
An Introduction
to ZigBee®

019-0162 • 080924-C

The latest revision of this manual is available on the Rabbit Web site,
 www.rabbit.com, for free, unregistered download.

http://www.rabbit.com/

An Introduction to ZigBee®

Part Number 019-0162–C • 080924 • Printed in U.S.A.

Digi International Inc. © 2008 • All rights reserved.

Digi International Inc. reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabbit and Dynamic C® are registered trademarks of Digi International Inc.

Windows® is a registered trademark of Microsoft Corporation
ZigBee® is a registered trademark of the ZigBee Alliance

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Digi International Inc.

Permission is granted to make one or more copies as long as the copyright page contained therein is
included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Digi International Inc.
ii

Table of Contents

Chapter 1. Introduction 1

Chapter 2. Wireless Communication 3
2.1 Communication Systems .. 3
2.2 Wireless Network Types... 3

2.2.1 WPAN ... 3
2.2.2 WLAN ... 4
2.2.3 WWAN ...4

2.3 Wireless Network Topologies .. 4
2.4 Wireless Standards.. 5
2.5 Security in a Wireless Network .. 6

2.5.1 Security Risks ... 6

Chapter 3. IEEE 802.15.4 Specification 7
3.1 Scope of 802.15.4 ... 7

3.1.1 PHY Layers ... 7
3.1.2 MAC Layer ... 7

3.2 Properties of 802.15.4 ... 8
3.2.1 Transmitter and Receiver .. 8
3.2.2 Channels .. 8

3.3 Network Topologies ... 9
3.4 Network Devices and their Operating Modes... 9
3.5 Addressing Modes Supported by 802.15.4 ... 10

3.5.1 PAN ID ... 10

Chapter 4. ZigBee Specification 11
4.1 Logical Device Types ... 11
4.2 ZigBee Stack Layers ... 12

4.2.1 Network (NWK) Layer ... 12
4.2.2 Application (APL) Layer .. 13

4.2.2.1 Application Support Sublayer (APS) .. 13
4.2.2.2 Application Framework ... 14
4.2.2.3 ZigBee Device Object (ZDO) ... 14

4.3 ZigBee Addressing ... 15
4.3.1 ZigBee Messaging ... 15
4.3.2 Broadcast Addressing ... 15
4.3.3 Group Addressing ... 15

4.4 ZigBee Application Profiles ... 16
4.4.1 ZigBee Device Profile ... 17

Chapter 5. Rabbit and ZigBee 19
5.1 Implementation Overview .. 19

5.1.1 Initialization State ... 19
5.1.2 Discovery State ... 20
5.1.3 Ready State ... 21
5.1.4 End Device Sleep Mode .. 21

5.2 Sample Programs .. 22
5.2.1 Sample Program Initialization Requirements ... 23
5.2.2 Summary of ZigBee Sample Programs ... 24
An Introduction to ZigBee rabbit.com iii

http://www.rabbit.com

5.2.2.1 Sample Programs for One Rabbit-Based Board ..24
5.2.2.2 Sample Programs for Two Rabbit-Based Boards ..25

5.2.3 GPIO Server/Client Sample Programs ..25
5.2.3.1 Running the GPIO Applications ..26
5.2.3.2 Studying the Code ...30

5.3 Dynamic C Library for ZigBee Applications.. 31
5.3.1 Communication with an RF Module ...31

5.3.1.1 Sending Data to a Remote Device ...31
5.3.1.2 Radio Commands ..32

5.3.2 Configuration Macros and Constants ..32
5.3.2.1 Compile-Time Macros ...32

DEFAULT_CHANNELS... 32
DEFAULT_EXTPANID .. 32
DEFAULT_PANID .. 32
ENDPOINT_TABLE_*.. 33
NODEID_STR.. 34
XBEE_DEBUG .. 34
XBEE_IN_BUF / XBEE_OUT_BUF .. 34
XBEE_ROLE.. 34
XBEE_VERBOSE.. 34
ZB_CONSTRUCT_NODE_ID .. 34
ZB_FATAL_ERROR ... 35
ZB_MULTI_PROFILE .. 35

5.3.2.2 Information Macros ...35
XBEE_IS_COORD .. 35
XBEE_IS_ENDDEV .. 35
XBEE_IS_ROUTER .. 35

5.3.2.3 Deprecated Device Type Macros ...35
ZIGBEE_COORDINATOR ... 35
ZIGBEE_ENDDEV.. 35
ZIGBEE_ROUTER .. 35

5.3.3 Error Codes ..35
5.3.4 Data Structures ..36

api_frame_t ... 36
xb_io_sample_t ... 36
_zb_NodeData_t ... 36
 zb_sendAddress_t .. 36

5.3.5 API Functions and Macros ..37
GET_NODE_DATA... 37
resetRadio ... 37
xbee_awake... 38
xbee_init.. 38
xbee_protocol.. 39
xbee_tick... 40
xbee_wait_for_wake... 41
xb_get_register.. 42
xb_hexdump.. 43
xb_io_conf_desc ... 43
xb_io_sample_clear .. 44
xb_IS_parse .. 44
xb_listNodes ... 45
xb_nd_nodetype_str.. 46
xb_sendAPIremoteATcmd ... 47
xb_send_command ... 55
xb_set_register .. 56
iv rabbit.com

http://www.rabbit.com

xb_sleep.. 57
xb_stayawake ... 59
zb_adc_in.. 60
zb_API_ATCmdResponse ... 61
zb_check_sleep_params ... 62
zb_dio_in .. 63
zb_dio_out .. 63
ZB_ERROR.. 64
ZB_GENERAL_MESSAGE_HANDLER... 64
zb_getATCmdResponse ... 65
zb_io_init.. 66
ZB_LATEST_MESSAGE ... 67
ZB_LAST_MSG_DATA ... 68
ZB_LAST_MSG_DATALEN ... 68
ZB_LAST_STATUS.. 69
zb_MakeEndpointClusterAddr... 70
zb_MakeIEEENetworkAddr .. 71
zb_missed_messages .. 72
ZB_ND_RUNNING... 72
zb_Rabbit_poweroff ... 73
zb_Rabbit_Sleep... 74
zb_receive... 75
zb_reply .. 76
zb_send... 77
zb_sendAPICmd... 78
zb_sendATCmd.. 79
zb_swapBytes ... 80
zb_tick .. 80
ZB_XMIT_OVERHEAD... 81
ZB_XMIT_STATUS.. 81
zigbee_init (deprecated) ... 82

5.4 Protocol Firmware .. 83
5.4.1 Updating RF Module FW on a Rabbit-Based Target ... 83
5.4.2 X-CTU: Updating RF Module FW on a DIGI XBee USB Device ... 83

5.4.2.1 X-CTU Installation .. 83
5.4.2.2 PC Settings Tab ... 84
5.4.2.3 Modem Configuration Tab .. 85

5.5 Summary... 92

Appendix A. Glossary of Terms 95
ad-hoc network ... 95
application object.. 95
attribute... 95
Bluetooth .. 95
BPSK .. 95
cluster ... 95
cluster ID .. 95
cluster tree .. 95
coordinator.. 95
CSMA-CA.. 96
device description... 96
end device... 96
endpoint .. 96
FFD... 96
An Introduction to ZigBee rabbit.com v

http://www.rabbit.com

IEEE.. 96
EUI-64 .. 96
IrDA .. 96
LAN .. 96
mesh .. 96
multi-hop... 97
node... 97
O-QPSK .. 97
peer-to-peer ... 97
point-to-multipoint.. 97
point-to-point .. 97
profile.. 97
router ... 97
RF.. 97
RFD... 97
RSSI .. 98
self-healing network.. 98
star... 98
UWB ... 98
WPAN... 98
ZDO .. 98

Index 99
vi rabbit.com

http://www.rabbit.com

 1. INTRODUCTION
This manual provides an introduction to the various components of a ZigBee network. After a quick over-
view of ZigBee, we start with a description of high-level concepts used in wireless communication and
move on to the specific protocols needed to implement the communication standards. This is followed by a
description of using a Rabbit-based board and Dynamic C libraries to form a ZigBee network.

ZigBee, a specification for communication in a wireless personal area network (WPAN), has been called
the “Internet of things.” Theoretically, your ZigBee-enabled coffee maker can communicate with your
ZigBee-enabled toaster. The benefits of this technology go far beyond the novelty of kitchen appliances
coordinating your breakfast. ZigBee applications include:

• Home and office automation

• Industrial automation

• Medical monitoring

• Low-power sensors

• HVAC control

• Plus many other control and monitoring uses

ZigBee targets the application domain of low power, low duty cycle and low data rate requirement devices.
Figure 1.1 shows a block diagram of a ZigBee network with five nodes.

Figure 1.1ZigBee Network

Before going further, note that there is a list of glossary terms in Appendix A.

�����������

	
�	����

��������
����������
����

	
�	����
An Introduction to ZigBee rabbit.com 1

http://www.rabbit.com

This page intentionally left almost blank.
2 rabbit.com Introduction

http://www.rabbit.com

 2. WIRELESS COMMUNICATION

This chapter presents a select high-level overview of wireless communication.

2.1 Communication Systems
All wireless communication systems have the following components:

• Transmitter

• Receiver

• Antennas

• Path between the transmitter and the receiver

In short, the transmitter feeds a signal of encoded data modulated into RF waves into the antenna. The
antenna radiates the signal through the air where it is picked up by the antenna of the receiver. The receiver
demodulates the RF waves back into the encoded data stream sent by the transmitter.

2.2 Wireless Network Types
There are a number of different types of networks used in wireless communication. Network types are typ-
ically defined by size and location.

2.2.1 WPAN
A wireless personal area network (WPAN) is meant to span a small area such as a private home or an indi-
vidual workspace. It is used to communicate over a relatively short distance. The specification does not
preclude longer ranges being achieved with the trade-off of a lower data rate.

In contrast to other network types, there is little to no need for infrastructure with a WPAN.

Ad-hoc networking is one of the key concepts in WPANs. This allows devices to be part of the network
temporarily; they can join and leave at will. This works well for mobile devices like PDAs, laptops and
phones.

Some of the protocols employing WPAN include Bluetooth, ZigBee, Ultra-wideband (UWB) and IrDA.
Each of these is optimized for particular applications or domains. ZigBee, with its sleepy, battery-powered
end devices, is a perfect fit for wireless sensors. Typical ZigBee application domains include: agricultural,
building and industrial automation, home control, medical monitoring, security and, lest we take ourselves
too seriously, toys, toys and more toys.
An Introduction to ZigBee rabbit.com 3

http://www.rabbit.com

2.2.2 WLAN
Wireless local area networks (WLANs) are meant to span a relatively small area, e.g., a house, a building,
or a college campus. WLANs are becoming more prevalent as costs come down and standards improve.

A WLAN can be an extension of a wired local area network (LAN), its access point connected to a LAN
technology such as Ethernet. A popular protocol for WLAN is 802.11, also known as Wi-Fi.

2.2.3 WWAN
A wireless wide area network (WAN) is meant to span a large area, such as a city, state or country. It
makes use of telephone lines and satellite dishes as well as radio waves to transfer data. A good description
of WWANs is found at: http://en.wikipedia.org/wiki/WWAN.

2.3 Wireless Network Topologies
This section discusses the network topologies supported by the IEEE 802.15.4 and ZigBee specifications.
The topology of a network describes how the nodes are connected, either physically or logically. The
physical topology is a geometrical shape resulting from the physical links from node to node, as shown in
Figure 2.1. The logical topology maps the flow of data between the nodes.

Figure 2.1 Physical Network Topologies Supported by ZigBee

IEEE 802.15.4 supports star and peer-to-peer topologies. The ZigBee specification supports star and two
kinds of peer-to-peer topologies, mesh and cluster tree.

ZigBee-compliant devices are sometimes specified as supporting point-to-point and point-to-multipoint
topologies.

���� ��	�
����

�
	�
4 rabbit.com Wireless Communication

http://www.rabbit.com
http://en.wikipedia.org/wiki/WWAN

2.4 Wireless Standards
The demand for wireless solutions continues to grow and with it new standards have come forward and
other existing standards have strengthened their position in the marketplace. This section compares three
popular wireless standards being used today and lists some of the design considerations that differentiate
them.

Each wireless standard addresses the needs of a different market segment. Choosing the best-fit wireless
standard is a crucial step in the successful deployment of any wireless application. The requirements of
your application will determine the wireless standard to choose.

For more information on design considerations, see Technical Note 249, “Designing with Wireless Rab-
bits.”

Table 2-1 Comparison of Wireless Standards

Wireless Parameter Bluetooth Wi-Fi ZigBee

Frequency band 2.4 GHz 2.4 GHz 2.4 GHz

Physical/MAC layers IEEE 802.15.1 IEEE 802.11b IEEE 802.15.4

Range 9 m 75 to 90 m
Indoors: up to 30 m
Outdoors (line of sight):
up to 100 m

Current consumption 60 mA (Tx mode)
400 mA (Tx mode)
20 mA (Standby mode)

25-35 mA (Tx mode)
3 µA (Standby mode)

Raw data rate 1 Mbps 11 Mbps 250 Kbps

Protocol stack size 250 KB 1 MB
32 KB
4 KB (for limited
function end devices)

Typical network join
time

>3 sec variable, 1 sec typically 30 ms typically

Interference avoidance
method

FHSS
(frequency-hopping
spread spectrum)

DSSS
(direct-sequence spread
spectrum)

DSSS
(direct-sequence spread
spectrum)

Minimum quiet
bandwidth required

15 MHz (dynamic) 22 MHz (static) 3 MHz (static)

Maximum number of
nodes per network

7 32 per access point 64 K

Number of channels 19 13 16
An Introduction to ZigBee rabbit.com 5

http://www.rabbit.com

2.5 Security in a Wireless Network
This section discusses the added security issues introduced by wireless networks. The salient fact that sig-
nals are traveling through the air means that the communication is less secure than if they were traveling
through wires. Someone seeking access to your network need not overcome the obstacle of tapping into
physical wires. Anyone in range of the transmission can potentially listen on the channel.

Wireless or not, a network needs a security plan. The first thing to do is to decide what level of security is
appropriate for the applications running on your network. For instance, a financial institution, such as a
bank or credit union offering online account access would have substantially different security concerns
than would a business owner offering free Internet access at a coffee shop.

2.5.1 Security Risks
After you have decided the level of security you need for your network, assess the potential security risks
that exist.

• Who is in range of the wireless transmissions?

• Can unauthorized users join the network?

• What would an unauthorized user be able to do if they did join?

• Is sensitive data traveling over the wireless channel?

Network security is analogous to home security: You do not want your house to be a target so you do
things to minimize your risk, whether that be outside lighting, motion sensors, or even just keeping bushes
pruned back close to the house so bad guys have fewer hiding places.

Deterrence is the goal because nothing is guaranteed to be 100% safe in the real world.
6 rabbit.com Wireless Communication

http://www.rabbit.com

 3. IEEE 802.15.4 SPECIFICATION
This chapter is an overview of the IEEE 802.15.4 specification. 802.15.4 defines a standard for a low-rate
WPAN (LR-WPAN).

3.1 Scope of 802.15.4
802.15.4 is a packet-based radio protocol. It addresses the communication needs of wireless applications
that have low data rates and low power consumption requirements. It is the foundation on which ZigBee is
built. Figure 4.1 shows a simplified ZigBee stack, which includes the two layers specified by 802.15.4: the
physical (PHY) and MAC layers.

3.1.1 PHY Layers
The PHY layer defines the physical and electrical characteristics of the network. The basic task of the
PHY layer is data transmission and reception. At the physical/electrical level, this involves modulation and
spreading techniques that map bits of information in such a way as to allow them to travel through the air.
Specifications for receiver sensitivity and transmit output power are in the PHY layer.

The PHY layer is also responsible for the following tasks:

• enable/disable the radio transceiver

• link quality indication (LQI) for received packets

• energy detection (ED) within the current channel

• clear channel assessment (CCA)

3.1.2 MAC Layer
The MAC layer defines how multiple 802.15.4 radios operating in the same area will share the airwaves.
This includes coordinating transceiver access to the shared radio link and the scheduling and routing of
data frames.

There are network association and disassociation functions embedded in the MAC layer. These functions
support the self-configuration and peer-to-peer communication features of a ZigBee network.

The MAC layer is responsible for the following tasks:

• beacon generation if device is a coordinator

• implementing carrier sense multiple access with collision avoidance (CSMA-CA)

• handling guaranteed time slot (GTS) mechanism

• data transfer services for upper layers
An Introduction to ZigBee rabbit.com 7

http://www.rabbit.com

3.2 Properties of 802.15.4
802.15.4 defines operation in three license-free industrial scientific medical (ISM) frequency bands. Below
is a table that summarizes the properties of IEEE 802.15.4 in two of the ISM frequency bands: 915 MHz
and 2.4 GHz.

3.2.1 Transmitter and Receiver
The power output of the transmitter and the sensitivity of the receiver are determining factors of the signal
strength and its range. Other factors include any obstacles in the communication path that cause interfer-
ence with the signal.

The higher the transmitter’s output power, the longer the range of its signal. On the other side, the
receiver’s sensitivity determines the minimum power needed for the radio to reliably receive the signal.
These values are described using dBm (deciBels below 1 milliwatt), a relative measurement that compares
two signals with 1 milliwatt used as the reference signal. A large negative dBm number means higher
receiver sensitivity.

3.2.2 Channels
Of the three ISM frequency bands only the 2.4 GHz band operates world-wide. The 868 MHz band only
operates in the EU and the 915 MHz band is only for North and South America. However, if global
interoperability is not a requirement, the relative emptiness of the 915 MHz band in non-European coun-
tries might be an advantage for some applications.

For the 2.4 GHz band, 802.15.4 specifies communication should occur in 5 MHz channels ranging from
2.405 to 2.480 GHz.

Table 3-1. Comparison of IEEE 802.15.4 Frequency Bands

Property Description
Prescribed Values

915 MHz 2.4 GHz

Raw data bit rate 40 kbps 250 kbps

Transmitter output power 1 mW = 0 dBm

Receiver sensitivity
(<1% packet error rate)

-92 dBm -85 dBm

Transmission range Indoors: up to 30 m; Outdoors: up to 100 m

Latency 15 ms

Channels 10 channels 16 channels

Channel numbering 1 to 10 11 to 26

Channel access CSMA-CA and slotted CSMA-CA

Modulation scheme BPSK O-QPSK
8 rabbit.com IEEE 802.15.4 Specification

http://www.rabbit.com

3.3 Network Topologies
According to the IEEE 802.15.4 specification, the LR-WPAN may operate in one of two network topolo-
gies: star or peer-to-peer. 802.15.4 is designed for networks with low data rates, which is why the acronym
“LR” (for “low rate”) is prepended to “WPAN.”

Figure 3.1 Network Topologies Supported by IEEE 802.15.4

As shown in Figure 3.1, the star topology has a central node with all other nodes communicating only with
the central one. The peer-to-peer topology allows peers to communicate directly with one another. This
feature is essential in supporting mesh networks.

3.4 Network Devices and their Operating Modes
Two types of devices can participate in a LR-WPAN: a full function device (FFD) and a reduced function
device (RFD).

An RFD does not have routing capabilities. RFDs can be configured as end nodes only. They communicate
with their parent, which is the node that allowed the RFD to join the network.

An FFD has routing capabilities and can be configured as the PAN coordinator. In a star network all nodes
communicate with the PAN coordinator only so it does not matter if they are FFDs or RFDs. In a peer-to-
peer network there is also one PAN coordinator, but there are other FFDs which can communicate with not
only the PAN coordinator, but also with other FFDs and RFDs.

There are three operating modes supported by IEEE 802.15.4: PAN coordinator, coordinator, and end
device. FFDs can be configured for any of the operating modes. In ZigBee terminology the PAN coordina-
tor is referred to as simply “coordinator.” The IEEE term “coordinator” is the ZigBee term for “router.”

���������������

�������������
���

�
���
������������
���

������� ���! �

������

���� ���!

����������������"
An Introduction to ZigBee rabbit.com 9

http://www.rabbit.com

3.5 Addressing Modes Supported by 802.15.4
802.15.4 supports both short (16-bit) and extended (64-bit) addressing.

An extended address (also called EUI-64) is assigned to every RF module that complies to the 802.15.4
specification.

When a device associates with a WPAN it can receive a 16-bit address from its parent node that is unique
in that network.

3.5.1 PAN ID
Each WPAN has a 16-bit number that is used as a network identifier. It is called the PAN ID. The PAN
coordinator assigns the PAN ID when it creates the network. A device can try and join any network or it
can limit itself to a network with a particular PAN ID.

ZigBee PRO defines an extended PAN ID. It is a 64-bit number that is used as a network identifier in place
of its 16-bit predecessor.
10 rabbit.com IEEE 802.15.4 Specification

http://www.rabbit.com

4. ZIGBEE SPECIFICATION
This chapter gives an overview of the ZigBee specification. ZigBee, its specification and promotion, is a
product of the ZigBee Alliance. The Alliance is an association of companies working together to ensure
the success of this open global standard.

ZigBee is built on top of the IEEE 802.15.4 standard. ZigBee provides routing and multi-hop functions to
the packet-based radio protocol.

Figure 4.1 ZigBee Stack

4.1 Logical Device Types
The ZigBee stack resides on a ZigBee logical device. There are three logical device types:

• coordinator

• router

• end device

It is at the network layer that the differences in functionality among the devices are determined. See
Table 4-1 for more information. It is expected that in a ZigBee network the coordinator and the routers will
be mains-powered and that the end devices can be battery-powered.

��!	����#�!
��$�%&'

����#�!
�

()�*�+*,

� ��������-������
	

� ������������
"��.�#�!
�

�
�"��.�#�!
��$�/0'

1��2

An Introduction to ZigBee rabbit.com 11

http://www.rabbit.com

In a ZigBee network there is one and only one coordinator per network. The number of routers and/or end
devices depends on the application requirements and the conditions of the physical site.

Within networks that support sleeping end devices, the coordinator or one of the routers must be desig-
nated as a Primary Discovery Cache Device. These cache devices provide server services to upload and
store discovery information, as well as respond to discovery requests, on behalf of the sleeping end
devices.

4.2 ZigBee Stack Layers
As shown in Figure 4.1, the stack layers defined by the ZigBee specification are the network and applica-
tion framework layers. The ZigBee stack is loosely based on the OSI 7-layer model. It implements only the
functionality that is required in the intended markets.

4.2.1 Network (NWK) Layer
The network layer ensures the proper operation of the underlying MAC layer and provides an interface to
the application layer. The network layer supports star, tree and mesh topologies. Among other things, this
is the layer where networks are started, joined, left and discovered.

When a coordinator attempts to establish a ZigBee network, it does an energy scan to find the best RF
channel for its new network. When a channel has been chosen, the coordinator assigns the logical network
identifier, also known as the PAN ID, which will be applied to all devices that join the network.

A node can join the network either directly or through association. To join directly, the system designer
must somehow add a node’s extended address into the neighbor table of a device. The direct joining device
will issue an orphan scan, and the node with the matching extended address (in its neighbor table) will
respond, allowing the device to join.

Table 4-1. Comparison of ZigBee Devices at the Network Layer

ZigBee Network Layer Function Coordinator Router End Device

Establish a ZigBee network .

Permit other devices to join or leave the
network . .

Assign 16-bit network addresses . .

Discover and record paths for efficient message
delivery . .

Discover and record list of one-hop neighbors . .

Route network packets . .

Receive or send network packets . . .

Join or leave the network . . .

Enter sleep mode .
12 rabbit.com ZigBee Specification

http://www.rabbit.com

To join by association, a node sends out a beacon request on a channel, repeating the beacon request on
other channels until it finds an acceptable network to join.

The network layer provides security for the network, ensuring both authenticity and confidentiality of a
transmission.

4.2.2 Application (APL) Layer
The APL layer is made up of several sublayers. The components of the APL layer are shown in Figure 4.2.
and discussed below. The ovals symbolize the interface, called service access points (SAP), between dif-
ferent sublayer entities.

Figure 4.2 ZigBee-Defined Part of Stack

4.2.2.1 Application Support Sublayer (APS)
The APS sublayer is responsible for:

• binding tables

• message forwarding between bound devices

• group address definition and management

• address mapping from 64-bit extended addresses to 16-bit NWK addresses

• fragmentation and reassembly of packets

• reliable data transport

The key to interfacing devices at the need/service level is the concept of binding. Binding tables are kept
by the coordinator and all routers in the network. The binding table maps a source address and source end-
point to one or more destination addresses and endpoints. The cluster ID for a bound set of devices will be
the same.

As an example, consider the common control problem of maintaining a certain temperature range. A
device with temperature-sensing circuitry can advertise its service of providing the temperature as a

� ���������� ������3�!
��$���'

� ������������
"��.

� �������
435
����,)

� �������
435
����

1
�
4
��
����
�

����
��

1��2

��
���
�435
��
$1�4'

� ��������$��#'�#�!
�

�
�"��.�$�/0'�#�!
�

6�� ������,) 6�� ������ 6�� �����)

�
�3��

7��
����

An Introduction to ZigBee rabbit.com 13

http://www.rabbit.com

READ_TEMPERATURE cluster ID. A controller (for a furnace or a fan, perhaps) could discover the tem-
perature sensor device. The binding table would identify the endpoint on the temp sensor that accepts the
READ_TEMPERATURE cluster ID, for example. One temperature sensor manufacturer might have end-
point 0x11 support this cluster ID, while another manufacturer might use endpoint 0x72 to support this
cluster ID. The controller would have to discover both devices and would then create two binding table
entries, one for each device. When the controller wants to read the temperature of all sensors, the binding
table tells it which address and endpoint the READ_TEMPERATURE packet should be sent to.

4.2.2.2 Application Framework
The application framework is an execution environment for application objects to send and receive data.
Application objects are defined by the manufacturer of the ZigBee-enabled device. As defined by ZigBee,
an application object is at the top of the application layer and is determined by the device manufacturer. An
application object actually implements the application; it can be a light bulb, a light switch, an LED, an I/O
line, etc. The application profile (discussed in Section 4.4) is run by the application objects.

Each application object is addressed through its corresponding endpoint. Endpoint numbers range from 1
to 240. Endpoint 0 is the address of the ZigBee Device Object (ZDO). Endpoint 255 is the broadcast
address, i.e., message are sent to all of the endpoints on a particular node. Endpoints 241 through 254 are
reserved for future use.

ZigBee defines function primitives, not an application programming interface (API).

4.2.2.3 ZigBee Device Object (ZDO)
The ZDO is responsible for overall device management, specifically it is responsible for:

• initializing the APS sublayer and the NWK layer

• defining the operating mode of the device (i.e., coordinator, router, or end device)

• device discovery and determination of which application services the device provides

• initiating and/or responding to binding requests

• security management

Device discovery can be initiated by any ZigBee device. In response to a device discovery inquiry end
devices send their own IEEE or NWK address (depending on the request). A coordinator or router will
send their own IEEE or NWK address plus all of the NWK addresses of the devices associated with it. (A
device is associated with a coordinator or router if it is a child node of the coordinator or router.)

Device discovery allows for an ad-hoc network. It also allows for a self-healing network.

Service discovery is a process of finding out what application services are available on each node. This
information is then used in binding tables to associate a device offering a service with a device that needs
that service.
14 rabbit.com ZigBee Specification

http://www.rabbit.com

4.3 ZigBee Addressing
Before joining a ZigBee network (i.e., a LR-WPAN), a device with an IEEE 802.15.4-compliant radio has
a 64-bit address. This is a globally unique number made up of an Organizationally Unique Identifier (OUI)
plus 40 bits assigned by the manufacturer of the radio module. OUIs are obtained from IEEE to ensure glo-
bal uniqueness.

When the device joins a Zigbee network, it receives a 16-bit address called the NWK address. Either of
these addresses, the 64-bit extended address or the NWK address, can be used within the PAN to commu-
nicate with a device. The coordinator of a ZigBee network always has a NWK address of “0.”

ZigBee provides a way to address the individual components on the device of a node through the use of
endpoint addresses. During the process of service discovery the node makes available its endpoint num-
bers and the cluster IDs associated with the endpoint numbers. If a cluster ID has more than one attribute,
the command is used to pass the attribute identifier.

4.3.1 ZigBee Messaging
After a device has joined the ZigBee network, it can send commands to other devices on the same net-
work. There are two ways to address a device within the ZigBee network: direct addressing and indirect
addressing.

Direct addressing requires the sending device to know three kinds of information regarding the receiving
device:

1. Address

2. Endpoint Number

3. Cluster ID

Indirect addressing requires that the above three types of information be committed to a binding table. The
sending device only needs to know its own address, endpoint number and cluster ID. The binding table
entry supplies the destination address(es) based on the information about the source address.

The binding table can specify more than one destination address/endpoint for a given source address/end-
point combination. When an indirect transmission occurs, the entire binding table is searched for any
entries where the source address/endpoint and cluster ID matches the values of the transmission. Once a
matching entry is found, the packet is sent to the destination address/endpoint. This is repeated for each
entry where the source endpoint/address and clusterID match the transmission values.

4.3.2 Broadcast Addressing
There are two distinct levels of broadcast addresses used in a ZigBee network. One is a broadcast packet
with a MAC layer destination address of 0xFFFF. Any transceiver that is awake will receive the packet.
The packet is re-transmitted three times by each device, thus these types of broadcasts should only be used
when necessary.

The other broadcast address is the use of endpoint number 0xFF to send a message to all of the endpoints
on the specified device.

4.3.3 Group Addressing
An application can assign multiple devices and specific endpoints on those devices to a single group
address. The source node would need to provide the cluster ID, profile ID and source endpoint.
An Introduction to ZigBee rabbit.com 15

http://www.rabbit.com

4.4 ZigBee Application Profiles
What is a ZigBee profile and why would you want one? Basically a profile is a message-handling agree-
ment between applications on different devices. A profile describes the logical components and their inter-
faces. Typically, no code is associated with a profile.

The main reason for using a profile is to provide interoperability between different manufacturers. For
example, with the use of the Home Lighting profile, a consumer could use a wireless switch from one
manufacturer to control the lighting fixture from another manufacturer.

There are three types of profiles: public (standard), private and published. Public profiles are managed by
the ZigBee Alliance. Private profiles are defined by ZigBee vendors for restricted use. A private profile
can become a published profile if the owner of the profile decides to publish it.

All profiles must have a unique profile identifier. You must contact the ZigBee Alliance if you have cre-
ated a private profile in order to be allocated a unique profile identifier.

A profile uses a common language for data exchange and a defined set of processing actions. An applica-
tion profile will specify the following:

• set of devices required in the application area

• functional description for each device

• set of clusters to implement the functionality

• which clusters are required by which devices

A device description specifies how a device must behave in a given environment. Each piece of data that
can be transferred between devices is called an attribute. Attributes are grouped into clusters. Figure 4.3
illustrates the relative relationships of these entities and the maximum number that can exist theoretically
per application profile.

Figure 4.3 Maximum Profile Implementation

All clusters and attributes are given unique identifiers. Interfaces are specified at the cluster level. There
are input cluster identifiers and output cluster identifiers.

At time of this writing, the following public profiles are available:

• Commercial building automation

• Home automation

• Industrial plant monitoring

• Wireless sensor applications

• Smart energy

� �������������

8+9+:8��
���

��
	��� ����	

8+9+:8���	�
�	

8+9+:8������3��
	
16 rabbit.com ZigBee Specification

http://www.rabbit.com

4.4.1 ZigBee Device Profile
The ZigBee Device Profile is a collection of device descriptions and clusters, just like an application pro-
file. The device profile is run by the ZDO and applies to all ZigBee devices. The ZigBee Device Profile is
defined in the ZigBee Application Level Specification. It serves as an example of how to write an applica-
tion profile.
An Introduction to ZigBee rabbit.com 17

http://www.rabbit.com

This page intentionally left almost blank.
18 rabbit.com ZigBee Specification

http://www.rabbit.com

 5. RABBIT AND ZIGBEE
This chapter describes how to create a ZigBee application using Dynamic C and Rabbit-based ZigBee-
capable boards.

5.1 Implementation Overview
The state machine that describes the underlying logic of a Dynamic C implementation of ZigBee at the

application level is pictured in Figure 5.1. It is coded in the tick function xbee_tick()1 which is
defined in xbee_api.lib. The states are described in the subsections below.

Figure 5.1 ZigBee Application State Machine

5.1.1 Initialization State
This state configures the radio on the RF module, which includes setting the PAN ID and node string
defaults. There are two types of firmware used with Rabbit-based hardware: ZNet 2.5 and ZB. They are
similar, but are not compatible. That is, a device running ZNet 2.5 firmware cannot talk to one running ZB.

When using ZNet 2.5, the PAN ID defaults to 0x0234. When using ZB firmware, the PAN ID defaults to
“0x0123456789abcdef”. This longer PAN ID is called the extended PAN ID in the ZigBee specification.
Since it is 64 bits in length it is represented as a string in Dynamic C. The node string defaults to “Rab-
bitXBee” in both ZNet and ZB firmware.

The radio’s firmware version and the ZigBee device type are checked against the application’s expecta-
tion; they must match or the initialization will fail.

More information on the firmware is available in Section 5.4.

1. As of Dynamic C 10.44, xbee_tick() is used in place of the deprecated function zb_tick().

��	���
�!

7������;�����

�
��!

������� �������
An Introduction to ZigBee rabbit.com 19

http://www.rabbit.com

5.1.2 Discovery State
A Node Discover (ND) command is sent in the discovery state. The ND command discovers and reports
on all RF modules found. This is useful for mapping out the network. An ND command is one of many
commands that is used to communicate with the local XBee. For more information on the available AT
commands, refer to Table 5-1 or the RF module manual, XBee® / XBee-Pro® ZB OEM RF Module, at
www.digi.com; or run the sample program \Samples\XBee\AT_interactive.c to explore
the AT commands yourself.

The following information is returned for each RF module found during discovery. The first four corre-
spond to AT commands, each of which may be used separately to read or set a parameter on the XBee.

MY 16-bit network (NWK) address

SH Serial number high; this is the high 32 bits of the RF module’s unique IEEE
address

SL Serial number low; this is the low 32 bits of the RF module’s unique IEEE
address

NI String identifier

MP 16-bit network address of the discovered node’s parent.

Device Type 1 byte: 0 = coordinator; 1 = router; 2 = end device

Status 1 byte: Reserved

Profile Id 2 bytes: Application profile identifier

Manufacturer ID 2 bytes: Manufacturer specific identifier; the Digi International Inc.
identifier is 0x101E.

By default, Node Discover (ND) takes approximately 6 seconds to terminate. During this time, it is essen-
tial to call xbee_tick() or ZB_ND_RUNNING (which calls the tick function) to correctly process the
incoming ND packets. Prior to Dynamic C 10.44, other communication with the radio was prohibited dur-
ing node discovery. But as of Dynamic C 10.44 this is no longer the case. Not being able to get up-to-date
information from the node table, which is populated during node discovery, is the only restriction.

The ND timeout should be set larger than the maximum sleep time of any sleeping end devices that will be
discovered. For example, if ND times out after 6 seconds and an end device sleeps for 20 seconds, the end
device may not be discovered until after the ND timeout imposed by the library.

The ND timeout is controlled by the NT command. For more information on NT, refer to the description
for xb_NT in Table 5-1.
20 rabbit.com Rabbit and ZigBee

http://www.rabbit.com
http://www.digi.com/

5.1.3 Ready State
In this state the radio is queried for new packets. If a new packet is waiting, it is processed. The radio is
also queried for status on its networking association. The response lets us know if a network has been
joined successfully, or if not, what happened.

The function xbee_tick() must be called in the Dynamic C application in order to service new mes-
sages. A good rule of thumb is to call xbee_tick() whenever the Dynamic C application would other-
wise be idle. Special care must be taken to prevent blocking operations and break lengthy processing into
small segments. While dependant on expected network traffic, long delays between calls to
xbee_tick() can result in unwelcome latency and even dropped messages.

Data message processing is performed in xbee_tick() using one of three methods.

1. Appropriately addressed messages are automatically routed to an endpoint and cluster function.

2. Messages not processed in a cluster function are passed to an application-defined general message han-
dler.

3. Any message not already processed will cause xbee_tick() to return with ZB_MESSAGE. The
Dynamic C application can then get the message and process it outside of xbee_tick().

Most API functions only apply to the latest received message. xbee_tick() must not be called while
directly processing a message or a new incoming message may overwrite the old. This could result in data
corruption and a multitude of problems depending on the specific API function called. Prior to Dynamic C
10.21, sending AT commands was also forbidden during message processing. The library enforced this
restriction for cluster functions; however, the general message handler and the ZB_MESSAGE processing
were uncontrolled and the application was responsible for not calling xbee_tick() or sending AT com-
mands while processing the message. The restriction on sending/receiving AT commands during message
processing has been removed with Dynamic C 10.21. The restriction on calling xbee_tick() still
applies.

NOTE: For more information on AT commands, please refer to Table 5-3.

5.1.4 End Device Sleep Mode
End devices, unlike coordinators and routers, can sleep in order to save power. This is controlled by the
radio hardware via its /DTR|SLEEP_RQ|DIO8 pin (or “sleep pin” for short). The XBee’s sleep pin con-
nection to the Rabbit-based target is design dependent.

On the RCM4510W, the sleep pin is connected to power, which means that the non-radio sections of the
Rabbit core module are powered down when the XBee makes a sleep request. On the BL4S100, in con-
trast, the XBee’s sleep pin is not connected to power. So, instead of being powered down when a sleep
request is made, an application running on the BL4S100 has options for its power saving strategy. The
sample program sleep.c illustrates several ways to save power: It turns off the Ethernet interface and
the ADC before changing the clock to the real-time clock (i.e., putting the Rabbit into sleepy mode).

Both hardware designs lead to significant savings in power use. In the case of the RCM4510W, the backup
battery will maintain SRAM contents and will keep the real-time clock running.

Once put into sleep mode, the XBee module will periodically wake up and poll its parent to determine if
there is an incoming message. If a message is found, it will be received and the Rabbit target board will
either be restarted (in the case of the RCM4510W), which restarts the user application, or the application
An Introduction to ZigBee rabbit.com 21

http://www.rabbit.com

will unwind whatever power-saving methods it employed, such as being brought out of sleepy mode. In
this latter case, the user application is not restarted since it was not stopped to begin with. The received
message will be handled in the normal way by the application.

If no message is found, the XBee module will return to sleep. Depending on initialization of sleep mode,
the radio may also restart the RCM4510W or bring the BL4S100 out of sleepy mode after a time-out has
passed.

There are several limitations that must be accounted for:

• The RCM4510W and its user application will fully restart upon coming back from sleep.

• Variables that need to be retained between power cycles can be placed in battery-backed RAM if it is
available. See the “bbram” keyword in the Dynamic C User’s Manual for information on how to place
variables in battery-backed RAM.

• User data should be initialized prior to calling xbee_init() to ensure that a cluster function or the
default message handler correctly process an incoming wake message.

• Every sleep request will be preceded by at least 2 seconds of full power operation. This time is set when
calling xb_sleep(). Any RF or serial traffic received during this time will reset the countdown. If a
message is received during this time, it must be immediately processed as it will be unavailable after
sleep has begun and then terminated. An application can call xb_stayawake() to cancel an immi-
nent sleep if an incoming message must be processed.

There are several sample programs that illustrate how to control sleep mode. If you have a Dynamic C ver-
sion prior to 10.42, refer to /Samples/ZigBee/SleepMode.c. Otherwise, see the board-specific
folders (e.g., Samples/BL4S1xx/XBee/ or Samples/RCM4500W/XBee/) for the sleep mode
sample programs available for your hardware.

5.2 Sample Programs
This section discusses the Dynamic C sample programs that exercise ZigBee functionality.

Dynamic C sample programs that use ZigBee communication are in the folder /Samples/XBee1 rela-
tive to the Dynamic C installation folder. ZigBee sample programs can also be found in folders specific to
the hardware, such as: /Samples/RCM4500W/XBee, /Samples/BL4S1xx/XBee and
/Samples/BLxS2xx/XBee.

Some of the sample programs can be run with one Rabbit-based board and a DIGI XBee USB device. This
device is a simple USB dongle. Its purpose is to aid development by providing a ZigBee coordinator to
create a network that the Rabbit-based target can then join as either a router or end device node.

Several sample programs require two Rabbit-based boards.

1. All folders named “XBee” were named “ZigBee” prior to Dynamic 10.44.
22 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

5.2.1 Sample Program Initialization Requirements
There are several tasks that must be done by all Dynamic C applications that use ZigBee. If you study the
supplied samples, you will see similarities in the configuration code as well as some of the initialization
code in main().

All the sample programs define the configuration macros XBEE_ROLE and NODEID_STR. They both
have library default values, but they are useful to put directly in the application code even if you are using
the current defaults. Not only is it possible for library default values to change with a newer release of
Dynamic C, but having them in the application code is more convenient when you are developing and
debugging your software.

After XBEE_ROLE and NODEID_STR have been defined, as well as any other configuration macros from
Section 5.3.2.1, the application must #use the ZigBee library. The next requirement is the creation of the
endpoint table. At a minimum your application program will have the following code before main():

#define XBEE_ROLE NODE_TYPE_ROUTER
#define NODEID_STR "My Descriptive String"
#use xbee_api.lib

Every ZigBee application must construct an endpoint table, even if it is empty:

// empty endpoint table
ENDPOINT_TABLE_BEGIN
ENDPOINT_TABLE_END

In main() there are two tasks that every ZigBee application must accomplish. If the tasks cannot be
accomplished, the application should handle any error condition that arises from the attempt:

1. The radio portion of the board must be initialized by calling xbee_init(). This function will start
the process of joining a network (router or end device) or creating one (coordinator) if the network is
not already present.

2. Check the device’s network join status and wait until the device is on an active network or has returned
an error.

The sample programs illustrate how to accomplish these two tasks. They all have code similar to the fol-
lowing:

// Initialize the radio portion of the board
join_start = 0;
while ((initres = xbee_init()) == -EBUSY){

if (! join_start){
join_start = SEC_TIMER;
printf("Waiting for sleeping XBee to wake before continuing.");

}
if (join_start != SEC_TIMER){

join_start = SEC_TIMER;
printf(".");

}
}
printf("\n");
An Introduction to ZigBee rabbit.com 23

http://www.rabbit.com

if (initres){
printf("xbee_init failed");
exit();

}

It is possible for the Rabbit to start while its XBee module is sleeping. The XBee module will not respond

while it is sleeping, thus xbee_init() will return -EBUSY1 to indicate that fact. But by looping on the
return code -EBUSY, an application can wait until xbee_init() returns something else (such as the
return code -ETIMEOUT for failure or 0 for success if the XBee woke up). In this way, the initialization
function will not return a failure simply because the XBee is asleep.

// Check the join status. For more information on ZB_JOINING_NETWORK,
// perform a function lookup (ctrl-H) on ZB_LAST_STATUS().
printf("Waiting to join network...\n");
join_start = MS_TIMER;
while (ZB_JOINING_NETWORK()) {

// If unable to join a network, timeout after arbitrary time
if (MS_TIMER - join_start > XBEE_JOIN_TIMEOUT) {

printf("\n*** Error ***\n");
printf("Timed out while trying to join a network.\n");
exit(-ETIME)

}
}
printf("Done (%s network)\n", xbee_protocol());

Please note that if the device is a ZigBee coordinator, the application may use the same macro
(ZB_JOINING_NETWORK) that is used to check the join status of routers and end devices in order to
determine whether or not a coordinator has finished creating the network.

5.2.2 Summary of ZigBee Sample Programs
The bulleted lists below are the available sample programs.

5.2.2.1 Sample Programs for One Rabbit-Based Board

• API_Test.c - This sample is only available prior to Dynamic C 10.44. Using the simple text interface
you can bring up secondary menus that allow you to:

• read analog and digital lines from the RF module

• reset the radio

• enter AT commands

• put the Rabbit to sleep (end devices only)

• for some Rabbit-based boards you can also update the RF module firmware

• send strings to other nodes

• ping other nodes (other nodes must have API_Test.c running also)

1. There are error conditions that will cause the XBee module to be unresponsive, for example, a bad firm-
ware image. In such cases, xbee_init() will return -EBUSY before ultimately returning -ETIMEOUT.
24 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

• send_msg.c - This sample program shows how to send a message from a ZigBee end device to the Digi
XBee USB ZigBee coordinator or to another end device. (This sample is only available prior to
Dynamic C 10.44.)

• AT_interactive.c - This sample program illustrates how to set up and send an AT command. It's also
useful for debugging purposes, and to configure some of the registers/commands on the XBee. It dis-
plays a menu of some of the more useful AT commands, then prompts user to select one. Running this
program successfully verifies that the communication link between the RF module and its Rabbit-based
board is working properly.

• AT_runOnce.c - This sample program illustrates how to set up and send an AT command. It sends some
of the more useful AT commands to the RF module one time only. It reads the parameters that are
returned and displays them in the Stdio window. Running this program successfully verifies that the
communication link between the RF module and its Rabbit-based board is working properly.

5.2.2.2 Sample Programs for Two Rabbit-Based Boards

• sleep.c/SleepMode.c/SleepMode2.c - These sample programs are hardware specific. They demonstrate
how to put a Rabbit device into sleep mode within a ZigBee environment. The Rabbit device must be
an end device, as only end devices are allowed to sleep in a ZigBee network.

• EndPoint.c - This sample program requires two Rabbit-based targets. It shows how to set up and use
endpoints.

• GeneralMessageHandler.c - This sample program requires two Rabbit-based targets. It demonstrates
the use of the General Message Handler function, which sends a message between two Rabbit-based
boards.

5.2.3 GPIO Server/Client Sample Programs
This collection of sample programs has both server and client applications. The GPIO protocol defined for
these sample programs is described at the top of the server program files. The protocol defines a message
handling agreement between the two sides, which is essentially the frame formats for the GPIO requests
and their responses.

General purpose I/O includes both digital and analog I/O, making these applications a useful template for
developing a wide variety of embedded systems software.
An Introduction to ZigBee rabbit.com 25

http://www.rabbit.com

5.2.3.1 Running the GPIO Applications
The server application is hardware specific. The sample programs are in hardware specific folders (e.g.,
\Samples\RCM4500W\XBee\XBee_GPIO_Server.c). After the server application has been
compiled and is running on the target board, it will attempt to join a network and if successful, will then
wait for client requests.

The client application can be run in two different ways:

1. The first way uses the Digi XBee USB device. Plug the Digi XBee USB into your host PC. There is a
Visual Basic application, \Utilities\XBee GPIO GUI\XBEE_GPIO_GUI.exe, that when
run will display something very similar to the screen in Figure 5.2.

Figure 5.2 Opening Screen of VB GPIO Client

In the “Serial Port List” window select the COM port that is connected to the Digi XBee USB device.
Make sure the baud rate matches. (The default is 115200 bps from the factory; however, 9600 is also
very common.) Click on the button labeled “Open Com Port.” This results in the radio parameters being
filled in.

If an error occurs when you try to open the COM port, make sure you don’t have something else open
on that port. This is a common reason for getting an error.

After you have successfully connected the VB GPIO GUI client to the Digi XBee USB device, click on
the tab labeled “Command Window.” Select a device in the “Devices Discovered” area. This results in
information being displayed for the selected device in the lower half of the GUI window, as shown
below in Figure 5.3:
26 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

Figure 5.3 General Information for Selected Device

The tabs in the lower half of the “Command Window” screen let you view and modify values for the
various I/O signals on the selected device. Which tabs contain information depends on the available I/O
of the selected device.
An Introduction to ZigBee rabbit.com 27

http://www.rabbit.com

The third main tab, “Messages,” displays the messages transmitted and received by the client. This mes-
sage window is a valuable resource for understanding the communication between the server and client.
Figure 5.4 shows the messages exchanged when the “Send Discovery Cmd” button is clicked.

Figure 5.4 GPIO GUI Messages

As you can see, a Node Discovery (ND) command was transmitted from the client in response to click-
ing the “Send Discovery Cmd” button. The actual byte values are followed by an English translation of
their meaning.
28 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

In this example, two ZigBee devices responded with the following information:

• MY - 16-bit network address

• IEEE - 64-bit IEEE address

• NI - node identifier

• Parent Network Address - 16-bit parent network address; a value of 0xFFFE indicates no parent;
only end devices have parents since they are the only devices that need messages buffered

• Device Type: 0=Coordinator, 1=Router, 2=End Device

• Status - reserved

• Profile - application profile

• Manufacturer ID - manufacturer’s identifier

2. The second way to run the GPIO client uses a Rabbit-based board instead of the Digi XBee USB device.
The Dynamic C sample program, \Samples\XBee\XBee_GPIO_Client.c, when compiled and
run on a ZigBee-capable board performs the client side of the GPIO application. It is a command line
version of the VB GUI application. The opening screen is shown in Figure 5.5.

Figure 5.5 GPIO Client Screen

In this example, there was one GPIO server found by the scan. From the “Network Commands” menu
you can list the I/O signal names and types available on the GPIO server by entering the server’s num-
ber at the prompt. This will also result in a new command menu being displayed that will allow for the
reading and setting of the individual I/O signals.
An Introduction to ZigBee rabbit.com 29

http://www.rabbit.com

5.2.3.2 Studying the Code
The GPIO server/client application illustrates the setting up and use of endpoints and clusters. The proto-
col defined for the GPIO application requires that the cluster ID values on both the server and client must
match if the server is to recognize the client’s request and likewise if the client is to recognize the server’s
response.

In both XBee_GPIO_Server.c and XBee_GPIO_Client.c the cluster IDs have the same values
and are named:

• XBEE_GPIO_CLUST_INFO

• XBEE_GPIO_CLUST_NAME

• XBEE_GPIO_CLUST_ANA_RANGE

• XBEE_GPIO_CLUST_READ

• XBEE_GPIO_CLUST_WRITE

Although the cluster IDs are the same, the functions associated with them differ between the server and the
client. The client makes a request that is then handled by the server. The client will then handle the
response that is sent back from the server. This is shown in the code below.

From XBee_GPIO_Server.c:

RabbitClusterIDList_t const gpioEndPointReq = {
{XBEE_GPIO_CLUST_INFO, XBEE_GPIO_CLUST_NAME, XBEE_GPIO_CLUST_ANA_RANGE,
XBEE_GPIO_CLUST_READ, XBEE_GPIO_CLUST_WRITE },
{xbeeGpioDevInfoReq, xbeeGpioNameReq, xbeeGpioAnaRangeReq,
xbeeGpioReadReq, xbeeGpioWriteReq }
};

ENDPOINT_TABLE_BEGIN
ENDPOINT_TABLE_ENTRY(XBEE_ENDPOINT_GPIO,0,XB_PROFILE_DIGI,1,0,5,0,\

&gpioEndPointReq, NULL)
ENDPOINT_TABLE_END

The code in XBee_GPIO_Client.c uses the same cluster ID values, but associates those cluster IDs
with the functions that handle the various server responses.

RabbitClusterIDList_t const gpioEndPointResp = {
{XBEE_GPIO_CLUST_INFO, XBEE_GPIO_CLUST_NAME, XBEE_GPIO_CLUST_ANA_RANGE,

XBEE_GPIO_CLUST_READ, XBEE_GPIO_CLUST_WRITE },

{xbeeGpioDevInfoResp, xbeeGpioNameResp, xbeeGpioAnaRangeResp,
xbeeGpioReadResp, xbeeGpioWriteResp }

};

ENDPOINT_TABLE_BEGIN
ENDPOINT_TABLE_ENTRY(XBEE_ENDPOINT_RESPONSE, 0, XB_PROFILE_DIGI, 1, 0,
5, 0,\
 &gpioEndPointResp, NULL)
ENDPOINT_TABLE_END
30 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

What you will notice if you search through the server and client code is that the cluster functions are not
explicity called within the code of either program. This is because the messages received by the ZigBee
device are handled within the tick function of xbee_api.lib, as described in Section 5.1.3.

For more information about the parameters for ENDPOINT_TABLE_ENTRY, see the description for the
ENDPOINT_TABLE_* macros in Section 5.3.2.1.

5.3 Dynamic C Library for ZigBee Applications
This section contains information about the library provided for ZigBee-capable devices. Data structures,
error codes and configuration macros from the library are also discussed.

The Dynamic C library that supports ZigBee connectivity is xbee_api.lib. It is located in the folder
lib\..\XBee relative to the Dynamic C installation folder. (Prior to Dynamic C 10.44, the folder was
named “ZigBee.”) The inclusion of the library in the application code must come after the configuration
macro definitions. For example, if you are compiling and running your application on an end device, your
program must order the lines of code as follows:

#define XBEE_ROLE NODE_TYPE_ENDDEV1

#use “xbee_api.lib”

Instead of defining the logical device type in the application, it can be defined in the application’s project
file. (See the “Defines” tab in the menu: Options | Program Options.)

5.3.1 Communication with an RF Module
Using Dynamic C, a Rabbit-based device on a ZigBee network may communicate with its XBee module to
read or modify radio parameters, as well as communicate with other devices on its network. The API mode
of operation is used as an alternative to the Transparent Operation (serial line replacement) of the RF mod-
ule. The API mode requires a data frame structure be passed between the Rabbit-based device and the
XBee.

The Dynamic C function zb_sendAPICmd() takes care of sending the data frame to the RF module.
zb_sendAPICmd() is called by several other Dynamic C functions. Which one of these preliminary
functions to use depends on what the application requires. The application will need to send a message to a
remote device or will need to send an AT command to the RF module.

5.3.1.1 Sending Data to a Remote Device
If a message is being sent to a remote device on the network, the application must call the API function
zb_send().

(For information on handling messages received from a remote device, please see Section 5.1.3.)

1. Prior to Dynamic C 10.40, the #define statement would be: #define ZIGBEE_ENDEV
An Introduction to ZigBee rabbit.com 31

http://www.rabbit.com

5.3.1.2 Radio Commands
If an AT command is being sent to the XBee, the application must call either the non-blocking function
zb_sendATCmd() or the blocking function zb_API_ATCmdResponse(). Starting with Dynamic C
10.44, you can also use one of three wrapper functions for zb_API_ATCmdResponse(); they are:
xb_get_register(), xb_set_register(), and xb_send_command().

The non-blocking function does not wait for a reply, whereas the blocking functions do.

NOTE: Prior to Dynamic C 10.21, a Dynamic C application cannot call the functions
zb_sendATCmd() or zb_API_ATCmdResponse() when executing a Dynamic C
function associated with a cluster ID. If it is attempted, the application will receive a
ZBERR_TX_LOCKED return value.

5.3.2 Configuration Macros and Constants
This section lists the Dynamic C configuration macros and constants that are of interest to application
developers.

5.3.2.1 Compile-Time Macros
All of the configuration macros listed here, except for the ones that build the endpoint table, must be
defined either in the application program prior to the “#use xbee_api.lib” statement or in the “Defines” tab
in the Options | Project Options dialog.

DEFAULT_CHANNELS
This is a bitmask of the channels that will be scanned when a device attempts to associate with a network.
It is valid for both ZNet 2.5 and ZigBee (ZB) firmware.

Default = ZB_DEFAULT_CHANNELS prior to Dynamic C 10.44
Default = XBEE_DEFAULT_CHANNELS starting with Dynamic C 10.44

Both default values (0x1FFE) allow 12 channels to be scanned and used by the coordinator.

DEFAULT_EXTPANID
Default = “0x0123456789abcdef”. Every ZigBee network requires a personal area network (PAN) ID. A
coordinator with ZB firmware uses DEFAULT_EXTPANID as the 64-bit PAN ID for the network it is cre-
ating. Note that this macro is defined as a string in order to fulfill the requirement of it being a 64-bit value.

If you are using ZB firmware and have set DEFAULT_PANID in your program, but not
DEFAULT_EXTPANID, xbee_api.lib will use DEFAULT_PANID padded to the left with zeros as
the PAN ID for the network.

Setting DEFAULT_EXTPANID to “0x00” tells a coordinator to pick a random value for the PAN ID, and
tells a router or end device to join any network.

DEFAULT_PANID
Default = 0x0234. Every network requires a personal area network (PAN) ID. A coordinator with ZNet
firmware uses DEFAULT_PANID as the 16-bit PAN ID for the network it is creating.

The range for a valid PAN ID is 0x0 to 0x3FFF, inclusive. The value 0xFFFF is also valid. It is used to tell
a coordinator to choose a random value for the PAN ID, and tells a routers or end device to join any net-
work.
32 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

ENDPOINT_TABLE_*
This group of macros builds the endpoint table.

Before the endpoint table can be created, the Dynamic C application must initialize the structure that holds
cluster ID and function information. Cluster IDs refer to the functions implemented on an endpoint. End-
points may implement zero, one, or any number of the functions listed in a Cluster ID list.

Some variation of the following code is needed in a Dynamic C application that wants to run in a ZigBee
network.

RabbitClusterIDList_t const StringInCluster = {
{ CLUSTER_ID },
{ recvString }

};

In the above code, CLUSTER_ID is associated with the function recvString(). Functions that are
associated with a cluster ID are called cluster functions.

The application uses the cluster ID/function structure (RabbitClusterIDlist_t) to create entries
in the endpoint table with the ENDPOINT_TABLE_* macros provided for this purpose. The code below
is an example of building an endpoint table.

ENDPOINT_TABLE_BEGIN
ENDPOINT_TABLE_ENTRY(EP_NUM, 0, PROFILE_ID, 1, 0, 1, 0, &StringInClus-
ter, NULL)
ENDPOINT_TABLE_END

The parameters for ENDPOINT_TABLE_ENTRY are:

EP Endpoint number, in the range 1 to 219, inclusive.

DSC Reserved for future use. Currently set to 0 in sample programs.

PID Application profile identifier; the macro XB_PROFILE_DIGI indicates
Digi’s private application profile.

DID Device identifier, in the range 0 to 65,535, inclusive. This number can be
used any way desired by the application.

flags User-defined byte.

ICCOUNT The number of input cluster functions in the RabbitClusterIDList_t structure
referenced in the “ICL” field.

OCCOUNT The number of output cluster functions in the RabbitClusterIDList_t struc-
ture referenced in the “OCL” field. This field is not currently used and
should be set to 0.

ICL Input cluster ID list. This is the address of a RabbitClusterIDList_t
structure.

OCL Output cluster ID list. This is the address RabbitClusterIDList_t,
but not currently used and should be set to NULL.
An Introduction to ZigBee rabbit.com 33

http://www.rabbit.com

Any device using xbee_api.lib must define an endpoint table, even if it is empty. An empty table is
defined as:

ENDPOINT_TABLE_BEGIN
ENDPOINT_TABLE_END

NODEID_STR
This macro defines the NI value for the node and contains a maximum of 20 characters. It gives each node
a unique identifier.

Default = “RabbitZigBee” prior to Dynamic C 10.40.
Default = “RabbitXBee” starting with Dynamic C 10.40.

XBEE_DEBUG
This configuration macro enables debugger functionality. This is necessary for things like setting break-
points and stepping through the ZigBee library code. This macro replaced the deprecated macro
ZB_DEBUG starting with Dynamic C 10.44.

XBEE_IN_BUF / XBEE_OUT_BUF
Default = 255 bytes for each buffer. This is the recommended minimum size for the serial buffers. They
should be large enough to hold an entire frame.

XBEE_ROLE
This configuration macro defines the device type. It defaults to NODE_TYPE_ROUTER. It can be defined
to one of the following:

• NODE_TYPE_COORD - the device will be a coordinator.
• NODE_TYPE_ROUTER - the device will be a router.

• NODE_TYPE_ENDDEV - the device will be an end device.

XBEE_VERBOSE
This configuration macro enables/disables the printing of extra information generated from the library
code to the Stdio window. This macro replaced the deprecated macro ZB_VERBOSE starting with
Dynamic C 10.44.

ZB_CONSTRUCT_NODE_ID
Define this if you want to construct your own node ID string at runtime.

#define ZB_CONSTRUCT_NODE_ID <function-name>

This will allow your software to construct an ID that could contain information about what the capabilities
of the device connected to the radio are. A node ID string must be made up of printable ASCII characters,
and be no more than _MAX_NODE_ID_LEN (20) characters long.

The function prototype must be:

char *<function-name>(void);

The function must return a pointer to static data.
34 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

ZB_FATAL_ERROR
The ZB_FATAL_ERROR macro handles the case where the library xbee_api.lib is reporting that it is
experiencing an error beyond its capability to handle. This will usually occur during startup if the radio is
not responding.

#define ZB_FATAL_ERROR <function-name>

The fatal error handler callback function prototype must be:

void <function-name>(int errorcode);

The error code is one of the defined errors in /Lib/../ERRNO.LIB, relative to the Dynamic C installa-
tion folder.

ZB_MULTI_PROFILE
The #define of this macro enables Profile ID checking in the message interpretation function for explicitly
addressed messages. This check will require a received Profile ID to match an associated Endpoint Table
Endpoint Descriptor Profile ID before calling the associated callback function.

5.3.2.2 Information Macros
The macros listed here are defined in xbee_api.lib and should not be modified by an application.

XBEE_IS_COORD
This macro will equal TRUE if the device is configured to be a coordinator, and FALSE otherwise.

XBEE_IS_ENDDEV
This macro will equal TRUE if the device is configured to be an end device, and FALSE otherwise.

XBEE_IS_ROUTER
This macro will equal TRUE if the device is configured to be a router, and FALSE otherwise.

5.3.2.3 Deprecated Device Type Macros
The macros listed here were deprecated starting with Dynamic C 10.40 in favor of the XBEE_ROLE
macro.

ZIGBEE_COORDINATOR
This configuration macro defines the device as a coordinator.

ZIGBEE_ENDDEV
This configuration macro defines the device as an end device.

ZIGBEE_ROUTER
This configuration macro defines the device as a router.

5.3.3 Error Codes
Most of the error codes returned from the API functions in xbee_api.lib are defined in
Lib\..\errno.lib. There are no true fatal errors; however, the I/O error -EIO is fatal in terms of not
being able to recover from it without having specialized knowledge and making some low-level internal
function calls.

Refer to ZB_FATAL_ERROR for handling error conditions that are beyond the capability of the library.
An Introduction to ZigBee rabbit.com 35

http://www.rabbit.com

5.3.4 Data Structures
There are many data structures defined in xbee_api.lib. Most of them are related to the data packets
that are received and transmitted via the RF module. There are also data structures for information about
endpoints.

api_frame_t
This data structure holds data packet information. It is used by both send and receive functions. Many of
the data structures defined at the beginning of the ZigBee library are used to construct api_frame_t.

A pointer to an instance of this data structure is returned by zb_receive(), which is a function that is
called when xbee_tick() indicates that a message is waiting to be handled. A pointer to an instance of
this data structure is passed by zb_sendAPICmd() to the RF module when the application wants to
send a message to another device or wants to read or modify radio parameters.

xb_io_sample_t
This data structure holds information about the function and state of digital and analog pins on the XBee
module.

_zb_NodeData_t
This data structure holds a node data entry. The information on a network node includes:

• 16-bit NWK address

• 64-bit IEEE address

• string identifier, 21 characters including NULL

• 16-bit NWK address of node’s parent

• device type: coordinator, router, or end device.

• application profile ID

• whether the node is currently on the network

 zb_sendAddress_t
This is the address data structure. It is used whenever a Rabbit ZigBee device transmits a message to
another ZigBee device. The functions zb_MakeEndpointClusterAddr() and
zb_MakeIEEENetworkAddr() build the data structure (passed as an argument) and then return the
pointer passed to them.

The difference between zb_MakeEndpointClusterAddr() and
zb_MakeIEEENetworkAddr() is that the former uses the endpoints and the cluster ID for address-
ing, while the latter function does not. Choosing which one to call allows the Dynamic C application to
specify how a message is addressed.

The zb_sendAddress_t data structure is used by the functions that send messages to another ZigBee
device: zb_send() and zb_reply(). The application will typically fill in the message and message
length fields, either directly before calling zb_send(), or indirectly by passing the information to
zb_reply().
36 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

5.3.5 API Functions and Macros
This section contains function descriptions for ZigBee-specific functions and macros.

GET_NODE_DATA

 _zb_NodeData_t * GET_NODE_DATA (int index)

DESCRIPTION

This macro gets the node data located at the indexed spot in the array. The node array is typically
populated by nodes that responded to a Network Discovery (ND) command. Information about
the nodes are stored in the array in the order received.

The macro calls a function to determine where in memory the element is because the array could
extend into xmem. Repeated calls to this macro do not incur a processing penalty since the last
access is remembered. Note that the node structure is used internally by the library for addressing.
The data stored in the node structure must be in network order.

This macro is non-reentrant.

PARAMETER

index Index into the node array

RETURN VALUE

Address of the node in root memory or NULL if index is out of range.

LIBRARY

xbee_api.lib

resetRadio

void resetRadio (void);

DESCRIPTION

Reset the XBee radio by toggling its reset line.

RETURN VALUE

None

LIBRARY

xbee_api.lib
An Introduction to ZigBee rabbit.com 37

http://www.rabbit.com

xbee_awake

int xbee_awake()

DESCRIPTION

This device-specific macro reads the XBee module's SLEEP_REQ pin (if available). Used by
Rabbit hardware running XBee end device firmware to enter and exit low power mode.

This function was introduced in Dynamic C 10.46.

RETURN VALUE

1 = XBee is not asking the Rabbit to sleep (not asserting -SLEEP_REQ).
0 = XBee is asking the Rabbit to sleep (asserting -SLEEP_REQ).

LIBRARY

xbee_config.LIB

SEE ALSO

xbee_wait_for_wake()

xbee_init

int xbee_init(void);

DESCRIPTION

Initialize the Rabbit XBee driver and the XBee radio.

This function was introduced in Dynamic C 10.40, replacing the deprecated function
zigbee_init().

RETURN VALUE

0: successful
-EBUSY: XBee end device is sleeping, try again. After 28 seconds of -EBUSY, xbee_init()
will return -ETIME
-ETIME: XBee timed out
!=0: failure

See _zb_error for the specific error code. The values for _zb_error are defined in
/Lib/../ERRNO.LIB relative to the Dynamic C installation folder.

LIBRARY

xbee_api.lib
38 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

xbee_protocol

char * xbee_protocol();

DESCRIPTION

Returns a string identifying the network protocol in use by the XBee connected to the Rabbit.

RETURN VALUE

One of the following strings:

• “ZNet 2.5”

• “ZigBee”

• “Unknown”
An Introduction to ZigBee rabbit.com 39

http://www.rabbit.com

xbee_tick

int xbee_tick (api_frame_t * frame);

DESCRIPTION

Drive the Rabbit XBee radio communications. Performs a Network Discovery once at initializa-
tion time.

This function was introduced in Dynamic C 10.44 and replaces the deprecated function
zb_tick().

PARAMETER

frame Pointer to api_frame_t structure to receive a copy of the last frame.

Note that the received frame may be a response to a packet sent by
xbee_api.lib, or a non-response frame from another device on the
network. Check the frame type (frame->cmd.api_id) and the frame id
(frame->cmd.u.frame_id) to confirm that it is the expected
response.

RETURN VALUE

ZB_NOMESSAGE: no messages received
ZB_MESSAGE: a message has arrived
ZB_RADIO_STAT: radio status change
ZB_MSG_STAT: message transmission status available
ZB_ATRESP: response to AT command
ZB_REMOTE_RESP: response to remote AT command
-ENOMEM: out of memory processing node discovery response
(various codes)<0: an error has occurred

NOTE: To retain backward compatibility with deprecated zb_tick (which is just a macro
for xbee_tick(NULL)), return codes ZB_ATRESP and ZB_REMOTE_RESP are only
returned if the frame parameter is not NULL.

LIBRARY

xbee_api.lib
40 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

xbee_wait_for_wake

int xbee_wait_for_wake(void);

DESCRIPTION

If the XBee is sleeping, this function will queue a null byte in the serial buffer so the XBee will
stay awake as soon as it wakes up (and asserts CTS and receives the null byte).

Called from user program to wait for a sleeping end device to wake up. Can only be used after
calling xbee_init().

while (xbee_wait_for_wake()) {
twiddle_thumbs();
do_other_stuff();

}

On a router or coordinator, xbee_wait_for_wake() always returns 0.

This function was introduced in Dynamic C 10.46.

RETURN VALUE

TRUE: if waiting for the XBee to wake up
FALSE: if XBee is awake.

LIBRARY

xbee_api.lib

SEE ALSO

xbee_awake
An Introduction to ZigBee rabbit.com 41

http://www.rabbit.com

xb_get_register

int xb_get_register(word reg, unsigned long * dest);

DESCRIPTION

Read an XBee register (up to 32 bits).

This function was introduced in Dynamic C 10.44.

PARAMETERS

reg Register to read, as a 16-bit word (see xb_XX definitions in Table 5-1 for
values to use). Also possible to use *(word *)"XX" for reading the ATXX
register.

Examples: xb_VR for firmware version, xb_SH for top 4 bytes of serial
number, xb_AI for the association indicator.

dest Address to store up to a 32-bit result. Can be NULL to send a command to
the XBee and ignore the result.

RETURN VALUE

0: Success
-ZBERR_AT_CMD_RESP_STATUS: Radio returned failure
-ETIME: Timeout
-EIO: Serial I/O error
-ENOSPC: Output buffer full

LIBRARY

xbee_api.lib
42 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

xb_hexdump

void xb_hexdump(void * data, int len);

DESCRIPTION

Hex dump <len> bytes from <data>. Displays 8 hex bytes and their printable characters or a '.'.

This function was introduced in Dynamic C 10.44.

PARAMETERS

data Pointer to buffer.

len Number of bytes to print.

RETURN VALUE

None

LIBRARY

xbee_api.lib

xb_io_conf_desc

far char * xb_io_conf_desc (int dio, int config);

DESCRIPTION

Returns a description of an XBee module's I/O pin configuration.

PARAMETERS

dio DIO number, 0 <= dio < XBEE_IO_COUNT (13).

config Configuration for pin (ATDx or ATPx setting), 0 to 5.

RETURN VALUE

NULL: Invalid parameters passed in (dio or config out of range).
XB_IO_CONF_INVALID: Invalid configuration for given dio (e.g., digital-only pin configured
as analog input)
!NULL: String describing a pin's configuration.

LIBRARY

xbee_api.lib
An Introduction to ZigBee rabbit.com 43

http://www.rabbit.com

xb_io_sample_clear

void xb_io_sample_clear (far xb_io_sample_t * sample);

DESCRIPTION

Reset the sample structure to default values (0x00 for first two values, -1 for the next five).

This function was introduced in Dynamic C 10.40.

PARAMETERS

xb_io_sample_t Pointer to the xb_io_sample_t structure to clear.

RETURN VALUE

None

LIBRARY

xbee_api.lib

xb_IS_parse

int xb_IS_parse (far xb_io_sample_t * sample, far char * IS_data);

DESCRIPTION

Parse the return data from an ATIS command or 0x92 (_API_FRAME_IO_SAMPLE) frame.

This function was introduced in Dynamic C 10.40.

PARAMETERS

sample Pointer to the xb_io_sample_t buffer to receive the parsed data.

IS_data Pointer to the data returned from ATIS or the 0x92 frame.

RETURN VALUE

0: if parsed successfully
-EINVAL: if there's a problem with parameter 2

LIBRARY

xbee_api.lib
44 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

xb_listNodes

void xb_listNodes (void);

DESCRIPTION

Display list of nodes from the node table to Stdout. Useful when displaying information to the
Stdio window and prompting the user to select a node.

Each node is listed with its index (for selecting a node), 16-bit network address, 16-bit parent ad-
dress, 64-bit IEEE address, Active/Inactive state and its Node ID string.

This function was introduced in Dynamic C 10.44.

RETURN VALUE

none

LIBRARY

xbee_api.lib
An Introduction to ZigBee rabbit.com 45

http://www.rabbit.com

xb_nd_nodetype_str

char * xb_nd_nodetype_str (int nd_type);

DESCRIPTION

Used to convert from the node type field in an ND response to a string describing the type.

This function was introduced in Dynamic C 10.44.

PARAMETER

nd_type Valid parameters are:

• XB_ND_NODETYPE_COORD
• XB_ND_NODETYPE_ROUTER
• XB_ND_NODETYPE_ENDDEV

RETURN VALUE

If nd_type = XB_ND_NODETYPE_COORD, the return value is “coordinator”
If nd_type = XB_ND_NODETYPE_ROUTER, the return value is “router”
If nd_type = XB_ND_NODETYPE_ENDDEV, the return value is “end device”

If nd_type is anything else, the return value is “invalid”

LIBRARY

xbee_api.lib
46 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

xb_sendAPIremoteATcmd

int xb_sendAPIremoteATcmd (far char dest_ieee[8], word nwk_addr, int
options, int remote_cmd, far void * remote_data, int len);

DESCRIPTION

Send a command frame to a remote device using the XBee API format.

This function was introduced in Dynamic C 10.44.

PARAMETERS

dest_ieee 64-bit IEEE address of target device. Only used if nwk_addr (parameter 2)
is set to ZB_NETWORK_BROADCAST..

nwk_addr 16-bit network address of target device, or ZB_NETWORK_BROADCAST to
use IEEE addressing.

options Options for the frame, valid choices are 0 (default) or
XB_REMOTE_REQ_OPT_APPLY (0x02) (apply changes on remote).

remote_cmd 16-bit command to send (see the xb_XX macro definitions in Table 5-1 for
values to use). Also possible to use *(word *)"XX" to send an ATXX com-
mand.

remote_data Pointer to data to send.

len Amount of data.

RETURN VALUE

0: success
-ENOSPC: not enough buffer space to send command
-EIO: XBee holding CTS low, or IO did not complete correctly

_zb_error will be set on error or successful message transmission.

LIBRARY

xbee_api.lib
An Introduction to ZigBee rabbit.com 47

http://www.rabbit.com

MACRO DEFINITIONS

The remote_cmd parameter can be one of the macros in Table 5-1. Be careful when sending
an AT command to the XBee, as some of the commands will cause a loss of communication (for
example, sending xb_BD to change the baud rate). More information on AT commands is in the
manual XBee® / XBee-PRO® ZB OEM RF Modules available at: www.digi.com.

Table 5-1. Commands to Send to XBee RF Modules

Special Commands, Write Only

xb_FR Respond with “OK” then XBee firmware reset in ~2 seconds

xb_NR Reset network layer parameters

xb_RE Restore module parameters to factory defaults

xb_WR Write parameter values to non-volatile memory

Networking Commands

xb_CH Read RF operating channel. A value of 0 means the device has not joined a network.

xb_OP Read operating PAN ID.

xb_JV

Read channel verification parameter.
• JV=0: a router will continue operating on its current channel after a power cycle even if

a coordinator is not detected.
• JV=1: if the network is an open network (NJ=0xFF), a router will verify the coordinator

on its operating channel when joining or coming up from a power cycle. If a
coordinator is not detected, the router will leave its current channel and attempt to join
a new PAN.

Write channel verification parameter:
• 0=channel verification disabled
• 1=channel verification enabled

xb_ID Read/write the PAN ID (ZB:64-bit, ZNET:16-bit)

xb_MY Read 16-bit source address. (0xFFFF=disable)

xb_MP Read 16-bit address of parent (for end nodes only)

xb_SH
Read upper 4 bytes of the 8 byte IEEE source address. The 64-bit source address is always
enabled.

xb_SL
Read lower 4 bytes of the 8 byte IEEE source address. The 64-bit source address is always
enabled.

xb_RN Read/write minimum value of CSMA-CA back-off exponent

xb_NI Read/write a string called the Node Identifier.
48 rabbit.com Rabbit and ZigBee

http://www.rabbit.com
http://www.digi.com/

xb_ND

Discovers and reports all RF modules found. The following information is reported for
each module:
MY
SH
SL
NI
MP (2 Bytes)
DEVICE_TYPE (1 Byte: 0=Coord, 1=Router, 2=End Device)
STATUS
PROFILE_ID (2 Bytes)
MANUFACTURER_ID (2 Bytes)

Each response is returned as a separate AT_CMD_Response packet and handled
internally by the library through xbee_tick().

xb_NT
Read/write Node Discover Timeout. This is the amount of time a node will spend
discovering other nodes when ND or DN is issued. The range is 0X20-0XFF; the equation
NT*100 ms results in valid times of 3200 ms thru 25500 ms, inclusive.

xb_DN
Destination Node. Resolves an NI string to a physical address (case sensitive). After the
destination node is discovered the 16-bit network and 64-bit extended addresses are
returned in an API Command Response frame.

xb_SC

Read/set the list of channels to scan.
• Coordinator - bit field of channels to choose from prior to starting network.
• Router/End Device - bit field of channels that will be scanned to find a coordinator or

router to join.
Changes to SC do not take effect until the WR command is issued.
Bit (Channel):
0 (0x0B) 4 (0x0F) 8 (0x13) 12 (0x17)
1 (0x0C) 5 (0x10) 9 (0x14) 13 (0x18)
2 (0x0D) 6 (0x11) 10 (0x15) 14 (0x19)
3 (0x0E) 7 (0x12) 11 (0x16) 15 (0x1A)

Changing SC from its default value or setting it to include more than 12 continuous
channels may cause communication problems. See the “XBee/XBee-PRO ZB OEM RF
Modules” manual for details.

xb_SD

Read/set the scan duration exponent. Changes to SD do not take effect until the WR
command is issued.
• Coordinator - duration of the Active and Energy Scans (on each channel) that are used

to determine an acceptable channel for the coordinator to start up on.
• Router/end Device - duration of Active Scan (on each channel) used to locate an

available coordinator/router to join.
Scan time is measured as: (# channels to scan) * (2^SD) * 15.36 ms.

Table 5-1. Commands to Send to XBee RF Modules
An Introduction to ZigBee rabbit.com 49

http://www.rabbit.com

xb_NJ

Read/write the time that a coordinator/router allows nodes to join. This value can be
changed at run time without requiring a coordinator or router to restart. The time is reset on
power cycles or when NJ changes.
• Limit time for joining: 0x0 - 0xFE [x 1 sec.]
• Always allow joining: 0xFF

xb_AI

Association Indication - Read information regarding last node join request. This status
monitors the progress of the association process. The following return values may be
seen:
• 0x00=successful completion: coordinator started a network
• 0xAB=attempted to join a device that did not respond
• 0xAC=secure join error, network security key received unsecured
• 0xAD=secure join error, network security key not received
• 0xAF=secure join error, joining device does not have the correct preconfigured link key
• 0x21=scan found no PANs
• 0x22=scan found no valid PANs based on current SC and ID settings.
• 0x23=valid coordinator or router found but they are not allowing joining: node join

time (NJ) expired
• 0x27=node’s attempt to join a network failed; this is typically due to incompatible

security settings
• 0x2A=coordinator start attempt failed
• 0x2B=checking for an existing coordinator
• 0xFF=scanning for a parent

 RF Interfacing Commands

xb_PL

Power Level. Select/read the RF transmit power level
• XBee (boost mode disabled)

0 = -8 dBm
1 = -4 dBm
2 = -2 dBm
3 = 0 dBm
4 = +2 dBm

• XBee-PRO
4 = 17 dBm

Table 5-1. Commands to Send to XBee RF Modules
50 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

Serial Interfacing Commands

xb_BD

Read/write the baud rate for communication between the RF module serial port and host.
0 = 1200 bps 4 = 19200 bps
2 = 4800 bps 5 = 38400 bps
3 = 9600 bps 6 = 57600 bps
4 = 19200 bps 7 = 115200 bps

Any value above 0x07 will be interpreted as an actual baud rate.

xb_NB

Read/write the serial parity setting on the module.
• 0 = no parity
• 1 = even parity
• 2 = odd parity
• 3 = mark parity

xb_RO
Read/write the packetization timeout value. This is the number of character times of inter-
character silence required before packetization. Set (RO=0) to transmit characters as they
arrive instead of buffering them into one RF packet.

I/O Commands

xb_CB Simulate a commissioning button press.

xb_D7

Select/read options for the DIO7 line of the RF module:
• 0 = disabled
• 1 = CTS flow control
• 3 = digital input
• 4 = digital output, low
• 5 = digital output, high
• 6 = RS-485 transmit enable (low enable)
• 7 = RS-485 transmit enable (high enable)

xb_D6
Select/read options for the DIO6 line of the RF module:
• 0 = disabled
• 1 = RTS flow control

xb_D5

Configure options for the DIO5 line of the RF module:
• 0 = disabled
• 1 = associated indication LED
• 3 = digital input
• 4 = digital output, low
• 5 = digital output, high

Table 5-1. Commands to Send to XBee RF Modules
An Introduction to ZigBee rabbit.com 51

http://www.rabbit.com

xb_D4

Select/read function for DIO4:
• 0 = disabled
• 3 = digital input
• 4 = digital output, low
• 5 = digital output, high

xb_D3

Select/read function for AD3/DIO3:
• 0 = disabled
• 2 = analog input, singled ended
• 3 = digital input
• 4 = digital output, low
• 5 = digital output, high

xb_D2

Select/read function for AD2/DIO2:
• 0 = disabled
• 2 = analog input, singled ended
• 3 = digital input
• 4 = digital output, low
• 5 = digital output, high

xb_D1

Select/read function for AD1/DIO1:
• 0 = disabled
• 2 = analog input, singled ended
• 3 = digital input
• 4 = digital output, low
• 5 = digital output, high

xb_D0

Select/read function for AD0/DIO0:
• 0 = disabled
• 1 = node identification button enabled
• 2 = analog input, singled ended
• 3 = digital input
• 4 = digital output, low
• 5 = digital output, high

xb_P0

DIO_10 Configure
Select/read function for PWM0:
• 0 = disabled
• 1 = RSSI PWM
• 3 = digital input, monitored
• 4 = digital output, low
• 5 = digital output, high

Table 5-1. Commands to Send to XBee RF Modules
52 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

xb_P1

DIO_11 Configure
Configure options for the DIO11 line of the RF module:
• 0 = unmonitored digital input
• 3 = digital input, monitored
• 4 = digital output, low
• 5 = digital output, high

xb_P2

DIO_12 Configure
Configure options for the DIO12 line of the RF module:
• 0 = unmonitored digital input
• 3 = digital input, monitored
• 4 = digital output, low
• 5 = digital output, high

xb_IS Forces a read of all enabled digital and analog input lines.

xb_PR

Pull-up Resistor Enabled
Set/read the bit field that configures the internal pull-up resistor status for the RF module
I/O lines. “1” specifies the pull-up resistor is enabled; “0” specifies no pull-up. The
following list identifies bit positions (0-12) and their corresponding pin definitions:
• 0 = DIO4 (pin 11)
• 1 = AD3/DIO3 (pin 17)
• 2 = AD2/DIO2 (pin 18)
• 3 = AD1/DIO1 (pin 19)
• 4 = AD0/DIO0 (pin 20)
• 5 = RTS/DIO6 (pin 16)
• 6 = DTR/Sleep Request/DIO8 (pin 9)
• 7 = DIN/Config (pin 3)
• 8 = Associate/DIO5 (pin 15)
• 9 = On Sleep/DIO9 (pin13)
• 10 = DIO12 (pin 4)
• 11 = PWM0/RSSI/DIO10 (pin 6)
• 12 = PWM1/DIO11 (pin7)

Table 5-1. Commands to Send to XBee RF Modules
An Introduction to ZigBee rabbit.com 53

http://www.rabbit.com

Sleep Commands

xb_SM

Sets the sleep mode on the RF module:
• 0 = sleep disabled
• 1 = pin sleep enabled
• 4 = cyclic sleep enabled

xb_SP

This value determines how long the end device will sleep at one time, up to 28 seconds.
The sleep time can be extended past 28 seconds using the SN command. On the parent, this
value determines how long the parent will buffer a message for the sleeping end device. It
should be set at least equal to the longest SP time of any child end device.

xb_ST
Sets the time-before-sleep timer on an end device. This timer is reset each time serial or RF
data is received. Once the timer expires, an end device may enter low power operation.
This timer is available for cyclic sleep end devices only.

xb_WH Time before receiving first packet after wake up

xb_SN
Number of Sleep Periods. Sets the number of sleep periods to not assert the On/Sleep pin
on wakeup if no RF data is waiting for the end device. This command allows a device to
sleep for an extended time if no RF data is present.

xb_SO
Configure sleep options. Unused option bits should be set to 0.
0x02 = always wake for ST time after SN*SP time
0x04 = sleep entire SN * SP time

Diagnostics Commands

xb_VR Read firmware version of the RF module.

xb_HV Read hardware version of the RF module.

xb_DD Digi device type.

xb_RP
RSSI PWM Timer. This is the time an RSSI signal will be output after the last
transmission. When RP=0xFF, output will always be on.

xb_DB
This command reports the received signal strength of the last received RF data packet. The
DB command only indicates the signal strength of the last hop, thus it does not provide an
accurate measurement for a multihop link. DB can be set to 0 to clear it.

xb_PCV Supply voltage

AT Command Options Commands

xb_AC Apply changes

XBee Endpoint Definition Commands

xb_AO Receive message format options

Table 5-1. Commands to Send to XBee RF Modules
54 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

xb_send_command

int xb_send_command(word cmd);

DESCRIPTION

Send an AT command to the XBee. Same behavior as reading an XBee register and ignoring the
result.

This function was introduced in Dynamic C 10.44.

NOTE: xb_send_command is a macro for xb_get_register().

PARAMETER

cmd Command to send, as a 16-bit word (see xb_XX definitions in Table 5-1 for
values to use). Also possible to use *(word *)"XX" for reading the ATXX
register.

Examples:

• xb_ND for node discovery
• xb_WR to write settings to non-volatile RAM
• xb_FR to software reset the XBee module.

RETURN VALUE

0: Success
-ZBERR_AT_CMD_RESP_STATUS: Radio returned failure
-ETIME: Timeout
-EIO: Serial I/O error
-ENOSPC: Output buffer full

LIBRARY

xbee_api.lib
An Introduction to ZigBee rabbit.com 55

http://www.rabbit.com

xb_set_register

int xb_set_register(word reg, unsigned long value);

DESCRIPTION

Set an XBee register (up to 32 bits).

This function was introduced in Dynamic C 10.44.

PARAMETERS

reg Register to write, as a 16-bit word (see xb_XX definitions in Table 5-1 for
values to use). Also possible to use *(word *)"XX" for reading the ATXX
register.

Examples: xb_SC to set list of channels to scan, xb_D0 to set the I/O mode
for DIO0.

value Value to store in register (Parameter1).

RETURN VALUE

0: Success
-ZBERR_AT_CMD_RESP_STATUS: Radio returned failure, possibly due to setting an out-of-
range value (e.g., 16-bit value in an 8-bit register).
-ETIME: Timeout
-EIO: Serial I/O error
-ENOSPC: Output buffer full

LIBRARY

xbee_api.lib
56 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

xb_sleep

int xb_sleep(word st, word sp, word sn, word so, word sm);

DESCRIPTION

Set the parameters that control the sleep mode, using the default XBee parameters. For more de-
tails refer to the manual XBee® / XBee-PRO® ZB OEM RF Modules available at:
www.digi.com.

This function was introduced in Dynamic C 10.44 to replace the deprecated function
zb_Rabbit_Sleep().

PARAMETERS

st Time Before Sleep (in milliseconds).

st controls how long the Rabbit module will stay awake. The minimum value
shown below exists because this is the time that the module takes to become
fully operational. If st is set to a value smaller than 2000, the module will be
go back to sleep before it has the chance to run its code. The minimum value
for st is ZB_MIN_ST_TIME (0x07D0, 2.000 secs) The maximum value for
st is ZB_MAX_ST_TIME (0xFFFE, 65.534 secs)

sp Cyclic Sleep Period (in 1/100 seconds).

sp controls how often the XBee module will wake up and check for new
frames (end devices) or how long the XBee will buffer frames for sleeping end
devices (routers and coordinators).
The minimum value for sp is ZB_MIN_SP_TIME (0x0020, 0.32 seconds)
The maximum value for sp is ZB_MAX_SP_TIME (0x0AF0, 28.00 seconds)

sn Sleep Time Extender. This parameter is used in cases where we want the
Rabbit module to stay asleep for periods longer than the sp cyclic sleep pe-
riod. The Rabbit module will remain asleep for a period of sn * sp. However,
the radio will wake up briefly every time sp expires and it will poll its parent
for messages. If there is a message waiting, the radio wakes up the Rabbit
module and forwards the message. If there is no message, the radio goes to
sleep again for another sp period. sn can be any non-zero value.

so Sleep Options. This parameter is a bitmask made up of the following options.
Read the XBee Module manual for more details on these settings.

• XB_SO_WAKE_ST
• XB_SO_SLEEP_SNxSP
An Introduction to ZigBee rabbit.com 57

http://www.rabbit.com
http://www.digi.com/

sm Sleep Mode. This parameter is a bitmask made up of the following options.
On Rabbit products, the sleep pin is not connected so XB_SM_CYCLIC is the
only useful option.

• XB_SM_DISABLED
• XB_SM_PINWAKE
• XB_SM_CYCLIC

Warning: On XBee end devices with ZNet firmware, XB_SM_DISABLED
is considered an invalid parameter (and xb_sleep will return -EINVAL).
With ZNet, setting the sm parameter to XB_SM_DISABLED will cause the
end device to become a router, perform a network reset and rejoin the net-
work.

ORETURN VALUE

0: Successful, power will turn off after the ST timer expires.
-EINVAL: Invalid parameters
-EOPNOTSUPP: Operation not supported (on routers and coordinators)
-ZBERR_AT_CMD_RESP_STATUS: Couldn't set one of the sleep parameters
-ETIME: Timeout
-EIO: Serial I/O error
-ENOSPC: Output buffer full

LIBRARY

xbee_api.lib
58 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

xb_stayawake

int xb_stayawake ();

DESCRIPTION

This function is for end devices only. It sets the idle timeout (ST) to maximum value, and keeps
the XBee awake by sending serial data to it periodically.

This function was introduced in Dynamic C 10.44.

RETURN VALUE

0: Successful
-EOPNOTSUPP: Operation not supported (on Routers and Coordinators)
-ZBERR_AT_CMD_RESP_STATUS: Could not set ST register
-ETIME: Timeout
-EIO: Serial I/O error
-ENOSPC: Output buffer full.

LIBRARY

xbee_api.lib
An Introduction to ZigBee rabbit.com 59

http://www.rabbit.com

zb_adc_in

int zb_adc_in(int dio);

DESCRIPTION

Read the analog input pin on the local XBee using AT commands. Return the 10-bit value. To con-
vert the reading to millivolts perform the following calculation:

AD(mV) = (ADIO reading * 1200mV / 1023)

Note: The pin number is NOT the same as the DIO_xx macros, which are for configuring the
function of the pin only.

PARAMETER

dio Analog input pin to read. This value corresponds to the DIO number. Valid
analog DIO values range from 0 to 3.

RETURN VALUE

0-1023: valid data
-EINVAL: invalid pin

LIBRARY

xbee_api.lib
60 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

zb_API_ATCmdResponse

int zb_API_ATCmdResponse (char * _cmdstr, void * data, int dlen,
_at_cmdresp_t * resp);

DESCRIPTION

Send an API AT command and get the response.

PARAMETERS

_cmdstr pointer to command string: we expect "ATcc", so we skip the first two bytes
for API format commands

data address of data to send

dlen length of data to send

resp address of AT response buffer

RETURN VALUE

0: success
-ZBERR_AT_CMD_RESP_STATUS: Radio returned failure
-ETIME: Timeout
-EIO: Serial I/O error
-ENOSPC: Output buffer full

LIBRARY

xbee_api.lib
An Introduction to ZigBee rabbit.com 61

http://www.rabbit.com

zb_check_sleep_params

int zb_check_sleep_params (unsigned int st, unsigned int sp,
unsigned int sn);

DESCRIPTION

This is an auxiliary function that checks if the main sleep mode parameters are within valid limits.
For more details on the parameters, refer to the description for xb_sleep().

PARAMETERS

st Time Before Sleep

sp Cyclic Sleep Period

sn Sleep Time Extender

RETURN VALUE

0: successful, all parameters are valid
-EINVAL: invalid parameters

LIBRARY

xbee_api.lib
62 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

zb_dio_in

int zb_dio_in (int dio);

DESCRIPTION

Read a digital input pin on the XBee module.

PARAMETER

dio The pin number (0-ZB_MAX_PIN). This value corresponds to the DIO
number. Valid digital DIO values are 0-5, 10, 11, and 12.

Note: The pin number is NOT the same as the DIO_xx macros. Those are
for configuring the function of the pin only.

RETURN VALUE

0 or 1: valid data
-EINVAL: invalid pin

LIBRARY

xbee_api.lib

zb_dio_out

int zb_dio_out (int dio, int value);

DESCRIPTION

Set the digital output value on the XBee module pin.

PARAMETERS

dio The pin number (0-ZB_MAX_PIN). This value corresponds to the DIO
number. Valid digital DIO values are 0-5, 10, 11, and 12.

Note: The pin number is NOT the same as the DIO_xx macros. Those are
for configuring the function of the pin only.

value The value of the pin (1 or 0).

RETURN VALUE

0: successful
-EINVAL: invalid pin number

LIBRARY

xbee_api.lib
An Introduction to ZigBee rabbit.com 63

http://www.rabbit.com

ZB_ERROR

int ZB_ERROR()

DESCRIPTION

Returns the last error encountered. This is a macro to access the error code variable of the
XBee_API.lib library.

LIBRARY

xbee_api.lib

ZB_GENERAL_MESSAGE_HANDLER

#define ZB_GENERAL_MESSAGE_HANDLER <functionName>

DESCRIPTION

Define the general message handler for messages that do not have endpoints or other addressing
means specified. The general message handler callback function prototype must be:

int functionName (char *data);

"data" points to the message data. To get more data about the message call zb_receive().
This will give you access to any addressing information that was received.

To reply to this message directly use zb_reply() before another message arrives. To assure
that no messages arrive before you have replied do not call xbee_tick() until your reply has
been sent (i.e., zb_reply() or zb_send() has been called).

If the message cannot be handled by the general message handler it may return non-zero, and the
xbee_tick() function will indicate that a message is available. You may access the message
using zb_receive() and handle it then.

Return a zero to indicate that the message has been completely processed. xbee_tick() will
then not indicate that a message is available.

LIBRARY

xbee_api.lib
64 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

zb_getATCmdResponse

int zb_getATCmdResponse (_at_cmdresp_t * buffer, int blen);

DESCRIPTION

Wait (i.e., block) for a response to the current AT command.

PARAMETERS

buffer Pointer to where to put the response

blen Size of buffer (deprecated starting with Dynamic C 10.46)

RETURN VALUE

0: success
-ETIME: timeout

 _zb_error will be set to the same value as the return value.

LIBRARY

xbee_api.lib
An Introduction to ZigBee rabbit.com 65

http://www.rabbit.com

zb_io_init

int zb_io_init (void);

DESCRIPTION

Initializes the I/O subsystem on the XBee module. The default behavior for each pin is predefined
but can be overridden prior to #using xbee_api.lib by #defining the appropriate macro:

#define DIO_00 XBEE_IO_CONF_ANAIN
#define DIO_05 XBEE_IO_CONF_DIGOUT_HIGH
#define DIO_10 XBEE_IO_CONF_DIGOUT_LOW
#define DIO_12 XBEE_IO_CONF_DIGIN

#use xbee_api.lib

The DIO_xx defines automatically generate four additional macros for zb_io_init():
DIO_INPUTS, DIO_OUTPUTS, AIO_INPUTS, and DIO_PULLEDUP.

 DIO_PULLEDUP sets which pins are pulled up. By default, all input pins are pulled up, but this
can be overridden by #defining DIO_PULLEDUP prior to #using xbee_api.lib (note: the mask
order for DIO_PULLEDUP is different than for DIO_INPUTS, see below).

While all pins can be configured as either inputs or outputs, only DIO_00 - DIO_03 can be con-
figured as analog inputs.

The default configuration is:

Table 5-2.

Name Function State Pull-up Mask Bit

DIO_00 XBEE_IO_CONF_ANAIN N/A 4

DIO_01 XBEE_IO_CONF_ANAIN N/A 3

DIO_02 XBEE_IO_CONF_ANAIN N/A 2

DIO_03 XBEE_IO_CONF_ANAIN N/A 1

DIO_04 XBEE_IO_CONF_DIGOUT_HIGH N/A 0

DIO_05 XBEE_IO_CONF_DIGOUT_HIGH N/A 8

DIO_10 XBEE_IO_CONF_DIGOUT_LOW N/A 11

DIO_11 XBEE_IO_CONF_DIGIN PULLED UP 30K 12

DIO_12 XBEE_IO_CONF_DIGIN PULLED UP 30K 10
66 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

On the RCM45xxW, the DIO_xx signals map to AUX I/O header (J4 on the core module) as fol-
lows:

AUX I/O (J4) Header Pins

1 2
DIO_00 --- oo --- DIO_01
DIO_02 --- oo --- DIO_03

GND --- oo --- DIO_12
No Connection --- oo --- +3.3V

SysPwr --- oo --- DIO_05
DIO_04 --- oo --- No Connection
DIO_10 --- oo --- DIO_11

13 14

RETURN VALUE

0: success
!=0: the error code returned by a call to zb_API_ATCmdResponse()

LIBRARY

xbee_api.lib

SEE ALSO

zb_API_ATCmdResponse() for error codes

ZB_LATEST_MESSAGE

api_frame_t *ZB_LATEST_MESSAGE()

DESCRIPTION

This macro gives the address of the api_frame_t structure holding the last message re-
ceived.

LIBRARY

xbee_api.lib

SEE ALSO

ZB_LAST_MSG_DATA(), ZB_LAST_MSG_DATALEN()
An Introduction to ZigBee rabbit.com 67

http://www.rabbit.com

ZB_LAST_MSG_DATA

char *ZB_LAST_MSG_DATA()

DESCRIPTION

This macro points to the RF payload of the last frame received.

LIBRARY

xbee_api.lib

SEE ALSO

ZB_LATEST_MESSAGE(), ZB_LAST_MSG_DATALEN()

ZB_LAST_MSG_DATALEN

int ZB_LAST_MSG_DATALEN()

DESCRIPTION

This macro is set to the size of the RF payload of the last frame received.

LIBRARY

xbee_api.lib

SEE ALSO

ZB_LATEST_MESSAGE(), ZB_LAST_MSG_DATA()
68 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

ZB_LAST_STATUS

int ZB_LAST_STATUS();

DESCRIPTION

This macro returns the RF module status of this node. See the defined constants below for values
and their meanings.

• ZB_HARDWARE_RESET, module is performing a hardware reset
• ZB_WATCHDOG_RESET, module is resetting from a watchdog timeout
• ZB_JOINED, module has joined a network
• ZB_UNJOINED, module has left (unjoined) a network
• ZB_COORD_STARTED, coordinator started

Additionally, the macro ZB_JOINING_NETWORK returns TRUE (1) when
ZB_LAST_STATUS() != ZB_JOINED. You can use a statement like:

while (ZB_JOINING_NETWORK()) {}

to check if the arbitrary maximum time to join has expired. If it did, process the timeout error con-
dition.

LIBRARY

xbee_api.lib
An Introduction to ZigBee rabbit.com 69

http://www.rabbit.com

zb_MakeEndpointClusterAddr

zb_sendAddress_t * zb_MakeEndpointClusterAddr (int node, int srcEP,
int destEP, word clusterID, zb_sendAddress_t * addr);

DESCRIPTION

Fill in the address structure for sending to zb_send().

PARAMETERS

node Index into the node lookup table. Sending -1 indicates a broadcast address.

srcEP Source (sending) endpoint.

destEP Destination endpoint.

clusterID Destination cluster ID.

addr Buffer to put the address data into.

RETURN VALUE

A pointer to the address buffer.
A NULL return value means that either:

- the node value is out of range
- a valid node entry was not found

LIBRARY

xbee_api.lib
70 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

zb_MakeIEEENetworkAddr

zb_sendAddress_t * zb_MakeIEEENetworkAddr (int node,
zb_sendAddress_t * buffer);

DESCRIPTION

Create an address for zb_send() consisting of the 8-byte IEEE address and the 2-byte network
address.

PARAMETERS

node Index into the node lookup table. Sending -1 indicates a broadcast address.

buffer Where to put the address data.

RETURN VALUE

A pointer to the address buffer.
A NULL return value means that either:

- the node value is out of range
- a valid node entry was not found

LIBRARY

xbee_api.lib
An Introduction to ZigBee rabbit.com 71

http://www.rabbit.com

zb_missed_messages

int zb_missed_messages (void);

DESCRIPTION

Return the number of missed messages since the last time zb_receive() was called.

RETURN VALUE

Count of missed messages.

LIBRARY

xbee_api.lib

ZB_ND_RUNNING

DESCRIPTION

This macro tracks when a node is currently performing a Node Discovery (ND) command. Be
aware that this macro calls xbee_tick(), which will then silently drop any received packets.

It is typically used in the following way:

printf("Waiting for node discovery...\n");
while (ZB_ND_RUNNING());
printf("Discovery done.\n\n");

Prior to Dynamic C 10.44, no other AT command could be sent to the radio while performing node
discovery.

RETURN VALUE

TRUE: node discovery in progress
FALSE: node discovery not in progress

LIBRARY

xbee_api.lib
72 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

zb_Rabbit_poweroff

int zb_Rabbit_poweroff(_zb_power_control_t * zbp);

DESCRIPTION

Send the wake-up parameters to the Radio and instruct it to power-down the Rabbit.

This function is for use on the RCM45xxW only.

PARAMETER

zbp Wake-up parameter structure address. The _zb_power_control_t structure
is defined as follows:

typedef struct {
char wakeFlag; // See below for valid flag values
int digIOMask; // bits = digital I/O pins on RF module

// 0 - ignore this I/O pin
// 1 - wake on change to this pin

char anaChannelMask; // bits = analog I/O channels on RF module
// 0: ignore this channel
// 1: wake on level reached for this channel

int anaChannelLevels[XBEE_ANA_CHANNELS];
// wake Rabbit when read value exceeds this level
// if the level is negative, the read value must
// be <= the level.
// if the level is positive, the read value must
// be >= the level.

long time_in_ms; // Length of time (millisecs) for Rabbit to sleep
// The actual sleep time will be
// (int)(radio_duty * (time_in_ms / radio_duty))

int radio_duty; // Sleep time in 1/100 seconds
// Please note that the sleep time will determine
// analog read interval if "wake on analog level"
// is active. The max value for the radio sleep
// cycle is 28 seconds (0x0Af0)

} _zb_power_control_t;

RETURN VALUE

0: successful, power will turn off after the ST timer1 expires (ZB_MIN_ST_TIME).
-EINVAL: invalid parameters
-EOPNOTSUPP: operation not supported (on Routers or Coordinators) or function was called
while in debug mode.

LIBRARY

xbee_api.lib

1. By default, the AT command ST (time before sleep) is set to 65.534 seconds
An Introduction to ZigBee rabbit.com 73

http://www.rabbit.com

zb_Rabbit_Sleep

zb_Rabbit_Sleep (unsigned st, unsigned sp, unsigned sn);

DESCRIPTION

Set the parameters that control the sleep mode using the default XBee parameters.

As of Dynamic C 10.44, this function has been deprecated in favor of xb_sleep(), which in-
cludes parametersfor setting the XBee SO and SM registers.

PARAMETERS

st Time Before Sleep (in milliseconds): this timer must be set in msecs.

st controls how long the Rabbit module will stay awake.The minimum value
shown below exists because this is the time that the module takes to become
fully operational. If st is set to a value smaller than 2000, the module will go
back to sleep before it has the chance to run its code.

• Minimum value for st is ZB_MIN_ST_TIME (0x07D0, 2 seconds)
• Maximum value for st is ZB_MAX_ST_TIME (0xFFFE, 65.534 seconds)

sp Cyclic Sleep Period (in 1/100 seconds)

sp controls how often the XBee module will wake up and check for new
frames (end devices) or how long the XBee will buffer frames for sleeping
end devices (routers and coordinators).

• Minimum value for sp is ZB_MIN_SP_TIME (0x0020, 0.32 secs)
• Maximum value for sp is ZB_MAX_SP_TIME (0x0AF0, 28.00 secs)

sn Sleep Time Extender:

sn is used in cases where we want the Rabbit module to stay asleep for peri-
ods longer than the sp time. The Rabbit module will remain asleep for a pe-
riod of sn * sp. However, the radio will wake up briefly every time sp expires
and it will poll its parent for messages.

If there is a message waiting, the radio wakes up the Rabbit module and for-
wards the message. If there is no message the radio goes to sleep again for
another sp period. sn can be any non-zero value.

RETURN VALUE

0: Successful, power will turn off after the st timer expires.
-EINVAL: invalid parameters.
-EOPNOTSUPP: operation not supported (on routers or coordinators) or function was called
while in debug mode (on RCM45xxW).

LIBRARY

xbee_api.lib
74 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

zb_receive

api_frame_t * zb_receive (char * data, int * len);

DESCRIPTION

This function should be called when the xbee_tick() function indicates that a message is
waiting to be handled.

The parameter to this routine will be the address of the buffer which will accept the new message.
The buffer should be XBEE_MAX_RFPAYLOAD bytes long to ensure there is sufficient space to
receive the data.

The function returns the address of the beginning of the entire message (a pointer to an
api_frame_t). If the function returns NULL there was no message. The current message will
be held until the next message arrives.

Note that no new messages will arrive until xbee_tick() is called.

PARAMETERS

data Buffer to receive data. Send NULL to get only the length of
api_frame_t.

len Buffer to receive data length. Send NULL to get only the address of
api_frame_t.

RETURN VALUE

NULL: no message was received
!=NULL: address of current message.

LIBRARY

xbee_api.lib
An Introduction to ZigBee rabbit.com 75

http://www.rabbit.com

zb_reply

int zb_reply (char * reply, int len);

DESCRIPTION

Send a reply to the last message received. This function uses the address of the last message's
sender as the addressee of the reply. The reply will be sent using explicit addressing.

PARAMETERS

reply Pointer to message to send.

len Length of message.

RETURN VALUE

0: Queued, the message has been sent to the Radio for transmission.
-EINVAL: bad parameters
-ENOSPC: cannot give message to serial port

LIBRARY

xbee_api.lib
76 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

zb_send

int zb_send (zb_sendAddress_t * addr);

DESCRIPTION

Send a message to other XBee radios. The addressing modes may be combined to more complete-
ly direct messages. If endpoints and cluster ID are not specified, they will be set to zero.

PARAMETER

addr Pointer to the address data structure.

RETURN VALUE

0: Queued - the message has been sent to the Radio for transmission.
-EINVAL: Bad parameters.
-ENOSPC: Cannot give msg to serial port.
-ENONET: Radio has not joined a network.
-EIO: XBee holding CTS low, or serial write did not complete correctly.

LIBRARY

xbee_api.lib

SEE ALSO

zb_MakeIEEENetworkAddr(), zb_MakeEndpointClusterAddr()
An Introduction to ZigBee rabbit.com 77

http://www.rabbit.com

zb_sendAPICmd

int zb_sendAPICmd (int cmd, void * data, int len);

DESCRIPTION

Send a raw command frame using the XBee API format.

PARAMETERS

cmd API frame identifier.

data Pointer to data to send.

len Length of data.

RETURN VALUE

0: Success.
-ENOSPC: Not enough buffer space to send command.
-EIO: XBee is holding CTS low, or serial write did not complete correctly.

SIDE EFFECTS: _zb_error will be set on error or successful message transmission.

LIBRARY

xbee_api.lib
78 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

zb_sendATCmd

int zb_sendATCmd (char * _cmdstr, char * data, int dlen);

DESCRIPTION

Send an AT command to the XBee module without waiting for a response. This is useful when a
command is expected to take too long to respond (>_XBEE_TIMEOUT milliseconds).

PARAMETERS

_cmdstr Pointer to command text (“ATxx”, “AT” is ignored and “xx” used for com-
mand)

data Pointer to command parameters.

dlen Length of command parameters.

RETURN VALUE

0: success
-EIO: serial I/O error
-ENOSPC: output buffer full

SIDE EFFECTS: _zb_error will be set on error or successful message transmission.

LIBRARY

xbee_api.lib
An Introduction to ZigBee rabbit.com 79

http://www.rabbit.com

zb_swapBytes

int zb_swapBytes (int * value);

DESCRIPTION

Swap the bytes of a word-sized (two-byte) value.

PARAMETER

value Address of word to change.

RETURN VALUE

New value of “value”

SEE ALSO

htons (host to network short)

LIBRARY

xbee_api.lib

zb_tick

int zb_tick (void);

DESCRIPTION

Drive the Rabbit XBee radio communications. Performs a Network Discovery once at initializa-
tion time.

NOTE: This function has been deprecated, please use xbee_tick() (which includes
more return values and can return a copy of the last frame processed) instead.

RETURN VALUE

ZB_NOMESSAGE: no messages received
ZB_MESSAGE: a message has arrived
ZB_RADIO_STAT: radio status change
ZB_MSG_STAT: message transmission status available
-ENOMEM: out of memory processing node discovery response
(various codes)<0: an error has occurred

LIBRARY

xbee_api.lib
80 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

ZB_XMIT_OVERHEAD

int ZB_XMIT_OVERHEAD(void);

DESCRIPTION

This macro returns the overhead required to send the last message.

RETURN VALUE

NO_DISC_OVERHEAD
ADDR_DISCOVERY
ROUTE_DISCOVERY
ADDR_AND_ROUTE

ZB_XMIT_STATUS

int ZB_XMIT_STATUS(void);

DESCRIPTION

This macro return the status of the last transmission sent by this software.

Under normal operation an application will be mostly concerned with ADDR_NOT_FOUND or
ROUTE_NOT_FOUND. The first status would indicate that the device in question has shut down
or moved out of range. The second status would indicate that some intermediate nodes that pro-
vided the route to the wanted device have shut down.

RETURN VALUE

DELIVERY_SUCCESS
CCA_FAILURE
BAD_DEST_ENDPOINT
NET_ACK_FAILURE
NOT_JOINED
SELF_ADDRESSED
ADDR_NOT_FOUND
ROUTE_NOT_FOUND
An Introduction to ZigBee rabbit.com 81

http://www.rabbit.com

zigbee_init (deprecated)

int zigbee_init (void);

DESCRIPTION

Initialize the Rabbit XBee driver and the XBee radio.

This function was deprecated in Dynamic C 10.40.

RETURN VALUE

0: successful
!=0: failure

See _zb_error for the specific error code. The values for _zb_error are defined in
/Lib/../ERRNO.LIB relative to the Dynamic C installation folder.

LIBRARY

xbee_api.lib
82 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

5.4 Protocol Firmware
ZigBee-capable Rabbit-based boards must be programmed with the appropriate RF module firmware.
There are two sets of firmware to consider: one for ZNet 2.5 and one for ZigBee PRO (ZB).

ZNet 2.5 firmware is only supported on RCM4510W core modules.

5.4.1 Updating RF Module FW on a Rabbit-Based Target
To update the protocol firmware on the XBee RF module housed on the Rabbit-based target board, use the
Dynamic C sample program \Samples\XBee\ModemFWLoad.c located relative to the Dynamic C
installlation folder.

The instructions at the top of ModemFWLoad.c explain the two macros you need to set in order to down-
load the correct firmware. They are:

• XBEE_PROTOCOL - this macro must be #defined to XBEE_PROTOCOL_ZB or
ZBEE_PROTOCOL_ZNET, depending on the protocol desired.

• XBEE_ROLE1 - this macro must be #defined to NODE_TYPE_COORD, NODE_TYPE_ROUTER or
NODE_TYPE_ENDDEV, depending on the ZigBee device type desired. The supported protocols (ZNet
and ZB) have different versions of firmware for each ZigBee device type.

To change these macros from their default values (NODE_TYPE_ROUTER and XBEE_PROTOCOL_ZB)
find their #define statements at the top of ModemFWLoad.c and modify the program code.

5.4.2 X-CTU: Updating RF Module FW on a DIGI XBee USB Device
A utility program, X-CTU, is provided for reading and writing the firmware on the Digi XBee USB
device. The utility is described in the following subsections.

5.4.2.1 X-CTU Installation

To install the X-CTU utility, run its setup program, Setup_XCTU_XXXX.exe, found in
\Utilities\X-CTU relative to the Dynamic C installation folder. The installation process will create a
desktop icon for the utility.

1. Prior to Dynamic C 10.40, the configuration macros ZIGBEE_COORDINATOR, ZIGBEE_ROUTER
and ZIGBEE_ENDDEV were used instead of XBEE_ROLE.
An Introduction to ZigBee rabbit.com 83

http://www.rabbit.com

5.4.2.2 PC Settings Tab
Click on the X-CTU icon to run the utility. The PC Settings tab is the first screen displayed when it starts.
Before doing anything else, check the box labeled “Enable API”. This box may be unchecked by default,
but it must be checked because only the API mode of communication is supported.

Figure 5.6 Opening Screen of X-CTU

You can change serial parameters (baud, etc.) and test/query the COM port high-lighted in the “Select
COM Port” window to test the connection between X-CTU and the selected COM port.

In Figure 5.6, the values shown on the “Host Setup” tab at the bottom half of the “PC Settings” tab are the
default values. Leave them as is. To update the firmware on the DIGI XBee USB device, select the COM
port that the device is connected to, in this case, COM9. Follow the instructions given in the next section.
84 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

5.4.2.3 Modem Configuration Tab
Click on the Modem Configuration tab. A screen similar to the one shown in Figure 5.7 will be displayed.

Figure 5.7 “Modem Configuration” Tab Default Screen

Click on the button labeled “Read”. This will cause the firmware that is loaded onto the DIGI XBee USB
device to be read and its parameters displayed, as shown in Figure 5.8.

Do not click on the button labeled “Restore” unless you want to write default parameter values for the cur-
rent firmware version to the device; for example., the PAN ID and Node Identifier will be zeroed out.
Also, do not check the box labeled “Always update firmware.” If this box is checked, the entire firmware
will be reloaded when you attempt to write network parameters. When the entire firmware is reloaded to
the device, it takes significantly more time than just writing network parameters. In addition, reloading the
firmware will cause a network reset.
An Introduction to ZigBee rabbit.com 85

http://www.rabbit.com

5.4.2.3.1 Selecting the Firmware
The buttons “Save” and “Load” under the label “Profile” allow use of files ending in .pro that contain
firmware configuration settings. To load the default configuration values for the firmware, navigate to
Utilities/X-CTU and select XBee-USB ZB defaults.pro. These default values will not take
effect until they are written to the Digi XBee USB device by clicking on the “Write” button.

Three drop-down menus labeled “Modem:”, “Function Set”
and “Version” are available for selecting the firmware to write
to the DIGI XBee USB device. If the firmware version you
want is not included in these drop-down menus, click on the
button labeled “Download new versions...”. Click on “File...”
in the resulting popup box:

Then browse to the Dynamic C installation folder. From there
go to the folder /Utilities/X-CTU/MODEMFW/ to select the
.zip file containing the desired firmware. After X-CTU’s firm-
ware list has been updated, make your selection using the three
drop-down menus. Then click on the button labeled “Write” in order to load the selected firmware onto the
device. Writing new firmware always causes a network reset.
86 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

Figure 5.8 Loading FW onto the DIGI XBee USB Device
An Introduction to ZigBee rabbit.com 87

http://www.rabbit.com

5.4.2.3.2 Modem Parameters
The parameters read from the device are described in Table 5-3. The available AT commands and their cat-
egories differ slightly between firmware versions. The following table reflects a read of firmware XB24-
ZB version 2141, with the default configuration values from Utilities/X-CTU/XBee-USB ZB
defaults.pro. The mnemonic for the AT command is given, followed by its default value in parenthe-
sis.

Table 5-3. AT Commands

Networking Commands

ID
(0123456789ABCDEF)

PAN ID - Set/read the 64-bit extended PAN ID.If set to 0, the coordinator will
select a random extended PAN ID; routers and end devices will join any PAN.

SC (0x1FFE)
Scan Channels - This is a bit field of channels to scan. ZigBee channels do not
start at 0: bit 0 = channel 0xB; bit 15 = channel 0x1A. The default value of
0x0x1FFE allows all available channels to be scanned.

SD (3)
Scan Duration - For a coordinator, this exponent is used to determine an
acceptable channel and PAN ID to start a network; for a router/end device, this
exponent is used to locate an available coordinator or router to join.

ZS (0)
ZigBee Stack Profile -This value must be set to the same values on all devices
in the same network.

NJ (0xFF)

Node Join Time - The time in seconds that this coordinator or router will allow
other nodes to join it. If set to 0xFF, the coordinator or router will always allow
joining. Changing this value does not cause a network reset. The time is reset
whenever the device power cycles or when NJ changes.

OP (read only)
Operating Extended PAN ID - This command reads the 64-bit extended PAN
ID that the module is running on.
If ID>0, then OP=ID.

OI Operating 16-bit PAN ID.

CH (read only)

Operating Channel - Read the channel number being used. A value of 0
indicates that the node has not joined a network, i.e., it is not operating on any
channel. Valid channels are:
• 0x0B - 0x1A, for XBee
• 0x0B - 0x18, for XBee PRO

NC (read only)
Number of Remaining Children - Read the number of end device children than
can join the device. The range is 0-10. If NC returns 0, then the device cannot
allow any more end device children to join.

Addressing Commands

DH (0) Destination Address High - Not supported in API mode.

DL (0xFFFF) Destination Address Low - Not supported in API mode.

NI (DIGI-XBEE-USB)
Node Identifier - String that identifies the node. This string is returned as part
of the ND (Node Discover) command. NI is also used with the DN (Destination
Node) command.
88 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

NH (0x1E)

Maximum Unicast Hops - Set/read the max hops limit. This limit sets the
maximum broadcast hops value (BH) and determines the unicast timeout. The
timeout is computed as (50*NH) + 100 ms. The default unicast timeout of 1.6
seconds is enough time for data and the ack to traverse about 8 hops.

BH (0)
Broadcast Radius - Set/read the maximum number of hops for each broadcast
data transmission. The default value of 0 uses the maximum number of hops.

AR (0xFF)

Many-to-One Route Broadcast Time (Aggregate Routing Notification) -
Set/read time between consecutive aggregate route broadcast messages. AR
should be set on only one device to enable many-to-one routing to the device.
Setting AR to 0 sends only one broadcast.

DD (0x30000)
Device Type Identifier - Stores a device type value. This value can be used to
differentiate multiple XBee-based products. Valid range is 0x0 - 0xFFFFFFFF.

NT (0x3C)
Node Discovery Timeout - Set/Read the amount of time a node will spend
discovering other nodes when ND or DN is issued. Valid range is 0x20 - 0xFF
[*100ms].

NO (0)

Node Discovery Options - Set/read the bitfield that defines options for the
Network Discovery (ND) command.
• 0x01= append DD value to ND responses or API node identification frames
• 0x02=local device sends ND response when ND is issued

SH (factory set)
Serial Number High - Read high 32 bits of the RF module’s unique IEEE 64-bit
address.

SL (factory set)
Serial Number Low - Read low 32 bits of the RF module’s unique IEEE 64-bit
address.

MY (read-only)
16-bit Network Address - The address the device received when joining the
network. For the coordinator this is 0.

NP (read-only)
Maximum Number of RF Payload Bytes - Returns the maximum number of RF
payload bytes that can be sent in a unicast transmission.

RF Interfacing

PL (4)
Power Level - Select/read the power level at which the RF module transmits
conducted power.

PM (1)

Power Mode - Set/read the power mode of the device. Enabling boost mode
improves receive sensitivity by 1dB and increases transmit power by 2dB.
• 0=boost mode enabled
• 1=boost mode disabled

Table 5-3. AT Commands
An Introduction to ZigBee rabbit.com 89

http://www.rabbit.com

Security Commands

EE (0)
Encryption Enable - Set/read the encryption enable setting
• 0=encryption disabled
• 1=encryption enabled

EO (0)

Encryption Options - Configure options for encryption. Unused bits should be
set to 0.
• 0x01=send the security key unsecured during join
• 0x02=use trust center

KY
Encryption Key -Set the 128-bit AES encryption key. This is a write-only
command.

Serial Interfacing

BD (7)
Baud Rate - Set/read the serial interface data rate for communication between
the DIGI XBEE USB device and the host running X-CTU. A drop-down menu
lists valid values. The default value of 7 equals 115200 bps

NB (0)
Parity - Set/read the parity setting on the DIGI XBee USB device. A drop-
down menu lists valid values.The default value of 0 specifies no parity.

D7 (1)
DIO7 Configuration - A drop-down menu lists valid values. The default value
of 1 specifies CTS flow control.

D6 (1) DIO6 Configuration - A drop-down menu lists valid values.

AP (1) API Enable

AO (1) API Output Mode

Sleep Modes

SP (0xAF0)

Cyclic Sleep Period - This value determines how long the end device will
sleep. On the parent, this value determines how long the parent will buffer a
message for the sleeping end device. The valid range is 0x20-0xAF0 [* 10ms]
(quarter second resolution).

SN (1)

Number of Cyclic Sleep Periods - Sets the number of sleep periods to not assert
the On/Sleep pin on wakeup if no RF data is waiting for the end device. This
command allows a host application to sleep for an extended time if no RF data
is present. Range is 0x1 - 0xFFFF.

I/O Settings

D0 (1)
AD0/DIO0 Configuration - A drop-down menu lists valid values for this pin.
The default value of 1enables the commissioning button.

D1 (0)
AD1/DIO1 Configuration - A drop-down menu lists valid values for this pin.
The default value of 0 disables it.

D2 (0)
AD2/DIO2 Configuration - A drop-down menu lists valid values for this pin.
The default value of 0 disables it.

Table 5-3. AT Commands
90 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

D3 (0)
AD3/DIO3 Configuration - A drop-down menu lists valid values for this pin.
The default value of 0 disables it.

D4 (0)
DIO4 Configuration - A drop-down menu lists valid values for this pin. The
default value of 0 disables it.

D5 (1)
DIO5/Assoc Configuration - A drop-down menu lists valid values for this pin.
The default value of 1 is what causes the LED labeled “Assoc” on the front of
the DIGI XBee USB device to blink when the device has created a network.

P0 (1)
DIO10/PWM0 Configuration - A drop-down menu lists valid values for this
pin. The default value of 1 indicates a received signal strength indicator (RSSI)
value.

P1 (0)
DIO11 Configuration - A drop-down menu lists valid values for this pin. The
default value of 0 disables it.

P2 (0)
DIO12 Configuration - A drop-down menu lists valid values for this pin. The
default value of 0 disables it.

PR (0x1FFF)
Pull-up Resistor - Set/read the bit field that configures the internal pull-up
resistor status for the I/O lines.

LT (0)

Associate LED Blink Time - Set/read the on/off blink times for the LED
labeled “Assoc” on the front of the DIGI XBee USB device. The default value
of 0 specifies the default blink rates: 500ms coordinator, 250ms router/end
device. All other LT values are measured in 10 ms.

RP (0x28)
RSSI PWM Timer - Time RSSI signal will be output after last transmission.
Valid range is 0-0xFF [* 100 ms]. A value of 0xFF means the output is always
on.

Diagnostic Commands

VR (factory set) Firmware Version

HV (factory set) Hardware Version

Table 5-3. AT Commands
An Introduction to ZigBee rabbit.com 91

http://www.rabbit.com

5.4.2.3.3 Saving “Modem Parameters” to a File
The function of the button “Save” located under the label “Profile” is to save the parameter values in the
display window to a file. The “Load” button lets you browse to a previously saved “.pro” file and open it
to display its contents. To write the contents to the device attached to the selected COM port, you must
click on “Write.”

5.5 Summary
This is the ground floor of a very useful new standard. Dynamic C offers an easy-to-use implementation of
ZigBee that works seamlessly with the Rabbit hardware as a solid foundation for a variety of embedded
system projects that include wireless networking in their design.

AI (read only)

Association Indication - Read information regarding last node join request.
This status monitors the progress of the association process. The following
return values may be seen:
• 0x00=successful completion: coordinator started a network
• 0xAB=attempted to join a device that did not respond
• 0xAC=secure join error, network security key received unsecured
• 0xAD=secure join error, network security key not received
• 0xAF=secure join error, joining device does not have the correct

preconfigured link key
• 0x21=scan found no PANs
• 0x22=scan found no valid PANs based on current SC and ID settings.
• 0x23=valid coordinator or router found but they are not allowing joining:

node join time (NJ) expired
• 0x27=node’s attempt to join a network failed, typically due to incompatible

security settings
• 0x2A=coordinator start attempt failed
• 0xFF=scanning for a parent
• 0x2B=checking for an existing coordinator

DB
RSSI of Last Packet - reports the received signal strength of the last received
RF data packet. Only the last hop is used, so this is not an accurate
measurement for a multi-hop link.

Table 5-3. AT Commands
92 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

This page intentionally left blank.
An Introduction to ZigBee rabbit.com 93

http://www.rabbit.com

94 rabbit.com Rabbit and ZigBee

http://www.rabbit.com

APPENDIX A. GLOSSARY OF TERMS

This chapter defines a collection of terms that are commonly used when talking about networks in general
or ZigBee in particular.

ad-hoc network
This term describes the mutable formation of small wireless networks. The peer-to-peer nature of mesh
and cluster tree networks allows for this dynamic attribute by distributing the ability to join the network
across the network.

application object
Code that implements the application. Each application object maps to one endpoint.

attribute
This term refers to a piece of data that can be passed between devices. A set of attributes is a cluster.

Bluetooth
Bluetooth is a set of standards that describes a short range (10 meter) frequency-hopping radio link
between devices.

BPSK
This acronym stands for Binary Phase-Shift Keying. It is the keying of binary data by phase deviations of
the carrier.

cluster
This is a ZigBee term that is defined as a container for attributes or as a command/response association. In
the Dynamic C implementation of ZigBee, clusters are a collection of functions related to an endpoint.

cluster ID
This term refers to a unique 16-bit number that identifies a specific cluster within an application profile.

cluster tree
This term describes the physical topology of a network, its geometrical shape. For our purposes, a cluster
tree network has as its root the coordinator for the WPAN. All routers that subsequently join the network
form their own logical cluster.

coordinator
A ZigBee logical device type. There is one and only one coordinator per ZigBee network. This device has
the unique responsibility of creating the WPAN.
An Introduction to ZigBee rabbit.com 95

http://www.rabbit.com

CSMA-CA
This acronym stands for Carrier Sense Multiple Access/Collision Avoidance. It is a protocol used by a
device that wants transmit on a network. The protocol seeks to avoid collisions by checking to see if the
channel is clear before transmitting. If it is not clear, the device waits a radom amount of time and checks
again.

device description
A device description is a document in a ZigBee profile. It describes the characteristics of a device that is
required in the application area of the profile.

end device
This is a ZigBee term that indicates the device in question has no routing capability. It can only send and
receive information for its own use. An end device functions as a leaf node in a cluster tree network. The
nodes in a star network are all end devices except for the coordinator. A complete mesh network would not
contain any end devices, but in practice a design may call for one or more of them.

endpoint
This is a ZigBee term that refers to an addressable unit on a device. For example, an LED or a digital input
could be an endpoint on a Rabbit-based board.

FFD
This is an IEEE term that stands for full-function device. An FFD has routing capabilities, as opposed to
an RFD (reduced-function device), which does not.

IEEE
Institute of Electrical and Electronics Engineers.

EUI-64
This acronym stands for Extended Unique Identifier 64 bits. It is an IEEE term used to describe the result
of the concatenation of the 24-bit value assigned to an organization by the IEEE Registration Authority
and a 40-bit extension assigned by that organization.

IrDA
This term stands for Infrared Data Association. It is a standard for transmitting data via infrared light
waves. Look Ma! No cables!

LAN
This term stands for local area network. A LAN covers a relatively small area, though a larger area than a
PAN. Corporations and academic institutions typically have their own LANs.

mesh
This term describes the physical topology of a network, its geometrical shape. A mesh network, with its
dynamic arrangement of nodes, is ideally suited for the nimble world of wireless communication.
96 rabbit.com

http://www.rabbit.com

multi-hop
This term describes the ability of a message to be handled by intermediary nodes on its way to its destina-
tion node. Both mesh and cluster tree topologies are also known as multi-hop networks.

node
Generally, this term describes any device that is part of a network. For a ZigBee wireless network, the term
applies to a device containing a single radio that has joined the network and therefore has a network ID.

O-QPSK
This acronym stands for Offset Quadrature Phase-Shift Keying. It is the keying of data by phase deviations
of the carrier.

peer-to-peer
The term peer-to-peer refers to the relationship between two separate devices.

On a physical level it can mean the cables or the radio channel connecting the devices. In the physical
sense of the term, peer-to-peer is the opposite of star where all devices in the network connect to one cen-
tral device.

On a logical level, it means that the entities are equal in that they perform the same routing functions as
their neighbor. In the logical sense, peer-to-peer is the opposite of the client/server model.

point-to-multipoint
This term refers to the communication path from a single location to multiple locations. Unlike a star
topology which only has nodes one hop away from the coordinator node, in a point-to-multipoint ZigBee
topology nodes can be several hops away from the coordinator node.

point-to-point
A circuit connecting two nodes only, creating a communication path from a single location to another sin-
gle location.

profile
A profile (also known as an application profile) is a description of devices required in an application area
and their interfaces.

router
A ZigBee logical device type that can route messages from one node to another.

RF
This term stand for radio frequency. The electromagnetic frequencies from 10 kHz to 300 GHz define the
RF range. This is above audio range and below infrared light.

RFD
This is an IEEE term that stands for reduced-function device. An RFD does not have the routing capabili-
ties of an FFD. A ZigBee end device and the IEEE reduced-function device both lack routing functions.
An Introduction to ZigBee rabbit.com 97

http://www.rabbit.com

RSSI
Received Signal Strength Indicator.

self-healing network
This term describes the process of recovery in a mesh network. For example, if a node fails, the remaining
nodes would find alternate routing paths to accomplish their tasks.

star
This term describes the physical topology of a network, its geometrical shape. For our purposes, a star net-
work has as its root the coordinator for the WPAN. All devices that subsequently join the network can only
communicate with the coordinator.

UWB
This terms stands for ultra-wideband. It refers to any radio technology that transmits information spread
over a bandwidth larger than 500 MHz.

WPAN
This term stands for wireless personal area network. At bare minimum, it takes two devices operating a
short distance from one another and communicating on the same physical channel to constitute a WPAN.

ZDO
This is a specialized application object called the ZigBee Device Object. It is addressed as endpoint 0.
98 rabbit.com

http://www.rabbit.com

Index
A

addressing ... 15
ad-hoc network ... 3
application domains .. 3
application objects .. 14
application profiles ... 16, 35
AT commands ... 21

B

binding .. 13, 15
broadcast addressing ... 15

C

channels .. 5
cluster ID .. 13, 16
communication systems .. 3
coordinator .. 11, 12
current consumption ... 5

D

data rate ... 5
device description ... 16
device discovery ... 14
direct addressing ... 15
discovery ... 14

E

end device ... 11, 12
max number allowed ... 88

endpoints ... 14, 15
EUI-64 .. 10
extended address ... 10, 15

F

FFD ... 9
frequency band .. 5

G

group addressing ... 15

I

indirect addressing .. 15
interference avoidance .. 5

interoperability ... 16

L

LR-WPAN .. 7

M

multi-hop .. 11

N

network join time .. 5
network types ... 3
node discovery .. 20
NWK address ... 15

O

OUIs ... 15

P

PAN coordinator ... 9
PAN ID ... 10

R

RFD .. 9
router .. 11, 12
routing .. 9, 11

S

sample programs ... 22
security ... 6
service discovery .. 14
sleep mode .. 21
stack .. 11
stack size ... 5

T

topologies ... 4

W

wireless network types ... 3
WLAN .. 4
WPAN .. 3
WWAN ... 4
An Introduction to ZigBee rabbit.com 99

http://www.rabbit.com

Z

ZB_ND_RUNNING ...72
ZBERR_TX_LOCKED ..32
ZigBee Alliance ..11
100 rabbit.com Index

http://www.rabbit.com

	1. Introduction
	2. Wireless Communication
	2.1 Communication Systems
	2.2 Wireless Network Types
	2.2.1 WPAN
	2.2.2 WLAN
	2.2.3 WWAN

	2.3 Wireless Network Topologies
	2.4 Wireless Standards
	2.5 Security in a Wireless Network
	2.5.1 Security Risks

	3. IEEE 802.15.4 Specification
	3.1 Scope of 802.15.4
	3.1.1 PHY Layers
	3.1.2 MAC Layer

	3.2 Properties of 802.15.4
	3.2.1 Transmitter and Receiver
	3.2.2 Channels

	3.3 Network Topologies
	3.4 Network Devices and their Operating Modes
	3.5 Addressing Modes Supported by 802.15.4
	3.5.1 PAN ID

	4. ZigBee Specification
	4.1 Logical Device Types
	4.2 ZigBee Stack Layers
	4.2.1 Network (NWK) Layer
	4.2.2 Application (APL) Layer
	4.2.2.1 Application Support Sublayer (APS)
	4.2.2.2 Application Framework
	4.2.2.3 ZigBee Device Object (ZDO)

	4.3 ZigBee Addressing
	4.3.1 ZigBee Messaging
	4.3.2 Broadcast Addressing
	4.3.3 Group Addressing

	4.4 ZigBee Application Profiles
	4.4.1 ZigBee Device Profile

	5. Rabbit and ZigBee
	5.1 Implementation Overview
	5.1.1 Initialization State
	5.1.2 Discovery State
	5.1.3 Ready State
	5.1.4 End Device Sleep Mode

	5.2 Sample Programs
	5.2.1 Sample Program Initialization Requirements
	5.2.2 Summary of ZigBee Sample Programs
	5.2.2.1 Sample Programs for One Rabbit-Based Board
	5.2.2.2 Sample Programs for Two Rabbit-Based Boards

	5.2.3 GPIO Server/Client Sample Programs
	5.2.3.1 Running the GPIO Applications
	5.2.3.2 Studying the Code

	5.3 Dynamic C Library for ZigBee Applications
	5.3.1 Communication with an RF Module
	5.3.1.1 Sending Data to a Remote Device
	5.3.1.2 Radio Commands

	5.3.2 Configuration Macros and Constants
	5.3.2.1 Compile-Time Macros
	DEFAULT_CHANNELS
	DEFAULT_EXTPANID
	DEFAULT_PANID
	ENDPOINT_TABLE_*
	NODEID_STR
	XBEE_DEBUG
	XBEE_IN_BUF / XBEE_OUT_BUF
	XBEE_ROLE
	XBEE_VERBOSE
	ZB_CONSTRUCT_NODE_ID
	ZB_FATAL_ERROR
	ZB_MULTI_PROFILE

	5.3.2.2 Information Macros
	XBEE_IS_COORD
	XBEE_IS_ENDDEV
	XBEE_IS_ROUTER

	5.3.2.3 Deprecated Device Type Macros
	ZIGBEE_COORDINATOR
	ZIGBEE_ENDDEV
	ZIGBEE_ROUTER

	5.3.3 Error Codes
	5.3.4 Data Structures
	api_frame_t
	xb_io_sample_t
	_zb_NodeData_t
	zb_sendAddress_t

	5.3.5 API Functions and Macros
	GET_NODE_DATA
	resetRadio
	xbee_awake
	xbee_init
	xbee_protocol
	xbee_tick
	xbee_wait_for_wake
	xb_get_register
	xb_hexdump
	xb_io_conf_desc
	xb_io_sample_clear
	xb_IS_parse
	xb_listNodes
	xb_nd_nodetype_str
	xb_sendAPIremoteATcmd
	xb_send_command
	xb_set_register
	xb_sleep
	xb_stayawake
	zb_adc_in
	zb_API_ATCmdResponse
	zb_check_sleep_params
	zb_dio_in
	zb_dio_out
	ZB_ERROR
	ZB_GENERAL_MESSAGE_HANDLER
	zb_getATCmdResponse
	zb_io_init
	ZB_LATEST_MESSAGE
	ZB_LAST_MSG_DATA
	ZB_LAST_MSG_DATALEN
	ZB_LAST_STATUS
	zb_MakeEndpointClusterAddr
	zb_MakeIEEENetworkAddr
	zb_missed_messages
	ZB_ND_RUNNING
	zb_Rabbit_poweroff
	zb_Rabbit_Sleep
	zb_receive
	zb_reply
	zb_send
	zb_sendAPICmd
	zb_sendATCmd
	zb_swapBytes
	zb_tick
	ZB_XMIT_OVERHEAD
	ZB_XMIT_STATUS
	zigbee_init (deprecated)

	5.4 Protocol Firmware
	5.4.1 Updating RF Module FW on a Rabbit-Based Target
	5.4.2 X-CTU: Updating RF Module FW on a DIGI XBee USB Device
	5.4.2.1 X-CTU Installation
	5.4.2.2 PC Settings Tab
	5.4.2.3 Modem Configuration Tab
	5.4.2.3.1 Selecting the Firmware
	5.4.2.3.2 Modem Parameters
	5.4.2.3.3 Saving “Modem Parameters” to a File

	5.5 Summary

	Appendix A. Glossary of Terms
	ad-hoc network
	application object
	attribute
	Bluetooth
	BPSK
	cluster
	cluster ID
	cluster tree
	coordinator
	CSMA-CA
	device description
	end device
	endpoint
	FFD
	IEEE
	EUI-64
	IrDA
	LAN
	mesh
	multi-hop
	node
	O-QPSK
	peer-to-peer
	point-to-multipoint
	point-to-point
	profile
	router
	RF
	RFD
	RSSI
	self-healing network
	star
	UWB
	WPAN
	ZDO

	Index

