings. Be careful to not change any of the section namesin brackets or
any of the key phrases up to and including the “=."

If amacro is defined on the command line with the -d switch, any value that may have been
defined within the project file used will be overwritten without warning or error. Undefining a
macro with the -d- switch has no consequence if it was not previously defined.

Chapter 17: Project Files 307

308 Dynamic C User’s Manual

18. Hints and Tips

This chapter offers hints on how to speed up an application and how to store persistent data at run
time.

18.1 Efficiency

There are anumber of methods that can be used to reduce the size of a program, or to increase its
speed. Let’slook at the events that occur when a program enters a function.

e The function saves X on the stack and makes I X the stack frame reference pointer (if the
program isin the useix mode).

e The function creates stack space for auto variables.
e The function sets up stack corruption checksif stack checking is enabled (on).

e The program notifies Dynamic C of the entry to the function so that single stepping modes
can be resolved (if in debug mode).

The last two consume significant execution time and are eliminated when stack checking is dis-
abled or if the debug modeis off.

18.1.1 Nodebug Keyword

When the PC is connected to atarget controller with Dynamic C running, the normal code and
debugging features are enabled. Dynamic C places an RST 2 8H instruction at the beginning of
each C statement to provide locations for breakpoints. This alows the programmer to single step
through the program or to set breakpoints. (It is possible to single step through assembly code at
any time.) During debugging there is additional overhead for entry and exit bookkeeping, and for
checking array bounds, stack corruption, and pointer stores. These “jumps’ to the debugger con-
sume one byte of code space and al so require execution time for each statement.

At some point, the Dynamic C program will be debugged and can run on the target controller
without the Dynamic C debugger. This saves on overhead when the program is executing. The
nodebug keyword is used in the function declaration to remove the extra debugging instructions
and checks.

nodebug int myfunc(int x, int z){

}

If programs are executing on the target controller with the debugging instructions present, but
without Dynamic C attached, the call to the function that handles RST 28H instructions in the vec-
tor table will be replaced by a simple ret instruction for Rabbit 2000 based targets. For Rabbit
3000 based targets, the RST 28H instruction is treated as a NOP by the processor when in debug
mode. The target controller will work, but its performance will not be as good as when the node-
bug keyword is used.

Chapter 18: Hintsand Tips 309

If the nodebug option isused for themain () function, the program will begin to execute as soon
asit finishes compiling (as long as the program is not compiling to afile).

Usethe directive #nodebug anywhere within the program to enable nodebug for al statements
following the directive. The #debug directive has the opposite effect.

Assembly code blocks are nodebug by default, even when they occur inside C functions that are
marked debug, therefore using the nodebug keyword with the #asm directive is usually unnec-
essary.

18.1.2 In-line I/O

The built-in 1/0 functions (WrPortI (),RdPortI (), BitWrPortI () and BitRd-

PortI ()) canbegenerated as efficient in-line code instead of function calls. All arguments must
be constant. A normal function call is generated if the I/O function is called with any non-constant
arguments. To enable in-line code generation for the built-in I/O functions check the option
“Inline builtin 1/0O functions” in the Compiler dialog, which is accessible by clicking the Compiler
tab in the Project Options dialog.

18.2 Run-time Storage of Data

Datathat will never changein a program can be put in flash by initializing it in the declarations.
The compiler will put this datain flash. See the description of the const, xdata, and xstring
keywords for more information.

If data must be stored at run-time and persist between power cycles, there are several waysto do
this using Dynamic C functions:

e User Block - Recommended method for storing non-file data. Factory-stored calibration
constants live in the User block for boards with analog /0. Space hereislimited to as small
as(8K-sizeof (SysIDBlock)) bytes, or lessif there are calibration constants. For
specific information about the User block on your board, open the sample programs USER -
BLOCKINFO. C and/or IDBLOCK REPORT. C. The latter program will print, among
other things, the location of the User block.

e Flash File System - Thefile system is best for storing data that must be organized into
files, or datathat won't fit in the User block. It is best used on a second flash chip. It is not
possible to use asecond flash for both extra program code that doesn’t fit into the first flash,
and the file system. The macro USE_ 2NDFLASH_CODE must be uncommented in the
BIOSto allow programs to grow into the second flash; this precludes the use of thefile sys-
tem.

e \WriteFlash2 - Thisfunction is provided for writing arbitrary amounts of data directly to
arbitrary addresses in the second flash.

e Battery-Backed RAM - Storing data hereis as easy as assighing values to global variables
or local static variables. The file system can also be configured to use RAM.

Thelife of abattery on a Rabbit board is specified in the user’s manual for that board; some
boards have batteriesthat |ast several years, most board have batteries that come closeto or
surpass the shelf-life of the battery. If it isimportant that battery-backed data not be lost
during a battery failure, know how long your battery will last and plan accordingly.

310 Dynamic C User’s Manual

18.2.1 User Block
The User block is an area near the top of flash reserved for run-time storage of persistent data and
calibration constants. The size of the User block can be read in the global structure member
SysIDBlock.userBlockSize. Thefunctions readUserBlock () and
writeUserBlock () areused to access the User block. These function take an offset into the
block as a parameter. The highest offset available to the user in the User block will be
SysIDBlock.userBlockSize-1
if there are no calibration constants, or
DAC_CALIB ADDR-1
if there are.

See the Rabbit designer’s handbook for more details about the User block.

18.2.2 Flash File System
For a complete discussion of the file system, please see “ The Flash File System” on page 137.

18.2.3 WriteFlash2
See the Dynamic C Function Reference Manual for a complete description.

NOTE: ThereisaWwriteFlash () function available for writing to the first
flash, but its use is highly discouraged for reasons of forward source and binary
compatibility should flash sector configuration change drastically in a product.
See Technical Notes 216 and 217 for more information on flash compatibility
issues.

18.2.4 Battery-Backed RAM

Static variables and global variables will always be located at the same addresses between power
cycles and can only change locations via recompilation. The file system can be configured to use
RAM aso. While there may be applications where storing persistent datain RAM is acceptable,
for example a data logger where the data gets retrieved and the battery checked periodically, keep
in mind that a programming error such as an uninitialized pointer could cause RAM data to be cor-
rupted.

xalloc () will allocate blocks of RAM in extended memory. It will alocate the blocks consis-
tently from the same physical addressif done at the beginning of the program and the program is
not recompiled.

Chapter 18: Hintsand Tips 311

http://www.zworld.com/support/technotes_whitepapers.shtml

18.3 Root Memory Reduction Tips

Customers with programs that are near the limits of root code and/or root data space usage will be
interested in these tips for saving root space. For more help, see Technical Note TN238 “Rabbit
Memory Usage Tips.” This document is available on our website: www.rabbit.com, or by choos-
ing Online Documentation from within the Help menu of Dynamic C.

18.3.1 Increasing Root Code Space
Increasing the available amount of root code space may be done in the following ways:

Enable Separate I nstruction and Data Space

A hardware memory management scheme that uses address line inversion to double the
amount of logical address space in the base and data segments is enabled on the Compiler
tab of the Options | Project Options dialog. Enabling separate 1& D space doubles the
amount of root cod and root data available for an application program.

Use#memmap xmem

Thiswill cause C functions that are not explicitly declared as“root” to be placed in xmem.
Note that the only reason to locate a C function in root is because it modifies the X PC reg-
ister (in embedded assembly code), or it isan ISR. The only performance differencein run-
ning code in xmem isin getting there and returning. It takes atotal of 12 additional
machine cycles because of the differencesbetween call/lcall,and ret/lret.

Increase DATAORG

Root code space can be increased by increasing DATAORG in the BIOS (in
RabbitBios.c prior to Dynamic C version 9.30 or in StdBIOS. ¢ thereafter) inincre-
ments of 0x1000. DATAORG is the beginning logica address for the data segment. The
default is 0x3000 when separate |& D spaceis enabled, and 0x6000 otherwise. It can be as
high as 0xB0OO. Increasing DATAORG reduces the amount of root data space.

Compile out floating point support

Floating point support can be conditionally compiled out of stdio. 1ib by adding
#define STDIO DISABLE_ FLOATS to either auser program or the Definestab page
in the Project Options dialog. This can save several thousand bytes of code space.

Reduce usage of root constants and string literals

Shortening literal strings and reusing them will save root space. The compiler automati-
cally reusesidentical string literals.

These two statements ;

printf (“This is a literal string”);
sprintf (buf, “This is a literal string”);

will share the same literal string space whereas:
sprintf (buf, “this is a literal string”);

will use its own space since the string is different.

312

Dynamic C User’s Manual

http://www.rabbit.com/support/techNotes_whitePapers.shtml

e Usexdatato declarelargetablesof initialized data

If you have large tables of initialized data, consider using the keyword xdata to declare
them. The disadvantage isthat data cannot be accessed directly with pointers. The function
xmem2root () alowsxdatato be copied to aroot buffer when needed.

// Thisusesroot code space
const int root tbl[8]={300,301,302,103,304,305,306,307};

// Thisdoes not
xdata xdata_ table {300,301,302,103,304,305,306,307};
main () {

// thisonly usestemporary stack space

auto int table[8];

xmem2root (table, xdata table, 16);
// now the xmem data can be accessed viaa 16 bit pointer into the table
}
Both methods, const and xdata, create initialized datain flash at compile time, so the
data cannot be rewritten directly.

e Usexstring to declare a table of strings

The keyword xstring declares atable of stringsin extended flash memory. The disad-
vantage is that the strings cannot be accessed directly with pointers, since the table entries
are 20-bit physical addresses. Asillustrated above, the function xmem2root () may be
used to store the table in temporary stack space.

// Thisusesroot code space
const char * name[] = {“string 1”7, . . . “string n”};

// Thisdoes not
xstring name {“string 1”, . . . “string n”};

Both methods, const and xstring, createinitialized datain flash at compile time, so
the data cannot be rewritten directly.

e Turn off selected debugging features

Watch expressions, breakpoints, and single stepping can be selectively disabled on the
Debugger tab of Project Options to save some root code space.

Chapter 18: Hintsand Tips 313

e Place assembly language code into xmem

Pure assembly language code functions can go into xmem.

#asm

foo root::
[some instructions]
ret

#endasm

The same function in xmem:

#asm xmem
foo xmem::

[some instructions]

lret ; uselret instead of ret
#endasm

Thecorrect calsarecall foo root andlcall foo xmem. If the assembly func-
tion modifies the XPC register with

LD XPC, A

it should not be placed in xmem. If it accesses data on the stack directly, the data will be
one byte away from where it would be with aroot function because 1call pushesthe
value of XPC onto the stack.

18.3.2 Increasing Root Data Space
Increasing the available amount of root data space may be donein the following ways:

e Enable Separate Instruction and Data Space

A hardware memory management scheme that uses address line inversion to double the
amount of logical address space in the base and data segments is enabled on the Compiler
tab of the Options | Project Options dialog. Enabling separate 1& D space doubles the
amount of root code and root data available for an application program.

Decrease DATAORG

Root data space can be increased by decreasing DATAORG in the BIOS (in
RabbitBios.c prior to Dynamic C version 9.30 or in StdBIOS . ¢ thereafter) inincre-
ments of 0x1000. At the time of thiswriting, RAM compiles should be done with no less
than the default value of DATAORG when separate 1&D space is disabled. Thisrestriction
isto ensure that the pilot BIOS does not overwrite itself. The default is 0x6000.

Be aware that decreasing DATAORG reduces the amount of root code space.

Use xmem for large RAM buffers

xalloc () canbe used to alocate chunks of RAM in extended memory. The memory
cannot be accessed by a 16 hit pointer, so using it can be more difficult. The functions
xmem2root () and root2xmem () are available for moving from root to xmem and
xmem to root. Large buffers used by Dynamic C libraries are already allocated from RAM
in extended memory.

314

Dynamic C User’s Manual

Appendix A: Macros and Global

Variables

This appendix contains descriptions of macros and global variables available in Dynamic C. This

is not an exhaustive list.

A.1 Macros Defined by the Compiler

The macrosin the following table are defined internally. Default values are given where applica-
ble, aswell as directions for changing values.

Table A-1. Macros Defined by the Compiler

Macro Name

Definition and Default

_BIOSBAUD

Thisisthe debug baud rate. The baud rate can be changed in
the Communications tab of Project Options.

_BOARD_TYPE_

Thisis read from the System ID block or defaulted to 0x100
(the BL1810 JackRabbit board) if no System ID block is
present. This can be used for conditional compilation based on
board type. Board types are listed inboardtypes. lib.

_CPU_ID_

This macro identifies the CPU type, e.g., R3000 is the Rabbit
3000 microprocessor.

CC_VER

Givesthe Dynamic C versionin hex, i.e., version 7.05 is
0x0705.

DC_CRC_PTR

Reserved.

__DATE_

The compiler substitutes this macro with the date that the file
was compiled (either the BIOS or the . c fil€). The character
string literal isof theform Mmm dd yyyy. The daysof the
month are asfollows: "Jan," "Feb," "Mar," "Apr," "May," "Jun,"
"Jul," "Aug," "Sep," "Oct," "Nov," "Dec." Thereisaspace asthe
first character of dd if the valueislessthan 10.

DEBUG_RST

Go to the Compiler tab of Project Options and click on the
“Advanced” button at the bottom of the dialog box. Check
“Include RST 28 instructions’ to set DEBUG_RST to 1. Debug
code will beincluded even if #nodebug precedesthe main
function in the program.

__FILE

The compiler substitutes this macro with the current source
code file name as a character string literal.

Dynamic C User’'s Manual

315

Table A-1. Macros Defined by the Compiler

Macro Name Definition and Default

_FAST RAM These are used for conditional compilation of the BIOS to
distinguish between the three options:

» compiling to and running in flash

» compiling to and running in RAM

» compiling to flash and running in RAM
The choice is made in the Compiler tab of Project Options. The
default is compiling to and running in flash.
The BIOS defines FAST RAM COMPILE,
FLASH COMPILE and RAM_ COMPILE. These macrosare
defined to 0 or 1 as opposed to the corresponding compiler-
RAM defined macros which are either defined or not defined. This
difference makes possible statements such as.
#if FLASH COMPILE || FAST RAM COMPILE

Setting FAST RAM COMPILE limitstheflashfile system size
to the smaller of the following two values: 256K lessthe
Systeml D/User Blocks reserved area; the sum of the
completely available flash sectors between the application
code/constants and the Systeml D/User Blocks reserved area.

FLASH

FLASH SIZE These are used to set the MMU registers and code and data
sizes available to the compiler. The values of the macros are
_RAM_SIZE_ the number of 4K blocks of memory available.

The compiler substitutes this macro with the current source code

LINE))
— — l[ine number as adecimal constant.

Boolean value. Tells the compiler whether or not to include the
BIOS when compiling to a .bin file. Thisis an advanced
compiler option accessible by clicking the “Advanced” button
on the Compiler tab in Project Options.

NO BIOS

Boolean value. It defaultsto 0. Set it by selecting “Compile
_TARGETLESS COMPILE | defined target configuration to .bin file” under “Default
Compile Mode,” in the Compiler tab of Project Options.

The compiler substitutes this macro with the time that the file
__TIME (BIOSor . ¢) was compiled. The character string literal is of the
form hh:mm: ss.

316 Dynamic C User’s Manual

A.2 Macros Defined in the BIOS or Configuration Libraries

Thisis not acomprehensive list of configuration macros, but rather, a short list of those found to
be commonly used by Dynamic C programmers. Most default conditions can be overridden by
defining the macro in the Defines tab of the Project Options dialog.

CLOCK_DOUBLED

Determines whether or not to use the clock doubler. The default condition is to use the clock dou-
bler, definedin /bioslib/sysconfig.lib. Override the default condition by defining
CLOCK_DOUBLED to “0” in an application or in the project.

DATAORG

Defines the beginning logical address for the data segment. Defaults are defined in the BIOS:
0x3000 if separate 1& D space enabled, 0x6000 otherwise. Users can override the defaultsin the
Defines tab of Project Options dia og.

WATCHCODESIZE

Specifies the number of root RAM bytes for watch code. Defaults are defined in the BIOS: 0x200
bytesif watch expressions are enabled, zero bytes otherwise. The defaults cannot be overridden by
an application.

USE_TIMERA_PRESCALE

Uncomment thismacroin /BIOSLIB/sysconfig. c torunthe peripheral clock at the same
frequency as the CPU clock instead of the standard “ CPU clock/2.” Thisfeature is not compatible
with the Rabbit 2000.

USE_2NDFLASH_CODE

Uncomment thismacroin /BIOSLIB/sysconfig. c only if you have aaboard with two
256K flashes, and you want to use the second flash for extra code space. The file system (FS2) is
not compatible with using the second flash for code.

Dynamic C User’'s Manual 317

A.3 Global Variables
These variables may be read by any Dynamic C application program.

dc_timestamp

Thisinternally-defined long is the number of seconds that have passed since 00:00:00 January 1,
1980, Greenwich Mean Time (GMT) adjusted by the current time zone and daylight savings of the
PC on which the program was compiled. The recorded time indicates when the program finished
compiling. The following program will use dc_timestamp to help calculate the date and time.

printf ("The date and time: %$1x\n", dc_ timestamp) ;

main () {
struct tm t;
printf ("dc_timestamp = %$1x\n", dc_timestamp) ;

mktm(&t, dc timestamp) ;

printf ("%$2d/%02d/%4d %02d:%02d:%02d\n",
t.tm mon,t.tm mday,t.tm year + 1900, t.tm hour,t.tm min,
t.tm sec);

}

OPMODE

Thisisachar. It can have the following values:
e (0x88 = debug mode
e (0x80 = run mode

SEC_TIMER

Thisunsigned long variable isinitialized to the value of the real-time clock (RTC). If the RTC is
set correctly, thisis the number of seconds that have elapsed since the reference date of January 1,
1980. The periodic interrupt updates SEC_TIMER every second. Thisvariableisinitialized by the
Virtual Driver when a program starts.

MS_TIMER

Thisunsigned long variableisinitialized to zero. The periodic interrupt updatesMS TIMER every
millisecond. Thisvariableisinitialized by the Virtual Driver when a program starts.

TICK_TIMER

Thisunsigned long variable isinitialized to zero. The periodic interrupt updates TICK TIMER
1024 times per second. Thisvariableisinitialized by the Virtua Driver when a program starts.

318 Dynamic C User’s Manual

A.4 Exception Types

These macros are defined in errors.1lib:

#define ERR BADPOINTER 228
#define ERR BADARRAYINDEX 229
#define ERR DOMAIN 234
#define ERR RANGE 235
#define ERR FLOATOVERFLOW 236
#define ERR LONGDIVBYZERO 237
#define ERR LONGZEROMODULUS 238
#define ERR BADPARAMETER 239
#define ERR INTDIVBYZERO 240
#define ERR UNEXPECTEDINTRPT 241
#define ERR CORRUPTEDCODATA 243
#define ERR VIRTWDOGTIMEOUT 244
#define ERR BADXALLOC 245
#define ERR BADSTACKALLOC 246
#define ERR BADSTACKDEALLOC 247
#define ERR BADXALLOCINIT 249
#define ERR_NOVIRTWDOGAVAIL 250
#define ERR INVALIDMACADDR 251
#define ERR_ INVALIDCOFUNC 252

A.5 Rabbit Registers

Macros are defined for all of the Rabbit registers that are accessible for application programming.
A list of these register macros can be found in the user’s manual s for the Rabbit microprocessor, as
well asin the Rabbit Registers file accessible from the Dynamic C Help menu.

A.5.1 Shadow Registers

Shadow registers exist for many of the I/O registers. They are character variables defined in the
BIOS. The naming convention for shadow registersis to append the word Shadow to the name of
the register. For example, the global control status register, GCSR, has a corresponding shadow
register named GCSRShadow.

The purpose of the shadow registersisto alow the program to reference the last value pro-
grammed to the actual register. Thisis heeded because a number of the registers are write only.

Dynamic C User’'s Manual 319

320 Dynamic C User’s Manual

Appendix B: Map File Generation

All symbol information is put into a single file. The map file has three sections: a memory map

section, afunction section, and a globals section.

The map file format is designed to be easy to read, but with parsing in mind for use in program

down-loaders and in other possible future utilities (for example, an independent debugger). Also,

the memory map, as defined by the #org statements, will be saved into the map file.

Map files are generated in the same directory as the file that is compiled. If compilation is not suc-

cessful, the contents of the map file are not reliable.

B.1 Grammar

<mapfile>: <memmap section> <function section> <global section>

<memmap section>: <memmapreg>+
<memmapreg>: <register var> = <8-hit const>
<register var>: X PC|SEGSIZE|DATASEG

<function section>: <function descripton>+

<function description>: <identifier> <address> <size>
<address>: <logical address> | <physical address>
<logical address>: <16-hit constant>

<physical address; <8-hit constant>:<16-bit constant>
<size>: <20-bit constant>

<global section>: <global description>+

<global description>: <scoped hame> <address>
<scoped hame>: <global>| <local static>

<global>: <identifier>

<local gtatic>: <identifier>:<identifier>

Comments are C++ style (// only).

Dynamic C User’'s Manual

321

322 Dynamic C User’s Manual

Appendix C: Dynamic C Modules and
Utility Programs

This appendix documents the many useful and easy to use add-on modules and utility programs
available from Rabbit Semiconductor.

C.1 Dynamic C Modules
All modules described here are sold separately. They are available for purchase on our website:

www.rabbitr.com/products/dc/index.shtml

Documentation is provided with each module and is also available online:
www.rabbit.com/products/de/DC9/docs.shtml

C.1.1 AES Encryption

Advanced Encryption Standard (AES) is an implementation of the Rijndael Advanced Encryption
Standard cipher with 128 bit key. Thisis useful for encrypting sensitive data to be sent over unse-
cured network paths.

C.1.2 Library File Encryption Module

TheLibrary File Encryption Utility allows distribution of sensitive runtime library files. Complete
instructions are available by clicking on the Help button within the utility, Encrypt . exe. Con-
text-sensitive help is accessed by positioning the cursor over the desired subject and hitting <F1>.

The encrypted library files compile normally, but cannot be read with an editor. The fileswill be
automatically decrypted during Dynamic C compilation, but users of Dynamic C will not be able
to see any of the decrypted contents except for function descriptions for which apublic interfaceis
given. An optional user-defined copyright notice is put at the beginning of an encrypted file.

C.1.3 FAT File System Module

The FAT file system module requires Dynamic C 8.51 or later. The small footprint of this well-
defined industry-standard file system makesit ideal for embedded systems. The standard directory
structure allows for monitoring, logging, Web browsing, and FTP updates of data and applications
contained in itsfiles.

C.1.4 uC/OS-1l Module

Jean LaBrosse's popular real time kernel. Thisis a preemptive, prioritized kernel that allows 63
different tasks, flags, semaphores, mutex semaphores, queues, and message mail boxes. The book
MicroC/OS1; The Real-Time Kernel by Jean J. Labrosse is included with this module.

Dynamic C User’'s Manual 323

http://www.rabbit.com/products/dc/index.shtml
http://www.rabbit.com/products/dc/DC9/docs.shtml

C.1.5 SSL Module

Secure Sockets Layer (SSL) is a security protocol that transforms atypical reliable transport pro-
tocol (such as TCP) into a secure communications channel for conducting sensitive transactions.
The SSL protocol defines the methods by which a secure communications channel can be estab-
lished—it does not indicate which cryptographic algorithms to use. SSL supports many different
algorithms, and serves as aframework whereby cryptography can be used in a convenient and dis-
tributed manner.

C.1.6 SNMP Module

Simple Network Management Protocol (Version 1). Based on RFCs 1155-1157. Traditionally,
SNMP was designed and used to gather statistics for network management and capacity planning.
For example, the number of packets sent and received on each network interface could be
obtained. But because of its simplicity, SNMP use has expanded into areas of interest to embedded
systems. It is now used for many vendor-specific management functions, e.g., showing a thermo-
stat temperature, machine tool RPM or whether the front door was | eft open.

C.1.7 PPP Module

Point-to-Point Protocol driver for serial and PPPoE (PPP over Ethernet) links. This allows a serial
or modem connection to use TCP/IP. Based on RFC2516 “Method for transmitting PPP over
Ethernet.”

C.1.8 RabbitwWeb

Creating aweb interface to your Rabbit-based device just got alot easier. Dynamic C 8.51 or later
isrequired. Complicated CGI programming isal but eliminated when using RabbitWeb. And for
all you creative folks out there, you have complete freedom in the design of your dynamic web

pages.

C.1.9 Rabbit Field Utility Module
The Rabbit Field Utility (RFU) isbundled with Dynamic C; its source codeis sold separately. The
RFU isdescribed in Section C.3.1 on page 328.

324 Dynamic C User’s Manual

C.2 Dynamic C Utilities

There are several utilities bundled with Dynamic C.

C.2.1 Rabbit 4000 I/O LIB Utility (Introduced in Dynamic C 10)

This utility is provided for those configuring a Rabbit 4000 board. All register bit assignments are
transformed from cryptic hex numbers into an easy-to-use GUI. You can also open awindow that
lets you view the corresponding register values as you make changes viathe GUI.

Double-click on /Utilities/IOConfig.exe torunthe utility.

When a configuration is saved, the utility will generate alibrary that contains a function that will
execute the necessary statements to produce the selected configuration. The name of the function
and the name and path of the library are chosen by the user in the “ Save Configuration” dialog. If
the library is saved where your Lib.dir can find it, then the newly created function and library can
be found with Ctrl+H when running Dynamic C. The utility-generated function and library are
used in application code as follows:

#use mylib.1lib
main () {
BoardInit () ;

}
The Rabbit 4000 I/0O LIB Utility allows you to configure the following Rabbit 4000 features:

e Parallel Ports - includes configuring slave port and auxiliary 1/0 bus use, pin data direction and
aternate functions.

e Serial Ports - includes configuring transfer mode, hardware pin assignment for Tx and Rx, baud
rate and other serial port parameters.

e PWM - includes configuring the interrupt priority, period, duty cycle, spread function and pres-
caler for each PWM channdl. You can also select parallel port pins for the PWM output.

e Timers- includes configuration of timers A, B and C. Includes configuring interrupt priority.

e External Interrupts - includes configuring priority level and whether interrupts occur on theris-
ing edge, falling edge or both.

e |nput Capture - includes configuring priority levels, choosing between normal and counter
operation, determining trigger latch, trigger condition pin and start/stop conditions.

e External /O - includes configuring wait states, signa polarity, selecting type of strobe signals,
transaction timing and whether or not to enable handshaking.

e DMA -includes configuring parallel port pin assignmentsfor triggering external DMA requests
and transfer mode.

e Quadrature Decoder - includes configuring interrupt priority level, counter width (8 or 10 bits),
assigning parallel port pinsfor quadrature decoder inputs and determining PCLK prescaler and
timer A10 divisor.

e Slave Port - includes configuring interrupt priority level, enabling/disabling the slave port and
the external 1/0O bus.

Dynamic C User’'s Manual 325

C.2.2 File Compression Utility

Dynamic C has a compression utility feature. The default utility implements an LZSS style com-
pression algorithm. Support libraries to decompress files achieve a throughput of 10 KB/sto 20
KB/s (number of bytesin uncompressed file/time to decompress entire file using
ReadCompressedFile ()) depending upon file size and compression ratio.

The #zimport compiler directive performs a standard #ximport, but compressesthe file by
invoking the compression utility before emitting the file to the target. Support libraries allow the
compressed file to be decompressed on-the-fly. Compression ratios of 50% or more for text files
can be achieved, thus freeing up valuable xmem space. The compression library isthread safe.

For details on compression ratios, memory usage and performance, please see Technical Note 234,
“File Compression (Using #zimport)” available on our website, at www.zworld.com.

C.2.2.1 Using the File Compression Utility

The utility isinvoked by Dynamic C during compile time when #zimport isused. The keyword
#zimport will compressany file. Of course some files are aready in a compressed format, for
example jpeg files, so trying to compress them further is not useful and may even cause the result-
ing compressed file to be larger than the original file. (The original fileis not modified by the
compression utility nor by the support libraries.) The compression of FS2 filesis a special case.
Instead of using #zimport, #ximport isused aong with the function CompressFile ().

Compressed files are decompressed on-the-fly using ReadCompressedFile (). Compressed
FS2 files may also be decompressed on-the-fly by using ReadCompressedFile (). In addi-
tion, an FS2 file may be decompressed into a new FS2 file by using DecompressFile ().

There are 3 sample programsto illustrate the use of file compression
e Samples/zimport/zimport.c: demonstrates #zimport

e Samples/zimport/zimport fs2.c:demonstratesfile compressionin combination
with the file system

e Samples/tcpip/http/zimport . c: demonstrates file compression support using the
http server

C.2.2.2 File Compression/Decompression API

The file compression API consists of 7 functions, 3 of which are of prime importance:

OpenInputCompressedFile () - openacompressed filefor reading or open an uncom-
pressed #ximport filefor compression.

CloseInputCompressedFile () - closeinput file and deallocate memory buffers.
ReadCompressedFile () - perform on-the-fly decompression.

The remaining 4 functions are included for compression support for FS2 files:
OpenOutputCompressedFile () - open FS2filefor use with CompressFile ().
CloseOutputCompressedFile () - closefile and deallocate memory buffers.
CompressFile () - compressan FS2 file, placing the result in a second FS2 file.
DecompressFile () - decompress an FS2 file, placing the result in a second FS2 file.

Compl ete descriptions are availabl e for these functions in the Dynamic C Function Reference
Manual and also viathe Function Lookup facility (Ctrl+H or Help menu).

326 Dynamic C User’s Manual

http://www.zworld.com/support/techNotes_whitePapers.shtml

There are several macros associated with the file compression utility:

e ZIMPORT MASK - Used to determineif theimported fileis compressed (#zimport) or not
(#ximport).

e OUTPUT COMPRESSION BUFFERS (default =0) - Number of 24K buffersfor compression
(compression also requires a4K input buffer, which is allocated automatically for each output
buffer that is defined).

e INPUT COMPRESSION BUFFERS (default = 1) Number of 4KB internal buffers (in RAM)
used for decompression.

Each compressed file has an associated file descriptor of type ZFILE. All fieldsin this structure
are used internally and must not be changed by an application program.

C.2.2.3 Replacing the File Compression Utility
Users can use their own compression utility, replacing the one provided. If the provided compres-
sion utility is replaced, the following support libraries will also need to be replaced:
zimport.lib,lzss.libandbitio.lib. They arelocatedinlib/zimport/. The
default compression utility, Zcompress . exe, islocated in Dynamic C'sroot directory. The util-
ity name is defined by a key in the current project file:

[Compression Utility]

Zimport External Utility=Zcompress.exe
To replace zcompress . exe asthe utility used by Dynamic C for compression, open your
project file and edit the filename.

The compression utility must reside in the same directory as the Dynamic C compiler executable.
Dynamic C expects the program to behave as follows:

e Takeasinput afile name relative to the Dynamic C installation directory or afully qualified
path.

e Produce an output file of the same name as the input file with the extension .DCZ at the end.
E.g., test.txt becomestest.txt.dcz.

e Exit with zero on success, non-zero on failure.

If the utility does not meet these criteria, or does not exist, a compile-time error will be generated.

Dynamic C User’'s Manual 327

C.3 Font and Bitmap Converter Utility

The Font and Bitmap Converter converts Windows fonts and monochrome bitmapsto alibrary file
format compatible with Rabbit’s Dynamic C applications and graphical displays. Non-Roman
characters may also be converted by applying the monochrome bitmap converter to their bitmaps.

Double-click onthe fmbenvtr . exe filein the Utilities folder where you installed Dynamic C.
Select and convert existing fonts or bitmaps. Complete instructions are available by clicking on
the Help button within the utility.

When complete, the converted fileis displayed in the editing window. Editing may be done, but
probably won't be necessary. Save thefileaswhatever. 1ib: the name of your choice.

Add thefile to applications with the statement:
#use whatever.lib // remember to add thisfilenameto1ib.dir
or by cut and pasting from whatever . 1ib directly into the application file.

C.3.1 Rabbit Field Utility Module

The RFU loads a binary file created by Dynamic C to a Rabbit-based controller. It can be used to
load a program to a controller without Dynamic C present on the host computer, and without
recompiling the program each time it is loaded to a controller.

The Dynamic C installation created a desktop icon for the RFU. The executablefile, rfu. exe,
can be found in the subdirectory named “ Utilities” where Dynamic C was installed. Complete
instructions are available by clicking on the Help button within the utility. The Help document
details setup information, the file menu options and BIOS requirements.

There isalso acommand line version of the RFU. On the command line specify:
clRFU SourceFilePathName [options]

where SourceFilePathName isthe path name of the . bin fileto load to the connected tar-
get. The options are as follows:

-s port:baudrate

Description: Select the comm port and baud rate for the serial connection.
Default: COM1 and 115,200 bps

RFU GUI From the Setup | Communications dialog box, choose values from the Baud
Equivalent: Rate and Comm Port drop-down menus.

Example: clRFU myProgram.bin -s 2:115200

328 Dynamic C User’s Manual

-t ipAddress:tcpPort

Description: Select the | P address and port.
Default: Serial Connection

RFU GUI From the Setup | Communications dialog box, click on “Use TCP/IP Con-
Equivalent: nection,” then typein the IP address and port for the controller that is
receiving the . bin file or use the “Discover” radio button.

Example: clRFU myProgram.bin -t 10.10.1.100:4244

Description: Causes the RFU version number and additiona status information to be dis-
played.

Default: Only error messages are displayed.

RFU GUI Status information is displayed by default and there is no option to turn it
Equivalent: off.

Example: clRFU myProgram.bin -v

-cl ColdLoaderPathName

Description: Select anew initial loader.
Default: \bios\coldload.bin

RFU GUI From the “ Choose File Locations...” dialog box, visible by selecting the
Equivalent: menu option Setup | File Locations,, type in a pathname or click on the
elipses radio button to browse for afile.

Example: clRFU myProgram.bin -cl myInitiallLoader.c

-pb PilotBiosPathName

Description: Select a new secondary loader.
Default: \bios\pilot.bin

RFU GUI From the “Choose File Locations...” dialog box, visible by selecting the
Equivalent: menu option Setup | File Locations, type in a pathname or click on the
ellipses radio button to browse for afile.

Example: clRFU myProgram.bin -pb mySecondaryLoader.c

Dynamic C User’'s Manual 329

-fi Flash.ini PathName

Description: Select anew file that Dynamic C will use to externally define flash.
Default: flash.ini
RFU GUI From the “Choose File Locations...” dialog box, visible by selecting the
Equivalent: menu option Setup | File Locations, type in a pathname or click on the
elipses radio button to browse for afile.
Example: clRFU myProgram.bin -fi myflash.ini
_Vp+
Description: Verify the presence of the processor by using the DSR line of the PC serial
connection.
Default: The processor is verified.
RFU GUI From the “Communications Options’ diaog box, visible by selecting
Equivalent: Setup | Communications, check the “Enable Processor Detection” option.
Example: clRFU myProgram.bin -vp+
Vp
Description: Do not verify the presence of the processor.
Default: The processor is verified.
RFU GUI From the “Communications Options’ diaog box, visible by selecting
Equivalent: Setup | Communications, uncheck the “Enable Processor Detection” option.
Example: clRFU myProgram.bin -vp-
330 Dynamic C User’s Manual

-usb+

Description:

Default:

RFU GUI
Equivalent:

Example:

-usb-

Description:

Default:

RFU GUI
Equivalent:

Example:

Description:

RFU GUI
Equivalent:

Example:

Enable use of USB to serial converter.
The use of the USB to serial converter is disabled.

From the “ Communications Options’ dialog box, visible by selecting
Setup | Communications, check the “Use USB to Serial Converter” option.

clRFU myProgram.bin -usb+

Disable use of USB to serial converter.
The use of the USB to serial converter is disabled.

From the “ Communications Options’ dialog box, visible by selecting
Setup | Communications, uncheck the “Use USB to Servile Converter”
option.

clRFU myProgram.bin -usb-

Run Ethernet discovery. Don't load the . bin file. Thisoption isfor infor-
mation gathering and must appear by itself with no other options and no
binary image file name.

From the Setup | Communications dialog box, click on the “Use TCP/IP
Connection” radio button, then on the “Discover” button.

clRFU -d

Dynamic C User’'s Manual

331

332 Dynamic C User’s Manual

Dynamic C User’s Manual

Part Number 019-0125-D « Printed in U.SA.
©2006 Rabbit Semiconductor Inc. « All rights reserved.

Rabbit Semiconductor reserves the right to make changes and
improvements to its products without providing notice.

Notice to Users

RABBIT AND Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPO-
NENTSIN LIFE-SUPPORT DEVICES OR SYSTEMS UNLESS A SPECIFIC WRITTEN AGREEMENT
SIGNED BY A CORPORATE OFFICER OF DIGI INTERNATIONAL ISENTERED INTO BETWEEN
THE CUSTOMER AND DIGI INTERNATIONAL.

No complex software or hardware system is perfect. Bugs are always present in a system of any size, and
microprocessor systems are subject to failure due to aging, defects, electrical upsets, and various other
causes. In order to prevent danger to life or property, it is the responsibility of the system designers, who are
our customers, to incorporate redundant protective mechanisms appropriate to the risk involved. Even with
the best practices, human error and improbable coincidences can still conspire to result in damaging or dan-
gerous system failures. Our products cannot be made perfect or near-perfect without causing them to cost so
much as to preclude any practical use, thus our products reflect our “reasonable commercial efforts.”

All Rabbit and Z-World products are functionally tested. Although our tests are comprehensive and carefully
constructed, 100% test coverage of every possible defect is not practical. Our products are specified for oper-
ation under certain environmental and electrical conditions. Our specifications are based on analysis and
sample testing. Individual units are not usually tested under all environmental and electrical conditions. Indi-
vidual components may be specified for different environmental or electrical conditions than our assembly
containing the components. In this case we have qualified the components through analysis and testing to
operate successfully in the particular circumstances in which they are used.

Trademarks
Dynamic C®isa registered trademark of Rabbit Semiconductor Inc.

Windows® isa registered trademark of Microsoft Corporation

Rabbit Semiconductor, Inc.

2900 Spafford Street
Davis, California 95616-6800
USA

Telephone: (530) 757-3737
Fax: (530) 757-3792
www.rabbit.com

http://www.rabbit.com

334

RABBIT SEMICONDUCTOR SOFTWARE END
USER LICENSE AGREEMENT

IMPORTANT-READ CAREFULLY: BY INSTALLING, COPYING OR OTHERWISE USING
THE ENCLOSED RABBIT SEMICONDUCTOR,INC. ("RABBIT") DYNAMIC C SOFT-
WARE, WHICH INCLUDES COMPUTER SOFTWARE ("SOFTWARE") AND MAY
INCLUDE ASSOCIATED MEDIA, PRINTED MATERIALS, AND "ONLINE" OR ELEC-
TRONIC DOCUMENTATION ("DOCUMENTATION"), YOU (ON BEHALF OF YOURSELF
OR ASAN AUTHORIZED REPRESENTATIVE ON BEHALF OF AN ENTITY) AGREE TO
ALL THE TERMSOF THISEND USER LICENSE AGREEMENT ("LICENSE") REGARD-
ING YOUR USE OF THE SOFTWARE. IF YOU DO NOT AGREE WITH ALL OF THE
TERMS OF THISLICENSE, DO NOT INSTALL, COPY OR OTHERWISE USE THE SOFT-
WARE AND IMMEDIATELY CONTACT RABBIT SEMICONDUCTOR FOR RETURN OF
THE SOFTWARE AND A REFUND OF THE PURCHASE PRICE FOR THE SOFTWARE.

We are sorry about the formality of the language below, which our lawyers tell us we need to
include to protect our legal rights. If You have any questions, write or call Rabbit Semiconductor
at (530) 757-4616, 2900 Spafford Street, Davis, California 95616.

1. Definitions. In addition to the definitions stated in the first paragraph of this document, capital-
ized words used in this License shall have the following meanings:

1.1 "Qualified Applications' means an application program developed using the Software and
that links with the development libraries of the Software.

1.1.1"Qualified Applications' is amended to include application programs devel oped using
the Softools WinlIDE program for Rabbit processors available from Softools, Inc.

1.1.2 The MicroC/OS-II (UC/OS-I1) library and sample code released with any version of
Dynamic C, and the Point-to-Point Protocol (PPP) library released prior to Dynamic C
version 7.32 are not included in this amendment.

1.1.3 Excluding the exceptions in 1.1.2, library and sample code provided with the Software
may be modified for use with the Softools WinIDE program in Qualified Systems as
defined in 1.2. All other Restrictions specified by this license agreement remain in force.

1.2 "Quadlified Systems" means a microprocessor-based computer system which is either (i)
manufactured by, for or under license from Rabbit Semiconductor, or (ii) based on the
Rabbit 2000 microprocessor or the Rabbit 3000 microprocessor. Qualified Systems may
not be (a) designed or intended to be re-programmable by your customer using the Soft-
ware, or (b) competitive with Rabbit Semiconductor products, except as otherwise stated
in awritten agreement between Rabbit Semiconductor and the system manufacturer.
Such written agreement may require an end user to pay run time royalties to Rabbit Semi-
conductor.

Dynamic C User’s Manual 335

2. License. Rabbit Semiconductor grants to You a nonexclusive, nontransferable license to (i) use
and reproduce the Software, solely for internal purposes and only for the number of usersfor
which You have purchased licensesfor (the "Users") and not for redistribution or resale; (ii) use
and reproduce the Software solely to develop the Qualified Applications; and (iii) use, repro-
duce and distribute, the Qualified Applications, in object code only, to end users solely for use
on Qualified Systems; provided, however, any agreement entered into between You and such
end users with respect to a Qualified Application is no less protective of Rabbit Semiconduc-
tor’sintellectual property rights than the terms and conditions of this License. (iv) use and dis-
tribute with Qualified Applications and Qualified Systems the program files distributed with
Dynamic C nhamed RFU. EXE, PILOT . BIN, and COLDLOAD.BIN intheir unatered forms.

3. Restrictions. Except as otherwise stated, You may not, nor permit anyone el se to, decompile,
reverse engineer, disassemble or otherwise attempt to reconstruct or discover the source code
of the Software, alter, merge, modify, trandlate, adapt in any way, prepare any derivative work
based upon the Software, rent, lease network, loan, distribute or otherwise transfer the Software
or any copy thereof. You shall not make copies of the copyrighted Software and/or documenta-
tion without the prior written permission of Rabbit Semiconductor; provided that, You may
make one (1) hard copy of such documentation for each User and a reasonable number of back-
up copies for Your own archival purposes. You may not use copies of the Software as part of a
benchmark or comparison test against other similar productsin order to produce results strictly
for purposes of comparison. The Software contains copyrighted material, trade secrets and
other proprietary material of Rabbit Semiconductor and/or its licensors and You must repro-
duce, on each copy of the Software, all copyright notices and any other proprietary legends that
appear on or in the original copy of the Software. Except for the limited license granted above,
Rabbit Semiconductor retains all right, title and interest in and to all intellectual property rights
embodied in the Software, including but not limited to, patents, copyrights and trade secrets.

4. Export Law Assurances. You agree and certify that neither the Software nor any other techni-
cal datareceived from Rabbit Semiconductor, nor the direct product thereof, will be exported
outside the United States or re-exported except as authorized and as permitted by the laws and
regulations of the United States and/or the laws and regulations of the jurisdiction, (if other
than the United States) in which You rightfully obtained the Software. The Software may not
be exported to any of the following countries: Cuba, Iran, Irag, Libya, North Korea, Sudan, or
Syria.

5. Government End Users. If You are acquiring the Software on behalf of any unit or agency of
the United States Government, the following provisions apply. The Government agrees: (i) if
the Software is supplied to the Department of Defense ("DOD"), the Software is classified as
"Commercial Computer Software" and the Government is acquiring only "restricted rights" in
the Software and its documentation as that term is defined in Clause 252.227-7013(c)(1) of the
DFARS; and (ii) if the Software is supplied to any unit or agency of the United States Govern-
ment other than DOD, the Government's rightsin the Software and its documentation will be as
defined in Clause 52.227-19(¢)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-
86(d) of the NASA Supplement to the FAR.

336 Dynamic C User’s Manual

6. Disclaimer of Warranty. You expressly acknowledge and agree that the use of the Software
and its documentation is at Your solerisk. THE SOFTWARE, DOCUMENTATION, AND
TECHNICAL SUPPORT ARE PROVIDED ON AN "ASIS' BASISAND WITHOUT WAR-
RANTY OF ANY KIND. Information regarding any third party services included in this pack-
ageisprovided as a convenience only, without any warranty by Rabbit Semiconductor, and will
be governed solely by the terms agreed upon between You and the third party providing such
services. RABBIT SEMICONDUCTOR AND ITSLICENSORS EXPRESSLY DISCLAIM
ALL WARRANTIES, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY
RIGHTS. RABBIT SEMICONDUCTOR DOES NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT
THE OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE,
OR THAT DEFECTSIN THE SOFTWARE WILL BE CORRECTED. FURTHERMORE,
RABBIT SEMICONDUCTOR DOES NOT WARRANT OR MAKE ANY REPRESENTA-
TIONS REGARDING THE USE OR THE RESULTS OF THE SOFTWARE IN TERMS OF
ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. NO ORAL OR
WRITTEN INFORMATION OR ADVICE GIVEN BY RABBIT SEMICONDUCTOR OR
ITSAUTHORIZED REPRESENTATIVES SHALL CREATE A WARRANTY OR IN ANY
WAY INCREASE THE SCOPE OF THISWARRANTY. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU.

7. Limitation of Liability. YOU AGREE THAT UNDER NO CIRCUMSTANCES, INCLUD-
ING NEGLIGENCE, SHALL RABBIT SEMICONDUCTOR BE LIABLE FOR ANY INCI-
DENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR
LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION AND THE LIKE) ARISING OUT OF THE USE AND/OR INABILITY TO
USE THE SOFTWARE, EVEN IF RABBIT SEMICONDUCTOR OR ITSAUTHORIZED
REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIA-
BILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMI-
TATION OR EXCLUSION MAY NOT APPLY TO YOU. IN NO EVENT SHALL RABBIT
SEMICONDUCTOR’ STOTAL LIABILITY TO YOU FOR ALL DAMAGES, LOSSES,
AND CAUSES OF ACTION (WHETHER IN CONTRACT, TORT, INCLUDING NEGLI-
GENCE, OR OTHERWISE) EXCEED THE AMOUNT PAID BY YOU FOR THE SOFT-
WARE.

8. Termination. ThisLicenseis effective for the duration of the copyright in the Software unless
terminated. You may terminate this License at any time by destroying al copies of the Software
and its documentation. This License will terminate immediately without notice from Rabbit
Semiconductor if You fail to comply with any provision of this License. Upon termination, You
must destroy all copies of the Software and its documentation. Except for Section 2
("License"), all Sections of this Agreement shall survive any expiration or termination of this
License.

Dynamic C User’s Manual 337

9. General Provisions. No delay or failure to take action under this License will constitute a
waiver unless expressly waived in writing, signed by a duly authorized representative of Rabbit
Semiconductor, and no single waiver will constitute a continuing or subsequent waiver. This
License may not be assigned, sublicensed or otherwise transferred by You, by operation of law
or otherwise, without Rabbit Semiconductor's prior written consent. This License shall be gov-
erned by and construed in accordance with the laws of the United States and the State of Cali-
fornia, exclusive of the conflicts of laws principles. The United Nations Convention on
Contracts for the International Sale of Goods shall not apply to this License. If for any reason a
court of competent jurisdiction finds any provision of this License, or portion thereof, to be
unenforceable, that provision of the License shall be enforced to the maximum extent permissi-
ble so as to affect the intent of the parties, and the remainder of this License shall continuein
full force and effect. This License congtitutes the entire agreement between the parties with
respect to the use of the Software and its documentation, and supersedes all prior or contempo-
raneous understandings or agreements, written or oral, regarding such subject matter. There
shall be no contract for purchase or sale of the Software except upon the terms and conditions
specified herein. Any additional or different terms or conditions proposed by You or contained
in any purchase order are hereby rejected and shall be of no force and effect unless expressly
agreed to in writing by Rabbit Semiconductor. No amendment to or modification of this
License will be binding unless in writing and signed by a duly authorized representative of
Rabbit Semiconductor.

Copyright 2000 Rabbit Semiconductor, Inc. All rights reserved.

338 Dynamic C User’s Manual

| ndex

Symbols ALT key out of aloopcecvrevevriincne, 35
See keystrokes out of aswitch statement ...35
#and ## (operators) 19 aways on oo 174 breakpoints
HEBM i, 149,203,310 anymemccooovvvecerreere. 174 assembly window 160
#debug ... 191,204,310 gpplication program 40 S0 [266
#defing ..o 18,19,204 grgument passing ..34, 157, 158, 2771 IR 236
HElIT o, 206 163, 164 interrupt Status ooveeevi, 236
HEISE oo 206 modifying value 34 norst keywordc.cc...... 191
#endasm 149,154,204 arrangeiconso..ooeeveeeenne.. 274 PErSIStENtooovveerreen, 236
=110 L N 206 ATAYS oo, 27,28, 34 RST 28 ..o 309
HOITON oo 205 CharaCtersoveeeveveereeeneens 22 single Steppingoo........ 235
BBl o 204 SUDSCIPES oo, 27 o 1 S 236
#uncchainccooceovveeee. 38,205 arrow keys.......ccooo........ 227,228 Watches window 238
T e, 206 ST oo 175
Hfdef .o 206 assembly 3,149-171, 235 C
#!fndef 207 blocks in XMeM v 156 Clanauage 3. 4. 15. 22. 5. 38
#include embedding C statements ..150 3529 s
_ absence ofccccovvevirieennen 40 and-alone e, 156 callin ,asembl 162
#interleaveccoceeeeereenene 207 WINAOW oo 160, 275 embegded i y bI """"" 150
#makechain ..o 38,207 gssignment operators 217 assemply ...
At SEOUENCE ... 278
H#MEMMAP ... 208,312 ass0GiatiVity ..ovvveeeereeienneee. 213 Coscaded windows 274
#nodebug 191,204,310 Q0 ..oovveveevrrenne 155,156, 175 _oep 37 176. 180
#nointerleavec.ccoveeene 207 storage of variables 157 ha 25’ 177’ 200
FNOUSEIX .veeveneereeeieeereseeieneas 20 T e S
HUNCEF oo 21 B Chzrr ‘:‘;;js ”
T o bekda) embectded Qe23
swans ... 210 character literals 19, 23 nonprinting values 23
swarnt 210 continuation in directives .203 special values ... 23
HXIMPOM oo 011 Dbasicunitof aC program 24 clipboard ..o 230
HZIMPOIt oo 211 baud rateccceeuee. 103,259 closing afile.....ccocoeienennn. 229
T 40 BCDE ..o 156, 162, 164 CoData Structurecceuvee 54
@LENGTH oo 154 BeginHeader 41, 42, 43 POINEEN tO ..o 55
e = ol 154 binary operators 213 cofunctions.........ccceeeeneene 57-63
@RETVAL oo 154, 163 BIOS e 6 abal_ﬂdon e 61
@SP ...154, 158, 161, 162, 163, _xe?<|t e 125 calllng restrictions 58
171 caling premai n() s 91 e_veryu ME o 61
_GLOBAL_INIT oo 194 cor;gr)gand line compiler ..284, T:]r('jstet;rgde 122
El(}:/gjg}lllbra(:%ég compilation environments 305 SINGIE USEN ...vvvercrriee, 60
compileoptionc........ 316 (STES o< oo [199
A configuration macros 129 SV, 1= G 57
control blocksc.c..... 138 coldloaderccoecvvvvnnenene 234
abandon ..o, 173 macro definitions 269 columnresizingccccwee.. 276
BDOME v 173 memory location 131 command line interface 283-304
about Dynamic C 282 memory Settings 264 communication
abstract datatypes 25,26 variable defined in 181 TCPIP oo 260
adc (add-with-carry) 149 poard information 233, 271-272 compile
add-on modules 323 pranchingcooooeccoeeevveennn. 36, 37 BIOS .o 234
address space 4,131 break .o 176, 197 command line............ 283-301
AESencryption 323 G L1 [35 EITOMS oo, 231
aggregate data types 27 KEYWOrd ...ovvooveeerveereres 35 11=101F R 233
aligN s 174 liMitationscoocoeveereenne. 36 OPtiONS ..oovvoeveeeeeee e 260
Dynamic C User’s Manual 339

RAM ..o 262,314 costatements ... 50-57 at cursorccceeveeeee. 238, 275
FEED ..o 3 ADOI . 173 DMA e 133-135
SEAUS oo 278 firsttime ..ococeveevveeeen HESISTN o (o [0 o o H 34
to.binfile .cccovveveree 234 keywordccccveveiviennns 179 dot operatorc.cceennene. 18, 27
tofile v 227 STES o]< oo [199 downloadingccevevvererinnnns 3
toflash .covveeeiece 233 LS Y 17 G 51 DSRchecK ..oeovrcevvrriennn. 259
totarget ...ccoovvvveeneene 227,233 ViEld o 202 dump windowcccccenee 239
compiler curly braces{ }ccccerrivrnrns 23 AW e 153
line parsing limit 23 cursor Dynamic C
compiler directives 203 EXECULION ..o, 236 differencescccoevvenene 4,38
#asM .ccovveveeene 149, 203, 310 positioning 227,231 EXIt v 229
OPLiONS ..ovveeeeieeeeeens 203 cuttingtextcccceeeveeeeerinnnene 230 support filescccceveevreennene. 45
HClASS oo 203 Dynamic C modules 323
OPLiONS ..oveeeeeieieeeens 203 D dynamic memory allocation 133
#debug 191,204,310 ygastructure dynamic storage alocation 28
#de_ﬂne """""""""""" 19, 204 COMPOSIES ...coervereereenieine 28 E
HET e 206 KEYWOTd oo 24
OIS 206 NESLING ..voveieeeeeeeeerie e 27 Editmenu ... 230
#endagm 149,154,204 itteet of element 155 edit mode ... 227,232
NG o 206 pass by valuec..c....... 34 editor ..o 3
FRITON covvvvssinsssssssssssssssssss 205 returned by function 163 ESe 180
AEE 204 T T L 28 embedded assembly 3,157, 162,
#uncchain 38,205 (oA tYPES oo, 27 163
#_GLOBA LINIT e 205 agoregateccoovvevenienienn 27 embedded quotes 23
L 206 Primitiveccocoveieveeeee 17 encryptionccoeeeeeveeieieenn. 323
IO o 206 DATAORG .oooooereoeo 312,314 ENAKEY woovooovoeorrrsesreen, 207
AN e 207 DATASEG ...ooovccesrerro 131 EndHeader 41,42, 43
Hinter] BVE oo 207 Gate and time w.veeeeereesesroeee 92 ENUM e 181
#makechdn............... 38,207 g e 152 EPROM wooooooeeseessees 4
L SIULLS SR e Vs I 300 €U oo 154
OPUONS w.oovvnnne 208 dialog boXcceoereriinnennn. 266 errors
#”ijebug """"" 191, 204, 310 differences highlighting .. 238 error code ranges 125
#nol nterleave """""""""" 207 disassemble at address 238 locatingccoeveereenenne 231, 232
FNOUSBIX covvnssssssssssssssssssss 210 disassembled code 238 run-timecccceeeeee 125, 261
#pragma e 208 execution trace 240 ESCkey
HPIECOMPIIEcovvvrve 209 hintsand tips 69-90 to closemenu 228
HUNCES oo 21,210 keywordccccveeniinnnnne 179 examples
#use_ """"""""""" 40, 41, 210 memory dump 238 breakocoooviviiiie 35
FUSBIX covvsssssssssssssssssssssssss 210 MOAE ..o 232 CONtINUE ..o 35
FNATS covvvvinnnsnssssssssssssssns 210 polling the target 235 forloop ...coooveveieiiiiie e 35
#V\{arnt """"""""""""""""" 210 SEEP OVEr e 235 MOAUIESoeviiriiiririns 43
#X' MPOMT o 211 switching modes 232 of array ..ccoeeevvveiereee 27
#Z' mport_ """ AR 211 traceintoccoceeeevereenne 235 UNTON <o 28
line continuation 203 trace macrosc.ccceeeeenee. 13 exitDynamicC 229
compound update watch expressions 238 extended memory 4, 162, 201
MAMES oo 18 watchdog timers 93 asm blocks ... 156
SHBSMENMS v 23 Windows ..250-256, 274-278 €XEMN ooooooorvccrerssen 43,181
COMPresson A 326 declarationsooooer. 24,41
concatenation of strings = | S 37,180 F
CONSt oo 152, 178, 203 :
CONtiNUE .o 35, 179, 197 Seiﬁtggomp”e'w _(.)_cflf_::::::: ggi far pointers and data....... 30-32,
example ... 35 ifferences hi ghlighting 238 1_82_184
COPYING teXt ovvvvvveeeeree 20 gigeemble fFiﬁaT filesystem 323
COSLALEovuerrerierieeeieee 179 at address ... 238, 275 commands. .. 228
340 Dynamic C User’s Manual

COMPIreSSIONccoevvvevrueennns 326 NOdebU] ...cveevvrveererceee, 190 K
encryptionccceeevereeennne 323 (010] 6 A 191
EXLENSIONS «..veveeeeeeeeeeeeen, 234 NOUSEIX .ovvoeveeeeereeereesennns 191 K& 41
generatedoo.ovevoveevoneenes 234 167 ST 193 keystrokes
1172 8.8 I 228 SIZ8 oo 195 <ALT-Backspace>
PINE <o 229 SPEEL oo, 195 undoing changes............ 230
file systemccoooveenne.. 137-147 1= TR 198 <ALT-C>
inprimary flash 141 L1L= LA I 201 select Compile menu233
111271V — 138 <ALT-F>
max. # of filescc........ 137 G select Filemenu 228
max. file Sizecooevveneee. 137 e <ALT-F10>
MUIItASKING. oo 13 Clopa Initidization............ 39 Disassemble at Address 238
. global variables ..., 28
files OLO oo 36,186,231 TP .
additional source 40 g S Toggle Hard Breakpoint
Ei OrEP oo 231 236
ind Next <F3>cocu...e. 231
FIrSttime c.oeeeeeeeeeeeeeeeeeenn 18 H <ALT-F4>
flags registeroovvvrvennnnn. 276 quitting Dynamic C229
flash hard breakpoints 236 <ALT-F9>
file SyStem .ooooovevveveeeere. 138 header Runw/ No Polling235
initialized variables 5 funCtionccoceeevecneicnienens 45 <ALT-H>
USE 2NDFLASH CODE ... modulecceeeues 41, 42,43 select Help menu 280
138 - Helpmenuccoceeevevveenenn, 280 <ALT-O>
WHtING 1O .o 137 hexadecimal integer 21 select Options menu241
XIMEM 8CCESS oo, 131 | I 156, 161, 162, 164 <ALT-SHIFT-backspace>
1At oo 25, 185, 200 HOMEKEY ..ocvrvveeeeeeeeeeeis 227 redoing changes............. 230
VAUES oo 21 horizontal tilingccccccevnene 274 <ALT-W>
fOr 100 wevvveeevevceeinanes 34,186 select Window menu274
frame <CTRL-F10>
reference point 163 icons Disassemble at Cursor ..238
reference pointer161,162, arangedooo.oevvvenernnne, 274 <CTRL-F2>
191, 309 |EEE floating point ... 185 Reset Program 236
FUNCHON ..o 72 | 180 <CTRL-G>
auto variables 175 MUItIChOICE ... 37 GOIO .o 231
calls ...24, 157, 158, 162, 163 SIMPIE oo, 36 <CTRL-H>
callsfrom assembly 164 With €1Se oovvvvveeeeeeeeeeeeeeeeee 37 Library Help lookup280
Chainscooooveeeereene. 38,194 information window274, 278 <CTRL-N>
create chainsocvveeenee 207 NIt ON oo 187 NEXLEITON .o, 232
entry and exit ..., 309 inlineCodeorrrrrreeerrrereee 263 <CTRL-O>
execution time 309 insertion point 230, 231 Poll Targetccooevnve. 236
headerscoovvevvevrevennnn. 45 |nspect menu................ 237, 274 <CTRL-P>
NEP e 45 |nstruction Set Reference282 Previous efror 231
indirect callcccoorrnn << TS S 25, 188, 200 <CTRL-U> _
ProtOYpESovcc 25,26,41 INtEUENS ..oovoorvrrrrreseirrsreernn 21 Update Watch window .238
returns ... 162,163,164 interruptscoc.cooeveereereennes 165 <CTRL-V>
saving registers 171 breakpointscoo..... 236 pasting text 230
stack spacecooceeeveenene 309 keyword for ISR 188 <CTRL-W>
transferring control 34 [EENCY ©.rvovveverreeeeerereieranns 165 Add/Del Items 237
unbalanced stack 171 unpreserved registers 171 <CTRL-X>
function lookup <CTRL-H> 280 VECLOrSoveveee 166, 189 CUtING TEXT .oooovvvens 230
function prefix 1= 165, 312 <CTRL-Y>
ANYMEM ..o 174 |X (index register) 59, 161, 162, Compile BIOS............... 234
dEDUY oo 179 191, 198 <CTRL-Z>
FIrSttiME weoveeeeeee s 185 S0P oo 235
INEEITUPL <.voveeceeceeenee. 188 <F10>
Assembly window 274
Dynamic C User’'s Manual 341

<F2> (S 0] 194 dump at address 238
Toggle Breakpoint 236 SIZE v 195 dumpflashccceeevvvnenene 239
<F3> SIZEOF i 195 dumptofileccovvrennn. 239
Find Nextcccceeeeeene 231 (S0== o [195 dynamic alocation 133
<F5> SAC v 195 extended 4,162, 201
Compile ..ccoeveeienene 233 (S 1 U To: A 196 LLE='S o 138
<F7> SWItCh oo 197 management 174,193
Traceinto ...ccccevevvenenne, 235 typedefocevviiriiee 197 (107" o S 131, 321
<F8> (010TTe] o [198 root 132, 155, 193, 312
S o)0 V/= SR 235 unsignedcccoveeeereneennns 198 root keywordccccvevenene. 4
<F9> (D17 S 198 use 2ndflash_code
RUN e 235 WaItfOr oo 199 USE_2NDFLASH_CODE
keywords 162, 173, 191 waitfordoneccoeeeene 199 132
abort ..o, 173 While v 200 memory management unit 4,
aAlign oo, 174 Do - R 200 131
aways oncceveienenne 174 D(1 011 4 IO 201 menus
ANYMEM ..o 174 XSUNG o 202 closeall open ... 228
BSM e 175 Vield o 202 Compileccceevreneiininnns 233
210 (0 175 Edit .o 230
e LR 175 L ST 228
breakccceevvevienesieeen, 176 language elements 15, 18, 22, HEP oo 280
C trrrereerereere e 176 173 INSPECtcovevvvernene 237,274
CBSE eoiieieeree e nee s 176 OPEFALOrS ovvvvveerresese e 213 Optionsccceeceeveeeenienne 241
char ..o 177 ib.dir o 40, 44, 210 Run s 235
cons_t 152 ipraries . 340 Messagewi ndow .231, 232, 274
CONtINUE ..o 179 INKING oveeeeerree e 40 metadatacocceeeeeneriniennns 144
(oIS 7 11 S 179 real-time programming 3 MMU 4,131
debug ... 179 WIiting YOUF OWN ~erv....... 41 Mmode _
defaultcocovveiiiiee, 180 library file encryption 323 changingcccccoevvinnnn. 232
dO i 180 Library Help lookup ... 45, 280 depug (run) e 232
ElSE i 180 INKING oo 3 ed_lt e s 232
ENUM <. 181 listfiles 262 print preview 229
EXLEIN oo 181 locating errors 231, 232 modules 41, 43, 44, 323
f_ar R — 182184 long bodycooovviririenn 41, 43, 44
firsttimecocoeevvinen 185 TR e 21 EXaMPIe ..o 43
float ..ooveereeeee 185 KEYWOrd .eeoeereern. 190 header 41, 42, 43, 181
fOr e 186 l0okUp FUNCEON <.cvvrrrree.e. 280 KeY i 41,42
QOO oo 186 10OPS rrvreeeeesereeeeeeeeeessen 34,35 MOUSEeeeeieeiesieeiee e 227
!f e 187 breaking out Of 3z M S__TI M_ER 92, 318
ini 0N i, 187 do .. 180 Multitaski ng
! NE e 188 for ... 186 cooperam_lve 47
!nterrupt 188 skipping to next pass 35 preemptiveccccoveeenienne 65
interrupt_vector 189
[ONG cevrereere e 190 M N
zg‘rjsethQ 132 macros .. IR LI L L —— 18
) - #AefiNe ..o 18
NOUSEIX oo 191 restrictionsccceeeeveeeene. 21 _ b 155
N[O I 191 With parameters 19 e'ftffri'llg{r;[lﬁ; """"" 3
protectedooooerrrrrnnne. 191 ~ mainfunction ..24, 40, 190, 310 nodebu 149. 190 235. 238
: 017 N1 I 321 g .o 1, 259, 236,
FEQISEN .o 192 262, 309, 310
(£ (01 0 S 193 memory norst 191
(00 A 193 address Space ... 131 AOUSEX 101
segchain ..oooeeevvcivicee, 194 configuration macros 140 NULL . 191
sharedccooveeevcirieinne 194 DATAORG 312,314 TR
dUMP e, 237
342 Dynamic C User’s Manual

O operator precedence 225 fFIOW v 34
ol it o1 postfix expressions 221 OPtiMIZE ..o 264
e () parentheses 221 = 236
offsetsin assembly161, 162 []aray indices 221 spanning 2 flash138, 310
online help ..., 45, 282 5 3 J—— 222 projectfiles 229, 305-307
OPEXBLONS ovvvvvvvvvvsssssssssssssassas 213 parentheses () ..., 221 ProMOLON ..o 214
#and ## (MaCros) 19 right arrow (->) 222 protected
arithmetic operators 214 Precedence ... 213 KEYWOId ...ovovvvevvevvveeennnnnnns 191
decrement ()oo... 216 reference/dereference opera- Variables ..o 3,191
diVISION (/) ooveeeevvien 215 10 £SO 222 prototypes
increment (+4) 216 address (&) wovreeeeeeeen 222 ChECKINg ...oceveeveeereenernnnenns 261
indirection (*) 215 bitwise AND (&) ..ovv.... 222 fUNCEON ©.vvvveveveeeeeees 25,26, 41
MINUS (=) oo, 214 indirection (*) .o 223 in module header 4
MOAUIUS (%) ..o 216 multiplication (*) 223 PUNCLUBLION oo 16
multiplication (*) 215 relational operators 219
pl us () e 214 greater than (>) 220 Q
ol P gredter than or el () quiting DYnamic C .. 229
post-increment (++)216 16SStaN (<) s 219 R
pre-decrement (--) 216 less than or equal (<=) ..219
pre-increment (++) 216 SIZEOF oo 224 Rabbit 4000 configuration ...325
assignment operators.........217 UNTY oo 213 Rabbit restart
add assign (+=) .ooooveeee. 217 optimize size or speed 264 protected variables 192
AND assign (&=) 218 options RabbItSYsccovviieiiinne 234
EESSTo| g N) 217 COMPIIEr oo 260 RabbitWebc.ccooeevvervennenee. 324
AiVide assign (=) o217 MU oo 241 RAM compile ... 262, 314
modulo assign (%=)217 real-time
multiply assign (*=)217 P Programmingc.ce.eeee. 3
OR assign (|7) «oveeeeenee 218 redoing changesc......... 230
shift | eftg (<(<|:)) ______________ 217 PageDown keycccceeeeene 227 registe?s g
shift right (>>=) 217 Pag_el_Jp _key """"""""""""" 227 saving and restoring 165
subtract assign (-=) 217 PAUONING oo 143 1S F=To [0 1V 319
XOR assign (A=) 21g Passing arguments 34,157,158, SNAPSNOLS e 276
assoCiatiVItycoeeevvenennen 213 162, 163, 164 WINdOW ...ccvvvereeenne 274,276
binaryccoooeevvincnnn 213 PASHING TXL .vvvvenvenesvvsen 230 gy
bitwise operators periodic interrupt 57, 66, 91, 318 PrOGraMoveevveerveereeeenne. 236
address (&) ..vovvreeeennnn o1g Pointer checkingcc..... 30 regzi ng columnsooeee. 276
bitwise AND (&) oo 218 POINMENS oo 22,2934 tet e 163, 165
bitwise exclusive OR (1) ... UNINIGAIZE oo S U (I 165
219 poll_target 236 return 163, 193, 197
bitwiseinclusive OR () 219 POING oveosivns 235 1ot address ...ovoeerroeen 157
complement (=) 219 POSHONINGTEXT oo 231 REU SOUFCE weovveesereeseseee 304
DOITLENS oo 18 PPP s 324 oot memory
shift left (<<) covvevnane. 218 PrECOMpile wooovivceen 42,209 file system usage 139
Shift right (5>) oo o1g Preservingregisters164, 171 KEYWOTd .oooeoveeeeeerreee 193
(¢00]4910 0= W 205 Previouserror <CTRL-P> ..231 MEMOrY MapPcovevveerenne 131
conditional operators (?:) 223 pr? mary register156, 162, 164 static variables 132
equality operators 220 E:: mmve AAATYPES ..ovvvve 17 variable address 155
Ual (Z=) oo, 220 RST 28H ..o 235, 309
S(q)t equal)(! N 220 choosing aprinter 229 n
in aSSEMbly ~oooovrrerree 152 PANLTIE oo G TR 235
logical operators 201 PINLPIEVIEW oo 229 Mode ..o 232,235
logicl AND (88&)221 PN e 23,26,251 o pOlliNg e 235
logical NOT (1) ..ceeneee 221 ~ Program run-time errorsccoceeveeee. 125
logical OR (|[) ceeerrrree 221 EXaMPIe ..o 26
Dynamic C User’'s Manual 343

S state machine buffer Sizecocevvvvevvenennne 268
EXaMPle ..o 49 effect on performance 240
sampl_e programs Statementsccoveveeverernene 23 enabling ..o, 268
basic C constructs 26 gatic variables EXAMPIE .ooovrrrrreee 12
saving afile ... 229 initializationccoooevevvveens 5 fieldsto display 268
saving trace window to file . 269 KEYWOTd ..o 195 function entry and exit 268
search text ..o 231 FOOt MEMONY ..vverveeeeeeen. 132 12 S o ST 240
SEC_TIMER92, 318 gatusregisterooom..... 276 saving to fileccooovrvvvvenn. 269
secure communications324 gtdio window 251, 274 starting and stopping 240
SEgChaiN ... 33,194 STDIO DEBUG_SERIAL .251 Wrap optioncccc..... 268
SEGSIZE 131 aep OV oo, 235 type
separate 1&D space ... 152,166, gtop program execution 235 [o=C'113'e J 214

238, 263 StOrage classovvevvverevnenne. 24 checkingoc.covweeen. 25, 261
shadow registers 319 T L 28 definitionsccoo........ 25,26
Sharedooovvvveii 194 S ([R 28 typedefcooereenne. 25, 26, 197
shared variables 3,192 AringS v 22, 200
ShOI’It (ORI 194 concatenation ..o, 22 U
single stepping fUNCLIONS ..o 22

assembly Window 160 literal 19 unary Operatorsccceeeveene 213
OPLiONS .eveeeieeeee e 235 termi nat| ngnullbyte 22 unbal_anced SECK v 171
watcheswindow 238 gruct kevword .. i96 un_dq ng _changes """"""""" 230
_ eywordccceevennne. uninitialized
SZE i 195, 264 Sructure .

. 195) POINLESSoeeeiereeienieeienne 30
S|Z€O Compostes 28 un|0n 24 28 198
g(l pp| ng tO neXt IOOp paS 35 kword 24 e y y
Jave portccccecverenenenienn 95 ing ... 27 unpreserved registers ... 164, 171
dice stat t 65 MESING wovvvrrrerinsnnneees unsignedccocceeevenenieneennns 198

Ice ementscoeevvevennnn Offwt Of dement 155 uns ed 5 t 21
SNMP e 324 e
pass by valuec.......... 34 untitled files 229
ft breakpoints 236 raturnspace . 158 163, 164 e o
SOnL reash return space 158,163,164 ygqg L 259
SOUI'CEf”eS s 40 returnaj by functlon ________ 163 USE ZNDFLASH CODE 138
SP (stack pointer) 158, 163, 164, T101T0 2 WO 28 310 - T

171,210 Subscripts useix 161, 198, 309
special charactersco...... 23 array o7 T e 1o

-al bOIS Uw block 310’ 311
Specia sym SUpPOrt fileS ...ovvvevveevcerinn 45 Ukility Pr

i DY oo 154 : ty Programs
In assembly switch ..o, 37, 180, 197 File Compression/D
== s O 195, 264 i Pressionfecompres-
Sp ' breaking out of 35 sion 326
SSL e, 324 case 197 s
gac:k t h-jt....éi.-.t (.j. 232 Font/ Bltmap Conve-ta. . 328
abletraci 267 switching 1o edit mode-....... Library File Encryption ... 323
enadietracing «.e..eceveeeneen: symbol information 321 Rabbit Field Utility .324, 328
enter fUﬂCtIOﬂ 309 wmbollc constantoovinil. 204 !
frame 157, 158, 163, 164, 171 \Vj
frame reference point 163 T
frame reference pointer .. 161, inf _ variables
162, 191, 309 tTaégF?/tl " ormation 233, 271‘%5 AULO oo 175
function arguments 34 o s 230 global ... 28
function returning struct .. 163 text |t|nhg """""""""""""" LS (] o 195
ISR wooveeeeeeeeeeeesssoereeeeneee 165 eseaen 231 ertical tiliNg weevveeererersen 274
local variables 161, 175 TI_CK—TIMER """""""" 92,318 yirtal watchdogsccccvveeee 93
NOUSEIX ... 197 ling windowscccc.c.... 274
pointer (SP)158,163,164, t0%dle W
breakpointcccccceveenne 236
171,210 waitfor 199
shot o77 toolbar e 273 PHOT e
SNAPSNOLS v : waitfordonec.coeveene, 199
. traceintoccooeeveeveeceeiene 235
tracewindow 256, 278 ; t 261
unbalanced 171 (TECEMACIOS wovvvovvierierisnns 13 Wamning reports
WI ndOW 277 tra:l ng Wmch eXpr OnS
""""""""""""""" add or delete 237
STACKSEG .eovooreersere 131 Al Statements .. 268
344 Dynamic C User’s Manual

watch menu option 274
watch window 237
WINOWccovveiiereeieiieenens 274
watchdog timerscccccveeeee. 93
watchdogs, virtua 93
WEd e, 199
while ..o, 23, 34, 200
wildcard maskcccceevenene. 40
windows
assembly ...ooovvveenene 160, 275
cascadedcoevveereinennen, 274
information 274, 278
MESSAJE ...eevererreeeerreeeeens 274
registercccceeeevennenne. 274,276
SACK i, 274, 277
StAio v 251, 274
tiled horizontaly 274
tiled vertically 274
WatCh ...coeveerecriee, 238, 274
X
(o I v NS 200
XMEM v 162, 201
asmblocksccceeeeeinnns 156
definitionccovveveeeeennen. 131
root functionsin 190
XPC e 131, 312
XSUING coviieiee e 202
Y
VIiEld oo 202

Dynamic C User’'s Manual

345

346 Dynamic C User’s Manual

	�1. Installing Dynamic C
	1.1� Requirements
	1.2� Assumptions

	�2. Introduction to Dynamic C
	2.1� The Nature of Dynamic C
	2.1.1� Speed

	2.2� Dynamic C Enhancements and Differences
	2.3� Dynamic C Differences Between Rabbit and Z180

	�3. Quick Tutorial
	3.1� Run DEMO1.C
	3.1.1� Single Stepping
	3.1.2� Watch Expression
	3.1.3� Breakpoint
	3.1.4� Editing the Program

	3.2� Run DEMO2.C
	3.2.1� Watching Variables Dynamically

	3.3� Run DEMO3.C
	3.3.1� Cooperative Multitasking

	3.4� Run DEMO4.C
	3.4.1� Trace Macros

	3.5� Summary of Features

	�4. Language
	4.1� C Language Elements
	4.2� Punctuation Tokens
	4.3� Data
	4.3.1� Data Type Limits

	4.4� Names
	4.5� Macros
	4.5.1� Macro Operators # and ##
	4.5.2� Nested Macro Definitions
	4.5.3� Macro Restrictions

	4.6� Numbers
	4.7� Strings and Character Data
	4.7.1� String Concatenation
	4.7.2� Character Constants

	4.8� Statements
	4.9� Declarations
	4.10� Functions
	4.11� Prototypes
	4.12� Type Definitions
	4.13� Aggregate Data Types
	4.13.1� Array
	4.13.2� Structure
	4.13.3� Union
	4.13.4� Composites

	4.14� Storage Classes
	4.15� Pointers
	4.16� Far Pointers and Far Data (Introduced in Dynamic C 10)
	4.16.1� The far Qualifier
	4.16.2� Basic Declarations
	4.16.3� Multi-Level Far Pointers
	4.16.4� Arrays and Structures
	4.16.5� Complex Declarations
	4.16.6� Sample Programs

	4.17� Pointers to Functions, Indirect Calls
	4.18� Argument Passing
	4.19� Program Flow
	4.19.1� Loops
	4.19.2� Continue and Break
	4.19.3� Branching

	4.20� Function Chaining
	4.21� Global Initialization
	4.22� Libraries
	4.23� Headers
	4.24� Modules
	4.24.1� The Parts of a Module
	4.24.2� Module Sample Code
	4.24.3� Important Notes

	4.25� Function Description Headers
	4.26� Support Files

	�5. Multitasking with Dynamic C
	5.1� Cooperative Multitasking
	5.2� A Real-Time Problem
	5.2.1� Solving the Real-Time Problem with�a�State�Machine

	5.3� Costatements
	5.3.1� Solving the Real-Time Problem with�Costatements
	5.3.2� Costatement Syntax
	5.3.3� Control Statements

	5.4� Advanced Costatement Topics
	5.4.1� The CoData Structure
	5.4.2� CoData Fields
	5.4.3� Pointer to CoData Structure
	5.4.4� Functions for Use With Named Costatements
	5.4.5� Firsttime Functions
	5.4.6� Shared Global Variables

	5.5� Cofunctions
	5.5.1� Cofunction Syntax
	5.5.2� Calling Restrictions
	5.5.3� CoData Structure
	5.5.4� Firsttime Functions
	5.5.5� Types of Cofunctions
	5.5.6� Types of Cofunction Calls
	5.5.7� Special Code Blocks
	5.5.8� Solving the Real-Time Problem with�Cofunctions

	5.6� Patterns of Cooperative Multitasking
	5.7� Timing Considerations
	5.7.1� waitfor Accuracy Limits

	5.8� Overview of Preemptive Multitasking
	5.9� Slice Statements
	5.9.1� Slice Syntax
	5.9.2� Usage
	5.9.3� Restrictions
	5.9.4� Slice Data Structure
	5.9.5� Slice Internals

	5.10� Summary

	�6. Debugging with Dynamic C
	6.1� Debugging Tools
	6.1.1� printf()
	6.1.2� Breakpoints
	6.1.3� Single Stepping
	6.1.4� Watch Expressions
	6.1.5� Evaluate Expressions
	6.1.6� Memory Dump
	6.1.7� MAP File
	6.1.8� Execution Trace
	6.1.9� Symbolic Stack Trace
	6.1.10� Assert Macro
	6.1.11� Miscellaneous Debugging Tools

	6.2� Where to Look for Debugger Features
	6.2.1� Run and Inspect Menus
	6.2.2� Options Menu
	6.2.3� Window Menu

	6.3� Debug Strategies
	6.3.1� Good Programming Practices
	6.3.2� Finding the Bug
	6.3.2.1 Reproduce the Problem
	6.3.2.2 Minimize the Failure Scenario
	6.3.2.3 Other Things to Try

	6.4� Reference to Other Debugging Information

	�7. The Virtual Driver
	7.1� Default Operation
	7.2� Calling _GLOBAL_INIT()
	7.3� Global Timer Variables
	7.4� Watchdog Timers
	7.4.1� Hardware Watchdog
	7.4.2� Virtual Watchdogs

	7.5� Preemptive Multitasking Drivers

	�8. The Slave Port Driver
	8.1� Slave Port Driver Protocol
	8.1.1� Overview
	8.1.2� Registers on the Slave
	8.1.3� Polling and Interrupts
	8.1.4� Communication Channels

	8.2� Functions
	8.3� Examples
	8.3.1� Status Handler
	8.3.2� Serial Port Handler
	8.3.3� Byte Stream Handler

	�9. Run-Time Errors
	9.1� Run-Time Error Handling
	9.1.1� Error Code Ranges
	9.1.2� Fatal Error Codes

	9.2� User-Defined Error Handler
	9.2.1� Replacing the Default Handler

	9.3� Run-Time Error Logging
	9.3.1� Error Log Buffer
	9.3.2� Initialization and Defaults
	9.3.3� Configuration Macros
	9.3.4� Error Logging Functions
	9.3.5� Examples of Error Log Use

	�10. Memory Management
	10.1� Memory Map
	10.1.1� Memory Mapping Control
	10.1.2� Macro to Use Second Flash for Code

	10.2� Extended Memory Functions
	10.2.1� Code Placement in Memory

	10.3� Dynamic Memory Allocation
	10.4� Direct Memory Access (Introduced in Dynamic C 10)
	10.4.1� DMA Registers and Global Resources
	10.4.2� API Functions
	10.4.3� DMA Interrupts
	10.4.4� DMA Transfer Information
	10.4.4.1 DMA Transfer Priority
	10.4.4.2 DMA Transfer Mode
	10.4.4.3 DMA Transfer Functions
	10.4.4.4 DMA Transfer Function Flags

	10.4.5� DMA with Ethernet

	�11. The Flash File System
	11.1� General Usage
	11.1.1� Maximum File Size
	11.1.2� Two Flash Boards
	11.1.3� Using SRAM
	11.1.4� Wear Leveling
	11.1.5� Low-Level Implementation
	11.1.6� Multitasking and the File System

	11.2� Application Requirements
	11.2.1� Library Requirements
	11.2.2� FS2 Configuration Macros
	11.2.3� FS2 and Use of the First Flash

	11.3� File System API Functions
	11.3.1� FS2 API Error Codes

	11.4� Setting up and Partitioning the File System
	11.4.1� Initial Formatting
	11.4.2� Logical Extents (LX)
	11.4.3� Logical Sector Size

	11.5� File Identifiers
	11.5.1� File Numbers
	11.5.2� File Names

	11.6� Skeleton Program Using FS2

	�12. Using Assembly Language
	12.1� Mixing Assembly and C
	12.1.1� Embedded Assembly Syntax
	12.1.2� Embedded C Syntax
	12.1.3� Setting Breakpoints in Assembly
	12.1.4� Assembly and 32-bit Pointer Registers (PW, PX, PY, PZ) (Introduced in Dynamic C 10)

	12.2� Assembler and Preprocessor
	12.2.1� Comments
	12.2.2� Defining Constants
	12.2.3� Multiline Macros
	12.2.4� Labels
	12.2.5� Special Symbols
	12.2.6� C Variables

	12.3� Stand-Alone Assembly Code
	12.3.1� Stand-Alone Assembly Code in Extended Memory
	12.3.2� Example of Stand-Alone Assembly Code

	12.4� Embedded Assembly Code
	12.4.1� The Stack Frame
	12.4.2� Embedded Assembly Example
	12.4.3� The Disassembled Code Window
	12.4.4� Local Variable Access

	12.5� C Calling Assembly
	12.5.1� Passing Parameters
	12.5.2� Location of Return Results
	12.5.3� Returning a Structure

	12.6� Assembly Calling C
	12.7� Interrupt Routines in Assembly
	12.7.1� Steps Followed by an ISR
	12.7.2� Modifying Interrupt Vectors

	12.8� Common Problems

	�13. Keywords
	abandon
	abort
	align
	always_on
	anymem
	asm
	auto
	bbram
	break
	c
	case
	char
	const
	continue
	costate
	debug
	default
	do
	else
	enum
	extern
	far
	firsttime
	float
	for
	goto
	if
	init_on
	int
	interrupt
	interrupt_vector
	__lcall__
	long
	main
	nodebug
	norst
	nouseix
	NULL
	protected
	register
	return
	root
	segchain
	shared
	short
	size
	sizeof
	speed
	static
	struct
	switch
	typedef
	union
	unsigned
	useix
	waitfor
	waitfordone (wfd)
	while
	xdata
	xmem
	xstring
	yield
	13.1� Compiler Directives
	#asm
	#class
	#debug #nodebug
	#define
	#endasm
	#fatal
	#GLOBAL_INIT
	#error
	#funcchain
	#if #elif #else #endif
	#ifdef
	#ifndef
	#interleave #nointerleave
	#makechain
	#memmap
	#pragma
	#precompile
	#undef
	#use
	#useix #nouseix
	#warns
	#warnt
	#ximport
	#zimport

	�14. Operators
	14.1� Arithmetic Operators
	+
	–
	*
	/
	++
	––
	%

	14.2� Assignment Operators
	=
	+=
	-=
	*=
	/=
	%=
	<<=
	>>=
	&=
	^=
	|=

	14.3� Bitwise Operators
	<<
	>>
	&
	^
	|
	~

	14.4� Relational Operators
	<
	<=
	>
	>=

	14.5� Equality Operators
	==
	!=

	14.6� Logical Operators
	&&
	||
	!

	14.7� Postfix Expressions
	()
	[]
	. (dot)
	->

	14.8� Reference/Dereference Operators
	&
	*

	14.9� Conditional Operators
	? :

	14.10� Other Operators
	(type)
	sizeof
	,

	�15. Graphical User Interface
	15.1� Editing
	15.2� Menus
	15.2.1� File Menu
	New <Ctrl+N>
	Open <Ctrl+O>
	Save <Ctrl+S>
	Save As
	Save All <Shift+Ctrl+S>
	Close <Ctrl+F4>
	Project
	Print Setup
	Print Preview
	Print
	Exit <Alt+F4>

	15.2.2� Edit Menu
	Undo <Ctrl+Z>
	Redo <Shift+Ctrl+Z>
	Cut <Ctrl+X>
	Copy <Ctrl+C>
	Paste <Ctrl+V>
	Insert Code Template <Ctrl+J>
	Toggle Bookmark
	Go to Bookmark
	Find <Ctrl F>
	Replace <F6>
	Find Next <F3>
	Reverse Find Next <Alt+F3>
	Find in Files (Grep)... <Shift+Ctrl+F>
	Go to Line Number
	Previous Error <Ctrl+Alt+P>
	Next Error <Ctrl+Alt+N>
	Edit Mode <F4>
	Editor Window Popup Menu
	Open File at Cursor <Ctrl+Enter>

	15.2.3� Compile Menu
	Compile <F5>
	Compile to Target
	Compile to .bin File
	Reload RabbitSys binary
	Compile BIOS <Ctrl+Y>

	15.2.4� Run Menu
	Run <F9>
	Stop <Ctrl+Q>
	Run w/ No Polling <Alt+F9>
	Step Into <F7>
	Step Over <F8>
	Source Step Into <Alt+F7>
	Source Step Over <Alt+F8>
	Toggle Breakpoint <F2>
	Toggle Hard Breakpoint <Alt+F2>
	Clear All Breakpoints <Ctrl+A>
	Poll Target <Ctrl+L>
	Reset Program <Ctrl+F2>
	Debug Mode <Shift+F5>
	Close Connection

	15.2.5� Inspect Menu
	Add Watch <Ctrl+W>
	Delete Watch
	Delete All Watches
	Update Watch Window <Ctrl+U>
	Evaluate Expression
	Disassemble at Cursor <Ctrl+F10>
	Disassemble at Address <Alt+F10>
	Dump at Address <Ctrl+D>
	Stop Tracing <Ctrl+Alt+T>
	Start Tracing <Shift+Ctrl+T>
	Goto execution point <Ctrl+E>

	15.2.6� Options Menu
	Environment Options
	Editor Tab
	Gutter & Margin Tab
	Display Tab
	Syntax Colors Tab
	Code Templates Tab
	Debug Windows Tab
	Print/Alerts Tab

	Project Options
	Communications Tab
	Compiler Tab
	Debugger Tab
	Defines Tab
	Targetless Tab

	Toolbars

	15.2.7� Window Menu
	Watch
	Stdio
	Assembly (F10)
	Register (F11)
	Stack (F12)
	Trace (Alt+ F12)
	Stack Trace (Ctrl+T)
	Information

	15.2.8� Help Menu
	Online Documentation
	Keywords
	Operators
	HTML Function Reference
	Function Lookup
	Instruction Set Reference
	I/O Registers
	Keystrokes
	Contents
	Tech Support
	Register Dynamic C
	Tip of the Day
	About

	�16. Command Line Interface
	16.1� Default States
	16.2� User Input
	16.3� Saving Output to a File
	16.4� Command Line Switches
	16.4.1� Switches Without Parameters
	-b
	-bf-
	-br
	-h+
	-h-
	-id+
	-id-
	-ini
	-lf-
	-mf
	-mfr
	-mr
	-n
	-r
	-rb+
	-rb-
	-rd+
	-rd-
	-ri+
	-ri-
	-rp+
	-rp-
	-rw+
	-rw-
	-sp
	-sz
	-td+
	-td-
	-tp+
	-tp-
	-tt+
	-tt-
	-vp+
	-vp-
	-wa
	-wn
	-ws

	16.4.2� Switches Requiring a Parameter
	-bf BIOSFilePathname
	-clf ColdLoaderFilePathname
	-d MacroDefinition
	-d- MacroToUndefine
	-eto EthernetResponseTimeout
	-i InputsFilePathname
	-lf LibrariesFilePathname
	-ne maxNumberOfErrors
	-nw maxNumberOfWarnings
	-o OutputFilePathname
	-oa OutputFilePathname
	-pbf PilotBIOSFilePathname
	-pf projectFilePathname
	-pw TCPPassPhrase
	-ret Retries
	-rf RTIFilePathname
	-rti BoardID:CpuID:CrystalSpeed:RAMSize:FlashSize
	-s Port:Baud:Stopbits
	-sto SerialResponseTimeout
	-t NetAddress:TcpName:TcpPort

	16.5� Examples
	Example 1
	Example 2
	Example 3

	16.6� Command Line RFU
	-cl ColdLoaderPathName
	-d
	-fi Flash.ini PathName
	-pb PilotBiosPathName
	-pw
	-s port:baudrate
	-t ipAddress:tcpPort
	-v
	-vp+
	-vp-
	-usb+
	-usb-

	�17. Project Files
	17.1� Project File Names
	17.1.3� Active Project

	17.2� Updating a Project File
	17.3� Menu Selections
	17.4� Command Line Usage

	�18. Hints and Tips
	18.1� Efficiency
	18.1.1� Nodebug Keyword
	18.1.2� In-line I/O

	18.2� Run-time Storage of Data
	18.2.1� User Block
	18.2.2� Flash File System
	18.2.3� WriteFlash2
	18.2.4� Battery-Backed RAM

	18.3� Root Memory Reduction Tips
	18.3.1� Increasing Root Code Space
	18.3.2� Increasing Root Data Space

	Appendix A: Macros and Global Variables
	A.1� Macros Defined by the Compiler
	A.2� Macros Defined in the BIOS or Configuration Libraries
	A.3� Global Variables
	A.4� Exception Types
	A.5� Rabbit Registers

	Appendix B: Map File Generation
	B.1� Grammar

	Appendix C: Dynamic C Modules and Utility Programs
	C.1� Dynamic C Modules
	C.2� Dynamic C Utilities
	C.3� Font and Bitmap Converter Utility
	-s port:baudrate
	-t ipAddress:tcpPort
	-v
	-cl ColdLoaderPathName
	-pb PilotBiosPathName
	-fi Flash.ini PathName
	-vp+
	-vp-
	-usb+
	-usb-
	-d

	Notice to Users
	License Agreement
	Index

