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1.  INTRODUCTION

Rabbit Semiconductor was formed expressly to design a a better microprocessor for use in 
small and medium-scale controllers. The first microprocessor was the Rabbit 2000. The 
second microprocessor, now available, is the Rabbit 3000. Rabbit microprocessor design-
ers have had years of experience using Z80, Z180, and HD64180 microprocessors in small 
controllers. The Rabbit shares a similar architecture and a high degree of compatibility 
with these microprocessors, but it is a vast improvement. 

The Rabbit 3000 has been designed in close cooperation with Z-World, Inc., a long-time 
manufacturer of low-cost single-board computers. Z-World’s products are supported by an 
innovative C-language development system (Dynamic C). Z-World is providing the soft-
ware development tools for the Rabbit 3000.

The Rabbit 3000 is easy to use. Hardware and software interfaces are as uncluttered and 
are as foolproof as possible. The Rabbit has outstanding computation speed for a micro-
processor with an 8-bit bus. This is because the Z80-derived instruction set is very com-
pact, and the timing of the memory interface allows higher clock speeds for a given 
memory speed.

Microprocessor hardware and software development is easy for Rabbit users. In-circuit 
emulators are not needed and will not be missed by the Rabbit developer. Software devel-
opment is accomplished by connecting a simple interface cable from a PC serial port to the 
Rabbit-based target system or by performing software development and debugging over a 
network or the Internet using interfaces and tools provided by Rabbit Semiconductor. 
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1.1  Features and Specifications Rabbit 3000

• 128-pin LQFP package. Operating voltage 1.8 V to 3.6 V. Clock speed to 54+ MHz. All 
specifications are given for both industrial and commercial temperature and voltage 
ranges. Rabbit microprocessors are low-cost.

• Industrial specifications are for 3.3 V ±10% and a temperature range from -40°C to 
+85°C. Modified commercial specifications are for a voltage variation of 5% and a 
temperature range from -40°C to 70°C.

• 1-megabyte code-data space allows C programs with 50,000+ lines of code. The 
extended Z80-style instruction set is C-friendly, with short and fast opcodes for the 
most important C operations. 

• Four levels of interrupt priority make a fast interrupt response practical for critical 
applications. The maximum time to the first instruction of an interrupt routine is about 
0.5 µs at a clock speed of 50 MHz.

• Access to I/O devices is accomplished by using memory access instructions with an I/O 
prefix. Access to I/O devices is thus faster and easier compared to processors with a 
distinct and narrow I/O instruction set. As an option the auxiliary I/O bus can be 
enabled to use separate pins for address and data, allowing the I/O bus to have a greater 
physical extent with less EMI and less conflict with the requirements of the fast mem-
ory bus.(Further described below.)

• Hardware design is simple. Up to six static memory chips (such as RAM and flash 
memory) connect directly to the microprocessor with no glue logic. A memory-access 
time of 55 ns suffices to support up to a 30 MHz clock with no wait states; with a 30 ns 
memory-access time, a clock speed of up to 50 MHz is possible with no wait states. 
Most I/O devices may be connected without glue logic.

The memory read cycle is two clocks long. The write cycle is 3 clocks long. A clean 
memory and I/O cycle completely avoid the possibility of bus fights. Peripheral I/O 
devices can usually be interfaced in a glueless fashion using the common /IORD and 
/IOWR strobes in addition to the user-configurable IO strobes on Parallel Port E. The 
Parallel Port E pins can be configured as I/O read, write, read/write, or chip select when 
they are used as I/O strobes. 

• EMI reduction features reduce EMI levels by as much as 25 dB compared to other sim-
ilar microprocessors. Separate power pins for the on-chip I/O buffers prevent high-fre-
quency noise generated in the processor core from propagating to the signal output 
pins. A built-in clock spectrum spreader reduces electromagnetic interference and facil-
itates passing EMI tests to prove compliance with government regulatory requirements. 
As a consequence, the designer of a Rabbit-3000-based system can be assured of pass-
ing FCC or CE  EMI tests as long as minimal design precautions are followed.

• The Rabbit may be cold-booted via a serial port or the parallel access slave port. This 
means that flash program memory may be soldered in unprogrammed, and can be 
reprogrammed at any time without any assumption of an existing program or BIOS. 
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A Rabbit that is slaved to a master processor can operate entirely with volatile RAM, 
depending on the master for a cold program boot.

• There are 56 parallel I/O lines (shared with serial ports). Some I/O lines are timer syn-
chronized, which permits precisely timed edges and pulses to be generated under com-
bined hardware and software control. Pulse-width modulation outputs are implemented 
in addition to the timer-synchronization feature (see below).

• Four pulse width modulated (PWM) outputs are implemented by special hardware. The 
repetition frequency and the duty cycle can be varied over a wide range. The resolution 
of the duty cycle is 1 part in 1024.

• There are six serial ports. All six serial ports can operate asynchronously in a variety of 
commonly used operating modes. Four of the six ports (designated A, B, C, D) support 
clocked serial communications suitable for interfacing with “SPI” devices and various 
similar devices such as A/D converters and memories that use a clocked serial protocol. 
Two of the ports, E and F, support HDLC/SDLC synchronous communication. These 
ports have a 4-byte FIFO and can operate at a high data rate. Ports E and F also have a 
digital phase-locked loop for clock recovery, and support popular data-encoding meth-
ods. High data rates are supported by all six serial ports. The asynchronous ports also 
support the 9th bit network scheme as well as infrared transmission using the IRDA pro-
tocol. The IRDA protocol is also supported in SDLC format by the two ports that sup-
port SDLC.

• A slave port allows the Rabbit to be used as an intelligent peripheral device slaved to a 
master processor. The 8-bit slave port has six 8-bit registers, 3 for each direction of 
communication. Independent strobes and interrupts are used to control the slave port in 
both directions. Only a Rabbit and a RAM chip are needed to construct a complete 
slave system, if the clock and reset control are shared with the master processor

• There is an option to enable an auxiliary I/O bus that is separate from the memory bus. 
The auxiliary I/O bus toggles only on I/O instructions. It reduces EMI and speeds the 
operation of the memory bus, which only has to connect to memory chips when the 
auxiliary I/O bus is used to connect I/O devices. This important feature makes memory 
design easy and allows a more relaxed approach to interfacing I/O devices.

• The built-in battery-backable time/date clock uses an external 32.768 kHz crystal oscil-
lator. The suggested model circuit for the external oscillator utilizes a single “tiny 
logic” active component. The time/date clock can be used to provide periodic interrupts 
every 488 µs. Typical battery current consumption is about 3 µA.

• Numerous timers and counters can be used to generate interrupts, baud rate clocks, and 
timing for pulse generation.

• Two input-capture channels can be used to measure the width of pulses or to record the 
times at which a series of events take place. Each capture channel has a 16-bit counter 
and can take input from one or two pins selected from any of 16 pins.

• Two quadrature decoder units accept input from incremental optical shaft encoders. 
These units can be used to track the motion of a rotating shaft or similar device.
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• A built-in clock doubler allows ½-frequency crystals to be used.

• The built-in main clock oscillator uses an external crystal or a ceramic resonator. Typical 
crystal or resonator frequencies are in the range of 1.8 MHz to 30 MHz. Since precision 
timing is available from the separate 32.768 kHz oscillator, a low-cost ceramic resonator 
with ½ percent error is generally satisfactory. The clock can be doubled or divided down 
to modify speed and power dynamically. The I/O clock, which clocks the serial ports, is 
divided separately so as not to affect baud rates and timers when the processor clock is 
divided or multiplied. For ultra low power operation, the processor clock can be driven 
from the separate 32.768 kHz oscillator and the main oscillator can be powered down. 
This allows the processor to operate at approximately between 20 and 100 µA and still 
execute instructions at the rate of up to 10,000 instructions per second. The 32.768 kHz 
clock can also be divided by 2, 4, 8 or 16 to reduce power. This “sleepy mode” is a pow-
erful alternative to sleep modes of operation used by other processors. 

• Processor current requirement is approximately 65 mA at 30 MHz and 3.3 V. The cur-
rent is proportional to voltage and clock speed—at 1.8 V and 3.84 MHz the current 
would be about 5 mA, and at 1 MHz the current is reduced to about 1 mA. 

• To allow extreme low power operation there are options to reduce the duty cycle of 
memories when running at low clock speeds by only enabling the chip select for a brief 
period, long enough to complete a read. This greatly reduces the power used by flash 
memory when operating at low clock speeds.

• The excellent floating-point performance is due to a tightly coded library and powerful 
processing capability. For example, a 50 MHz clock takes 7 µs for a floating add, 7 µs 
for a multiply, and 20 µs for a square root. In comparison, a 386EX processor running 
with an 8-bit bus at 25 MHz and using Borland C is about 20 times slower.

• There is a built-in watchdog timer.

• The standard 10-pin programming port eliminates the need for in-circuit emulators. A 
very simple 10-pin connector can be used to download and debug software using 
Z-World’s Dynamic C and a simple connection to a PC serial port. The incremental cost 
of the programming port is extremely small.

Figure 1-1 shows a block diagram of the Rabbit.
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Figure 1-1.  Rabbit 3000 Block Diagram
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1.2  Summary of Rabbit 3000 Advantages

• The glueless architecture makes it is easy to design the hardware system.

• There are a lot of serial ports and they can communicate very fast.

• Precision pulse and edge generation is a standard feature.

• EMI is at extremely low levels.

• Interrupts can have multiple priorities.

• Processor speed and power consumption are under program control.

• The ultra low power mode can perform computations and execute logical tests since the 
processor continues to execute, albeit at 32 kHz or even as slow as 2 kHz.

• The Rabbit may be used to create an intelligent peripheral or a slave processor. For 
example, protocol stacks can be off loaded to a Rabbit slave. The master can be any 
processor.

• The Rabbit can be cold-booted so unprogrammed flash memory can be soldered in 
place.

• You can write serious software, be it 1,000 or 50,000 lines of C code. The tools are 
there and they are low in cost.

• If you know the Z80 or Z180, you know most of the Rabbit.

• A simple 10-pin programming interface replaces in-circuit emulators and PROM pro-
grammers.

• The battery-backable time/date clock is included.

• The standard Rabbit chip is made to industrial temperature and voltage specifications.

• The Rabbit 3000 is backed by extensive software development tools and libraries, espe-
cially in the area of networking and embedded Internet.
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1.3  Differences Rabbit 3000 vs. Rabbit 2000

For the benefit of readers who are familiar with the Rabbit 2000 microprocessor the Rab-
bit 3000 is contrasted with the Rabbit 2000 in the table below.

Feature Rabbit 3000 Rabbit 2000

Maximum clock speed 54 MHz 30 MHz 

Maximum crystal frequency main oscillator (may be 
doubled internally)

30 MHz 32 MHz

32.768 kHz crystal oscillator External Internal

Maximum operating voltage 3.6 V 5.5 V

Maximum I/O input voltage 5.5 V 5.5 V

Current consumption 2 mA/MHz @ 3.3 V 4 mA/MHz @5 V

Number of package pins 128 100

Size of package
16 × 16 × 1.5 mm LQFP

10 × 10 × 1.2 mm 
TFBGA

24 × 18 × 3 mm PQFP 

Spacing between package pins
0.4 mm (16 mils) LQFP

0.8 mm TFBGA
0.65 mm (26 mils) PQFP

Separate power and ground for I/O buffers (EMI 
reduction)

Yes No

Clock Spectrum Spreader (EMI reduction) Yes
To be retrofitted in future 

version. 

Clock Modes 1x, 2x, /2, /3, /4, /6, /8 1x, 2x, /4, /8

Power Down Modes
Sleepy (32 kHz)

Ultra-Sleepy
(16, 8, 2 kHz)

Sleepy (32 kHz)

Low Power Memory Control (Chip Select)
Short CS (CLK /4 /6 /8)

Self Timed
(32,16,8,2 kHz) 

None

Extended memory timing for high freq. operation Yes No

Number of 8-bit I/O ports 7 5

Auxiliary I/O Data/Address bus Yes None

Number of serial ports 6 4

Serial ports capable of SPI/clocked serial 4 (A, B, C, D) 2 (A, B)

Serial ports capable of SDLC/HDLC 2 (E, F) None

Asynch serial ports with support for IrDA 
communications

6 None
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Serial ports with support for SDLC/HDLC IrDA 
communications

2 None

Maximum asynchronous baud rate clock speed/8 clock speed/32

Input capture unit 2 None

Feature Rabbit 3000 Rabbit 2000
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2.  RABBIT 3000 DESIGN FEATURES

The Rabbit 3000 is an evolutionary design. The processor and instruction set are nearly 
identical to the immediate predecessor processor, the Rabbit 2000. Both the Rabbit 3000 
and the Rabbit 2000 follow in broad outline the instruction set and the register layout of 
the Z80 and Z180. Compared to the Z180 the instruction set has been augmented by a sub-
stantial number of new instructions. Some obsolete or redundant Z180 instructions have 
been dropped to make available efficient 1-byte opcodes for important new instructions. 
(see Chapter 20, “Differences Rabbit vs. Z80/Z180 Instructions,”.) The advantage of this 
evolutionary approach is that users familiar with the Z80 or Z180 can immediately under-
stand Rabbit assembly language. Existing Z80 or Z180 source code can be assembled or 
compiled for the Rabbit with minimal changes.

Changing technology has made some features of the Z80/Z180 family obsolete, and these 
features have been dropped in the Rabbit. For example, the Rabbit has no special support 
for dynamic RAM but it has extensive support for static memory. This is because the price 
of static memory has decreased to the point that it has become the preferred choice for 
medium-scale embedded systems. The Rabbit has no support for DMA (direct memory 
access) because most of the uses for which DMA is traditionally used do not apply to 
embedded systems, or they can be accomplished better in other ways, such as fast inter-
rupt routines, external state machines or slave processors.

Our experience in writing C compilers has revealed the shortcomings of the Z80 instruc-
tion set for executing the C language. The main problem is the lack of instructions for han-
dling 16-bit words and for accessing data at a computed address, especially when the stack 
contains that data. New instructions correct these problems.

Another problem with many 8-bit processors is their slow execution and a lack of number-
crunching ability. Good floating-point arithmetic is an important productivity feature in 
smaller systems. It is easy to solve many programming problems if an adequate floating-
point capability is available. The Rabbit’s improved instruction set provides fast floating-
point and fast integer math capabilities.

The Rabbit supports four levels of interrupt priorities. This is an important feature that 
allows the effective use of fast interrupt routines for real-time tasks.
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2.1  The Rabbit 8-bit Processor vs. Other Processors

The Rabbit 3000 processor has been designed with the objective of creating practical sys-
tems to solve real world problems in an economical fashion. A cursory comparison of the 
Rabbit 3000 compared to other processors with similar capabilities may miss certain Rab-
bit strong points.

• The Rabbit is a processor that can be used to build a system in which EMI is nearly 
absent, even at clock frequencies in excess of 40 MHz. This is due to the split power 
supply, the clock doubler, the clock spectrum spreader and the PC board layout advice 
(or processor core modules) that we provide. Low EMI is a huge timesaver for the 
designer pressed to meet schedules and pass government EMI tests of the final product.

• Execution speed with the Rabbit is usually a pleasant surprise compared to other pro-
cessors. This is due to the well-chosen and compact instruction set partnered with and 
excellent compiler and library. We have many benchmarks, comparing the Rabbit to 
186, 386, 8051, Z180 and ez80 families of processors that prove the point.

• The Rabbit memory bus is an exceptionally efficient and very clean design. No external 
logic is required to support static memory chips. Battery-backed external memory is 
supported by built-in functionality. During reduced-power slow-clock operation the 
memory duty cycle can be correspondingly reduced using built-in hardware, resulting 
in low power consumption by the memories.

The Rabbit external bus uses 2 clocks for read cycles and 3 clocks for write cycles. This 
has many advantages compared to a single-clock design, and on closer examination the 
advantages of the single-clock system turn out to be mostly chimerical. The advantages 
include: easy design to avoid bus fights, clean write cycles with solid data and address 
hold times, flexibility to have memory output enable access times greater than ½ of the 
bus cycle, and the ability to use an asymmetric clock generated by a clock doubler. The 
supposed advantage that single-clock systems have of double-speed bus operation is 
not possible with real-world memories unless the memory is backed with fast-cache 
RAM.

• The Rabbit 3000 operates at 3.6 V or less, but it has 5 V tolerant inputs and has a sec-
ond complete bus for I/O operations that is separate from the memory bus. This second 
auxiliary bus can be enabled by the application as a designer option. These features 
make it easy to design systems that mix 3 V and 5 V components, and avoid the loading 
problems and the EMI problems that result if the memory bus is extended to connect 
with many I/O devices.

• The Rabbit may be remotely programmed, including complete cold-boot, via a serial 
link, Ethernet, or even via a network or the Internet using built in capabilities and/or the 
RabbitLink ethernet network accessory device. These capabilities proven and inexpen-
sive to implement.

• The Rabbit 3000 on-chip peripheral complement is huge compared to competitive pro-
cessors.
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The Rabbit is an 8-bit processor with an 8-bit external data bus and an 8-bit internal data 
bus. Because the Rabbit makes the most of its external 8-bit bus and because it has a com-
pact instruction set, its performance is as good as many 16-bit processors.

We hesitate to compare the Rabbit to 32-bit processors, but there are undoubtedly occa-
sions where the user can use a Rabbit instead of a 32-bit processor and save a vast amount 
of money. Many Rabbit instructions are 1 byte long. In contrast, the minimum instruction 
length on most 32-bit RISC processors is 32 bits.

2.2  Overview of On-Chip Peripherals and Features

The on-chip peripherals were chosen based on our experience as to what types of periph-
eral devices are most useful in small embedded systems. The major on-chip peripherals 
are the serial ports, system clock, time/date oscillator, parallel I/O, slave port, motion 
encoders, pulse width modulators, pulse measurement, and timers. These and other fea-
tures are described below.

2.2.1  5 V Tolerant Inputs

The Rabbit 3000 operates on a voltage in the range of 1.8 V to 3.6 V, but most Rabbit 3000 
input pins are 5 V tolerant. The exceptions are the power supply pins, and the oscillator 
buffer pins. When a 5 V signal is applied to 5 V tolerant pins, they present a high impedance 
even if the Rabbit power is off. The 5 V tolerant feature allows 5 V devices that have a 
suitable switching threshold to be directly connected to the Rabbit. This includes HCT 
family parts operated at 5 V that have an input threshold between 0.8 and 2 V. 

NOTE: CMOS devices operated at 5 V that have a threshold at 2.5 V are not suitable for 
direct connection because the Rabbit outputs do not rise above VDD, which cannot 
exceed 3.6 V, and is often specified as 3.3 V. Although a CMOS input with a 2.5 V 
threshold may switch at 3.3 V, it will consume excessive current and switch slowly.

In order to translate between 5 V and 3.3 V, HCT family parts powered from 5 V can be 
used, and are often the best solution. There is also the “LVT” family of parts that operate 
from 2.0 V to 3.3 V, but that have 5 V tolerant inputs and are available from many suppli-
ers. True level-translating parts are available with separate 3.3 V and 5 V supply pins, but 
these parts are not usually needed, and have design traps involving power sequencing. 
Many charge pump chips that perform DC to DC voltage conversion at low cost have been 
introduced in recent years. These are convenient for systems with dual voltage requirements.

2.2.2  Serial Ports

There are six serial ports designated ports A, B, C, D, E, and F. All six serial ports can 
operate in an asynchronous mode up to a baud rate equal to the system clock divided by 8. 
The asynchronous ports use 7-bit or 8-bit data formats, with or without parity. A 9th bit 
address scheme, where an additional bit is set or cleared to mark the first byte of a mes-
sage, is also supported. 

The serial port software driver can tell when the last byte of a message has finished trans-
mitting from the output shift register - correcting an important defect of the Z180. This is 
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important for RS-485 communication because a half duplex line driver cannot have the 
direction of transmission reversed until the last data bit has been sent. In many UARTs, 
including those on the Z180, it is difficult to generate an interrupt after the last bit is sent. 
A so called address bit can be transmitted as either high or low after the last data bit. The 
address bit, if used, is followed by a high stop bit. This facility can be used to transmit 2 
stop bits or a parity bit if desired. The ability to directly transmit a high voltage level 
address bit was not included in the original revision of the Rabbit 2000 processor.

Serial ports A, B, C and D can be operated in the clocked serial mode. In this mode, a 
clock line synchronously clocks the data in or out. Either the Rabbit serial port or the 
remote device can supply the clock. When the Rabbit provides the clock, the baud rate can 
be up to 1/2 of the system clock frequency. When the clock is provided by another device 
the maximum data rate is system clock divided by 6 due to the need to synchronize the 
externally supplied clock with the internal clock. The clocked serial mode may be used to 
support “SPI” bus devices.

Serial Port A has special features. It can be used to cold-boot the system after reset. Serial 
Port A is the normal port that is used for software development under Dynamic C.

All the serial ports have a special timing mode that supports infrared data communications 
standards.

2.2.3  System Clock

The main oscillator uses an external crystal with a frequency typically in the range from 
1.8 MHz to 26 MHz. The processor clock is derived from the oscillator output by either 
doubling the frequency, using the frequency directly, or dividing the frequency by 2, 4, 6 
or by 8. The processor clock can also be driven by the 32.768 kHz real-time clock oscilla-
tor for very low power operation, in which case the main oscillator can be shut down 
under software control.

2.2.4  32.768 kHz Oscillator Input 

The 32.768 kHz oscillator input is designed to accept a 32.768 kHz clock. A suggested low-
power clock circuit using “tiny logic” parts is documented and low in cost. The 32.768 kHz 
clock is used to drive a battery-backable (there is a separate power pin) internal 48-bit 
counter that serves as a real-time clock (RTC). The counter can be set and read by software 
and is intended for keeping the date and time. There are enough bits to keep the date for 
more than 100 years. The 32.768 kHz oscillator input is also used to drive the watchdog 
timer and to generate the baud clock for Serial Port A during the cold-boot sequence.
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2.2.5  Parallel I/O 

There are 56 parallel input/output lines divided among seven 8-bit ports designated A 
through G. Most of the port lines have alternate functions, such as serial data or chip select 
strobes. Parallel Ports D, E, F, and G have the capability of timer-synchronized outputs. 
The output registers are cascaded as shown in Figure 2-1.

Figure 2-1.  Cascaded Output Registers for Parallel Ports D and E

Stores to the port are loaded in the first-level register. That register in turn is transferred to 
the output register on a selected timer clock. The clock can be selected to be the output of 
Timer A1, B1, B2 or the peripheral clock (divided by 2?). The timer signal can also cause 
an interrupt that can be used to set up the next bit to be output on the next timer pulse. This 
feature can be used to generate precisely controlled pulses whose edges are positioned 
with high accuracy in time. Applications include communications signaling, pulse width 
modulation and driving stepper motors. (A separate pulse width modulation facility is also 
included in the Rabbit 3000.)

Figure 2-2.  Digital Filtering Input Pins

Input pins to the parallel ports are filtered by cascaded D flip flops as shown in Figure 2-2. 
This prevents pulses shorter then the peripheral clock from being recognized, synchro-
nizes external pulses to the internal clock, and avoids problems with meta stability (tem-
porarily indeterminate logical conditions due to marginal set up time with respect to the 
clock).

Timer Clock

Load Clock

Load Data Output Port

D   Q D   Q
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2.2.6  Slave Port 

The slave port is designed to allow the Rabbit to be a slave to another processor, which 
could be another Rabbit. The port is shared with Parallel Port A and is a bidirectional data 
port. The master can read any of three registers selected via two select lines that form the 
register address and a read strobe that causes the register contents to be output by the port. 
These same registers can be written as I/O registers by the Rabbit slave. Three additional 
registers transmit data in the opposite direction. They are written by the master by means 
of the two select lines and a write strobe.

Figure 2-3 shows the data paths in the slave port.

Figure 2-3.  Slave-Port Data Paths

The slave Rabbit can read the same registers as I/O registers. When incoming data bits are 
written into one of the registers, status bits indicate which registers have been written, and 
an optional interrupt can be programmed to take place when the write occurs. When the 
slave writes to one of the registers carrying data bits outward, an attention line is enabled 
so that the master can detect the data change and be interrupted if desired. One line tells 
the master that the slave has read all the incoming data. Another line tells the master that 
new outgoing data bits are available and have not yet been read by the master. The slave 
port can be used to signal the master to perform tasks using a variety of communication 
protocols over the slave port. 

CPU
Master
Processor

Slave Interface Registers

Input Register

Output Registers

Control

Rabbit 3000
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2.2.7  Auxiliary I/O Bus

The Rabbit 3000 instruction set supports memory access and I/O access. Memory access 
takes place in a 1 megabyte memory space. I/O access takes place in a 64K I/O space. In a 
traditional microprocessor design the same address and data lines are used for both mem-
ory and I/O spaces. Sharing address and data lines in this manner often forces compromises 
or makes design more complicated. Generally the memory bus has more critical timing and 
less tolerant of additional capacitive loading imposed by sharing it with an I/O bus. 

With the Rabbit 3000, the designer has the option of enabling completely separate buses 
for I/O and memory. The auxiliary I/O bus uses many of the same pins used by the slave 
port, so its operation is mutually exclusive from operation of the slave port. Parallel Port A 
is used to provide 8 bidirectional data lines. Parallel Port B bits 2:7 provide 6 address 
lines, the least significant 6 lines of the 16 lines that define the full I/O space. The auxil-
iary bus is only active on I/O bus cycles. The address lines remain in the same state 
assumed at the end of the previous I/O cycle until another I/O cycle takes place. I/O chip 
selects as well as read and write strobes are available at various other pins so that the 64 
byte space defined by the 6 address lines may be easily expanded. I/O cycles also execute 
in parallel on the main (memory) bus when they take place on the auxiliary bus, so addi-
tional address lines can be buffered and provided if needed.

By connecting I/O devices to the auxiliary bus, the fast memory bus is relieved of the 
capacitive load that would otherwise slow the memory. For core modules based on the 
Rabbit 3000, fewer pins are required to exit the core module since the slave port and the 
I/O bus can share the same pins and the memory bus no longer needs to exit the module to 
provide I/O capability. Because the I/O bus has less activity and is slower than the memory 
bus, it can be run further physically without EMI and ground bounce problems. 5 V signals 
can appear on the I/O bus since the Rabbit 3000 inputs are 5 V tolerant. 5 V signals could 
easily cause problems on the main bus if non 5 V tolerant 3.3 V memories are connected.

2.2.8  Timers 

The Rabbit has several timer systems. The periodic interrupt is driven by the 32.768 kHz 
oscillator divided by 16, giving an interrupt every 488 µs if enabled. This is intended to be 
used as a general-purpose clock interrupt. Timer A consists of ten 8-bit countdown and 
reload registers that can be cascaded up to two levels deep. Each countdown register can be 
set to divide by any number between 1 and 256. The output of six of the timers is used to 
provide baud clocks for the serial ports. Any of these registers can also cause interrupts and 
clock the timer-synchronized parallel output ports. Timer B consists of a 10-bit counter that 
can be read but not written. There are two 10-bit match registers and comparators. If the 
match register matches the counter, a pulse is output. Thus the timer can be programmed to 
output a pulse at a predetermined count in the future. This pulse can be used to clock the 
timer-synchronized parallel-port output registers as well as cause an interrupt. Timer B is 
convenient for creating an event at a precise time in the future under program control.

Figure 2-4 illustrates the Rabbit timers.
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Figure 2-4.  Rabbit Timers A and B

2.2.9  Input Capture Channels

The input capture channels are used to determine the time at which an event takes place. 
An event is signaled by a rising or falling edge (or optionally by either edge) on one of 16 
input pins that can be selected as input for either of the two channels. A 16 bit counter is 
used to record the time at which the event takes place. The counter is driven by the output 
of Timer A8 and can be set to count at a rate ranging from full clock speed to 1/256 the 
clock speed.

Two events are recognized: a start condition and a stop condition. The start condition may 
be used to start counting and the stop condition to stop counting. However the counter 
may also run continuously or run until a stop condition is encountered. The start and stop 
conditions may also be used to latch the current time at the instant the condition occurs 
rather than actually start or stop the counter. The same pin may be used to detect the start 
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and stop condition, for example a rising edge could be the start condition and a falling 
edge the stop condition. However, optionally, the start and stop condition can be input 
from separate pins.

The input capture channels can be used to measure the width of fast pulses. This is done 
by starting the counter on the first edge of the pulse and capturing the counter value on the 
second edge of the pulse. In this case the maximum error in the measurement is approxi-
mately 2 periods of the clock used to count the counter. If there is sufficient time between 
events for an interrupt to take place the unit can be set up to capture the counter value on 
either start or stop conditions or both and cause an interrupt each time the count is cap-
tured. In this case the start and stop conditions lose the connection with starting or stop-
ping the counter and simply become capture conditions that may be specified for 2 
independent edge detectors. The counter can also be cleared and started under software 
control and then have its value captured in response to an input.

If desired the capture counter can synchronized with Timer B outputs used to synchro-
nously load parallel port output registers. This makes it possible to generate an output sig-
nal precisely synchronized with an input signal. Usually it will be desired to synchronize 
one of the input capture counters with the Timer B counter. The count offset can be mea-
sured by outputting a pulse at a precise time using Timer B to set the output time and cap-
turing the same pulse. Once the phase relationship is known between the counters it is then 
possible to output pulses a precise time delay after an input pulse is captured, provided 
that the time delay is great enough for the interrupt routine to processes the capture event 
and set up the output pulse synchronized by Timer B. The minimum time delay needed is 
probably less than 10 microseconds if the software is done carefully the clock speed is rea-
sonably high.

2.2.10  Quadrature Encoder Inputs

A quadrature encoder is a common electromechanical device used to track the rotation of 
a shaft, or in some cases to track the motion of a linear follower. These devices are usually 
implemented by the use of a disk or a strip with alternate opaque and transparent bands 
that excite dual optical detectors. The output signals are square waves 90 degrees out of 
phase also called being in quadrature with each other. By having quadrature signals, the 
direction of rotation can be detected by noting which signal leads the other signal.

The Rabbit 3000 has 2 quadrature encoder units. Each unit has 2 inputs, one being the nor-
mal input and the other the 90 degree or quadrature input. An 8 bit up down counter counts 
encoder steps in the forward and backward direction. The count can be extended beyond 8 
bits by an interrupt that takes place each time the count overflows or underflows. The exter-
nal signals are synchronized with an internal clock provided by the output of Timer A10.

2.2.11  Pulse Width Modulation Outputs 

The pulse width modulated output generates a train of pulses periodic on a 1024 pulse 
frame with a duty cycle that varies from 1/1024 to 1024/1024. There are 4 independent 
PWM units. The units are driven by the output of Timer A9 which may be used to vary the 
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length of the pulses. When the duty cycle is greater then 1/1024 the pulses are spread into 
groups distributed 256 counts apart in the 1024 frame. The pulse width modulation outputs 
can be passed through a filter and used as a 10-bit D/A converter. The outputs can also be 
used to directly drive devices that have intrinsic filtering such as motors or solenoids.

2.2.12  Spread Spectrum Clock

The main system clock, which is generated by the crystal oscillator or input from an exter-
nal oscillator, can be modified by a clock spectrum spreader  internal to the Rabbit 3000 
chip. When the spectrum spreader is engaged, the clock is alternately speeded up and 
slowed down, thus spreading the spectrum of the clock harmonics in the frequency 
domain. This reduces EMI and improves the results of official radiated-emissions tests 
typically by 15–20 dB at critical frequencies. The spectrum spreader has 3 modes of oper-
ation: off, normal, and strong. Slightly faster memory access time is required when the 
spectrum spreader is used: 2–3 ns for the normal setting when the clock doubler is 
enabled, and 6–9 ns for the strong setting when the clock doubler is used. The spreader 
slightly influences baud rates and other timings because it introduces clock jitter, but the 
effect is usually small enough to be negligible. 

2.2.13  Separate Core and I/O Power Pins

The silicon die that constitutes the Rabbit 3000 processor is divided into the core logic and 
the I/O ring. The I/O ring located on the 4 edges of the die holds the bonding pads and the 
large transistors used to create the I/O buffers that drive signals to the external world. The 
core section, inside the I/O ring contains the main processor and peripheral logic. The 
clock and clock edges in the core are very fast with large transient currents that create a lot 
of noise that is communicated to the outside of the package via the power pins. The I/O 
buffers have slower switching times and mostly operate at much lower frequencies than 
the core logic. The Rabbit has separate power and ground pins for the core and I/O ring. 
This allows the designer to feed clean power to the I/O ring filtered to be free of the noise 
generated by the core switching. This minimizes high frequency noise that would other-
wise appear on output pins driven by buffers in the I/O ring. The result is lower EMI.

2.3  Design Standards

The same functionality can often be accomplished in more than one way with the Rabbit 
3000. By publishing design standards, or standard ways to accomplish common objec-
tives, software and hardware support become easier.

Refer to the Rabbit 3000 Microprocessor Designer’s Handbook for additional information.

2.3.1  Programming Port

Rabbit Semiconductor publishes a specification for a standard programming port (see 
Appendix A, “The Rabbit Programming Port”) and provides a converter cable that may be 
used to connect a PC serial port to the standard programming interface. The interface is 
implemented using a 10-pin connector with two rows of pins on 2 mm centers. The port is 
connected to Rabbit Serial Port A, to the startup mode pins on the Rabbit, to the Rabbit 
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reset pin, and to a programmable output pin that is used to signal the PC that attention is 
needed. With proper precautions in design and software, it is possible to use Serial Port A 
as both a programming port and as a user-defined serial port, although this will not be nec-
essary in most cases.

Rabbit Semiconductor supports the use of the standard programming port and the standard 
programming cable as a diagnostic and setup port to diagnosis problems or set up systems 
in the field.

2.3.2  Standard BIOS

Rabbit Semiconductor provides a standard BIOS for the Rabbit. The BIOS is a software 
program that manages startup and shutdown, and provides basic services for software run-
ning on the Rabbit.

2.4  Dynamic C Support for the Rabbit

Dynamic C is Z-World’s interactive C language development system. Dynamic C runs on 
a PC under Windows 32-bit operating systems. Dynamic C provides a combined compiler, 
editor, and debugger. The usual method for debugging a target system based on the Rabbit 
is to implement the 10-pin programming connector that connects to the PC serial port via a 
standard converter cable. Dynamic C libraries contain highly perfected software to control 
the Rabbit. These includes drivers, utility and math routines and the debugging BIOS for 
Dynamic C.

In addition, the internationally known real-time operating system, uC/OS-II, has been 
ported to the Rabbit, and is available with Dynamic C on a license-free, royalty-free basis 
for use in Rabbit-based products.. 
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3.  DETAILS ON RABBIT
MICROPROCESSOR FEATURES

3.1  Processor Registers

The Rabbit’s registers are nearly identical to those of the Z180 or the Z80. The figure 
below shows the register layout. The XPC and IP registers are new. The EIR register is the 
same as the Z80 I register, and is used to point to a table of interrupt vectors for the exter-
nally generated interrupts. The IIR register occupies the same logical position in the 
instruction set as the Z80 R register, but its function is to point to an interrupt vector table 
for internally generated interrupts.

Figure 3-1.  Rabbit Registers
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The Rabbit (and the Z80/Z180) processor has two accumulators—the A register serves as 
an 8-bit accumulator for 8-bit operations such as ADD or AND. The 16-bit register HL regis-
ter serves as an accumulator for 16-bit operations such as ADD HL,DE, which adds the 16-
bit register DE to the 16-bit accumulator HL. For many operations IX or IY can substitute 
for HL as accumulators.

The register marked F is the flags register or status register. It holds a number of flags that 
provide information about the last operation performed. The flag register cannot be 
accessed directly except by using the POP AF and PUSH AF instructions. Normally the 
flags are tested by conditional jump instructions. The flags are set to mark the results of 
arithmetic and logic operations according to rules that are specified for each instruction. 
There are four unused read/write bits in the flag register that are available to the user via 
the PUSH AF and POP AF instructions. These bits should be used with caution since new-
generation Rabbit processors could use these bits for new purposes.

The registers IX, IY and HL can also serve as index registers. They point to memory 
addresses from which data bits are fetched or stored. Although the Rabbit can address a 
megabyte or more of memory, the index registers can only directly address 64K of mem-
ory (except for certain extended addressing LDP instructions). The addressing range is 
expanded by means of the memory mapping hardware (see “Memory Mapping” on 
page 23) and by special instructions. For most embedded applications, 64K of data mem-
ory (as opposed to code memory) is sufficient. The Rabbit can efficiently handle a mega-
byte of program space.

The register SP points to the stack that is used for subroutine and interrupt linkage as well 
as general-purpose storage.

A feature of the Rabbit (and the Z80/Z180) is the alternate register set. Two special 
instructions swap the alternate registers with the regular registers. The instruction EX AF,AF’ 
exchanges the contents of AF with AF’. The instruction EXX exchanges HL, DE, and BC 
with HL’, DE’, and BC’. Communication between the regular and alternate register set in 
the original Z80 architecture was difficult because the exchange instructions provided the 
only means of communication between the regular and alternate register sets. The Rabbit 
has new instructions that greatly improve communication between the regular and alter-
nate register set. This effectively doubles the number of registers that are easily available 
for the programmer’s use. It is not intended that the alternate register set be used to pro-
vide a separate set of registers for an interrupt routine, and Dynamic C does not support 
this usage because it uses both registers sets freely.

The IP register is the interrupt priority register. It contains four 2-bit fields that hold a his-
tory of the processor’s interrupt priority. The Rabbit supports four levels of processor pri-
ority, something that exists only in a very restricted form in the Z80 or Z180.
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3.2  Memory Mapping

Although the Rabbit memory mapping scheme is fairly complex, the user rarely needs to 
worry about it because the details are handled by the Dynamic C development system.

Except for a handful of special instructions (see Section 19.5, “16-bit Load and Store 20-
bit Address”.), the Rabbit instructions directly address a 64K data memory space. This 
means that the address fields in the instructions are 16 bits long and that the registers that 
may be used as pointers to memory addresses (index registers (IX, IY), program counter 
and stack pointer (SP)) are also 16 bits long.

Because Rabbit instructions use 16-bit addresses, the instructions are shorter and can exe-
cute much faster than if, for example, 32-bit addresses were used. The executable code is 
very compact. 

The Rabbit memory-mapping unit is similar to, but more powerful than, the Z180 mem-
ory-mapping unit. Figure 3-2 illustrates the relationship among the major components 
related to addressing memory.

Figure 3-2.  Addressing Memory Components

The memory-mapping unit receives 16-bit addresses as input and outputs 20-bit addresses. 
The processor (except for certain LDP instructions) sees only a 16-bit address space. That 
is, it sees 65536 distinctly addressable bytes that its instructions can manipulate. Three 
segment registers are used to map this 16-bit space into a 1-megabyte space. The 16-bit 
space is divided into four separate zones. Each zone, except the first or root zone, has a 
segment register that is added to the 16-bit address within the zone to create a 20-bit 
address. The segment register has eight bits and those eight bits are added to the upper 
four bits of the 16-bit address, creating a 20-bit address. Thus, each separate zone in the 
16-bit memory becomes a window to a segment of memory in the 20-bit address space. 
The relative size of the four segments in the 16-bit space is controlled by the SEGSIZE 
register. This is an 8-bit register that contains two 4-bit registers. This controls the bound-
ary between the first and the second segment and the boundary between the second and 
the third segment. The location of the two movable segment boundaries is determined by a 
4-bit value that specifies the upper four bits of the address where the boundary is located. 
These relationships are illustrated in Figure 3-3.
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Figure 3-3.  Example of Memory Mapping Operation

The names given to the segments in the figure are evocative of the common uses for each 
segment. The root segment is mapped to the base of flash memory and contains the startup 
code as well as other code that may happen to be stored there. The data segment usage 
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the root segment or it may contain data variables. The stack segment is normally 4K long 
and it holds the system stack. The XPC segment is normally used to execute code that is 
not stored in the root segment or the data segment. Special instructions support executing 
code that is visible in the XPC segment.

The memory interface unit receives the 20-bit addresses generated by the memory-map-
ping unit. The memory interface unit conditionally modifies address lines A16, A18 and 
A19. The other address lines of the 20-bit address are passed unconditionally. The mem-
ory interface unit provides control signals for external memory chips. These interface sig-
nals are chip selects (/CS0, /CS1, /CS2), output enables (/OE0, /OE1), and write enables 
(/WE0, /WE1). These signals correspond to the normal control lines found on static mem-
ory chips (chip select or /CS, output enable or /OE, and write enable or /WE). In order to 
generate these memory control signals, the 20-bit address space is divided into four quad-
rants of 256K each. A bank control register for each quadrant determines which of the 
chip selects and which pair of output enables, and write enables (if any) is enabled when a 
memory read or write to that quadrant takes place. For example, if a 512K x 8 flash mem-
ory is to be accessed in the first 512K of the 20-bit address space, then /CS0, /WE0, /OE0 
could be enabled in both quadrants.

Figure 3-4 shows a memory interface unit.

Figure 3-4.  Memory Interface Unit
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3.2.1  Extended Code Space

A crucial element of the Rabbit memory mapping scheme is the ability to execute pro-
grams containing up to a megabyte of code in an efficient manner. This ability is absent in 
a pure 16-bit address processor, and it is poorly supported by the Z180 through its memory 
mapping unit. On paged processors, such as the 8086, this capability is provided by paging 
the code space so that the code is stored in many separate pages. On the 8086 the page size 
is 64K, so all the code within a given page is accessible using 16-bit addressing for jumps, 
calls and returns. When paging is used, a separate register (CS on the 8086) is used to 
determine where the active page currently resides in the total memory space. Special 
instructions make it possible to jump, call or return from one page to another. These spe-
cial instructions are called long calls, long jumps and long returns to distinguish them 
from the same operations that only operate on 16-bit variables.

The Rabbit also uses a paging scheme to expand the code space beyond the reach of a 16-
bit address. The Rabbit paging scheme uses the concept of a sliding page, which is 8K 
long. This is the XPC segment. The 8-bit XPC register serves as a page register to specify 
the part of memory where the window points. When a program is executed in the XPC 
segment, normal 16-bit jumps, calls and returns are used for most jumps within the win-
dow. Normal 16-bit jumps, calls and returns may also be used to access code in the other 
three segments in the 16-bit address space. If a transfer of control to code outside the win-
dow is required, then a long jump, long call or long return is used. These instructions mod-
ify both the program counter (PC) and the XPC register, causing the XPC window to point 
to a different part of memory where the target of the long jump, call or return is located. 
The XPC segment is always 8K long. The granularity with which the XPC segment can be 
positioned in memory is 4K. Because the window can be slid by one-half of its size, it is 
possible to compile continuously without unused gaps in memory. 

As the compiler generates code resident in the XPC window, the window is slid down by 
4K when the code goes beyond F000. This is accomplished by a long jump that reposi-
tions the window 4K lower. This is illustrated by Figure 3-5. The compiler is not presented 
with a sharp boundary at the end of the page because the window does not run out of space 
when code passes F000 unless 4K more of code is added before the window is slid down. 
All code compiled for the XPC window has a 24-bit address consisting of the 8-bit XPC 
and the 16-bit address. Short jumps and calls can be used, provided that the source and tar-
get instructions both have the same XPC address. Generally this means that each instruc-
tion belongs to a window that is approximately 4K long and has a 16-bit address between 
E000+n and F000+m, where n and m are on the order of a few dozen bytes, but can be up 
to 4096 bytes in length. Since the window is limited to no more than 8K, the compiler is 
unable to compile a single expression that requires more than 8K or so of code space. This 
is not a practical consideration since expressions longer than a few hundred bytes are in 
the nature of stunts rather than practical programs.

Program code can reside in the root segment or the XPC segment. Program code may also 
be resident in the data segment. Code can be executed in the stack segment, but this is usu-
ally restricted to special situations. Code in the root, meaning any of the segments other 
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than the XPC segment, can call other code in the root using short jumps and calls. Code in 
the XPC segment can also call code in the root using short jumps and calls. However, a 
long call must be used when code in the XPC segment is called. Functions located in the 
root have an efficiency advantage because a long call and a long return require 32 clocks 
to execute, but a short call and a short return require only 20 clocks to execute. The differ-
ence is small, but significant for short subroutines.

Figure 3-5.  Use of XPC Segment

3.2.2  Separate I and D Space - Extending Data Memory
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fetching an instruction from memory and fetching or storing data in memory. When 
enabled separate I and D space make available the combined root and data segment, typi-
cally 52k bytes for root code in the I space. In the D space, the root code segment part of 
the D space is typically used for constant data mapped to flash memory while the data seg-
ment part of the D space is used for variable data mapped to RAM. Separate I and D space 
increases the amount of both root code and root data because they no longer have to share 
the same memory, even though they share the same addresses.

Figure 3-6.  Separate I and D Space

Normally separate I and D space is implemented as shown in Figure 3-6. In the I space the 
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not have split I and D space and memory accesses to these segments do not distinguish 
between I and D space.

The advantage of having more root code space is that root code executes faster because 
short calls using a 16 bit address are used to call it. This compares to long calls that have a 
20 bit address for extended code. Data located in the root can be more conveniently 
accessed due to the comparatively limited instructions available for accessing data in the 
full 20 bit space and the greater overhead involve in manipulating 20 bit addresses in a 
processor that has 8 and 16 bit registers.

3.2.3  Using the Stack Segment for Data Storage

Another approach to extending data memory is to use the stack segment to access data, 
placing the stack in the data segment so as to free up the stack segment. This approach 
works well for a software system that uses data groupings that are self-contained and are 
accessed one at a time rather than randomly between all the groupings. An example would 
be the software structures associated with a TCP/IP communication protocol connection 
where the same code accesses the data structures associated with each connection in a pat-
tern determined by the traffic on each connection.

The advantage of this approach is that normal C data access techniques, such as 16-bit 
pointers, may be used. The stack segment register has to be modified to bring the data 
structure into view in the stack segment before operations are performed on a particular 
data structure. Since the stack has to be moved into the data area, it is important that the 
number of stacks required be kept to a minimum when using the stack segment to view 
data. Of course, tasks that don’t need to see the data structures can have their stack located 
in the stack segment. Another possibility is to have a data structure and a stack located 
together in the stack segment, and to use a different stack segment for different tasks, each 
task having its own data area and stack bound to it.

These approaches are shown in Figure 3-7 below.
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Figure 3-7.  Schemes for Data Memory Windows

A third approach is to place the data and root code in RAM in the root segment, freeing the 
data segment to be a window to extended memory. This requires copying the root code to 
RAM at startup time. Copying root code to RAM is not necessarily that burdensome since 
the amount of RAM required can be quite small, say 12K for example.

The XPC segment at the top of the memory can also be used as a data segment by pro-
grams that are compiled into root memory. This is handy for small programs that need to 
access a lot of data.

3.2.4  Practical Memory Considerations

The simplest Rabbit configurations have one flash memory chip interfaced using /CS0 and 
one RAM memory chip interfaced using /CS1. Typical Rabbit-based systems use 256K of 
flash and 128 K of RAM, but smaller or larger memories may be used.

Although the Rabbit can support code size approaching a megabyte, it is anticipated that 
the majority of applications will use less than 250K of code, equivalent to approximately 
10,000–20,000 C statements. This reflects both the compact nature of Rabbit code and the 
typical size of embedded applications.

Directly accessible C variables are limited to approximately 44K of memory, split 
between data stored in flash and RAM. This will be more than adequate for many embed-
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ded applications. Some applications may require large data arrays or tables that will 
require additional data memory. For this purpose Dynamic C supports a type of extended 
data memory that allows the use of additional data memory, even extending far beyond a 
megabyte.

Requirements for stack memory depend on the type of application and particularly 
whether preemptive multitasking is used. If preemptive multitasking is used, then each 
task requires its own stack. Since the stack has its own segment in 16-bit address space, it 
is easy to use available RAM memory to support a large number of stacks. When a pre-
emptive change of context takes place, the STACKSEG register can be changed to map 
the stack segment to the portion of RAM memory that contains the stack associated with 
the new task that is to be run. Normally the stack segment is 4K, which is typically large 
enough to provide space for several (typically four) stacks. It is possible to enlarge the 
stack segment if stacks larger than 4K are needed. If only one stack is needed, then it is 
possible to eliminate the stack segment entirely and place the single stack in the data seg-
ment. This option is attractive for systems with only 32K of RAM that don’t need multiple 
stacks.
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3.3  Instruction Set Outline

“Load Immediate Data to a Register” on page 33
“Load or Store Data from or to a Constant Address” on page 33
“Load or Store Data Using an Index Register” on page 34
“Register-to-Register Move” on page 35
“Register Exchanges” on page 35
“Push and Pop Instructions” on page 36
“16-bit Arithmetic and Logical Ops” on page 36
“Input/Output Instructions” on page 39—these include a fix for a bug that manifests itself 
if an I/O instruction (prefix IOI or IOE) is followed by one of 12 single-byte op codes that 
use HL as an index register.

In the discussion that follows, we give a few example instructions in each general category 
and contrast the Z80/ Z180 with the Rabbit. For a detailed description of every instruction, 
see Chapter 19, “Rabbit Instructions”

The Rabbit executes instructions in fewer clocks then the Z80 or Z180. The Z180 usually 
requires a minimum of four clocks for 1-byte opcodes or three clocks for each byte for 
multi-byte op codes. In addition, three clocks are required for each data byte read or writ-
ten. Many instructions in the Z180 require a substantial number of additional clocks. The 
Rabbit usually requires two clocks for each byte of the op code and for each data byte 
read. Three clocks are needed for each data byte written. One additional clock is required 
if a memory address needs to be computed or an index register is used for addressing. 
Only a few instructions don’t follow this pattern. An example is mul, a 16 x 16 bit signed 
two’s complement multiply. mul is a 1-byte op code, but requires 12 clocks to execute. 
Compared to the Z180, not only does the Rabbit require fewer clocks, but in a typical situ-
ation it has a higher clock speed and its instructions are more powerful. 

The most important instruction set improvements in the Rabbit over the Z180 are in the 
following areas.

• Fetching and storing data, especially 16-bit words, relative to the stack pointer or the 
index registers IX, IY, and HL.

• 16-bit arithmetic and logical operations, including 16-bit and’s, or’s, shifts and 16-bit 
multiply.

• Communication between the regular and alternate registers and between the index reg-
isters and the regular registers is greatly facilitated by new instructions. In the Z180 the 
alternate register set is difficult to use, while in the Rabbit it is well integrated with the 
regular register set.

• Long calls, long returns and long jumps facilitate the use of 1M of code space. This 
removes the need in the Z180 to utilize inefficient memory banking schemes for larger 
programs that exceed 64K of code.
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• Input/output instructions are now accomplished by normal memory access instructions 
prefixed by an op code byte to indicate access to an I/O space. There are two I/O 
spaces, internal peripherals and external I/O devices.

Some Z80 and Z180 instructions have been deleted and are not supported by the Rabbit 
(see Chapter 20, “Differences Rabbit vs. Z80/Z180 Instructions”). Most of the deleted 
instructions are obsolete or are little-used instructions that can be emulated by several 
Rabbit instructions. It was necessary to remove some instructions to free up 1-byte op 
codes needed to implement new instructions efficiently. The instructions were not re-
implemented as 2-byte op codes so as not to waste on-chip resources on unimportant 
instructions. Except for the instruction EX (SP),HL, the original Z180 binary encoding 
of op codes is retained for all Z180 instructions that are retained.

3.3.1  Load Immediate Data to a Register

A constant that follows the op code in the instruction stream can generally be loaded to 
any register, except PC, IP, and F. (Load to the PC is a jump instruction.) This includes the 
alternate registers on the Rabbit, but not on the Z180. Some example instructions appear 
below.

LD A,3
LD HL,456
LD BC’,3567  ; not possible on Z180
LD H’,4Ah    ; not possible on Z180
LD IX,1234
LD C,54

Byte loads require four clocks, word loads require six clocks. Loads to IX, IY or the alter-
nate registers generally require two extra clocks because the op code has a 1-byte prefix.

3.3.2  Load or Store Data from or to a Constant Address

LD A,(mn)    ; loads 8 bits from address mn
LD A’,(mn)   ; not possible on Z180
LD (mn),A
LD HL,(mn) ; load 16 bits from the address specified by mn
LD HL’,(mn) ; to alternate register, not possible Z180
LD (mn),HL

Similar 16-bit loads and stores exist for DE, BC, SP, IX and IY.

It is possible to load data to the alternate registers, but it is not possible to store the data in 
the alternate register directly to memory. 

LD A’,(mn) ; allowed
** LD (mn),D’ ; **** not a legal instruction!
** LD (mn),DE’ ; **** not a legal instruction!
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3.3.3  Load or Store Data Using an Index Register

An index register is a 16-bit register, usually IX, IY, SP or HL, that is used for the address 
of a byte or word to be fetched from or stored to memory. Sometimes an 8-bit offset is 
added to the address either as a signed or unsigned number. The 8-bit offset is a byte in the 
instruction word. BC and DE can serve as index registers only for the special cases below.

LD A,(BC)
LD A’,(BC)
LD (BC),A
LD A,(DE)
LD A’,(DE)
LD (DE),A

Other 8-bit loads and stores are the following.

LD r,(HL)    ; r is any of 7 registers A, B, C, D, E, H, L
LD r’,(HL)   ; same but alternate register destination
LD (HL),r    ; r is any of the 7 registers above 
              ;or an immediate data byte
** LD (HL),r’ ;**** not a legal instruction!
LD r,(IX+d)  ; r is any of 7 registers, d is -128 to +127 offset
LD r’,(IX+d) ; same but alternate destination
LD (IX+d),r   ; r is any of 7 registers or an immediate data byte
LD (IY+d),r   ; IX or IY can have offset d

The following are 16-bit indexed loads and stores. None of these instructions exists on the 
Z180 or Z80. The only source for a store is HL. The only destination for a load is HL or HL’.

LD HL,(SP+d)  ; d is an offset from 0 to 255. 
              ; 16-bits are fetched to HL or HL’
LD (SP+d),HL   ; corresponding store
LD HL,(HL+d)   ; d is an offset from -128 to +127, 
               ; uses original HL value for addressing
               ; l=(HL+d), h=(HL+d+1)
LD HL’,(HL+d)
LD (HL+d),HL
LD (IX+d),HL   ; store HL at address pointed to 
               ; by IX plus -128 to +127 offset
LD HL,(IX+d)
LD HL’,(IX+d)
LD (IY+d),HL   ; store HL at address pointed to 
               ; by IY plus -128 to +127 offset
LD HL,(IY+d)
LD HL’,(IY+d)
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3.3.4  Register-to-Register Move

Any of the 8-bit registers, A, B, C, D, E, H, and L, can be moved to any other 8-bit regis-
ter, for example:

LD A,c
LD d,b
LD e,l

The alternate 8-bit registers can be a destination, for example:

LD a’,c
LD d’,b

These instructions are unique to the Rabbit and require 2 bytes and four clocks because of 
the required prefix byte. Instructions such as LD A,d’ or LD d’,e’ are not allowed.

Several 16-bit register-to-register move instructions are available. Except as noted, these 
instructions all require 2 bytes and four clocks. The instructions are listed below.

LD dd’,BC   ; where dd’ is any of HL’, DE’, BC’ (2 bytes, 4 clocks)
LD dd’,DE
LD IX,HL
LD IY,HL
LD HL,IY
LD HL,IX
LD SP,HL   ; 1-byte, 2 clocks
LD SP,IX
LD SP,IY

Other 16-bit register moves can be constructed by using 2-byte moves.

3.3.5  Register Exchanges

Exchange instructions are very powerful because two (or more) moves are accomplished 
with one instruction. The following register exchange instructions are implemented.

EX af,af’    ; exchange af with af’
EXX         ; exchange HL, DE, BC with HL’, DE’, BC’
EX DE,HL     ; exchange DE and HL

The following instructions are unique to the Rabbit.

EX DE’,HL   ; 1 byte, 2 clocks
EX DE, HL’  ; 2 bytes, 4 clocks
EX DE’, HL’  ; 2 bytes, 4 clocks

The following special instructions (Rabbit and Z180/Z80) exchange the 16-bit word on 
the top of the stack with the HL register. These three instructions are each 2 bytes and 15 
clocks.

EX (SP),HL 
EX (SP),IX
EX (SP),IY
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3.3.6  Push and Pop Instructions

There are instructions to push and pop the 16-bit registers AF, HL, DC, BC, IX, and IY. 
The registers AF’, HL’, DE’, and BC’ can be popped. Popping the alternate registers is 
exclusive to the Rabbit, and is not allowed on the Z80 / Z180.

Examples

POP HL
PUSH BC
PUSH IX
PUSH af
POP DE
POP DE’
POP HL’

3.3.7  16-bit Arithmetic and Logical Ops

The HL register is the primary 16-bit accumulator. IX and IY can serve as alternate accu-
mulators for many 16-bit operations. The Z180/Z80 has a weak set of 16-bit operations, 
and as a practical matter the programmer has to resort to combinations of 8-bit operations 
in order to perform many 16-bit operations. The Rabbit has many new op codes for 16-bit 
operations, removing some of this weakness.

The basic Z80/Z180 16-bit arithmetic instructions are

ADD HL,ww   ; where ww is HL, DE, BC, SP
ADC HL,ww   ; ADD and ADD carry
SBC HL,ww   ; sub and sub carry
INC ww      ; increment the register (without affecting flags)

In the above op codes, IX or IY can be substituted for HL. The ADD and ADC instructions 
can be used to left-shift HL with the carry. An alternate destination prefix (ALTD) may be 
used on the above instructions. This causes the result and its flags to be stored in the corre-
sponding alternate register. If the ALTD flag is used when IX or IY is the destination regis-
ter, then only the flags are stored in the alternate flag register.

The following new instructions have been added for the Rabbit.

;Shifts
RR  HL   ; rotate HL right with carry, 1 byte, 2 clocks
      ; note use ADC HL,HL for left rotate, or add HL,HL if
      ; no carry in is needed.
RR  DE   ; 1 byte, 2 clocks
RL  DE    ; rotate DE left with carry, 1-byte, 2 clocks
RR  IX    ; rotate IX right with carry, 2 bytes, 4 clocks
RR  IY    ; rotate IY right with carry

;Logical Operations
AND HL,DE  ; 1 byte, 2 clocks
AND IX,DE  ; 2 bytes, 4 clocks
AND IY,DE
OR HL,DE  ; 1 byte, 2 clocks
OR IX,DE  ; 2 bytes, 4 clocks
OR IY,DE
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The BOOL instruction is a special instruction designed to help test the HL register. BOOL 
sets HL to the value 1 if HL is non zero, otherwise, if HL is zero its value is not changed. 
The flags are set according to the result. BOOL can also operate on IX and IY.

BOOL  HL    ; set HL to 1 if non- zero, set flags to match HL
BOOL  IX
BOOL  IY
ALTD BOOL HL  ; set HL’ an f’ according to HL
ALTD BOOL IY   ; modify IY and set f’ with flags of result

The SBC instruction can be used in conjunction with the BOOL instruction for performing 
comparisions. The SBC instruction subtracts one register from another and also subtracts 
the carry bit. The carry out is inverted compared to the carry that would be expected if the 
number subtracted was negated and added. The following examples illustrate the use of 
the SBC and BOOL instructions.

     ; Test if HL>=DE - HL and DE unsigned numbers 0-65535
OR a    ; clear carry
SBC HL,DE ; if C==0 then HL>=DE else if C==1 then HL<DE

     ; convert the carry bit into a boolean variable in HL
     ;
SBC HL,HL ; sets HL==0 if C==0, sets HL==0ffffh if C==1
BOOL HL ; HL==1 if C was set, otherwise HL==0
     ;
     ; convert not carry bit into boolean variable in HL
SBC HL,HL ; HL==0 if C==0 else HL==ffff if C=1
INC HL ; HL==1 if C==0 else HL==0 if C==1
     ; note carry flag set, but zero / sign flags reversed

In order to compare signed numbers using the SBC instruction, the programmer can map 
the numbers into an equivalent set of unsigned numbers by inverting the sign bit of each 
number before performing the comparison. This maps the most negative number 08000h 
to the smallest unsigned number 0000h, and the most positive signed number 07FFFh to 
the largest unsigned number 0FFFFh. Once the numbers have been converted, the compa-
rision can be done as for unsigned numbers. This procedure is faster than using a jump tree 
that requires testing the sign and overflow bits.

   ; example - test for HL>=DE where HL and DE are signed numbers
   ; invert sign bits on both
ADD HL,HL ; shift left
CCF    ; invert carry
RR HL    ; rotate right
RL DE
CCF
RR DE    ; invert DE sign
SBC HL,DE ; no carry if HL>=DE
      ; generate boolean variable true if HL>=DE
SBC HL,HL ; zero if no carry else -1
INC HL   ; 1 if no carry, else zero
BOOL     ; use this instruction to set flags if needed
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The SBC instruction can also be used to perform a sign extension.

      ; extend sign of l to HL
LD A,l
rla     ; sign to carry
SBC A,a ; a is all 1’s if sign negative
LD h,a  ; sign extended

The multiply instruction performs a signed multiply that generates a 32-bit signed result.

MUL    ; signed multiply of BC and DE, 
       ; result in HL:BC - 1 byte, 12 clocks

If a 16-bit by 16-bit multiply with a 16-bit result is performed, then only the low part of 
the 32-bit result (BC) is used. This (counter intuitively) is the correct answer whether the 
terms are signed or unsigned integers. The following method can be used to perform a 16 
x 16 bit multiply of two unsigned integers and get an unsigned 32-bit result. This uses the 
fact that if a negative number is multiplied the sign causes the other multiplier to be sub-
tracted from the product. The method shown below adds double the number subtracted so 
that the effect is reversed and the sign bit is treated as a positive bit that causes an addition.

LD BC,n1
LD HL’,BC ; save BC in HL’
LD DE,n2
LD A,b ; save sign of BC
MUL  ; form product in HL:BC
OR a  ; test sign of BC multiplier
JR p,x1  ; if plus continue
ADD HL,DE ; adjust for negative sign in BC
x1:
RL DE  ; test sign of DE
JR nc,x2 ; if not negative
  ; subtract other multiplier from HL
EX DE,HL’
ADD HL,DE
x2:
  ; final unsigned 32 bit result in HL:BC

This method can be modified to multiply a signed number by an unsigned number. In that 
case only the unsigned number has to be tested to see if the sign is on, and in that case the 
signed number is added to the upper part of the product.

The multiply instruction can also be used to perform left or right shifts. A left shift of n 
positions can be accomplished by multiplying by the unsigned number 2^^n. This works 
for n # 15, and it doesn’t matter if the numbers are signed or unsigned. In order to do a 
right shift by n (0 < n < 16), the number should be multiplied by the unsigned number 
2^^(16 – n), and the upper part of the product taken. If the number is signed, then a signed 
by unsigned multiply must be performed. If the number is unsigned or is to be treated as 
unsigned for a logical right shift, then an unsigned by unsigned multiply must be per-
formed. The problem can be simplified by excluding the case where the multiplier is 
2^^15.
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3.3.8  Input/Output Instructions

The Rabbit uses an entirely different scheme for accessing input/output devices. Any 
memory access instruction may be prefixed by one of two prefixes, one for internal I/O 
space and one for external I/O space. When so prefixed, the memory instruction is turned 
into an I/O instruction that accesses that I/O space at the I/O address specified by the 16-
bit memory address used. For example

IOI LD A,(85h)   ; loads A register with contents
                  ; of internal I/O register at location 85h.

LD IY,4000h
IOE LD HL,(IY+5)  ; get word from external I/O location 4005h

By using the prefix approach, all the 16-bit memory access instructions are available for 
reading and writing I/O locations. The memory mapping is bypassed when I/O operations 
are executed.

I/O writes to the internal I/O registers require only two clocks, rather than the minimum of 
three clocks required for writes to memory or external I/O devices.
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3.4  How to Do It in Assembly Language—Tips and Tricks

3.4.1  Zero HL in 4 Clocks

BOOL HL  ; 2 clocks, clears carry, HL is 1 or 0
RR HL  ; 2 clocks, 4 total - get rid of possible 1

This sequence requires four clocks compared to six clocks for LD HL,0.

3.4.2  Exchanges Not Directly Implemented

HL<->HL’  - eight clocks

EX DE’,HL  ; 2 clocks
EX DE’,HL’  ; 4 clocks
EX DE’,HL    ; 2 clocks, 8 total

DE<->DE’  - six clocks

EX DE’,HL  ; 2 clocks
EX DE,HL   ; 2 clocks
EX DE’,HL  ; 2 clocks, 6 total

BC<->BC’ - 12 clocks

EX DE’,HL   ; 2 clocks
EX DE,HL’   ; 4
EX DE,HL    ; 2
EXX         ; 2
EX DE,HL    ; 2

Move between IX, IY and DE, DE’

IX/IY->DE  / DE->IX/IY

;IX, IX --> DE
EX DE,HL
LD HL,IX/IY  / LD IX/IY,HL
EX DE,HL       ; 8 clocks total

    ; DE --> IX/ IY
EX DE,HL
LD IX/IY,HL
EX DE,HL    ; 8 clocks total

3.4.3  Manipulation of Boolean Variables

Logical operations involving HL when HL is a logical variable with a value of 1 or 0—
this is important for the C language where the least bit of a 16-bit integer is used to repre-
sent a logical result

Logical not operator—invert bit 0 of HL in four clocks (also works for IX, IY in eight 
clocks)

DEC HL  ; 1 goes to zero, zero goes to -1
BOOL HL  ; -1 to 1, zero to zero. 4 clocks total

Logical xor operator—xor HL,DE when HL/DE are 1 or 0.

ADD HL,DE
RES 1,l      ; 6 clocks total, clear bit 1 result of if 1+1=2
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3.4.4  Comparisons of Integers

Unsigned integers may be compared by testing the zero and carry flags after a subtract 
operation. The zero flag is set if the numbers are equal. With the SBC instruction the carry 
cleared is set if the number subtracted is less than or equal to the number it is subtracted 
from. 8-bit unsigned integers span the range 0–255. 16-bit unsigned integers span the 
range 0–65535. 

OR a   ; clear carry
SBC HL,DE   ; HL=A and DE=B

A>=B   !C 
A<B    C
A==B   Z
A>B    !C & !Z
A<=B   C v Z

If A is in HL and B is in DE, these operations can be performed as follows assuming that 
the object is to set HL to 1 or 0 depending on whether the compare is true or false. 

; compute HL<DE  
; unsigned integers
; EX DE,HL  ; uncomment for DE<HL
OR a        ; clear carry
SBC HL,DE ; C set if HL<DE
SBC HL,HL ; HL-HL-C --  -1 if carry set
BOOL HL   ; set to 1 if carry, else zero 
           ; else result == 0
;unsigned integers
; compute HL>=DE or DE>=HL - check for !C
; EX DE,HL ; uncomment for DE<=HL
OR a        ; clear carry
SBC HL,DE  ; !C if HL>=DE
SBC HL,HL  ; HL-HL-C - zero if no carry, -1 if C
INC HL   ; 14 / 16 clocks total -if C after first SBC result 1, 
         ; else 0
; 0 if C , 1 if !C
;
: compute HL==DE
OR a    ; clear carry
SBC HL,DE ; zero is equal
BOOL HL   ; force to zero, 1
DEC HL    ; invert logic
BOOL HL  ; 12 clocks total -logical not, 1 for inputs equal
;
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Some simplifications are possible if one of the unsigned numbers being compared is a 
constant. Note that the carry has a reverse sense from SBC. In the following examples, the 
pseudo-code in the form LD DE,(65535-B) does not indicate a load of DE with the 
address pointed to by 65535-B, but simply indicates the difference between 65535 and 
the 16-bit unsigned integer B.

;test for HL>B  B is constant
LD DE,(65535-B)
ADD HL,DE  ; carry set if HL>B
SBC HL,HL   ; HL-HL-C  - result -1 if carry set, else zero
BOOL HL    ; 14 total clocks - true if HL>B

; HL>=B   B is constant not zero
LD DE,(65536-B)
ADD HL,DE
SBC HL,HL
BOOL HL   ; 14 clocks

; HL>=B  and B is zero
LD HL,1   ; 6 clocks

; HL<B B is a constant, not zero (if B==0 always false)
LD DE,(65536-B)
ADD HL,DE  ; not carry if HL<B
SBC HL,HL  ; -1 if carry, else 0
INC HL     ; 14 clocks --0 if carry, else 1 if no carry
;
; HL <= B B is constant not zero 
LD DE,(65535-B)
ADD HL,DE  ; ~C if HL<=B
CCF        ; C if true
SBC HL,HL  ; if C -1 else 0
INC HL     ; 16 clocks -- 1 if true, else 0
;
; HL <= B B is zero - true if HL==0
BOOL HL   ; result in HL
;
; HL==B and B is a constant not zero
LD DE,(65536-B)
ADD HL,DE  ; zero if equal
BOOL HL
INC HL
RES 1,l    ; 16 clocks

; HL==B and B==0
BOOL HL
INC HL
RES 1,l    ; 8 clocks

For signed integers the conventional method to look at the zero flag, the minus flag and 
the overflow flag. Signed 8-bit integers span the range –128 to +127 (80h to 7Fh). Signed 
16-bit integers span the range –32768 to + 32767 (8000h to 7FFFh). The sign and zero 
flag tell which is the larger number after the subtraction unless the overflow is set, in 
which case the sign flag needs to be inverted in the logic, that is, it is wrong.
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A>B    (!S & !V & !Z) v (S & V)
A<B    (S & !V) v (!S & V & !Z)
A==B
A>=B
A<=B

Another method of doing signed compare is to first map the signed integers onto unsigned 
integers by inverting bit 15. This is shown in Figure 3-8. Once the mapping has been per-
formed by inverting bit 15 on both numbers, the comparisions can be done as if the num-
bers were unsigned integers. This avoids having to construct a jump tree to test the 
overflow and sign flags. An example is shown below.

; test HL>5 for signed integers
LD DE,65535-(5+08000h)  ; 5 mapped to unsigned integers
LD BC,08000h
ADD HL,BC  ; invert high bit
ADD HL,DE  ; 16 clocks to here
; carry now set if HL>5 - opportunity to jump on carry
SUBC HL,HL  ; HL-HL-C   ; if C on result is  -1, else zero
BOOL HL    ; 22 clocks total - true if HL>5 else false

Figure 3-8.  Mapping Signed Integers to Unsigned Integers by Inverting Bit 15

3.4.5  Atomic Moves from Memory to I/O Space

To avoid disabling interrupts while copying a shadow register to its target register, it is 
desirable to have an atomic move from memory to I/O space. This can be done using LDD 
or LDI instructions.

LD HL,sh_PDDDR    ; point to shadow register
LD DE,PDDDR       ; set DE to point to I/O reg
SET 5,(HL)        ; set bit 5 of shadow register
            ; use ldd instruction for atomic transfer
IOI ldd       ; (io DE)<-(HL)  HL--, DE--

When the LDD instruction is prefixed with an I/O prefix, the destination becomes the I/O 
address specified by DE. The decrementing of HL and DE is a side effect. If the repeating 
instructions LDIR and LDDR are used, interrupts can take place between successive itera-
tions. Word stores to I/O space can be used to set two I/O registers at adjacent addresses 
with a single noninterruptable instruction.

0111...

000...
111...

100...

1111...

100...
011...

000...
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3.5  Interrupt Structure

When an interrupt occurs on the Rabbit, the return address is pushed on the stack, and con-
trol is transferred to the address of the interrupt service routine. The address of the inter-
rupt service routine has two parts: the upper byte of the address comes from a special 
register and the lower byte is fixed by hardware for each interrupt, as shown in Table 6-1. 
There are separate registers for internal interrupts (IIR) and external interrupts (EIR) to 
specify the high byte of the interrupt service routine address. These registers are accessed 
by special instructions.

LD A,IIR
LD IIR,A
LD A,EIR
LD EIR,A

Interrupts are initiated by hardware devices or by certain 1-byte instructions called reset 
instructions.

RST 10
RST 18
RST 20
RST 28
RST 38

The RST instructions are similar to those on the Z80 and Z180, but certain ones have been 
removed from the instruction set (00, 08, 30). The RST interrupts are not inhibited regard-
less of the processor priority. The user is advised to exercise caution when using these 
instructions as they are mostly reserved for the use of Dynamic C for debugging. Unlike 
the Z80 or Z180, the IIR register contributes the upper byte of the service routine address 
for RST interrupts.

Since interrupt routines do not affect the XPC, interrupt routines must be located in the 
root code space. However, they can jump to the extended code space after saving the XPC 
on the stack.

3.5.1  Interrupt Priority

The Z80 and Z180 have two levels of interrupt priority: maskable and nonmaskable. The 
nonmaskable interrupt cannot be disabled and has a fixed interrupt service routine address 
of 66h. The Rabbit, in contrast, has three levels of interrupt priority and four priority levels 
at which the processor can operate. If an interrupt is requested, and the priority of the 
interrupt is higher than that of the processor, the interrupt will take place after the execu-
tion of the current instruction is complete (except for privileged instructions)

Multiple interrupt priorities have been established to make it feasible for the embedded 
systems programmer to have extremely fast interrupts available. Interrupt latency refers to 
the time required for an interrupt to take place after it has been requested. Generally, inter-
rupts of the same priority are disabled when an interrupt service routine is entered. Some-
times interrupts must stay disabled until the interrupt service routine is completed, other 
times the interrupts can be re-enabled once the interrupt service routine has at least dis-
abled its own cause of interrupt. In any case, if several interrupt routines are operating at 
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the same priority, this introduces interrupt latency while the next routine is waiting for the 
previous routine to allow more interrupts to take place. If a number of devices have inter-
rupt service routines, and all interrupts are of the same priority, then pending interrupts 
can not take place until at least the interrupt service routine in progress is finished, or at 
least until it changes the interrupt priority. As a rule of thumb, Z-World usually suggests 
that 100 µs be allowed for interrupt latency on Z180- or Rabbit-based controllers. This can 
result if, for example, there are five active interrupt routines, and each turns off the inter-
rupts for at most 20 µs.

The intention in the Rabbit is that most interrupting devices will use priority 1 level inter-
rupts. Devices that need extremely fast response to interrupts will use priority level 2 or 3 
interrupts. Since code that runs at priority level 0 or 1 never disables level 2 and level 3 
interrupts, these interrupts will take place within about 20 clocks, the length of the longest 
instruction or longest sensible sequence of privileged instructions followed by an unprivi-
leged instruction. It is important that the user be careful not to overdisable interrupts in 
critical code sections. The processor priority should not be raised above level 1 except in 
carefully considered situations.

The effect of the processor priority on interrupts is shown in Table 3-1. The priority of the 
interrupt is usually established by bits in an I/O control register associated with the hard-
ware that creates the interrupt. The 8-bit interrupt register (IP) holds the processor priority 
in the least significant 2 bits. When an interrupt takes place, the IP register is shifted left 2 
positions and the lower 2 bits are set to equal the priority of the interrupt that just took 
place. This means that an interrupt service request (ISR) can only be interrupted by an 
interrupt of higher priority (unless the priority is explicitly set lower by the programmer). 
The IP register serves as a 4-word stack of 2-bit words to save and restore interrupt priori-
ties. It can be shifted right, restoring the previous priority by a special instruction (IPRES). 
Since only the current processor priority and 3 previous priorities can be saved in the inter-
rupt register, instructions are also provided to PUSH and POP IP using the regular stack. A 
new priority can be “pushed” into the IP register with special instructions (IPSET 0, 
IPSET 1, IPSET 2, IPSET 3).

Table 3-1.  Effect of Processor Priorities on Interrupts

Processor

Priority
Effect on Interrupts

0
All interrupts, priority 1,2 and 3 take place after 
execution of current non privileged instruction.

1 Only interrupts of priority 2 and 3 take place.

2 Only interrupts of priority 3 take place.

3 All interrupt are suppressed (except RST instruction).
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3.5.2  Multiple External Interrupting Devices

The Rabbit 3000 has two distinct external interrupt request lines. If there are more than 
two external causes of interrupts, then these lines must be shared between multiple 
devices. The interrupt line is edge-sensitive, meaning that it requests an interrupt only 
when a rising or falling edge, whichever is specified in the setup registers, takes place. The 
state of the interrupt line(s) can always be read by reading Parallel Port E since they share 
pins with Parallel Port E.

If several lines are to share interrupts with the same port, the individual interrupt requests 
would normally be or’ed together so that any device can cause an interrupt. If several 
devices are requesting an interrupt at the same time, only one interrupt results because 
there will be only one transition of the interrupt request line. To resolve the situation and 
make sure that the separate interrupt routines for the different devices are called, a good 
method is to have a interrupt dispatcher in software that is aided by providing separate 
attention request lines for each device. The attention request lines are basically the inter-
rupt request lines for the separate devices before they are or’ed together. The interrupt dis-
patcher calls the interrupt routines for all devices requesting interrupts in priority order so 
that all interrupts are serviced.

3.5.3  Privileged Instructions, Critical Sections and Semaphores

Normally an interrupt happens at the end of the instruction currently executing. However, 
if the instruction executing is privileged, the interrupt cannot take place at the end of the 
instruction and is deferred until a non privileged instruction is executed, usually the next 
instruction. Privileged instructions are provided as a handy way of making a certain oper-
ation atomic because there would be a software problem if an interrupt took place after the 
instruction. Turning off the interrupts explicitly may be too time consuming or not possi-
ble because the purpose of the privileged instruction is to manipulate the interrupt con-
trols. For additional information on privileged instructions, see Section 19.19, “Privileged 
Instructions”.

The privileged instructions to load the stack are listed below.

LD SP,HL
LD SP,IY
LD SP,IX

The following instructions to load SP are privileged because they are frequently followed 
by an instruction to change the stack segment register. If an interrupt occurs between these 
two instructions and the following instruction, the stack will be ill-defined.

LD SP,HL
IOI LD sseg,a
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The privileged instructions to manipulate the IP register are listed below.

IPSET 0   ; shift IP left and set priority 00 in bits 1,0
IPSET 1
IPSET 2
IPSET 3
IPRES    ; rotate IP right 2 bits, restoring previous priority
RETI      ; pops IP from stack and then pops return address
POP IP    ; pop IP register from stack

3.5.4  Critical Sections

Certain library routines may need to disable interrupts during a critical section of code. 
Generally these routines are only legal to call if the processor priority is either 0 or 1. A 
priority higher than this implies custom hand-coded assembly routines that do not call 
general-purpose libraries. The following code can be used to disable priority 1 interrupts.

IPSET 1 ; save previous priority and set priority to 1

....critical section...

IPRES   ; restore previous priority

This code is safe if it is known that the code in the critical section does not have an embed-
ded critical section. If this code is nested, there is the danger of overflowing the IP register. 
A different version that can be nested is the following.

PUSH IP
IPSET 1  ; save previous priority and set priority to 1

....critical section...

POP IP   ; restore previous priority

The following instructions are also privileged.

LD A,xpc
LD xpc,a
BIT B,(HL)

3.5.5  Semaphores Using Bit B,(HL)

The bit B,(HL) instruction is privileged to allow the construction of a semaphore by the 
following code.

BIT B,(HL)   ; test a bit in the byte at (HL)
SET B,(HL)   ; make sure bit set, does not affect flag
; if zero flag set the semaphore belongs to us;
; otherwise someone else has it

A semaphore is used to gain control of a resource that can only belong to one task or pro-
gram at a time. This is done by testing a bit to see if it is on, in which case someone else is 
using the resource, otherwise setting the bit to indicate ownership of the resource. No 
interrupt can be allowed between the test of the bit and the setting of the bit as this might 
allow two different program to both think they own the resource.
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3.5.6  Computed Long Calls and Jumps

The instruction to set the XPC is privileged to so that a computed long call or jump can be 
made. This would be done by the following sequence.

LD xpc,a
JP (HL)

In this case, A has the new XPC, and HL has the new PC. This code should normally be 
executed in the root segment so as not to pull the memory out from under the JP (HL) 
instruction.

A call to a computed address can be performed by the following code.

; A=xpc, IY=address
; 
   LD A,newxpc
   LD IY,newaddress
   LCALL DOCALL   ; call utility routine in the root
;
; The DOCALL routine
DOCALL:
   LD xpc,a  ; SET xpc
   JP (IY)     ; go to the routine
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4.  RABBIT CAPABILITIES

This chapter describes the various capabilities of the Rabbit that
may not be obvious from the technical description.

4.1  Precisely Timed Output Pulses

The Rabbit can output precise pulses under software control. The effect of interrupt latency 
is avoided because the interrupt always prepares a future pulse edge that is clocked into 
the output registers on the next clock. This is shown in Figure 4-1.

Figure 4-1.  Timed Output Pulses

The timer output in Figure 4-1 is periodic. As long as the interrupt routine can be com-
pleted during one timer period, an arbitrary pattern of synchronous pulses can be output 
from the parallel port.

The interrupt latency depends on the priority of the interrupt and the amount of time that 
other interrupt routines of the same or higher priority inhibit interrupts. The first instruc-
tion of the interrupt routine will start executing within 30 clocks of the interrupt request 
for the highest priority interrupt routine. This includes 19 clocks for the longest instruction 
to complete execution and 10 clocks for the interrupt to execute. Pushing registers requires 
10–12 clocks per 16-bit register. Popping registers requires 7–9 clocks. Return from inter-
rupt requires 7 clocks. If three registers are saved and restored, and 20 instructions averag-
ing 5 clocks are executed, an entire interrupt routine will require about 200 clocks, or 10 
µs with a 20 MHz clock. Given this timing, the following capabilities become possible.
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Pulse width modulated outputs—The minimum pulse width is 10 µs. If the repetition rate 
is 10 ms, then a new pulse with 1000 different widths can be generated at the rate of 100 
times per second.

Asynchronous communications serial output—Asynchronous output data can be gener-
ated with a new pulse every 10 µs. This corresponds to a baud rate of 100,000 bps.

Asynchronous communications serial input—To capture asynchronous serial input, the 
input must be polled faster than the baud rate, a minimum of three times faster, with five 
times being better. If five times polling is used, then asynchronous input at 20,000 bps 
could be received.

Generating pulses with precise timing relationships—The relationship between two events 
can be controlled to within 10 µs to 20 µs.

Using a timer to generate a periodic clock allows events to be controlled to a precision of 
approximately 10 µs. However, if Timer B is used to control the output registers, a preci-
sion approximately 100 times better can be achieved. This is because Timer B has a match 
register that can be programmed to generate a pulse at a specified future time. The match 
register has two cascaded registers, the match register and the next match register. The 
match register is loaded with the contents of the next match register when a pulse is gener-
ated. This allows events to be very close together, one count of Timer B. Timer B can be 
clocked by sysclk/2 divided by a number in the range of 1–256. Timer B can count as fast 
as 10 MHz with a 20 MHz system clock, allowing events to be separated by as little as 100 
ns. Timer B and the match registers have 10 bits.

Using Timer B, output pulses can be positioned to an accuracy of clk/2. Timer B can also 
be used to capture the time at which an external event takes place in conjunction with the 
external interrupt line. The interrupt line can be programmed to interrupt on either rising, 
falling or both edges. To capture the time of the edge, the interrupt routine can read the 
Timer B counter. The execution time of the interrupt routine up to the point where the 
timer is read can be subtracted from the timer value. If no other interrupt is of the same or 
higher priority, then the uncertainty in the position of the edge is reduced to the variable 
time of the interrupt latency, or about one-half the execution time of the longest instruc-
tion. This uncertainty is approximately 10 clocks, or 0.5 µs for a 20 MHz clock. This 
enables pulse width measurements for pulses of any length, with a precision of about 1 µs. 
If multiple pulses need to be measured simultaneously, then the precision will be reduced, 
but this reduction can be minimized by careful programming.

4.1.1  Pulse Width Modulation to Reduce Relay Power 

Typically relays need far less current to hold them closed than is needed to initially close 
them. For example, if the driver is switched to a 75% duty cycle using pulse width modu-
lation after the initial period when the relay armature is picked, the holding current will be 
approximately 75% of the full duty-cycle current and the power consumption will be 
about 56% as great. 
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4.2  Open-Drain Outputs Used for Key Scan

The Parallel Port D outputs can be individually programmed to be open drain. This is use-
ful for scanning a switch matrix, as shown in Figure 4-2. A row is driven low, then the col-
umns are scanned for a low input line, which indicates a key is closed. This is repeated for 
each row. The advantage of using open-drain outputs is that if two keys in the same col-
umn are depressed, there will not be a fight between a driver driving the line high and 
another driver driving it low.

Figure 4-2.  Using Open-Drain Outputs for Key Scan
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4.3  Cold Boot

Most microprocessors start executing at a fixed address, often address zero, after a reset or 
power-on condition. The Rabbit has two mode pins (SMODE0, SMODE1—see Figure 5-
1). The logic state of these two pins determines the startup procedure after a reset. If both 
pins are grounded, then the Rabbit starts executing instructions at address zero. On reset, 
address zero is defined to be the start of the memory connected to the memory control 
lines /CS0, and /OE0. However, three other startup modes are available. These alternate 
methods all involve accepting a data stream via a communications port that is used to store 
a boot program in a RAM memory, which in turn can be used to start any further second-
ary boot process, such as downloading a program over the same communications port. 
(For a detailed description, see Section 7.11, “Bootstrap Operation.”) 

Three communication channels may be used for the bootstrap, either Serial Port A in asyn-
chronous mode at 2400 bps, Serial Port A in synchronous mode with an external clock, or 
the (parallel) slave port.

The cold-boot protocol accepts groups of three bytes that define an address and a data 
byte. Each triplet causes a write of the data byte to either memory or to internal I/O space. 
The high bit of the address is set to specify the I/O space, and thus writes are limited to the 
first 32K of either space. The cold boot is terminated by a store to an address in I/O space, 
which causes execution to begin at address zero. Since any memory chip can be remapped 
to address zero by storing in the I/O space, RAM can be temporarily be mapped to zero to 
avoid having to deal with the more complicated write protocol of flash memory, which is 
the usual default memory located at address zero.

The following are the advantages of the cold-boot capability.

• Flash memory can be soldered to the microprocessor board and programmed via a 
serial port or a parallel port. This avoids having to socket the part or program it with a 
BIOS or boot program before soldering.

• Complete reprogramming of the flash memory can be accomplished in the field. This is 
particularly useful during software development when the development platform can 
perform a complete reload of software regardless of the state of the existing software in 
the processor. The standard programming cable for Dynamic C allows the development 
platform to reset and cold boot the target, a Rabbit-based microprocessor board.

• If the Rabbit is used as a slave processor, the master processor can cold boot it over via 
the slave port. This means the slave can operate without any nonvolatile memory. Only 
RAM is required.
52 Rabbit 2000 Microprocessor



4.4  The Slave Port

The slave port allows a Rabbit to act as a slave to another processor, which can also be a 
Rabbit. The slave has to have only a processor chip, a RAM chip, and clock and reset sig-
nals that can be supplied by the master. The master can cold boot and download a program 
to the slave. The master does not have to be a Rabbit processor, but can be any type of pro-
cessor capable of reading and writing standard registers.

For a detailed description, see Chapter 13, “Rabbit Slave Port.”

The slave processor’s slave port is connected to the master processor’s data bus. Commu-
nication between the master and the slave takes place via three registers, implemented in 
the Rabbit, for each direction of communication, for a total of six data registers. In addi-
tion, there is a slave port status register that can be read by either the master or the slave 
(see Figure 13-1). Two slave address lines are used by the master to select the register to 
be read or written. The registers that carry data from the master to the slave appear as write 
registers to the master and as read registers to the slave. The registers that operate in the 
opposite direction appear as read registers to the master and as write registers to the slave. 
These registers appear as read-write registers on both sides, but are not true read-write reg-
isters since different data may be read from what is written. The master provides the clock 
or strobe to store data in the three write registers under its control. The master also can do 
a write to the status register, which is used as a signaling device and does not actually 
write to the status register. The three registers that the master can write appear as read reg-
isters to the slave Rabbit. The master provides an enable strobe to read the three read data 
registers and the status register. These registers are write registers to the Rabbit.

The first register or the three pairs of registers is special in that writing can interrupt the 
other processor in the master-slave communications link. An output line from the slave is 
asserted when the slave writes to slave register zero. This line can be used to interrupt the 
master. Internal circuits in the slave can be setup up to interrupt the slave when the master 
writes to slave register zero.

The status register that is available to both sides keeps score on all the registers and reports 
if a potential interrupt is requested by either side. The status register keeps track of the 
"full-empty" status of each register. A register is considered full when one side of the link 
writes to it. It becomes empty if the other side reads it. In this way either side can test if the 
other side has modified a register or whether either side has even stored the same informa-
tion to a register. 

The master-slave communication link makes possible "set and forget" communication 
protocols. Either side can issue a command or request by storing data in some register and 
then go about its business while the other side takes care of the request according to its 
own time schedule. The other side can be alerted by an interrupt that takes place when a 
store is made to register zero, or it can alert itself by a periodic poll of the status register.
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Of the three registers seen by each side for each direction of communication, the first reg-
ister, slave register zero, has a special function because an interrupt can only be generated 
by a write to this register, which then causes an interrupt to take place on the other side of 
the link if the interrupt is enabled. One type of protocol is to store data first in registers 1 
and 2, and then as the last step store to register 0. Then 24 bits of data will be available to 
the interrupt routine on the other side of the link.

Bulk data transfers across the link can take place by an interrupt for each byte transferred, 
similar to a typical serial port or UART. In this case, a full-duplex transfer can take place, 
similar to what can be done with a UART. The overhead for such an interrupt-driven trans-
fer will be on the order of 100 clocks per byte transferred, assuming a 20-instruction inter-
rupt routine. (To keep the interrupt routine to 20 instructions, the interrupt routine needs to 
be very focused as opposed to general purpose.) Several methods are available to cater to 
a faster transfer with less computing overhead. There are enough registers to transfer two 
bytes on each interrupt, thus nearly halving the overhead. If a rendezvous is arranged 
between the processors, data can be transferred at approximately 25 clocks per byte. Each 
side polls the status register waiting for the other side to read/write a data register, which is 
then written/read again by the other side.

4.4.1  Slave Rabbit As A Protocol UART

A prime application for the Rabbit used as a slave is to create a 4-port UART that can also 
handle the details of a communication protocol. The master sends and receives messages 
over the slave port. Error correction, retransmission, etc., can be handled by the slave.
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5.  PIN ASSIGNMENTS AND FUNCTIONS
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5.1  LQFP Package

5.1.1  Pinout

Rabbit 3000 (AT56C55-IL1T, IL2T)
128-pin Low-Profile Quad Flat Pack (LQFP)
14 × 14 Body, 0.4 mm pitch

Figure 5-1.  Package Outline and Pin Assignments
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5.1.2  Mechanical Dimensions and Land Pattern

Figure 5-2 shows the mechanical dimensions of the Rabbit 3000 LQFP package.

Figure 5-2.  Mechanical Dimensions Rabbit LQFP Package
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Figure 5-3 shows the PC board land pattern for the Rabbit 3000 chip in a 128-pin LQFP 
package. This land pattern is based on the IPC-SM-782 standard developed by the Surface 
Mount Land Patterns Committee and specified in Surface Mount Design and Land Pat-
tern Standard, IPC, Northbrook, IL, 1999.

Figure 5-3.  PC Board Land Pattern for Rabbit 3000 128-pin LQFP
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5.2  Ball Grid Array  Package

5.2.1  Pinout

Rabbit 3000 (AT56C55-IZ1T, IZ2T)
128-pin Thin Map Ball Grid Array (TFBGA)
10 × 10 Body, 0.8 mm pitch

Figure 5-4.  Ball Grid Array Pinout Looking Through the Top of Package
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5.2.2  Mechanical Dimensions and Land Pattern

The design considerations in Table 5-3 are based on 5 mil design rules and assume a single 
conductor between solder lands.

Table 5-2.  Ball and Land Size Dimensions

Nominal Ball 
Diameter

(mm)

Tolerance 
Variation

(mm)

Ball Pitch
(mm)

Nominal Land 
Diameter

(mm)

Land 
Variation 

(mm)

0.3 0.35–0.25 0.8 0.25 0.25–0.20

Table 5-3.  Design Considerations
(all dimensions in mm)

Key Feature Recommendation

A Solder Land Diameter 0.254 (0.010)

B NSMD Defined Land Diameter 0.406 (0.016)

C Land  to Mask Clearance (min.) 0.050 (0.002)

D Conductor Width (max.) 0.127 (0.005)

E Conductor Spacing (typ.) 0.127 (0.005)

F Via Capture Pad (max.) 0.406 (0.016)

G Via Drill Size (max.) 0.254 (0.010)
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Figure 5-5.  BGA Package Outline
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5.3  Rabbit Pin Descriptions

Table 5-1 lists all the pins on the device, along with their direction, function, and pin num-
ber on the package.

Table 5-1.  Rabbit Pin Descriptions

Pin Group Pin Name Direction Function
Pin 

Numbers 
LQFP

Pin 
Numbers 
TFBGA

Hardware CLK Output Internal Clock 2 B1

CLK32K Input 32 kHz Oscillator In 49 L6

/RESET Input Master Reset 46 M5

RESOUT Output Reset Output 50 M6

XTALA1 Input Main Oscillator In 113 B7

XTALA2 Output Main Oscillator Out 114 A7

CPU Buses ADDR[19:0] Output Address Bus various

DATA[7:0] Bidirectional Data Bus
10–15, 18–
19

D4, E1–E4, 
F1, F4, G0

Status/Control /WDTOUT Output WDT Time-Out 43 J5

STATUS Output
Instruction Fetch First 
Byte

4 C1

SMODE[1:0] Input Bootstrap Mode Select 44, 45 K5, L5

Memory Chip 
Selects

/CS0 Output Memory Chip Select 0 7 D1

/CS1 Output Memory Chip Select 1 47 J6

/CS2 Output Memory Chip Select 2 3 B2

Memory 
Output 
Enables

/OE0 Output Memory Output Enable 0 5 C2

/OE1 Output Memory Output Enable 1 95 C12

Memory 
Write Enables

/WE0 Output Memory Write Enable 0 86 F9

/WE1 Output Memory Write Enable 1 99 B11

I/O Control /BUFEN Output I/O Buffer Enable 42 M4

/IORD Output I/O Read Enable 41 L4

/IOWR Output I/O Write Enable 40 K4

I/O ports PA[7:0] Input / Output I/O Port A 111–104
D7, A8, B8, 
C8, D8, A9, 
B9, C9
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I/O ports 
(continued) PB[7:0] Input / Output I/O Port B 123–116

C4, A5, B5, 
C5, D5, A6, 
B6, C6

PC[7:0] 4 In / 4 Out I/O Port C
66–71, 74, 
75

L11, M11, 
M12, L12, 
K12, K11, 
J10, H12

PD[7:0] Input / Output I/O Port D 52–59
K7, L7, M7, 
J8, K8, L8, 
M8, J9

PE[7:0] Input / Output I/O Port E
26–31, 34, 
35

H4, J1–J4, 
K1, L1–L2

PF[7:0] Input / Output I/O Port F
127–124, 
103–100

A3, B3, A4, 
B4, A10, 
B10, A11, 
A12

PG[7:0] Input / Output I/O Port G
36–38, 60–
63

M1, M2, L3, 
M3, K9, L9, 
M9, K10

Power, 
processor core

VDDCORE +3.3 V
8, 24, 72, 
88

D2, E11, H2, 
J12

Power 
Processor I/O 
Ring

VDDIO +3.3 V
1, 17, 33, 
65, 81, 97, 
115 

A1, C10, D6, 
F3, G10, K3, 
M10

Power Battery 
Backup

VBAT +3.3 V or battery 51 J7

Ground 
Processor 
Core

VSSCORE Ground
9, 25, 73, 
89

D3, E10, H3, 
J11

Ground 
Processor I/O 
Ring

VSSIO Ground
16, 32, 48, 
64, 80, 96, 
112, 128

A2, C7, C11, 
F2, G11, K2, 
K6, L10

Table 5-1.  Rabbit Pin Descriptions (continued)

Pin Group Pin Name Direction Function
Pin 

Numbers 
LQFP

Pin 
Numbers 
TFBGA
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5.4  Bus Timing

The external bus has essentially the same timing for memory cycles or I/O cycles. A mem-
ory cycle begins with the chip select and the address lines. One clock later, the output 
enable is asserted for a read. The output data and the write enable are asserted for a write.

Figure 5-6.  Bus Timing Read and Write

In some cases, the timing shown in Figure 5-6 may be prefixed by a false memory access 
during the first clock, which is followed by the access sequence shown in Figure 5-6. In 
this case, the address and often the chip select will change values after one clock and 
assume the final values for the memory to be actually accessed. Output enable and write 
enable are always delayed by one clock from the time the final, stable address and chip 
select are enabled. Normally the false memory access attempts to start another instruction 
access cycle, which is aborted after one clock when the processor realizes that a read data 
or write data bus cycle is needed. The user should not attempt a design that uses the chip 
select or a memory address as a clock or state changing signal without taking this into con-
sideration.

Address (20 for memory, 16 for I/O)

T1 Tw T2

/IOCSn or /CSn

Data for read

valid

/OEn or /IORD and /BUFEN (/BUFEN rd or wr)

Data for write 3-s drive starts at end of T1

/WEn or /IOWR

Notes: 
Read may have no wait states.
Write cycles and I/O read cycles have at least 1 wait state. Clock 
may be asymmetric if clock doubler used. I/O chip select available 
on port E as option.
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5.5  Description of Pins with Alternate Functions

Table 5-2.  Pins With Alternate Functions

Pin Name Output Function Input Function Input Capture Option

PA[7:0] SLAVE D[7:0], ID[7:0] SLAVE D[7:0], ID[7:0]

PB7 SLAVEATTN, IA5

PB6 IA4 /ASCS*

PB5 IA3 SD1

PB4 IA2 SD0

PB3 IA1 /SRD

PB2 IA0 /SWR

PB1 CLKA CLKA

PB0 CLKB CLKB

PC7 n/a RXA yes

PC6 TXA n/a

PC5 n/a RXB yes

PC4 TXB n/a

PC3 n/a RXC yes

PC2 TXC n/a

PC1 n/a RXD yes

PC0 TXD n/a

PD7 APWM3* ARXA yes

PD6 ATXA

PD5 APWM2* ARXB yes

PD4 ATXB

PD3 yes

PD2

PD1 yes

PD0

PE7 I7 /SCS (slave chip select)

PE6 I6

PE5 I5 INT1B

PE4 I4 INT0B

PE3 I3

PE2 I2

PE1 I1 INT1A

PE0 I0 INT0A
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PF7 PWM3 AQD2A yes

PF6 PWM2 AQD2B

PF5 PWM1 AQD1A yes

PF4 PWM0 AQD1B

PF3 QD2A yes

PF2 QD2B

PF1 CLKC QD1A, CLKC yes

PF0 CLKD QD1B, CLKD

PG7 APWM1* RXE yes

PG6 TXE

PG5 RCLKE RCLKE, ARXE* yes

PG4 TCLKE TCLKE, ARCLKE*

PG3 APWM0* RXF

PG2 TXF

PG1 RCLKF RCLKF, ARXF*

PG0 TCLKF TCLKF, ARCLKF*

* Introduced with Rabbit 3000A chip

Table 5-2.  Pins With Alternate Functions (continued)

Pin Name Output Function Input Function Input Capture Option
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The alternate output functions identified in Table 5-2 are configured by setting the appro-
priate bits in the Paralle Port x Function Register.

Table 5-3.  Parallel Port x Alternate Functions

Parallel Port x Function Register (PCFR) (Address = 0x0055h)
(PDFR) (Address = 0x0065h)
(PEFR) (Address = 0x0075h)
(PFFR) (Address = 0x003Dh)
(PGFR) (Address = 0x004Dh)

Bit(s) Value Description

7:0

0 The corresponding port bit functions normally.

1

The corresponding port bit carries its alternate signal as an output. See Table 5-4 
below. Only the bits that have alternate functions listed in Table 5-4 actually have 
a control bit in these registers. That is, there are four in Port C, four in Port D, 
eight in Port E, four in Port F, and eight in Port G.

Table 5-4.  Parallel Port x Alternate Functions Control Bits

Alternate Output Function

Bit Port B Port C Port D Port E Port F Port G

7 /SLAVEATTN, IA5 APWM3 I7 PWM3 APWM1

6 IA4 TXA ATXA I6 PWM2 TXE

5 IA3 APWM2 I5 PWM1 RCLKE

4 IA2 TXB ATXB I4 PWM0 TCLKE

3 IA1 I3 APWM0

2 IA0 TXC I2 TXF

1 CLKA I1 CLKC RCLKF

0 CLKB TXD I0 CLKD TCLKF
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5.6  DC Characteristics

Stresses beyond those listed in Table 5-5 may cause permanent damage. The ratings are 
stress ratings only, and functional operation of the Rabbit 3000 chip at these or any other 
conditions beyond those indicated in this section is not implied. Exposure to the absolute 
maximum rating conditions for extended periods may affect the reliability of the Rabbit 
3000 chip.

Table 5-6 outlines the DC characteristics for the Rabbit 3000 at 3.3 V over the recom-
mended operating temperature range from TA = –55°C to +85°C, VDD = 3.0 V to 3.6 V.

Table 5-5.  Rabbit 3000 Absolute Maximum Ratings

Symbol Parameter Maximum Rating

TA Operating Temperature -55° to +85°C

TS Storage Temperature -65° to +150°C

Maximum Input Voltage:

• Oscillator Buffer Input

• 5-V-tolerant I/O

VDD + 0.5 V

5.5 V

VDD Maximum Operating Voltage 3.6 V

Table 5-6.  3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ Max Units

VDD Supply Voltage 3.0 3.3 3.6 V

VIH High-Level Input Voltage 2.0 V

VIL Low-Level Input Voltage 0.8 V

VOH High-Level Output Voltage
IOH = 6.8 mA,
VDD = VDD (min)

0.7 × 
VDD

V

VOL Low-Level Output Voltage
IOL = 6.8 mA,
VDD = VDD (min)

0.4 V

IIH
High-Level Input Current
(absolute worst case, all buffers)

VIN = VDD,
VDD = VDD (max)

10 µA

IIL
Low-Level Input Current
(absolute worst case, all buffers)

VIN = VSS,

VDD = VDD (max)
-10 µA

IOZ

High-Impedance State 
Output Current
(absolute worst case, all buffers)

VIN = VDD or VSS,

VDD = VDD (max), no pull-up
-10 10 µA
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5.7  I/O Buffer Sourcing and Sinking Limit

Unless otherwise specified, the Rabbit I/O buffers are capable of sourcing and sinking 
6.8 mA of current per pin at full AC switching speeds. The limits are related to the maxi-
mum sustained current permitted by the metallization on the die.
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6.  RABBIT INTERNAL I/O REGISTERS
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Table 6-1.  Rabbit 3000 Peripherals and Interrupt Service Vectors

On-Chip Peripheral ISR Starting Address

System Management {IIR[7:1], 0, 0x00}

Memory Management No interrupts

Slave Port {IIR[7:1], 0, 0x80}

Parallel Port A No interrupts

Parallel Port F No interrupts

Parallel Port B No interrupts

Parallel Port G No interrupts

Parallel Port C No interrupts

Input Capture {IIR[7:1], 1, 0xA0}

Parallel Port D No interrupts

Parallel Port E No interrupts

External I/O Control No interrupts

Pulse Width Modulator No interrupts

Quadrature Decoder {IIR[7:1], 1, 0x90}

External Interrupts
INT0 {EIR,  0x00}

INT1 {EIR,  0x10}

Timer A {IIR[7:1], 0, 0xA0}

Timer B {IIR[7:1], 0, 0xB0}

Serial Port A (async/cks) {IIR[7:1], 0, 0xC0}

Serial Port E (async/hdlc) {IIR[7:1], 1, 0xC0}

Serial Port B (async/cks) {IIR[7:1], 0, 0xD0}

Serial Port F (async/hdlc) {IIR[7:1], 1, 0xD0}

Serial Port C (async/cks) {IIR[7:1], 0, 0xE0}

Serial Port D (async/cks) {IIR[7:1], 0, 0xF0}

RST 10 instruction {IIR[7:1], 0, 0x20}

RST 18 instruction {IIR[7:1], 0, 0x30}

RST 20 instruction {IIR[7:1], 0, 0x40}

RST 28 instruction {IIR[7:1], 0, 0x50}

RST 38 instruction {IIR[7:1], 0, 0x70}
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6.1  Default Values for all the Peripheral Control Registers

The default values for all of the peripheral control registers are shown in Table 6-2. The 
registers within the CPU affected by reset are the Stack Pointer (SP), the Program Counter 
(PC), the IIR register, the EIR register, and the IP register. The IP register is set to all ones 
(disabling all interrupts), while all of the other listed CPU registers are reset to all zeros.

Table 6-2.  Rabbit Internal I/O Registers

Register Name Mnemonic I/O Address R/W Reset

Global Control/Status Register GCSR 0x00 R/W 11000000

Global Clock Modulator 0 Register GCM0R 0x0A W 00000000

Global Clock Modulator 1 Register GCM1R 0x0B W 00000000

Breakpoint/Debug Control Register BDCR 0x0C W 0xxxxxxx

Global Power Save Control Register GPSCR 0x0D W 0000x000

Global Output Control Register GOCR 0x0E W 00000000

Global Clock Double Register GCDR 0x0F W 00000000

MMU Instruction/Data Register MMIDR 0x10 R/W 00000000

MMU Common Base Register STACKSEG 0x11 R/W 00000000

MMU Bank Base Register DATASEG 0x12 R/W 00000000

MMU Common Bank Area Register SEGSIZE 0x13 R/W 11111111

Memory Bank 0 Control Register MB0CR 0x14 W 00001000

Memory Bank 1 Control Register MB1CR 0x15 W xxxxxxxx

Memory Bank 2 Control Register MB2CR 0x16 W xxxxxxxx

Memory Bank 3 Control Register MB3CR 0x17 W xxxxxxxx

MMU Expanded Code Register MECR 0x18 R/W xxxxx000

Memory Timing Control Register MTCR 0x19 W xxxx0000

Slave Port Data 0 Register SPD0R 0x20 R/W xxxxxxxx

Slave Port Data 1 Register SPD1R 0x21 R/W xxxxxxxx

Slave Port Data 2 Register SPD2R 0x22 R/W xxxxxxxx

Slave Port Status Register SPSR 0x23 R 00000000

Slave Port Control Register SPCR 0x24 R/W 0xx00000

Global ROM Configuration Register GROM 0x2C R 0xx00000

Global RAM Configuration Register GRAM 0x2D R 0xx00000

Global CPU Configuration Register GCPU 0x2E R 0xx00001
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Global Revision Register GREV 0x2F R 0xx00000

Port A Data Register PADR 0x30 R/W xxxxxxxx

Port B Data Register PBDR 0x40 R/W 00xxxxxx

Port B Data Direction Register PBDDR 0x47 W 11000000

Port C Data Register PCDR 0x50 R/W x0x1x1x1

Port C Function Register PCFR 0x55 W x0x0x0x0

Port D Data Register PDDR 0x60 R/W xxxxxxxx

Port D Control Register PDCR 0x64 W xx00xx00

Port D Function Register PDFR 0x65 W xxxxxxxx

Port D Drive Control Register PDDCR 0x66 W xxxxxxxx

Port D Data Direction Register PDDDR 0x67 W 00000000

Port D Bit 0 Register PDB0R 0x68 W xxxxxxxx

Port D Bit 1 Register PDB1R 0x69 W xxxxxxxx

Port D Bit 2 Register PDB2R 0x6A W xxxxxxxx

Port D Bit 3 Register PDB3R 0x6B W xxxxxxxx

Port D Bit 4 Register PDB4R 0x6C W xxxxxxxx

Port D Bit 5 Register PDB5R 0x6D W xxxxxxxx

Port D Bit 6 Register PDB6R 0x6E W xxxxxxxx

Port D Bit 7 Register PDB7R 0x6F W xxxxxxxx

Port E Data Register PEDR 0x70 R/W xxxxxxxx

Port E Control Register PECR 0x74 W xx00xx00

Port E Function Register PEFR 0x75 W 00000000

Port E Data Direction Register PEDDR 0x77 W 00000000

Port E Bit 0 Register PEB0R 0x78 W xxxxxxxx

Port E Bit 1 Register PEB1R 0x79 W xxxxxxxx

Port E Bit 2 Register PEB2R 0x7A W xxxxxxxx

Port E Bit 3 Register PEB3R 0x7B W xxxxxxxx

Port E Bit 4 Register PEB4R 0x7C W xxxxxxxx

Port E Bit 5 Register PEB5R 0x7D W xxxxxxxx

Port E Bit 6 Register PEB6R 0x7E W xxxxxxxx

Table 6-2.  Rabbit Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
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Port E Bit 7 Register PEB7R 0x7F W xxxxxxxx

Port F Data Register PFDR 0x38 R/W xxxxxxxx

Port F Control Register PFCR 0x3C W xx00xx00

Port F Function Register PFFR 0x3D W xxxxxxxx

Port F Drive Control Register PFDCR 0x3E W xxxxxxxx

Port F Data Direction Register PFDDR 0x3F W 00000000

Port G Data Register PGDR 0x48 R/W xxxxxxxx

Port G Control Register PGCR 0x4C W xx00xx00

Port G Function Register PGFR 0x4D W xxxxxxxx

Port G Drive Control Register PGDCR 0x4E W xxxxxxxx

Port G Data Direction Register PGDDR 0x4F W 00000000

Input Capture Ctrl/Status Register ICCSR 0x56 R/W 00000000

Input Capture Control Register ICCR 0x57 W xxxxxx00

Input Capture Trigger 1 Register ICT1R 0x58 W 00000000

Input Capture Source 1 Register ICS1R 0x59 W xxxxxxxx

Input Capture LSB 1 Register ICL1R 0x5A R xxxxxxxx

Input Capture MSB 1 Register ICM1R 0x5B R xxxxxxxx

Input Capture Trigger 2 Register ICT2R 0x5C W 00000000

Input Capture Source 2 Register ICS2R 0x5D W xxxxxxxx

Input Capture LSB 2 Register ICL2R 0x5E R xxxxxxxx

Input Capture MSB 2 Register ICM2R 0x5F R xxxxxxxx

I/O Bank 0 Control Register IB0CR 0x80 W 000000xx

I/O Bank 1 Control Register IB1CR 0x81 W 000000xx

I/O Bank 2 Control Register IB2CR 0x82 W 000000xx

I/O Bank 3 Control Register IB3CR 0x83 W 000000xx

I/O Bank 4 Control Register IB4CR 0x84 W 000000xx

I/O Bank 5 Control Register IB5CR 0x85 W 000000xx

I/O Bank 6 Control Register IB6CR 0x86 W 000000xx

I/O Bank 7 Control Register IB7CR 0x87 W 000000xx

PWM LSB 0 Register PWL0R 0x88 W xxxxxxxx

Table 6-2.  Rabbit Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
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PWM MSB 0 Register PWM0R 0x89 W xxxxxxxx

PWM LSB 1 Register PWL1R 0x8A W xxxxxxxx

PWM MSB 1 Register PWM1R 0x8B W xxxxxxxx

PWM LSB 2 Register PWL2R 0x8C W xxxxxxxx

PWM MSB 2 Register PWM2R 0x8D W xxxxxxxx

PWM LSB 3 Register PWL3R 0x8E W xxxxxxxx

PWM MSB 3 Register PWM3R 0x8F W xxxxxxxx

Quad Decode Ctrl/Status Register QDCSR 0x90 R/W xxxxxxxx

Quad Decode Control Register QDCR 0x91 W 00xx0000

Quad Decode Count 1 Register QDC1R 0x94 R xxxxxxxx

Quad Decode Count 2 Register QDC2R 0x96 R xxxxxxxx

Interrupt 0 Control Register I0CR 0x98 W xx000000

Interrupt 1 Control Register I1CR 0x99 W xx000000

Real Time Clock Control Register RTCCR 0x01 W 00000000

Real Time Clock Byte 0 Register RTC0R 0x02 R/W xxxxxxxx

Real Time Clock Byte 1 Register RTC1R 0x03 R xxxxxxxx

Real Time Clock Byte 2 Register RTC2R 0x04 R xxxxxxxx

Real Time Clock Byte 3 Register RTC3R 0x05 R xxxxxxxx

Real Time Clock Byte 4 Register RTC4R 0x06 R xxxxxxxx

Real Time Clock Byte 5 Register RTC5R 0x07 R xxxxxxxx

Timer A Control/Status Register TACSR 0xA0 R/W 00000000

Timer A Prescale Register TAPR 0xA1 W xxxxxxx1

Timer A Time Constant 1 Register TAT1R 0xA3 W xxxxxxxx

Timer A Control Register TACR 0xA4 W 00000000

Timer A Time Constant 2 Register TAT2R 0xA5 W xxxxxxxx

Timer A Time Constant 8 Register TAT8R 0xA6 W xxxxxxxx

Timer A Time Constant 3 Register TAT3R 0xA7 W xxxxxxxx

Timer A Time Constant 9 Register TAT9R 0xA8 W xxxxxxxx

Timer A Time Constant 4 Register TAT4R 0xA9 W xxxxxxxx

Timer A Time Constant 10 Register TAT10R 0xAA W xxxxxxxx

Table 6-2.  Rabbit Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
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Timer A Time Constant 5 Register TAT5R 0xAB W xxxxxxxx

Timer A Time Constant 6 Register TAT6R 0xAD W xxxxxxxx

Timer A Time Constant 7 Register TAT7R 0xAF W xxxxxxxx

Timer B Control/Status Register TBCSR 0xB0 R/W xxxxx000

Timer B Control Register TBCR 0xB1 W xxxx0000

Timer B MSB 1 Register TBM1R 0xB2 W xxxxxxxx

Timer B LSB 1 Register TBL1R 0xB3 W xxxxxxxx

Timer B MSB 2 Register TBM2R 0xB4 W xxxxxxxx

Timer B LSB 2 Register TBL2R 0xB5 W xxxxxxxx

Timer B Count MSB Register TBCMR 0xBE R xxxxxxxx

Timer B Count LSB Register TBCLR 0xBF R xxxxxxxx

Serial Port A Data Register SADR 0xC0 R/W xxxxxxxx

Serial Port A Address Register SAAR 0xC1 R/W xxxxxxxx

Serial Port A Long Stop Register SALR 0xC2 R/W xxxxxxxx

Serial Port A Status Register SASR 0xC3 R 0xx00000

Serial Port A Control Register SACR 0xC4 W xx000000

Serial Port A Extended Register SAER 0xC5 W 00000000

Serial Port B Data Register SBDR 0xD0 R/W xxxxxxxx

Serial Port B Address Register SBAR 0xD1 R/W xxxxxxxx

Serial Port B Long Stop Register SBLR 0xD2 R/W xxxxxxxx

Serial Port B Status Register SBSR 0xD3 R 0xx00000

Serial Port B Control Register SBCR 0xD4 W xx000000

Serial Port B Extended Register SBER 0xD5 W 00000000

Serial Port C Data Register SCDR 0xE0 R/W xxxxxxxx

Serial Port C Address Register SCAR 0xE1 R/W xxxxxxxx

Serial Port C Long Stop Register SCLR 0xE2 R/W xxxxxxxx

Serial Port C Status Register SCSR 0xE3 R 0xx00000

Serial Port C Control Register SCCR 0xE4 W xx000000

Serial Port C Extended Register SCER 0xE5 W 00000000

Serial Port D Data Register SDDR 0xF0 R/W xxxxxxxx

Table 6-2.  Rabbit Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
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Serial Port D Address Register SDAR 0xF1 R/W xxxxxxxx

Serial Port D Long Stop Register SDLR 0xF2 R/W xxxxxxxx

Serial Port D Status Register SDSR 0xF3 R 0xx00000

Serial Port D Control Register SDCR 0xF4 W xx000000

Serial Port D Extended Register SDER 0xF5 W 00000000

Serial Port E Data Register SEDR 0xC8 R/W xxxxxxxx

Serial Port E Address Register SEAR 0xC9 R/W xxxxxxxx

Serial Port E Long Stop Register SELR 0xCA R/W xxxxxxxx

Serial Port E Status Register SESR 0xCB R 0xx00000

Serial Port E Control Register SECR 0xCC W xx000000

Serial Port E Extended Register SEER 0xCD W 00000000

Serial Port F Data Register SFDR 0xD8 R/W xxxxxxxx

Serial Port F Address Register SFAR 0xD9 R/W xxxxxxxx

Serial Port F Long Stop Register SFLR 0xDA R/W xxxxxxxx

Serial Port F Status Register SFSR 0xDB R 0xx00000

Serial Port F Control Register SFCR 0xDC W xx000000

Serial Port F Extended Register SFER 0xDD W 00000000

Watchdog Timer Control Register WDTCR 0x08 W 00000000

Watchdog Timer Test Register WDTTR 0x09 W 00000000

Table 6-2.  Rabbit Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
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7.  MISCELLANEOUS FUNCTIONS

7.1  Processor Identification

Four read-only registers are provided to allow software to identify the Rabbit micropro-
cessor and recognize the features and capabilities of the chip. Five bits in each of these 
registers are unique to each version of the chip. One register is reserved for the on-chip 
flash memory configuration (GROM), one register is reserved for the on-chip RAM mem-
ory configuration (GRAM), one register identifies the CPU (GCPU), and the final register 
is reserved for revision identification (GREV).  The Rabbit 3000 does not contain on-chip 
SRAM or flash memories.

Table 7-1.  Global ROM Configuration Register

Global ROM Configuration Register (GROM) (Address = 0x2C)

Bit(s) Value Description

7 0 Program fetch as a function of the SMODE pins.

(read only) 1 Ignore the SMODE pins program fetch function.

6:5 read These bits  report the state of the SMODE pins.

4:0 00000 ROM identifier for this version of the chip.

Table 7-2.  Global RAM Configuration Register

Global RAM Configuration Register (GRAM) (Address = 0x2D)

Bit(s) Value Description

7 0 Program fetch as a function of the SMODE pins.

(read only) 1 Ignore the SMODE pins program fetch function.

6:5 read These bits  report the state of the SMODE pins.

4:0 00000 RAM identifier for this version of the chip.
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7.2  Rabbit Oscillators and Clocks

The Rabbit 3000 usually requires two separate clocks. The main clock normally drives the 
processor core and most of the peripheral devices, and the 32.768 kHz clock drives the 
battery-backable time-date clock and other circuitry.

Main Clock

An oscillator buffer is built into the Rabbit 3000 that may be used to implement the main 
processor oscillator (Figure 7-1). For lowest power an external oscillator may be substi-
tuted for the built-in oscillator circuit. An oscillator implemented using the built in buffer 
accepts crystals up to a frequency of 27 MHz (first overtone crystals only). This frequency 
may be then doubled by the clock doubler. The component values shown in the figure for 
the oscillator circuits are subject to adjustment depending on the crystal used and the oper-
ating frequency.

The Rabbit 3000 has a spectrum spreader unit that modifies the clock by shortening and 
lengthening clock cycles. The effect of this is to spread the spectral energy of the clock 
harmonics over a fairly wide range of frequencies. This limits the peak energy of the har-
monics and reduces EMI that may interfere with other devices as well as reducing the 
readings in government mandated EMI tests. The spectrum spreader has two operating 
modes, normal spreading and strong spreading. The spreader can also be turned off.

Table 7-3.  Global CPU Register

Global CPU Register (GCPU) (Address = 0x2E)

Bit(s) Value Description

7 0 Program fetch as a function of the SMODE pins.

(read only) 1 Ignore the SMODE pins program fetch function.

6:5 read These bits  report the state of the SMODE pins.

4:0 00001 CPU identifier for this version of the chip.

Table 7-4.  Global Revision Register

Global Revision Register (GREV) (Address = 0x2F)

Bit(s) Value Description

7 0 Program fetch as a function of the SMODE pins.

(read only) 1 Ignore the SMODE pins program fetch function.

6:5 read These bits  report the state of the SMODE pins.

4:0 00000 Revision identifier for this version of the chip.
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32.768 kHz Clock

The 32.768 kHz clock is primarily used to clock the on-chip real-time clock. In addition, it 
is also used to support remote cold boot via Serial Port A, driving the 2400 baud commu-
nications used to initiate the cold boot. Another function of the 32.768 kHz oscillator is to 
drive the low power sleepy mode with the main oscillator shut down to reduce power. The 
32.768 kHz clock can be left out of a system provided that its functions are not required.

Figure 7-1.  Clock Distribution

TN235, External 32.768 kHz Oscillator Circuits, provides further information on oscilla-
tor circuits and selecting the values of components to use in the oscillator circuit.
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Table 7-5.  Global Control/Status Register (I/O adr = 00h)

Global Control/Status Register (GCSR) (Address = 0x00)

Bit(s) Value Description

7:6
(rd-only)

00 No Reset or Watchdog Timer time-out since the last read.

01
The Watchdog Timer timed out. These bits are cleared by a read of this 
register.

10 This bit combination is not possible.

11 Reset occurred. These bits are cleared by a read of this register.

5
0 No effect on the Periodic interrupt. This bit will always be read as zero.

1 Force a Periodic interrupt to be pending.

4:2 xxx See table below for decode of this field.

1:0

00 Periodic interrupts are disabled.

01 Periodic interrupts use Interrupt Priority 1.

10 Periodic interrupts use Interrupt Priority 2.

11 Periodic interrupts use Interrupt Priority 3.

Table 7-6.  Clock Select Field of GCSR

Clock Select
Bits 4:2 GCSR

CPU Clock
Peripheral

Clock
Main

Oscillator

Power-Save CS 
if Enabled by 

GPSCR

000 osc/8 osc/8 on short CS option

001 osc/8 osc on short CS option

010 osc osc on none

011 osc/2 osc/2 on none

100 32 kHz or fraction 32 kHz or fraction on self-timed option

101 32 kHz or fraction 32 kHz or fraction off self-timed option

110 osc/4 osc/4 on short CS option

111 osc/6 osc/6 on short CS option
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7.3  Clock Doubler

The clock doubler is provided to allow a lower frequency crystal to be used for the main 
oscillator and to provide an added range of clock frequency adjustability. The clock dou-
bler uses an on-chip delay circuit that must be programmed by the user at startup if there is 
a need to double the clock.

When the clock doubler is used and there is no subsequent division of the clock, the output 
clock will be asymmetric, as shown in Figure 7-2. The doubled-clock low time is subject 
to wide (50%) variation since it depends on process parameters, temperature, and voltage. 
The times given above are for a supply voltage of 3.3 V and a temperature of 25°C. The 
doubled-clock low time increases by 20% when the voltage is reduced to 2.5 V, and 
increases by about 40% when the voltage is reduced further to 2.0 V. The values increase 
or decrease by 1% for each 5°C increase or decrease in temperature. The doubled clock is 
created by xor’ing the delayed and inverted clock with itself. If the original clock does not 
have a 50-50 duty cycle, then alternate clocks will have a slightly different length. Since 
the duty cycle of the built-in oscillator can be as asymmetric as 52-48, the clock generated 

Table 7-7.  Global Clock Double Register (GCDR, adr = 0fh)

Global Clock Double Register (GCDR) (Address = 0x0F)

Bit(s) Value Description

7:4 xxxx Reserved

3:0

0000 The clock doubler circuit is disabled.

0001 6 ns nominal low time (4-9) 55+ MHz processor clock speed

0010 7 ns nominal low time (4.2-10.5) 50-55 MHz

0011 8 ns nominal low time (4.8-12) 45-50 MHz

0100 9 ns nominal low time (6-13.5) 38-45 MHz

0101 10 ns nominal low time (6-15) 29-38 MHz

0110 11 ns nominal low time (6.6-16.5) 20-29 MHz

0111 12 ns nominal low time (7.2-18) less than 20 MHz

1000 13 ns nominal low time

1001 14 ns nominal low time

1010 15 ns nominal low time

1011 16 ns nominal low time

1100 17 ns nominal low time

1101 18 ns nominal low time

1110 19 ns nominal Low time.

1111 20 ns nominal Low time
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by the clock doubler will exhibit up to a 4% variation in period on alternate clocks. This 
does not affect the no-wait states memory access time since two adjacent clocks are 
always used. However, the maximum allowed clock speed must be slightly reduced if the 
clock is supplied via the clock doubler. The only signals clocked on the falling edge of the 
clock are the memory and I/O write pulses and the early option memory output enable. 
See Chapter 8 for more information on the early output enable and write enable options.

The spectrum spreader either stretches or shrinks the low plateau of the clock by a maxi-
mum of 3 ns for the normal spreading and 4.5 ns for the strong spreading. If the clock dou-
bler is used this will cause an additional asymmetry between alternate clock cycles.

Figure 7-2.  Effect of Clock Doubler
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The power consumption is proportional to the clock frequency, and for this reason power 
can be reduced by slowing the clock when less computing activity is taking place. The 
clock doubler provides a convenient method of temporarily speeding up or slowing down 
the clock as part of a power management scheme.
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7.4  Clock Spectrum Spreader

When enabled the spectrum spreader stretches and compresses the clocks in a complex 
pattern that results in spreading the energy in the clock harmonics over a wide range of 
frequencies. The spectrum spreader has a normal and a strong setting. With either setting 
the peak spectral strength of the clock harmonics is reduced by approximately 15 dB for 
frequencies above 100 MHz. For lower frequencies the strong spreading has a greater 
effect in reducing the peak spectral strength as shown in the figure below.

Figure 7-3.  Reduction in Peak Spectral Strength from Spectrum Spreader

In the normal spectrum spreading mode, the maximum shortening of the clock cycle is 3 
nanoseconds at 3.3 V and 25°C. In the strong spreading mode the maximum shortening of 
a clock cycle under the same conditions is 4.5 ns. The reduction in peak spectral strength 
is roughly independent of the clock frequency. Special precautions must be followed in 
setting the GCM0R and GCM1R registers (see Section 15.2, “Using the Clock Spectrum 
Spreader”).
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7.5  Chip Select Options for Low Power

Some types of flash memory and RAM consume power whenever the chip select is 
enabled even if no signals are changing. The chip select behavior of the Rabbit 3000 can 
be modified to reduce unnecessary power consumption when the Rabbit 3000 is running 
at a reduced clock speed. The short chip select option can be enabled when the processor 
clock is divided (by 4, 6, or 8) so as to run at a lower speed.

The short chip select option is exercised with clock select bits 4:2 of  the GCSR register as 
shown in Table 7-6. Whether the chip select is normal or short is then determined by 
whether bit 4 in the GPSCR register is 0 or 1.

When the short chip select option is enabled, the chip select delays turning on until the end 
of the of the memory cycle when it turns on for the last 2 undivided clocks. If the clock is 
divided by 6, the memory read cycle with no wait states would normally be 12 undivided 
clocks long. With the short chip select, the chip select is on for only 2/12 clocks for a 
memory duty cycle of 1/6. If wait states are added, the duty cycle is reduced even more. 
For example, if there is one wait state and the clock is divided by 6, the memory bus cycle 
will be 18 undivided clocks long and the duty cycle will be 2/18 = 1/9 with the short chip 
select option enabled.

When the short chip select option is enabled, the interrupt sequence will attempt to write 
the return address to the stack if an interrupt takes place immediately after an internal or 
an external I/O instruction. The chip select will be suppressed during the write cycle, and 
the correct return address will not be stored on the stack. This happens only when an inter-
rupt takes place immediately after an I/O instruction when the short chip select option is 
enabled. Therefore, when using the short chip select option, ensure that interrupts are dis-
abled during I/O instructions (or do not use short chip select). Interrupts can be disabled 
for a single I/O instruction as shown in the following example.

PUSH IP        ; save interrupt state
IPSET 3        ; interrupts off
IOE LD a,(hl)  ; typical I/O instruction
POP IP         ; reenable interrupts

When the 32.768 kHz clock is used as the main processor clock (sleepy mode) the mem-
ory duty cycle can be reduced by enabling a self-timed chip select mode. When the 
32.768 kHz clock is used, the clock period is approximately 32 µs, and a normal memory 
read cycle without wait states will be approximately 64 µs. No more than a few hundred 
nanoseconds are needed to read the memory. The main oscillator is normally shut down 
when operating at 32 kHz, and no faster clock is available to time out a short chip select 
cycle. To provide for a low-memory-duty cycle, a chip select and memory read can take 
place under control of a delay timer that is on the chip. The cycle starts at the start of the 
final 64 µs clock of the memory cycle and can be set to enable chip select for a period in 
the range of 70 to 200 ns. The data are clocked in early at the end of the delay-driven 
cycle. The chip select duty cycle is very small, about 0.2/128 = 1/600.
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When operating in the 32 kHz mode, it is also possible to further divide the clock to a fre-
quency as low as 2 kHz, further reducing execution speed and current consumption.

It is anticipated that these measures would reduce operating current consumption to as low as 
20 µA plus some additional leakage that would be significant at high operating temperatures.

Global Power Save Control Register (GPSCR) (Address = 0x0D)

Bit(s) Value Description

7:5

000 Self-timed chip selects are disabled.

001 This bit combination is reserved and should not be used.

01x This bit combination is reserved and should not be used.

100 296 ns self-timed chip selects (192 ns best case, 457 ns worst case).

101 234 ns self-timed chip selects (151 ns best case, 360 ns worst case).

110 171 ns self-timed chip selects (111 ns best case, 264 ns worst case).

111 109 ns self-timed chip selects (71 ns best case, 168 ns worst case).

4
0 Normal Chip Select operation.

1 Short Chip Select timing when dividing main oscillator by 4, 6, or 8.

3 x This bit is reserved and should not be used.

2:0

000 The 32 kHz clock divider is disabled.

001 This bit combination is reserved and should not be used.

01x This bit combination is reserved and should not be used.

100 32 kHz oscillator divided by two (16.384 kHz).

101 32 kHz oscillator divided by four (8.192 kHz).

110 32 kHz oscillator divided by eight (4.096 kHz).

111 32 kHz oscillator divided by sixteen (2.048 kHz).
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Figure 7-4.  Short Chip Select Memory Read

Figure 7-5.  Self-Timed Chip Select Memory Read Cycle
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7.6  Output Pins CLK, STATUS, /WDTOUT, /BUFEN

Certain output pins can have alternate assignments as specified in Table 7-8.

Table 7-8.  Global Output Control Register (GOCR = 0Eh)

Bit(s) Value Description

7:6

00 CLK pin is driven with peripheral clock.

01 CLK pin is driven with peripheral clock divided by 2.

10 CLK pin is low.

11 CLK pin is high.

5:4

00 STATUS pin is active (low) during a first opcode byte fetch.

01 STATUS pin is active (low) during an interrupt acknowledge.

10 STATUS pin is low.

11 STATUS pin is high.

3
1 WDTOUTB pin is low (1 cycle minimum, 2 cycles maximum, of 32 kHz).

0 WDTOUTB pin follows watchdog function.

2 x This bit is ignored.

1:0

00 /BUFEN pin is active (low) during external I/O cycles.

01 /BUFEN pin is active (low) during data memory accesses.

10 /BUFEN pin is low.

11 /BUFEN pin is high.
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7.7  Time/Date Clock (Real-Time Clock)

The time/date clock (RTC) is a 48-bit (ripple) counter that is driven by the 32.768 kHz 
oscillator. The RTC is a modified ripple counter composed of six separate 8-bit counters. 
The carries are fed into all six 8-bit counters at the same time and then ripple for 8 bits. 
The time for this ripple to take place is a few nanoseconds per bit, and certainly should not 
should not exceed 200 ns for all 8 bits, even when operating at low voltage.

The 48 bits are enough to count up 272 years at the 32 kHz clock frequency. By conven-
tion, 12 AM on January 1, 1980, is taken as time zero. Z-World software ignores the high-
est order bit, giving the counter a capacity of 136 years from January 1, 1980. To read the 
counter value, the value is first transferred to a 6-byte holding register. Then the individual 
bytes may be read from the holding registers. To perform the transfer, any data bits are 
written to RTC0R, the first holding register. The counter may then be read as six 8-bit 
bytes at RTC0R through RTC5R. The counter and the 32 kHz oscillator are powered from 
a separate power pin that can be provided with power while the remainder of the chip is 
powered down. This design makes battery backup possible. Since the processor operates 
on a different clock than the RTC, there is the possibility of performing a transfer to the 
holding registers while a carry is taking place, resulting in incorrect information. In order 
to prevent this, the processor should do the clock read twice and make sure that the value 
is the same in both reads.

If the processor is itself operating at 32 kHz, the read-clock procedure must be modified 
since a number of clock counts would take place in the time needed by the slow-clocked 
processor to read the clock. An appropriate modification would be to ignore the lower 
bytes and only read the upper 5 bytes, which are counted once every 256 clocks or every 
1/128th of a second. If the read cannot be performed in this time, further low-order bits 
can be ignored.

The RTC registers cannot be set by a write operation, but they can be cleared and counted 
individually, or by subset. In this manner, any register or the entire 48-bit counter can be 
set to any value with no more than 256 steps. If the 32 kHz crystal is not installed and the 
input pin is grounded, no counting will take place and the six registers can be used as a 
small battery-backed memory. Normally this would not be very productive since the cir-
cuitry needed to provide the power switchover could also be used to battery-back a regular 
low-power static RAM.
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Table 7-9.  Real-Time Clock RTCxR Data Registers

Real-Time Clock x Holding Register (RTC0R) R/W (Address = 0x02)
(RTC1R) (Address = 0x03)
(RTC2R) (Address = 0x04)
(RTC3R) (Address = 0x05)
(RTC4R) (Address = 0x06)
(RTC5R) (Address = 0x07)

Bit(s) Value Description

7:0 Read The current value of the 48-bit RTC holding register is returned.

Write
Writing to the RTC0R transfers the current count of the RTC to six holding 
registers while the RTC continues counting.

Table 7-10.  Real-Time Clock Control Register (RTCCR adr = 01h)

Bit(s) Value Description

7:0

00h

Writing a 00h to the RTCCR has no effect on the RTC counter. 
However,  depending on what the previous command was, writing 
a 00h may either

1. disable the byte increment function or 

2. cancel the RTC reset command

If the C0h command is followed by a 00h command, only the byte 
increment function will be disabled. The RTC reset will still take 
place.

40h
Arm RTC for a reset with code 80h or reset and byte increment 
function with code 0c0h.

80h
Resets all six bytes of the RTC counter to 00h if proceeded by arm 
command 40h.

C0h
Resets all six bytes of the RTC counter to 00h and enters byte 
increment mode—precede this command with 40h arm command.

7:6 01

This bit combination must be used with every byte increment write 
to increment clock(s) register corresponding to bit(s) set to "1". 
Example: 01001101 increments registers: 0, 2,3. The byte 
increment mode must be enabled. Storing 00h cancels the byte 
increment mode.

5:0
0 No effect on the RTC counter.

1 Increment the corresponding byte of the RTC counter.
92 Rabbit 3000 Microprocessor



7.8  Watchdog Timer

The watchdog timer is a 17-bit counter. In normal operation it is driven by the 32.768 kHz 
clock. When the watchdog timer reaches any of several values corresponding to a delay of 
from 0.25 to 2 seconds, it “times out.” When it times out, it emits a 1-clock pulse from the 
watchdog output pin and it resets the processor via an internal circuit. To prevent this tim-
eout, the program must “hit” the watchdog timer before it times out. The hit is accom-
plished by storing a code in WDTCR. Note that although a watchdog timeout resets the 
processor, it does not reset the timeout period stored in the WDTCR. This was done inten-
tionally because an application may require the initialization of the processor resulting 
from the watchdog timeout to be based on a specific timeout period that is different from 
that of the reset initialization.

The watchdog timer may be disabled by storing a special code in the WDTTR register. 
Normally this should not be done unless an external watchdog device is used. The purpose 
of the watchdog is to unhang the processor from an endless loop caused by a software 
crash or a hardware upset.

It is important to use extreme care in writing software to hit the watchdog timer (or to turn 
off the watchdog timer). The programmer should not sprinkle instructions to hit the watch-
dog timer throughout his program because such instructions can become part of an endless 
loop if the program crashes and thus disable the recovery ability given by having a watch-
dog.

The following is a suggested method for hitting the watchdog. An array of bytes is set up 
in RAM. Each of these bytes is a virtual watchdog. To hit a virtual watchdog, a number is 
stored in a byte. Every virtual watchdog is counted down by an interrupt routine driven by 
a periodic interrupt. This can happen every 10 ms. If none of the virtual watchdogs has 
counted down to zero, the interrupt routine hits the hardware watchdog. If any have 
counted down to zero, the interrupt routine disables interrupts, and then enters an endless 
loop waiting for the reset. Hits of the virtual watchdogs are placed in the user’s program at 
“must exercise” locations.

Table 7-11.  Watchdog Timer Control Register (WDTCR adr = 08h)

Bit(s) Value Description

7:0 5Ah Restart (hit) the watchdog timer, with a 2-second timeout period.

57h Restart (hit) the watchdog timer, with a 1-second timeout period.

59h Restart (hit) the watchdog timer, with a 500 ms timeout period.

53h Restart (hit) the watchdog timer, with a 250 ms timeout period.

other No effect on watchdog timer.
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The code to do this may also hit the watchdog with a 0.25-second period to speed up the 
reset. Such watchdog code must be written so that it is highly unlikely that a crash will 
incorporate the code and continue to hit the watchdog in an endless loop. The following 
suggestions will help.

1. Place a jump to self before the entry point of the watchdog hitting routines. This pre-
vents entry other than by a direct call or jump to the routine.

2. Before calling the routine, set a data byte to a special value and then check it in the rou-
tine to make sure the call came from the right caller. If not, go into an endless loop with 
interrupts disabled.

3. Maintain data corruption flags and/or checksums. If these go wrong, go into an endless 
loop with interrupts off.

Table 7-12.  Watchdog Timer Test Register (WDTTR adr = 09h)

Bit(s) Value Description

7:0

51h
Clock the least significant byte of the WDT timer from the peripheral 
clock. (Intended for chip test and code 54h below only.)

52h
Clock the most significant byte of the WDT timer from the peripheral 
clock. (Intended for chip test and code 54h below only.)

53h
Clock both bytes of the WDT timer, in parallel, from the peripheral clock. 
(Intended for chip test and code 54h below only.)

54h

Disable the WDT timer. This value, by itself, does not disable the WDT 
timer. Only a sequence of two writes, where the first write is 51h, 52h or 
53h, followed by a write of 54h, actually disables the WDT timer. The 
WDT timer will be re-enabled by any other write to this register.

other
Normal clocking (32 kHz oscillator) for the WDT timer. This is the 
condition after reset.
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7.9  System Reset

The Rabbit 3000 contains a master reset input (pin 46), which initializes everything in the 
device except for the Real-Time Clock (RTC). This reset is delayed until the completion 
of any write cycles in progress to prevent potential corruption of memory. If no write 
cycles are in progress the reset takes effect immediately. The reset sequence requires a 
minimum of 128 cycles of the fast oscillator to complete, even if no write cycles were in 
progress at the start of the reset. Reset forces both the processor clock and the peripheral 
clock in the divide-by-eight mode. Note that if the processor is being clocked from the 32 
kHz clock, the 128 cycles of the fast oscillator will probably not be sufficient to allow any 
writes in progress to be completed before the reset sequence completes and the clocks 
switch to divide-by-eight mode.

During reset /CS1 is high impedance and all of the other memory and I/O control signals 
are held inactive (High). After the /RESET signal becomes inactive (High) the processor 
begins fetching instructions and the memory control signals begin normal operation. Note 
that the default values in the Memory Bank Control Registers select four wait states per 
access, so the initial program fetch memory reads are 48 clock cycles long (8 x (2 + 4)). 
Software can immediately adjust the processor timing to whatever the system requires.

/CS1 is high-impedance during reset (and during power-down, when only VBAT is pow-
ered) to allow an external RAM connected to /CS1 to be powered by VBAT. This is possi-
ble because the /CS1 pin is powered by VBAT. In this case an external pull-up resistor (to 
VBAT) is required on /CS1 to keep the RAM deselected during power-down. If the exter-
nal RAM connected to /CS1 is not powered by VBAT, so that any information held within 
it is lost during power-down, no pull-up resistor on /CS1 is appropriate, as this would add 
leakage (through the protection diode) to drain VBAT. The RESOUT signal, which is 
High during reset and power-down, can be used to control an external power switch to dis-
connect VDD from supplying VBAT.

The default selection for the memory control signals consists of /CS0 and /OE0, and 
writes are disabled. This selection can also be immediately programmed to match the 
hardware configuration. A typical sequence would be to speed up the clock to full speed, 
followed by selection of the appropriate number of wait states and the chip select signals, 
output enable signals and write enable signals. At this point software would usually check 
the system status to determine what type of reset just occurred and begin normal opera-
tion.

The default values for all of the peripheral control registers are shown with the following 
register listing. The registers within the CPU affected by reset are the Stack Pointer (SP), 
the Program Counter (PC), the IIR register, the EIR register, and the IP register. The IP 
register is set to all ones (disabling all interrupts), while all of the other listed CPU regis-
ters are reset to all zeros.

Table 7-13 describes the state of the I/O pins after an external reset is recognized by the 
Rabbit CPU. Note that the /RESET signal must be held low for three clocks for the proces-
sor to begin the reset sequence. There is no facility to tri-state output lines such as the 
address lines and the memory and I/O control lines.
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Table 7-13.  Rabbit 3000 Reset Sequence and State of I/O Pins

Pin Name Direction /RESET Low* 

Recognized by CPU
Post-Reset†

/RESET Input Low or High High

CLK Output High Operational

CLK32K Input Not Affected Not Affected

RESOUT Output High Low

XTALA1 Input Not Affected Not Affected

XTALA2 Output Not Affected Not Affected

A[19:0] Output Last Value 0x00000

D[7:0] Bidirectional High Z High Z

/WDTOUT Output High High

STATUS Output High
Operational

(as /IFTCH1)

SMODE[1:0] Input Not Affected Not Affected

/CS0 Output High Operational

/CS1 Output High Z High

/CS2 Output High High

/OE0 Output High Operational

/OE1 Output High High

/WE0 Output High High

/WE1 Output High High

/BUFEN Output High High

/IORD Output High High

/IOWR Output High High

PA[7:0] Input/Output zzzzzzzz zzzzzzzz

PB[7:0] Input/Output 00zzzzzz 00zzzzzz

PC[7:0] 4 In/4 Out z0z1z1z1 z0z1z1z1

PD[7:0] Input/Output zzzzzzzz zzzzzzzz

PE[7:0] Input/Output zzzzzzzz zzzzzzzz

PF[7:0] Input/Output zzzzzzzz zzzzzzzz

PG[7:0] Input/Output zzzzzzzz zzzzzzzz

* A low is recognized internally by the processor after a reset

† The default state of the I/O ports after the completion of the reset and initializa-
tion sequences
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7.10  Rabbit Interrupt Structure

An interrupt causes a call to be executed, pushing the PC on the stack and starting to exe-
cute code at the interrupt vector address. The interrupt vector addresses have a fixed lower 
byte value for all interrupts. The upper byte is adjustable by setting the registers EIR and 
IIR for external and internal interrupts respectively. There are only two external interrupts 
generated by transitions on certain pins in Parallel Port E.

The interrupt vectors are shown in Table 6-2.

The interrupts differ from most Z80 or Z180 interrupts in that the 256-byte tables pointed 
to EIR and IIR contain the actual instructions beginning the interrupt routines rather than a 
16-bit pointer to the routine. The interrupt vectors are spaced 16 bytes apart so that the 
entire code will fit in the table for very small interrupt routines.

Interrupts have priority 1, 2 or 3. The processor operates at priority 0, 1, 2 or 3. If an inter-
rupt is being requested, and its priority is higher than the priority of the processor, the 
interrupt will take place after then next instruction. The interrupt automatically raises the 
processor’s priority to its own priority. The old processor priority is pushed into the 4-
position stack of priorities contained in the IP register. Multiple devices can be requesting 
interrupts at the same time. In each case there is a latch set in the device that requests the 
interrupt. If that latch is cleared before the interrupt is latched by the central interrupt 
logic, then the interrupt request is lost and no interrupt takes place. This is shown in 
Table 7-14. The priorities shown in this table apply only for interrupts of the same priority 
level and are only meaningful if two interrupts are requested at the same time. Most of the 
devices can be programmed to interrupt at priority level 1, 2 or 3.
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In the case of the external interrupts the only action that will clear the interrupt request is 
for the interrupt to take place, which automatically clears the request. A special action 
must be taken in the interrupt service routine for the other interrupts.

Table 7-14.  Interrupts—Priority and Action to Clear Requests

Priority Interrupt Source Action Required to Clear the Interrupt

Highest External 1 Automatically cleared by the interrupt acknowledge.

External 0 Automatically cleared by the interrupt acknowledge.

Periodic (2 kHz) Read the status from the GCSR.

Quadrature Decoder Read the status from the QDCSR.

Timer B Read the status from the TBSR.

Timer A Read the status from the TASR.

Input Capture Read the status from the ICCSR.

Slave Port
Rd: Read the data from the SPD0R, SPD1R or SPD2R.

Wr: Write data to the SPD0R, SPD1R, SPD2R or write a 
dummy byte to the SPSR.

Serial Port E
Rx: Read the data from the SEDR or SEAR.

Tx: Write data to the SEDR, SEAR, SELR or write a dummy 
byte to the SESR.

Serial Port F
Rx: Read the data from the SFDR or SFAR.

Tx: Write data to the SFDR, SFAR, SFLR or write a dummy 
byte to the SFSR.

Serial Port A
Rx: Read the data from the SADR or SAAR.

Tx: Write data to the SADR, SAAR, SALR or write a dummy 
byte to the SASR.

Serial Port B
Rx: Read the data from the SBDR or SBAR.

Tx: Write data to the SBDR, SBAR, SBLR or write a dummy 
byte to the SBSR.

Serial Port C
Rx: Read the data from the SCDR or SCAR.

Tx: Write data to the SCDR, SCAR, SCLR or write a dummy 
byte to the SCSR.

Lowest Serial Port D
Rx: Read the data from the SDDR or SDAR

Tx: Write date to the SDDR, SDAR, SDLR or write a dummy 
byte to the SDSR
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7.10.1  External Interrupts

There are two external interrupts. Each interrupt has 2 input pins that can be used to trig-
ger the interrupt. The inputs have a pulse catcher that can detect rising, falling or either ris-
ing or falling edges.

Figure 7-6.  External Interrupt Line Logic

The external interrupts take place on a transition of the input, which is programmable for 
rising, falling or both edges. The pulse catchers are programmable separately to detect a 
rising, falling, or either edge in the input. Each of the interrupt pins has its own catcher 
device to catch the edge transition and request the interrupt.

When the interrupt takes place, both pulse catchers associated with that interrupt are auto-
matically reset. If both edges are detected before the corresponding interrupt takes place, 
because the triggering edges occur nearly simultaneously or because the interrupts are 
inhibited by the processor priority, then there will be only one interrupt for the two edges 
detected. The interrupt service routine can read the interrupt pins via Parallel Port E and 
determine which lines experienced a transition, provided that the transitions are not too 
fast. Interrupts can also be generated by setting up the matching port E bit as an output and 
toggling the bit.

External interrupts are cleared automatically during the processor Interrupt Acknowledge 
cycle. The Interrupt Acknowledge cycle will always immediately follow an Instruction 
Fetch 1 cycle. This instruction byte is ignored, and will be the first byte fetched upon 
returning from the interrupt. Interrupt Acknowledge cycles are always followed by two 
memory writes to push the contents of the PC onto the stack. Execution then begins at the 
appropriate interrupt vector location.

pulse
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catcher

pulse
catcher

pulse
catcher

INT1A [PE1]

INT1B [PE5]

INT0A [PE0]

INT0B [PE4]

#1 interrupt acknowledge

#0 interrupt acknowledge
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7.10.2  Interrupt Vectors: INT0 - EIR,00h/INT1 - EIR,08h

When it is desired to expand the number of interrupts for additional peripheral devices, the 
user should use the interrupt routine to dispatch interrupts to other virtual interrupt rou-
tines. Each additional interrupting device will have to signal the processor that it is 
requesting an interrupt. A separate signal line is needed for each device so that the proces-
sor can determine which devices are requesting an interrupt.

The following code shows how the interrupt service routines can be written.

; External interrupt Routine #0 (programmed priority could be 3)
int2:
    PUSH IP  ; save interrupt priority
    IPSET 1  ; set to priority really desired (1, 2, etc.)
; insert body of interrupt routine here
;
    OPP IP   ; get back entry priority
    IPRES    ; restore interrupted routine’s priority
    RET      ; return from interrupt

Table 7-15.  Control Registers for External Interrupts

Reg Name Reg Address Bits 7,6 Bits 5,4 Bits 3,2 Bits 1,0

I0CR 10011000 xx INT0B PE4 INT0A PE0 Enb INT0

I1CR 10011001 xx INT1B PE5 INT1A PE1 Enb INT1

edge triggered

00-disabled

10-rising

01-falling

11-both

edge triggered

00-disabled

10-rising

01-falling

11-both

interrupt

00-disable

01-pri 1

10-pri 2

11-pri 3
100 Rabbit 3000 Microprocessor



7.11  Bootstrap Operation

The device provides the option of bootstrap from any of three sources: from the Slave 
Port, from Serial Port A in clocked serial mode, or from Serial Port A in asynchronous 
mode. This is controlled by the state of the SMODE pins after reset. Bootstrap operation is 
disabled if (SMODE1, SMODE0) = (0, 0).

Bootstrap operation inhibits the normal fetch of code from memory, and instead substi-
tutes the output of a small internal boot ROM for program fetches. This bootstrap program 
reads groups of three bytes from the selected peripheral device. The first byte is the most 
significant byte of a 16-bit address, followed by the least-significant byte of a 16-bit 
address, followed by a byte of data. The bootstrap program then writes the byte of data to 
the downloaded address and jumps back to the start of the bootstrap program. The most 
significant bit of the address is used to determine the destination for the byte of data. If this 
bit is zero, the byte is written to the memory location addressed by the downloaded 
address. If this bit is one, the byte is written to the internal peripheral addressed by the 
downloaded address. Note that all of the memory control signals continue to operate nor-
mally during bootstrap.

Execution of the bootstrap program automatically waits for data to become available from 
the selected peripheral, and each byte transferred automatically resets the watchdog timer. 
However, the watchdog timer still operates, and bytes must be transferred often enough to 
prevent the watchdog timer from timing out.

Bootstrap operation is terminated when the SMODE pins are set to zero. The SMODE 
pins are sampled just prior to fetching the first instruction of the bootstrap program. If the 
SMODE pins are zero, instructions are fetched from normal memory starting at address 
0000h. The Slave Port Control register allows the bootstrap operation to be terminated 
remotely. Writing a one to bit 7 of this register causes the bootstrap operation to terminate 
immediately. So the sequence 80h, 24h and 80h will terminate bootstrap operation.

Bootstrap operation is not restricted to the time immediately after reset because the boot 
ROM is addressed by only the four least significant bits of the address. So any time that 
the address ends in four zeros, if the SMODE pins are non-zero and bit 7 of the SPCR is 
zero, the bootstrap program will begin execution. This allows in-line downloading from 
the selected bootstrap port. Upon completion of the bootstrap operation, either by return-
ing the SMODE pins to zero or setting the bit in the SPCR, execution will continue from 
where it was interrupted for the bootstrap operation.

The Slave Port is selected for bootstrap operation when (SMODE1, SMODE0) = (0, 1). In 
this case the pins of Parallel Port A are used for a byte-wide data bus, and selected pins of 
Parallel Ports B and E are used for the Slave Port control signals. Only Slave Port Data 
Register 0 is used for bootstrap operation, and any writes to the other data registers will be 
ignored by the processor, and can actually interfere with the bootstrap operation by mask-
ing the Write Empty signal.
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Serial Port A is selected for bootstrap operation as a clocked serial port when SMODE = 
10. In this case bit 7 of Parallel Port C is used for the serial data and bit 1 of Parallel Port B 
is used for the serial clock. Note that the serial clock must be externally supplied for boot-
strap operation. This precludes the use of a serial EEPROM for bootstrap operation.

Serial Port A is selected for bootstrap operation as an asynchronous serial port when 
SMODE = 11. In this case bit 7 of Parallel Port C is used for the serial data, and the 
32 kHz oscillator is used to provide the serial clock. A dedicated divide circuit allows the 
use of the 32 kHz signal to provide the timing reference for the 2400 bps asynchronous 
transfer. Only 2400 bps is supported for bootstrap operation, and the serial data must be 
eight bits for proper operation. In the case of asynchronous bootstrap, Serial Port A 
accepts either regular NRZ data or IrDA-encoded data (RZI coding with 3/16ths bit cell) 
automatically. The hardware contians a monostable multivibrator triggered by the falling 
edge of serial data into the data path. The one shot stretches any IrDA-encoded pulses 
enough to look like NRZ data, but not so much as to interfere with real NRZ data.

When a bootstrap is performed using Serial Port A, the TXA signal is not needed since the 
bootstrap is a one-way communication. After the reset ends and the bootstrap mode 
begins, TXA will be low, reflecting its function as a parallel port output bit that is cleared 
by the reset. This may be interpreted as a break signal by some serial communication 
devices. TXA can be forced high by sending the triplet 80h, 50h, 40h, which stores 40h in 
Parallel Port C. An alternate approach is to send the triplet 80h, 55h, 40h, which will 
enable the TXA output from bit 6 of Parallel Port C by writing to the Parallel Port C func-
tion register (55h).

The transfer rate in any bootstrap operation must not be too fast for the processor to exe-
cute the instruction stream. The Write Empty signal acts as an interlock when using the 
Slave Port for bootstrap operation, because the next byte should not be written to the Slave 
Port until the Write Empty signal is active. No such interlock exists for the clocked serial 
and asynchronous bootstrap operation. In these cases, remember that the processor clock 
starts out in divide-by-eight mode with four wait states, and limit the transfer rate accord-
ingly. In asynchronous mode at 2400 bps it takes about 4 ms to send each character, so no 
problem is likely unless the system clock is extremely slow.
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7.12  Pulse Width Modulator

The Pulse Width Modulator consists of a ten-bit free running counter, and four width reg-
isters. Each PWM output is High for "n + 1" counts out of the 1024-clock count cycle, 
where "n" is the value held in the width register. The PWM output High time can option-
ally be spread throughout the cycle to reduce ripple on the externally filtered PWM output. 
The PWM is clocked by the output of Timer A9.
 

The spreading function is implemented by dividing each 1024-clock cycle into four quad-
rants of 256 clocks each. Within each quadrant, the Pulse Width Modulator uses the eight 
MSBs of each pulse-width register to select the base width in each of the quadrants. This 
is the equivalent to dividing the contents of the pulse-width register by four and using this 
value in each quadrant. To get the exact High time, the Pulse Width Modulator uses the 
two LSBs of the pulse-width register to modify the High time in each quadrant according 
to the table below. The "n/4" term is the base count, formed from the eight MSBs of the 
pulse-width register.

The diagram below shows a PWM output for several different width values, for both 
modes of operation. Operation in the spread mode reduces the filtering requirements on 
the PWM output in most cases.

Register Name Mnemonic I/O Address R/W Reset

PWM LSB 0 Register PWL0R 0x88 W xxxxxxxx

PWM MSB 0 Register PWM0R 0x89 W xxxxxxxx

PWM LSB 1 Register PWL1R 0x8A W xxxxxxxx

PWM MSB 1 Register PWM1R 0x8B W xxxxxxxx

PWM LSB 2 Register PWL2R 0x8C W xxxxxxxx

PWM MSB 2 Register PWM2R 0x8D W xxxxxxxx

PWM LSB 3 Register PWL3R 0x8E W xxxxxxxx

PWM MSB 3 Register PWM3R 0x8F W xxxxxxxx

Pulse Width LSBs 1st 2nd 3rd 4th

00 n/4 + 1 n/4 n/4 n/4

01 n/4 + 1 n/4 n/4 + 1 n/4

10 n/4 + 1 n/4 + 1 n/4 + 1 n/4

11 n/4 + 1 n/4 + 1 n/4 + 1 n/4 + 1
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Table 7-16.  PWM LSB x Register

PWM LSB x Register (PWL0R) (Address = 0x88)
(PWL1R) (Address = 0x8A)
(PWL2R) (Address = 0x8C)
(PWL3R) (Address = 0x8E)

Bit(s) Value Description

7:6 write The least significant two bits for the Pulse Width Modulator count are stored.

5:1 These bits are ignored.

0 0 PWM output High for single block.

1 Spread PWM output throughout the cycle.

Table 7-17.  PWM MSB x Register

PWM MSB x Register (PWM0R) (Address = 0x89)
(PWM1R) (Address = 0x8B)
(PWM2R) (Address = 0x8D)
(PWM3R) (Address = 0x8F)

Bit(s) Value Description

7:0 write
The most significant eight bits for the Pulse Width Modulator count are stored. 
With a count of "n", the PWM output will be High for "n + 1" clocks out of the 
1024 clocks of the PWM counter.

n=255, normal

n=256, spread

n=255, spread

(256 counts)

(64 counts) (64 counts) (64 counts) (64 counts)

(65 counts) (64 counts) (64 counts) (64 counts)

n=257, spread (65 counts) (64 counts) (65 counts) (64 counts)

n=258, spread (65 counts) (65 counts) (65 counts) (64 counts)

n=259, spread (65 counts) (65 counts) (65 counts) (65 counts)

n=259, normal (260 counts)
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7.13  Input Capture

The two-channel Input Capture can be used to time input signals from various port pins. 
Each Input Capture channel consists of a sixteen-bit counter that is clocked by the output 
of Timer A8, and can be connected to one or two out of sixteen parallel port pins. The 
Input Capture channel captures the state of its counter upon either of two programmed 
conditions and can then generate an interrupt. The programmed conditions can also be 
used to start and stop the counter.

Because the Input Capture channels synchronize their inputs to the peripheral clock (fur-
ther divided by Timer A8), there is some delay between the input transition and when an 
interrupt is requested, as shown below. The status bits in the ICSxR are set coincident with 
the interrupt request and are reset when read from the ICSxR.

Each Input Capture channel has two inputs, called the Start condition and the Stop condi-
tion. Each of these two inputs can be programmed to come from one of four bits (bits 1, 3, 
5 or 7) in Parallel Port C, D, F or G. The two inputs can come from the same or different 
pins, and are edge-sensitive. Each input can be disabled, rising-edge-sensitive, falling-
edge-sensitive or responsive to either edge polarity. Either or both inputs can generate an 
Input Capture interrupt, and either or both inputs can cause the current count to be latched.

Register Name Mnemonic I/O Address R/W Reset

Input Capture Ctrl/Status Register ICCSR 0x56 R/W 00000000

Input Capture Control Register ICCR 0x57 W xxxxxx00

Input Capture Trigger 1 Register ICT1R 0x58 W 00000000

Input Capture Source 1 Register ICS1R 0x59 W xxxxxxxx

Input Capture LSB 1 Register ICL1R 0x5A R xxxxxxxx

Input Capture MSB 1 Register ICM1R 0x5B R xxxxxxxx

Input Capture Trigger 2 Register ICT2R 0x5C W 00000000

Input Capture Source 2 Register ICS2R 0x5D W xxxxxxxx

Input Capture LSB 2 Register ICL2R 0x5E R xxxxxxxx

Input Capture MSB 2 Register ICM2R 0x5F R xxxxxxxx

CPT input

Interrupt

Peri Clock

Timer A8
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Each Input Capture counter operates in one of three modes, or can be disabled. The 
counter is never automatically reset, but must be reset by a software command. Although 
it does not generate an interrupt, there is a status bit which is set when the counter over-
flows (counts from FFFFh to 0000h) so that software can recognize this condition. To pre-
vent potential stale-data problems, whenever the LSB of the latched count is read from the 
ICLxR, the corresponding MSB of the latched count is transferred to a holding register 
until read from the ICMxR.

In the first mode the counter starts counting at the Start condition and stops counting at the 
Stop condition. This mode is useful for pulse width measurement if the Start condition and 
Stop condition are assigned to the same pin. The Input Capture inputs were chosen to take 
maximum advantage of this mode, to allow baud-rate detection for the serial ports and 
rotational speed measurement for the Quadrature Decoder channels. Using this mode with 
different inputs for the Start and Stop condition allows time-delay measurements between 
two signals. This is the mode to use for high-speed pulse measurement, because only one 
count latch is available, and it may be overwritten if the processor is not able to read the 
latched value quickly enough. When the counter starts from a known count only the stop 
count is necessary to determine the pulse width.

In the second mode the counter runs continuously and the Start and Stop conditions 
merely latch the current count. This mode is useful for time-stamping the input conditions 
against the time reference of the counter. If the time-stamp feature is not needed, this 
mode gives the Rabbit 3000 up to four more external interrupt inputs. This mode works 
well for slower-speed pulse measurement, where the processor has enough time to read 
the count latched by the Start condition before the Stop condition occurs and latches a new 
count.

In the third mode the counter runs continuously until the Stop condition occurs. This mode 
measures the time from the software-defined counter start until the Stop condition occurs 
on an input. Note that once the counter stops because of the Stop condition, it will not 
resume counting until re-enabled by software.
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Table 7-18.  Input Capture Control/Status Register

Input Capture Control/Status Register (ICCSR) (Address = 0x56)

Bit(s) Value Description

7 0 The Input Capture 2 Start condition has not occurred.

(read) 1 The Input Capture 2 Start condition has occurred.

6 0 The Input Capture 2 Stop condition has not occurred.

(read) 1 The Input Capture 2 Stop condition has occurred.

5 0 The Input Capture 1 Start condition has not occurred.

(read) 1 The Input Capture 1 Start condition has occurred.

4 0 The Input Capture 1 Stop condition has not occurred.

(read) 1 The Input Capture 1 Stop condition has occurred.

3 0 The Input Capture 2 counter has not rolled over to all zeros.

(read) 1 The Input Capture 2 counter has rolled over to all zeros.

2 0 The Input Capture 1 counter has not rolled over to all zeros.

(read) 1 The Input Capture 1 counter has rolled over to all zeros.

7:2     
(read)

These status bits (but not the interrupt enable bits) are cleared by the read of this 
register, as is the Input Capture Interrupt.

7:4 0 The corresponding Input Capture interrupt is disabled.

(write) 1 The corresponding Input Capture interrupt is enabled.

3 0 No effect on Input Capture 2 counter. This bit always reads as zero.

(write) 1 Reset Input Capture 2 counter to all zeros and clears the rollover latch.

2 0 No effect on Input Capture 1 counter. This bit always reads as zero.

(write) 1 Reset Input Capture 1 counter to all zeros and clears the rollover latch.

1:0 0x Normal Input Capture operation.

x0 Normal Input Capture operation.

11
Reserved for test. The Input Capture counter increments at both bit 0 and bit 8. 
There is no carry from lower byte to higher byte.
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Table 7-19.  Input Capture Control Register

Input Capture Control Register (ICCR) (Address = 0x57)

Bit(s) Value Description

7:2 These bits are ignored.

1:0 00 Input Capture interrupts are disabled.

01 Input Capture interrupt use Interrupt Priority 1.

10 Input Capture interrupt use Interrupt Priority 2.

11 Input Capture interrupt use Interrupt Priority 3.

Table 7-20.  Input Capture Trigger x Register

Input Capture Trigger x Register (ICT1R) (Address = 0x58)
(ICT2R) (Address = 0x5C)

Bit(s) Value Description

7:6 00 Disable the counter.

01 The counter runs from the Start condition until the Stop condition.

10 The counter runs continuously.

11 The counter runs continuously, until the Stop condition.

5:4 00 Disable the count latching function.

01 Latch the count on the Stop condition only.

10 Latch the count on the Start condition only.

11 Latch the count on either the Start or Stop condition.

3:2 00 Ignore the starting input.

01 The Start condition is the rising edge of the starting input.

10 The Start condition is the falling edge of the starting input.

11 The Start condition is either edge of the starting input.

1:0 00 Ignore the ending input.

01 The Stop condition is the rising edge of the ending input.

10 The Stop condition is the falling edge of the ending input.

11 The Stop condition is either edge of the ending input.
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Table 7-21.  Input Capture Source x Register

Input Capture Source x Register (ICS1R) (Address = 0x59)
(ICS2R) (Address = 0x5D)

Bit(s) Value Description

7:6 00 Parallel Port C used for Start condition input.

01 Parallel Port D used for Start condition input.

10 Parallel Port F used for Start condition input.

11 Parallel Port G used for Start condition input.

5:4 00 Use port bit 1 for Start condition input. 

01 Use port bit 3 for Start condition input. 

10 Use port bit 5 for Start condition input. 

11 Use port bit 7 for Start condition input. 

3:2 00 Parallel Port C used for Stop condition input.

01 Parallel Port D used for Stop condition input.

10 Parallel Port F used for Stop condition input.

11 Parallel Port G used for Stop condition input.

1:0 00 Use port bit 1 for Stop condition input. 

01 Use port bit 3 for Stop condition input. 

10 Use port bit 5 for Stop condition input. 

11 Use port bit 7 for Stop condition input. 

Table 7-22.  Input Capture LSB x Register

Input Capture LSB x Register (ICL1R) (Address = 0x5A)
(ICL2R) (Address = 0x5E)

Bit(s) Value Description

7:0 read
The least significant eight bits of the latched Input Capture count are returned. 
Reading the lsb of the count latches the msb of the count to avoid reading stale 
data. Reading the msb of the count opens the latches.
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Table 7-23.  Input Capture MSB x Register

Input Capture MSB x Register (ICM1R) (Address = 0x5B)
(ICM2R) (Address = 0x5F)

Bit(s) Value Description

7:0 read The most significant eight bits of the latched Input capture count are returned.
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7.14  Quadrature Decoder

The two-channel Quadrature Decoder accepts inputs, via Port F, from two external optical 
incremental encoder modules. Each channel of the Quadrature Decoder accepts an in-
phase (I) and a quadrature-phase (Q) signal and provides 8-bit counters to track shaft rota-
tion and provide interrupts when the count goes from 00h to FFh or from FFh to 00h. The 
Quadrature Decoder contains digital filters on the inputs to prevent false counts. The 
Quadrature Decoder is clocked by the output of Timer A10.

Each Quadrature Decoder channel accepts inputs from either the upper nibble or lower 
nibble of Port F. The I signal is input on an odd-numbered port bit, while the Q signal is 
input on an even-numbered port bit. There is also a disable selection, which is guaranteed 
not to generate a count increment or decrement on either entering or exiting the disable 
state. The operation of the counter as a function of the I and Q inputs is shown below.

The Quadrature decoders are clocked by the output of Timer A10, giving a maximum 
clock rate of one-half of the peripheral clock rate. The time constant of Timer A10 must be 
fast enough to sample the inputs properly. Both the I and Q inputs go through a digital fil-
ter that rejects pulses shorter than two clock period wide. In addition, the clock rate must 
be High enough that transitions on the I and Q inputs are sampled in different clock cycles. 
The Input Capture may be used to measure the pulse width on the I inputs because they 
come from the odd-numbered port bits. The operation of the digital filter is shown below.

Register Name Mnemonic I/O Address R/W Reset

Quad Decode Ctrl/Status Register QDCSR 0x90 R/W xxxxxxxx

Quad Decode Control Register QDCR 0x91 W 00xx0000

Quad Decode Count 1 Register QDC1R 0x94 R xxxxxxxx

Quad Decode Count 2 Register QDC2R 0x96 R xxxxxxxx
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The Quadrature Decoder generates an interrupt when the counter increments from FFh to 
00h or when the counter decrements from 00h to FFh. The timing for the interrupt is 
shown below. Note that the status bits in the QDCSR are set coincident with the interrupt, 
and the interrupt (and status bits) are cleared by reading the QDCSR.

Rejected

Accepted

Peri Clock

Timer A10
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Table 7-24.  Quad Decode Control/Status Register

Quad Decode Control/Status Register (QDCSR) (Address = 0x90)

Bit(s) Value Description

7 0 Quadrature Decoder 2 did not increment from 0FFh.

(rd-only) 1
Quadrature Decoder 2 incremented from 0FFh to 0h. This bit is cleared by a read 
of his register.

6 0 Quadrature Decoder 2 did not decrement from 0h.

(rd-only) 1
Quadrature Decoder 2 decremented from 0h to 0FFh. This bit is cleared by a read 
of this register.

5 This bit always reads as zero.

4 0 No effect on the Quadrature Decoder 2.

(wr-only) 1 Reset Quadrature Decoder 2 to 00h, without causing an interrupt.

3 0 Quadrature Decoder 1 did not increment from 0FFh.

(rd-only) 1
Quadrature Decoder 1 incremented from 0FFh to 0h. This bit is cleared by a read 
of this register.

2 0 Quadrature Decoder 1 did not decrement from 0h.

(rd-only) 1
Quadrature Decoder 1 decremented from 0h to 0FFh. This bit is cleared by a read 
of this register.

1 This bit always reads as zero.

0 0 No effect on the Quadrature Decoder 1.

(wr-only) 1 Reset Quadrature Decoder 1 to 00h, without causing an interrupt.
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Table 7-25.  Quad Decode Control Register

Quad Decode Control Register (QDCR) (Address = 0x91)

Bit(s) Value Description

7:6 0x
Disable Quadrature Decoder 2 inputs. Writing a new value to these bits will not 
cause Quadrature Decoder 2 to increment or decrement.

10 Quadrature Decoder 2 inputs from Port F bits 3 and 2.

11 Quadrature Decoder 2 inputs from Port F bits 7 and 6.

5:4 These bits are ignored.

3:2 0x
Disable Quadrature Decoder 1 inputs. Writing a new value to these bits will not 
cause Quadrature Decoder 1 to increment or decrement.

10 Quadrature Decoder 1 inputs from Port F bits 1 and 0.

11 Quadrature Decoder 1 inputs from Port F bits 5 and 4.

1:0 00 Quadrature Decoder interrupts are disabled.

01 Quadrature Decoder interrupt use Interrupt Priority 1.

10 Quadrature Decoder interrupt use Interrupt Priority 2.

11 Quadrature Decoder interrupt use Interrupt Priority 3.

Table 7-26.  Quad Decode Count Register

Quad Decode Count Register (QDC1R) (Address = 0x94)
(QDC2R) (Address = 0x96)

Bit(s) Value Description

7:0 read The current value of the Quadrature Decoder counter is reported.
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8.  MEMORY INTERFACE AND MAPPING

8.1  Interface for Static Memory Chips

Static memory chips generally have address lines, data line, a chip select line, an output 
enable line and a write enable. The Rabbit 3000 has these same lines that can connect 
directly to a number of static memory chips. The chip selects are not completely inter-
changeable because certain chip selects have special functions. When the processor starts 
up, not in cold boot mode, execution starts at address zero in the memory attached to /CS0. 
A static RAM should be connected to /CS1 because Dynamic C development tools 
assume a static RAM connected to /CS1. 

In addition /CS1 has special features that support battery backing of static RAM. When 
the processor power is removed but battery power is supplied to the battery power pin 
(VBAT)  /CS1 is held in a high impedance state. This allows a pull up resistor to the bat-
tery backup power to hold /CS1 high and thus hold the static memory chip in standby 
mode. The RESOUT pin is also held high while the processor is powered down and bat-
tery power is supplied to VBAT. This allows the RESOUT pin to be used to control power 
to the processor and the static RAM chip via a transistor.

It is also possible to force /CS1 to be enabled at all times. This is convenient if an external 
battery backup device is used that might slow down the transition of /CS1 during the 
memory cycle. Most users will not use this feature.

Figure 8-1.  Battery-Backup Circuit
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Figure 8-2.  Typical Memory Chip Connection

Rabbit 3000

data lines (8)
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8.2  Memory Mapping Overview

See Section 3.2, “Memory Mapping,” for a discussion of Rabbit memory mapping.

Figure 8-3 shows an overview of the Rabbit memory mapping. The task of the memory 
mapping unit is to accept 16-bit addresses and translate them to 20-bit addresses. The 
memory interface unit accepts the 20-bit addresses and generates control signals applied 
directly to the memory chips.

Figure 8-3.  Overview of Rabbit Memory Mapping

8.3  Memory-Mapping Unit

The 64K 16-bit address space accessed by processor instructions is divided into segments. 
Each segment has a length that is a multiple of 4K. Except for the extended code segment, 
the segments have adjustable sizes and some segments can be reduced to zero size and 
thus vanish from the memory map.

The four segments are shown in the example in Figure 8-4. The segment size register 
(SEGSIZE) determines the boundaries marked in the diagram. The extended code seg-
ment always occupies the addresses 0E000h–0FFFFh. The stack segment stretches from 
the address specified by the upper 4 bits of the SEGSIZE register to 0DFFFh. For exam-
ple, if the upper 4 bits of SEGSIZE are 0Dh, then the stack segment will occupy 0D000h–
0DFFFh, or 4K. If the upper 4 bits of SEGSIZE are greater than or equal to 0Eh, the stack 
segment vanishes. If these bits are set to zero, the two segments below the stack segment 
will vanish.

The lower 4 bits of SEGSIZE determine the lower boundary shown in the figure. If this 
boundary is equal to the upper boundary or greater than 0Eh, the data segment will vanish. 
If this segment is placed at zero the code segment will vanish.

Memory
Chips

Processor Memory
Mapping
Unit

Memory
Interface
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Figure 8-4.  Memory Segments

The memory management unit accepts a 16-bit address from the processor and translates 
it into a 20-bit address. The procedure to do this works as follows.

1. It is determined which segment the 16-bit address belongs to by inspecting the upper 4 
bits of the address. Every address must belong to one of the possible 4 segments.

2. Each segment has an 8-bit segment register. The 8-bit segment register is added to the 
upper 4 bits of the 16-bit address to create a 20-bit address. Wraparound occurs if the 
addition would result in an address that does not fit in 20 bits.

Table 8-1.  Segment Registers

Segment Register Function

XPC
Locates extended code segment in physical memory. Read and written 
by processor instructions: ld a,xpc, ld xpc,a, lcall, lret, ljp

STACKSEG = 11h Locates stack segment in physical memory.

DATASEG = 12h Locates data segment in physical memory.

Table 8-2.  Segment Size Register

Bits 7..4 Bits 3..0

SEGSIZE = 13h Boundary address stack segment. Boundary address data segment.

Extended code 
XPC segment (8K)

Stack segment 
(4K typ)

Root segment

Data segment

64K

0K

Boundary SEGSIZE[4..7]

Boundary SEGSIZE[0..3]

XPC

STACKSEG

DATASEG
00

+ 16-bit address

20-bit address
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8.4  Memory Interface Unit

The 20-bit memory addresses generated by the memory-mapping unit feed into the mem-
ory interface unit. The memory interface unit has a separate write-only control register for 
each 256K quadrant of the 1M physical memory. This control register specifies how mem-
ory access requests to that quadrant are to be dispatched to the memory chips connected to 
the Rabbit. There are three separate chip select output lines (/CS0, /CS1, and /CS2) that 
can be used to select one of three different memory chips. A field in the control register 
determines which chip select is selected for memory accesses to the quadrant. The same 
chip select line may be accessed in more than one quadrant. For example, if a 512K RAM 
is installed and is selected by /CS1, it would be appropriate to use /CS1 for accesses to the 
3rd and 4th quadrants, thus mapping the RAM chip to addresses 80000h to 0FFFFFh.
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8.5  Memory Bank Control Registers

Table 8-3 describes the operation of the four memory bank control registers. The registers 
are write-only. Each register controls one quadrant in the 1M address space.

Bits 7,6—The number of wait states used in access to this quadrant. Without wait states, read requires 
2 clocks and write requires 3 clocks. The wait state adds to these numbers. Wait states should only 
be used for memory data accesses (RAM or data flash), not for memory from which instructions are 
executed (code memory).

Bits 5, 4—These bits allow the upper address lines to be inverted. This inversion occurs after the logic 
that selects the bank register, so setting these lines has no effect on which bank register is used. The 
inversion may be used to install a 1M memory chip in the space normally allocated to a 256K chip. 
The larger memory can then be accessed as 4 pages of 256K each. There is no effect outside the 
quadrant that the memory bank control register is controlling.

Table 8-3.  Memory Bank Control Register x (MBxCR=14h+x)

Memory Bank x Control Register (MB0CR) (Address = 0x14)
(MB1CR) (Address = 0x15)
(MB2CR) (Address = 0x16)
(MB3CR) (Address = 0x17)

Bit(s) Value Description

7:6

00 Four wait states for accesses in this bank.

01 Two wait states for accesses in this bank.

10 One wait states for accesses in this bank.

11 Zero wait states for accesses in this bank.

5
0 Pass A[19] for accesses in this bank.

1 Invert A[19] for accesses in this bank.

4
0 Pass A[18] for accesses in this bank.

1 Invert A[18] for accesses in this bank.

3:2

00 /OE0 and /WE0 are active for accesses in this bank

01 /OE1 and /WE1 are active for accesses in this bank

10
/OE0 only is active for accesses in this bank (i.e. read-only). Transactions are 
normal in every other way.

11
/OE1 only is active for accesses in this bank (i.e. read-only). Transactions are 
normal in every other way.

1:0

00 /CS0 is active for accesses in this bank.

01 /CS1 is active for accesses in this bank.

1x /CS2 is active for accesses in this bank.
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Bit 3—Inhibits the write pulse to memory accessed in this quadrant. Useful for protecting flash mem-
ory from an inadvertent write pulse, which will not actually write to the flash because it is protected 
by lock codes, but will temporarily disable the flash memory and crash the system if the memory is 
used for code.

Bit 2—Selects which set of the two lines /OEx and /WEx will be driven for memory accesses in this 
quadrant.

Bits 1,0—Determines which of the three chip select lines will be driven for memory accesses to this 
quadrant.

All bits of the control register are initialized to zero on reset.

8.5.1  Optional A16, A19 Inversions by Segment (/CS1 Enable)

The inversion of A19 or A16 controlled by the read/write MMIDR register is used to redi-
rect mapping of the root segment and the data segment by inverting certain bits when 
these segments are accessed.

The optional enable of /CS1 is valuable for systems that are pushing the access time of 
battery-backed RAM. By enabling /CS1, the delay time of the switch that forces /CS1 
high when power is off can be bypassed. This feature increases power consumption since 
the RAM is always enabled and its access is controlled normally by /OE1.

Table 8-4.  MMU Instruction/Data Register (MMIDR =010h)

MMU Instruction/Data Register (MMIDR) (Address = 0x10)

Bit(s) Value Description

7:6 00 These bits are ignored and always return zeros when read.

5

0 Enable A16 and A19 inversion independent of instruction/data.

1
Enable A16 and A19 inversion (controlled by bits 0-3) for data accesses only. 
This enables the instruction/data split. This is separate I and D space.

4

0 Normal /CS1 operation.

1
Force /CS1 always active. This will not cause any conflicts as long as the 
memory using /CS1 does not also share an Output Enable or Write Enable with 
another memory.

3
0 Normal operation.

1 For a DATASEG access, invert A19 before MBxCR (bank select) decision.

2
0 Normal operation.

1 For a DATASEG access: invert A16

1
0 Normal operation.

1 For root access, invert A19 before MBxCR (bank select) decision. 

0
0 Normal operation.

1 For root access, invert A16
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The Memory Timing Control Register (MTCR) enables the extended timing for the memory 
output enables and write enables.  See Figure 7-2 for  details on how the timing of the mem-
ory read and write strobes is affected when using the early output enable and write enable 
options. Figure 16-3 shows extended output enable and write enable timing diagrams.

Table 8-5.  MMU Expanded Code Register (MECR = 18h)

MMU Expanded Code Register (MECR) (Address = 0x18)

Bit(s) Value Description

7:3 These bits are ignored for write, and return zeros when read.

2:0

0xx Normal operation.

100 For an XPC access, use MB0CR independent of A19-A18.

101 For an XPC access, use MB1CR independent of A19-A18.

110 For an XPC access, use MB2CR independent of A19-A18.

111 For an XPC access, use MB3CR independent of A19-A18.

Table 8-6.  Memory Timing Control Register (MTCR, adr = 019h)

Memory Timing Control Register (MTCR) (Address = 0x19)

Bit(s) Value Description

7:4 xxxx These bits are reserved and should not be used.

3 0 Normal timing for /OE1B (rising edge to rising edge, one clock minimum).

1 Extended timing for /OE1B (one-half clock earlier than normal).

2 0 Normal timing for /OE0B (rising edge to rising edge, one clock minimum).

1 Extended timing for /OE0B (one-half clock earlier than normal).

1 0
Normal timing for /WE1B (rising edge to falling edge, one and one-half clocks 
minimum).

1 Extended timing for /WE1B (falling edge to falling edge, two clocks minimum).

0 0
Normal timing for /WE0B (rising edge to falling edge, one and one-half clocks 
minimum).

1 Extended timing for /WE0B (falling edge to falling edge, two clocks minimum).
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The Breakpoint/Debug controller allows the RST 28 instruction to be used as a software 
breakpoint. Normally the RST 28 instruction causes a call to a particular location in mem-
ory, but the operation of this instruction is modified when the breakpoint/debug feature is 
enabled. The RST 28 instruction is treated as a NOP in the breakpoint/debug mode.

8.6  Allocation of Extended Code and Data

The Dynamic C compiler compiles code to root code space or to extended code space. 
Root code starts in low memory and compiles upward.

Allocation of extended code starts above the root code and data. Allocation normally con-
tinues to the end of the flash memory.

Data variables are allocated to RAM working backwards in memory. Allocation normally 
starts at 52K in the 64K D space and continues. The 52K space must be shared with the 
root code and data, and is allocated upward from zero.

Dynamic C also supports extended data constants. These are mixed in with the extended 
code in flash.

Table 8-7.  Breakpoint/Debug Control Register (BDCR, adr = 01ch )

Breakpoint/Debug Control Register (BDCR) (Address = 0x1C)

Bit(s) Value Description

7 0 Normal RST 28 operation.

1 RST 28 is NOP.

6:0 These bits are reserved and should not be used.
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8.7  Instruction and Data Space Support

Instruction and Data space (I and D space) support is accomplished by optionally invert-
ing address lines A16 and/or A19 when the processor accesses D space, but not inverting 
those lines when the processor accesses I space. The MMIDR register (see Table 8-8) is 
used to control this inversion. It is important to understand that the bit inversion of A16 
and A19 associated with I and D space occurs before the upper 2 bits of the 20 bit address 
are used to determine the quadrant and thus the bank register that is going to control mem-
ory access. This contrasts with the optional address bit inversion of A19 and A18 con-
trolled by the 4 memory bank control registers (see Table 8-3) which takes place after the 
quadrant has been computed.

To make this clear we will provide an example. Suppose a 1 megabyte flash memory is 
controlled by /CS0, /WE0, and /OE0. Suppose this memory is accessed as part of the first 
quadrant and MB0CR is set up to enable /CS0 and /WE0 or /OE0 on accesses to this bank. 
Then if A18 and A19 are zero, the first 256k bytes of the flash memory will be visible in 
the first 256k bytes of the physical memory. If access is made to the 2nd quadrant the 
memory will not be selected unless MB1CR is mapped to the flash memory. However if 
A18 is inverted by setting bit 4 in MB0CR to a 1, then the second 256k bytes of the flash 
will be mapped into the first quadrant. A18 will have been inverted, but he quadrant does 
not change because this inversion occurs after the quadrant has been selected.

The inversion of A19 or A16 controlled by the MMIDR register on D space accesses is 
used to separate I and D space to different memory locations. The separation of I and D 
space can only occur for the first 2 memory zones in the64k space. For each zone, the root 
code segment and the data segment either or both of A19 and A16 can be inverted. the rea-
soning behind these choices is the following. A normal memory map places flash memory 
in the lower 512k of the physical memory space. RAM memory begins at 512k. By invert-
ing A19 on D space accesses memory mapped to the lower 512k and held in flash will be 
switched to RAM for D accesses. By inverting A16, D accesses will be switched to an 
adjacent 64k page, which would normally still be in the lower 512k memory or flash. To 
see how this works consider that data is of 2 different types: constants stored in flash 
memory and variables which must be stored in RAM. Because there are 2 types of data it 
is desirable to divide the D space into 2 zones, one for constants and one for variables. As 
shown in Figure 8-5. In a combined I and D space model the root code segment holds both 
code and data constants in flash memory. The data segment holds data variables in RAM. 
In the separate I and D space model the root code segment and the data segment are 

Table 8-8.  MMU Instruction/Data Register (MMIDR=010h)

Bits 7:5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

000 1–force 
/CS1 
always 
enabled

1–Invert A19 for 
data accesses in data 
segment before 
quadrant selection

1–Invert A16 for 
data accesses in 
data segment

1–Invert A19 for 
data accesses in root 
segment before 
quadrant selection

1–Invert A16 for 
data accesses in 
root segment.
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mapped into contiguous regions of memory to create a continuous root code segment 
starting at the bottom of physical memory in flash. In the I space the division between the 
root segment and the data segment is irrelevant because the DATASEG register contains 
zero and the division between the segments defined by the lower 4 bits of the SEGSIZE 
register does not mark a division in physical memory for code space. However, if for D 
space accesses A16 is inverted for the root segment and A19 is inverted for the data seg-
ment, then root segment data is mapped to the next 64k of flash and data segment data is 
mapped to a place in memory 512k higher in the RAM. This divides the data space into 2 
separate segments for constants and variables. If the stack segment (which is still com-
bined I and D space) and the extended code segment (also combined I and D space) 
occupy 12k at the top of the 64k space, then the remaining 52k is doubled into a 52k code 
space in flash and a 52k data space which may be split into 2 parts, one for constants and 
one for variables. The relative size of the 2 parts depends on the lower 4 bits of the SEG-
SIZE register which defines the 4k page boundary between the root segment and the data 
segment.

Figure 8-5.  Combined versus Separate I & D Space

The use of physical memory that goes with this map is shown in Figure 8-6, “Use of Phys-
ical Memory Separate I & D Space Model,” on page 126. In this figure "n" is the number 
of 4k pages devoted to D space constants. In the figure it is assumed that the lower 512k of 
memory is entirely composed of flash memory and the upper 512K is entirely RAM. This 
does not have to be the case. For example, if a low-cost 32K x 8 RAM is used and mapped 
to the 3rd quadrant using /CS1, the RAM memory will begin at 512K and will be repeated 
8 times in the 3rd quadrant from addresses 512K to 768K. Since the memory repeats, it 
can be considered to start at any address and continue for 32K. At least 4K of RAM is 
needed for the stack segment, so if a 32K RAM is used, a maximum of 28K would be 
available for storing data variables. If more stack segments are needed, the amount of data 
variable space would be corresponding reduced.
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Figure 8-6.  Use of Physical Memory Separate I & D Space Model

In Figure 8-6 arrows indicate the direction in which variables and constants are allocated 
as the compile or assemble proceeds. Each of these arrows starts at a constant location in 
physical memory. This is important because the Dynamic C debugging monitor needs to 
keep a small number of constants and variable in data space and it needs to be able to 
access these regardless of the state of the user program. The Dynamic C debugger vari-
ables are kept at the top of the data segment starting at 52k and working down in memory. 
The user-program variables are allocated by the compiler starting just below the Dynamic 
C debugger data. The Dynamic C constants start at address zero. User constants are allo-
cated stating at a low address just above the Dynamic C constants. 
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8.8  How the Compiler Compiles to Memory

The compiler actually generates code for root code and constants and extended code and 
extended constants. It allocates space for data variables, but does not generate data bits to 
be stored in memory.

In any but the smallest programs, most of the code is compiled to extended memory. This 
code executes in the 8K window from E000 to FFFF. This 8K window uses paged access. 
Instructions that use 16-bit addressing can jump within the page and also outside of the 
page to the remainder of the 64K space. Special instructions, particularly long call, long 
jump and long return, are used to access code outside of the 8K window. When one of 
these transfer of control instructions is executed, both the address and the view through the 
8K window or page are changed. This allows transfer to any instruction in the 1M memory 
space. The 8-bit XPC register controls which of the 256 4K pages the 8K window aligns 
with. The 16-bit PC controls the address of the instruction, usually in the region E000 to 
FFFF. The advantage of paged access is that most instructions continue to use 16-bit 
addressing. Only when an out-of-range transfer of control is made does a 20-bit transfer of 
control need to be made. The beauty of having a 4K minimum step in page alignment 
while the size of the page is 8K is that code can be compiled continuously without gaps 
caused by change of page. When the page is moved by 4K, the previous end of code is still 
visible in the window, provided that the midpoint of the page was crossed before moving 
the page alignment.

As the compiler compiles code in the extended code window, it checks at opportune times 
to see if the code has passed the midpoint of the window or F000.   When the code passes 
F000, the compiler slides the window down by 4K so that the code at F000+x becomes 
resident at E000+x. This results in the code being divided into segments that are typically 
4K long, but which can very short or as long as 8K. Transfer of control can be accom-
plished within each segment by 16-bit addressing; 20-bit addressing is required between 
segments.
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9.  PARALLEL PORTS

The Rabbit has seven 8-bit parallel ports designated A, B, C, D, E, F, and G. The pins used 
for the parallel ports are also shared with numerous other functions as shown in Table 5-2. 
The important properties of the ports are summarized below.

• Port A—Shared with the slave port data interface and auxiliary I/O data bus.

• Port B—Shared with control lines for slave port, auxiliary I/O address bus, and clock 
I/O for clocked serial mode option for Serial Ports A and B.

• Port C—Shared with serial port data I/O.

• Port D—4 bits shared with alternate I/O pins for Serial Ports A and B. 4 bits not shared. 
Port D can be configured as open drain outputs. Port D also contains output preload 
registers that can be clocked into the output registers under timer control for pulse gen-
eration.

• Port E—All bits of Port E can be configured as I/O strobes. 4 bits of port E can be used 
as external interrupt inputs. One bit of port E is shared with the slave port chip select. 
Port E has output preload registers that can be clocked into the output registers under 
timer control for pulse generation.

• Port F— As outputs, Port F can be configured as open drain outputs. Alternatively, Par-
allel Port F outputs can carry the four Pulse-Width Modulator outputs. As inputs, Paral-
lel Port F inputs can carry the inputs to the two channels of the quadrature decoders.  
Port F pins can also be configured to be used as clock pins for clocked Serial Ports C 
and D.  

• Port G—As outputs, Port G can be configured as open drain outputs. Port G inputs and 
outputs are also used for access to other serial peripherals on the chip such as those 
used for asynchronous or SDLC/HDLC communication.

• Parallel Ports D–G behave in the same manner when used as digital I/O.

NOTE: There may be a conflict in using Parallel Port A and Parallel Port F. Either Paral-
lel Port A can be used as inputs, in which case Parallel Port F has full function, or if 
Parallel Port A cannot be used as inputs, use any pins on Parallel Port F not used for 
PWM or serial clock outputs as inputs and take the precaution of setting up Parallel Port 
F before the conflicting functionality of Parallel Port A is enabled. Refer to 
Section 9.6.1, “Using Parallel Port A and Parallel Port F,” for more information.
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9.1  Parallel Port A

Parallel Port A has a single read/write register:

This register should not be used if the slave port or auxiliary I/O bus is enabled.

The slave port control register is used to control whether Parallel Port A is configured as 
slave databus, auxiliary I/O data bus, parallel Input or parallel output. To make the port an 
input, store 080h in the SPCR (slave port control register). To make the port an output, 
store 084h in SPCR. Parallel Port A is set up as an input port on reset.

When the port is read, the value read reflects the voltages on the pins, "1" for high and "0" 
for low. This could be different than the value stored in the output register if the pin is 
forced to a different state by an external voltage.

NOTE: Refer to Section 9.6.1, “Using Parallel Port A and Parallel Port F,” for more 
information.

Table 9-1.  Parallel Port A Registers

Register Name Mnemonic I/O address R/W Reset

Port A Data Register PADR 0x30 R/W xxxxxxxx

Slave Port Control Register SPCR 0x24 R/W 0xx00000

Table 9-2.  Parallel Port A Data Register Bit Functions

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PADR (R/W)

adr = 030h
PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0
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9.2  Parallel Port B

Parallel Port B, has eight pins that can programmed individually to be inputs and outputs.  

After reset, Parallel Port B comes up as six inputs (PB[5:0]) and two outputs (PB7 and 
PB6).  The output value on pins PB6 and PB7 (package pins 99, 100) will be low.

When the auxiliary I/O bus is enabled, Parallel Port B bits 2:7 provide 6 address lines, the 
least significant 6 lines of the 16 lines that define the full I/O space.

When the slave port is enabled, parallel port lines PB2–PB7 are assigned to various slave 
port functions. However, it is still possible to read PB0–PB5 using the Port B data register 
even when lines PB2–PB7 are used for the slave port. It is also possible to read the signal 
driving PB6 and PB7 (this signal is on the signaling lines from the slave port logic). 

Regardless of whether the slave port is enabled, PB0 reflects the input of the pin unless 
Serial Port B has its internal clock enabled, which causes this line to be driven by the serial 
port clock. PB1 reflects the input of the pin unless Serial Port A has its internal clock 
enabled.

• PBDR—Parallel Port B data register. Read/Write.

• PBDDR—Parallel Port B data direction register. A "1" makes the corresponding pin an 
output. This register is write only.

Table 9-3.  Parallel Port B Registers

Register Name Mnemonic I/O address R/W Reset

Port B Data Register PBDR 0x40 R/W 00xxxxxx

Port B Data Direction Register PBDDR 0x47 W 11000000

Table 9-4.  Parallel Port B Register Bit Functions

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PBDR 
(R/W)

adr = 040h
PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PBDDR 
(W)
adr = 047h

dir = 

out

dir = 

out

dir = 

out

dir = 

out

dir = 

out

dir = 

out

dir = 

out

dir = 

out
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9.3  Parallel Port C

Parallel Port C, shown in Table 9-6, has four inputs and four outputs. The even-numbered 
ports, PC0, PC2, PC4, and PC6, are outputs. The odd-numbered ports, PC1, PC3, PC5, 
and PC7, are inputs. When the data register is read, bits 1,3,5,7 return the value of the volt-
age on the pin. Bits 0,2,4,6 return the value of the signal driving the output buffers. The 
signal driving the output buffers and the value of the output pin are normally the same. 
Either the Port C data register is driving these pins or one of the serial port transmit lines is 
driving the pin. The bits set in the PCFR Parallel Port C Function Register identify 
whether the data register or the serial port transmit lines were driving the pins.

Parallel Port C shares its pins with serial ports A-D. The parallel port inputs can be config-
ured as serial port inputs while the dedicated outputs as serial port outputs.

When serving as serial inputs, the data lines can still be read from the Parallel Port C data 
register. The parallel port outputs can be selected to be serial port outputs by setting the 
corresponding bit positions in the Port C Function register (PCFR). When a parallel port 
output pin is selected to be a serial port output, the value stored in the data register is 
ignored.

On reset the active (even-numbered) function register bits are zeroed resulting in Port C to 
behave as an I/O port. Bit 6 of the Port C data register is zeroed while the remaining even 
numbered bits are set to 1.

Table 9-5.  Parallel Port C Registers

Register Name Mnemonic I/O address R/W Reset

Port C Data Register PCDR 0x50 R/W x0x1x1x1

Port C Function Register PCFR 0x55 W x0x0x0x0

Table 9-6.  Parallel Port C Register Bit Functions

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PCDR (r)

adr = 050h
PC7 in

Echo 
drive

PC5 in
Echo 
drive

PC3 in
Echo 
drive

PC1 in
Echo 
drive

PCDR (w)

adr = 050h
x PC6 x PC4 x PC2 x PC0

PCFR (w)

adr = 055h
x

Drive 
TXA

x
Drive 
TXB

x
Drive

TXC
x

Drive 
TXD
132 Rabbit 3000 Microprocessor



9.4  Parallel Port D

Parallel Port D, shown in Figure 9-1, has eight pins that can be programmed individually 
to be inputs or outputs. When programmed as outputs, the pins can be individually 
selected to be open-drain outputs or standard outputs. Port D pins can be addressed by bit 
if desired. The output registers are cascaded and timer-controlled, making it possible to 
generate precise timing pulses. Port D bits 4 and 5 can be used as alternate bits for Serial 
Port B, and bits 6 and 7 can be used as alternate bits for Serial Port A. Alternate serial port 
bit assignments make it possible for the same serial port to connect to different communi-
cations lines that are not operating at the same time.

On reset, the data direction register is zeroed, making all pins inputs. In addition certain 
bits in the control register are zeroed (bits 0,1,4,5) to ensure that data is clocked into the 
output registers when loaded. All other registers associated with port D are not initialized 
on reset.

Table 9-7.  Parallel Port D Registers

Register Name Mnemonic I/O address R/W Reset

Port D Data Register PDDR 0x60 R/W xxxxxxxx

Port D Control Register PDCR 0x64 W xx00xx00

Port D Function Register PDFR 0x65 W xxxxxxxx

Port D Drive Control Register PDDCR 0x66 W xxxxxxxx

Port D Data Direction Register PDDDR 0x67 W 00000000

Port D Bit 0 Register PDB0R 0x68 W xxxxxxxx

Port D Bit 1 Register PDB1R 0x69 W xxxxxxxx

Port D Bit 2 Register PDB2R 0x6A W xxxxxxxx

Port D Bit 3 Register PDB3R 0x6B W xxxxxxxx

Port D Bit 4 Register PDB4R 0x6C W xxxxxxxx

Port D Bit 5 Register PDB5R 0x6D W xxxxxxxx

Port D Bit 6 Register PDB6R 0x6E W xxxxxxxx

Port D Bit 7 Register PDB7R 0x6F W xxxxxxxx
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Figure 9-1.  Parallel Port D Block Diagram

PD7

PD4

I/O Data perclk/2

Timer A1

Timer B1

Timer B2

perclk/2

Timer A1

Timer B1

Timer B2

PD3

PD0

ATXA

ATXB

ARXA

ARXB

PD5

PD6

inputs

Driver—optional open drain
134 Rabbit 3000 Microprocessor



Table 9-8.  Parallel Port D Register functions

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PDDR (R/W)
adr = 060h

PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0

PDDCR (W)
adr = 066h

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

PDFR (W)
adr = 065h

x alt TXA x alt TXB x x x x

PDDDR (W)
adr = 067h

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

PDB0R (W)

adr = 068h
x x x x x x x PD0

PDB1R (W)

adr = 069h
x x x x x x PD1 x

PDB2R (W)

adr = 06Ah
x x x x x PD2 x x

PDB3R (W)

adr = 06Bh
x x x x PD3 x x x

PDB4R (W)

adr = 06Ch
x x x PD4 x x x x

PDB5R (W)

adr = 06Dh
x x PD5 x x x x x

PDB6R (W)

adr = 06Eh
x PD6 x x x x x x

PDB7R (W)

adr = 06Fh
PD7 x x x x x x x

Table 9-9.  Parallel Port D Control Register (adr = 064h)

Bits 7, 6 Bits 5, 4 Bits 3, 2 Bits 1, 0

x,x

00—clock upper nibble on pclk/2

01—clock on timer A1

10—clock on timer B1

11—clock on timer B2

x,x

00—clock lower nibble on pclk/2

01—clock on timer A1

10—clock on timer B1

11—clock on timer B2
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The following registers are described in Table 9-8 and in Table 9-9.

• PDDR—Parallel Port D data register. Read/Write.

• PDDDR—Parallel Port D data direction register. A "1" makes the corresponding pin an 
output. Write only.

• PDDCR—Parallel Port D drive control register. A "0" makes the corresponding pin a 
regular output. A "1" makes the corresponding pin an open-drain output. Write only.

• PDFR—Parallel Port D function control register. This port may be used to make port 
positions 4 and 6 be serial port outputs. Write only.

• PDBxR—These eight registers may be used to set outputs on individual port positions.

• PDCR—Parallel Port D control register. This register is used to control the clocking of 
the upper and lower nibble of the final output register of the port. On reset, bits 0, 1, 4, 
and 5 are reset to zero.
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9.5  Parallel Port E

Parallel Port E, shown in Figure 9-2, has eight I/O pins that can be individually pro-
grammed as inputs or outputs. PE7 is used as the slave port chip select when the slave port 
is enabled. Each of the port E outputs can be configured as an I/O strobe. In addition, four 
of the port E lines can be used as interrupt request inputs. The output registers are cas-
caded and timer-controlled, making it possible to generate precise timing pulses. 

Figure 9-2.  Parallel Port E Block Diagram
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The following registers are described in Table 9-11 and in Table 9-12.

• PEDR—Port E data register. Reads value at pins. Writes to port E preload register.

• PEDDR—Port E data direction register. Set to "1" to make corresponding pin an out-
put. This register is zeroed on reset.

• PEFR—Port E function register. Set bit to "1" to make corresponding output an I/O 
strobe. The nature of the I/O strobe is controlled by the I/O bank control registers 
(IBxCR). The data direction must be set to output for the I/O strobe to work.

• PEBxR—These are individual registers to set individual output bits on or off.

• PECR—Parallel Port E control register. This register is used to control the clocking of 
the upper and lower nibble of the final output register of the port. On reset, bits 0, 1, 4, 
and 5 are reset to zero.

On reset, the data direction register and function register are zeroed, making all pins 
inputs, and disabling the alternate output functions. In addition certain bits in the control 
register are zeroed (bits 0,1,4,5) to ensure that data is clocked into the output registers 
when loaded. All other registers associated with Port E are not initialized on reset.

Table 9-10.  Parallel Port E Registers

Register Name Mnemonic I/O address R/W Reset

Port E Data Register PEDR 0x70 R/W xxxxxxxx

Port E Control Register PECR 0x74 W xx00xx00

Port E Function Register PEFR 0x75 W 00000000

Port E Data Direction Register PEDDR 0x77 W 00000000

Port E Bit 0 Register PEB0R 0x78 W xxxxxxxx

Port E Bit 1 Register PEB1R 0x79 W xxxxxxxx

Port E Bit 2 Register PEB2R 0x7A W xxxxxxxx

Port E Bit 3 Register PEB3R 0x7B W xxxxxxxx

Port E Bit 4 Register PEB4R 0x7C W xxxxxxxx

Port E Bit 5 Register PEB5R 0x7D W xxxxxxxx

Port E Bit 6 Register PEB6R 0x7E W xxxxxxxx

Port E Bit 7 Register PEB7R 0x7F W xxxxxxxx
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Table 9-11.  Parallel Port E Register functions

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PEDR (R/W)

adr = 070h
PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0

PEFR (W)

adr = 075h
alt /I7 alt /I6 alt /I5 alt /I4 alt /I3 alt /I2 alt /I1 alt /I0

PEDDR (W) 
adr = 077h

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

PEB0R (W)

adr = 078h
x x x x x x x PE0

PEB1R (W)

adr = 079h
x x x x x x PE1 x

PEB2R (W)

adr = 07Ah
x x x x x PE2 x x

PEB3R (W)

adr = 07Bh
x x x x PE3 x x x

PEB4R (W)

adr = 07Ch
x x x PE4 x x x x

PEB5R (W)

adr = 07Dh
x x PE5 x x x x x

PEB6R (W)

adr = 07Eh
x PE6 x x x x x x

PEB7R (W)

adr = 07Fh
PE7 x x x x x x x

Table 9-12.  Parallel Port E Control Register (adr = 074h)

Bits 7, 6 Bits 5, 4 Bits 3, 2 Bits 1, 0

x,x

00—clock upper nibble on pclk/2

01—clock on timer A1

10—clock on timer B1

11—clock on timer B2

x,x

00—clock lower nibble on pclk/2

01—clock on timer A1

10—clock on timer B1

11—clock on timer B2
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9.6  Parallel Port F

Parallel Port F is a byte-wide port with each bit programmable for data direction and drive. 
These are simple inputs and outputs controlled and reported in the Port F Data Register. 
As outputs, the bits of the port are buffered, with the data written to the Port F Data Regis-
ter transferred to the output pins on a selected timing edge. The outputs of Timer A1, 
Timer B1, or Timer B2 can be used for this function, with each nibble of the port having a 
separate select field to control this timing.

These inputs and outputs are also used for access to other peripherals on the chip. As out-
puts, the Parallel Port F outputs can carry the four Pulse-Width Modulator outputs. As 
inputs, Parallel Port F inputs can carry the inputs to the quadrature decoders. When Serial 
Port C or Serial Port D is used in the clocked serial mode, two pins of Parallel Port F are 
used to carry the serial clock signals. When the internal clock is selected in these serial 
ports, the corresponding bit of Parallel Port F is set as an output.

The Parallel Port F registers and their functions are described in Table 9-14 and in Table 9-15.

Table 9-13.  Parallel Port F Registers

Register Name Mnemonic I/O address R/W Reset

Port F Data Register PFDR 0x38 R/W xxxxxxxx

Port F Control Register PFCR 0x3C W xx00xx00

Port F Function Register PFFR 0x3D W xxxxxxxx

Port F Drive Control Register PFDCR 0x3E W xxxxxxxx

Port F Data Direction Register PFDDR 0x3F W 00000000

Table 9-14.  Parallel Port F Register Functions

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PFDR (R/W)
adr = 038h

PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0

PFFR (W)
adr = 03Dh

pwm[3] pwm[2] pwm[1] pwm[0] x x sclk_c sclk_d

PFDCR (W)
adr = 03Eh

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

PFDDR (W)
adr = 03Fh

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out
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The following registers are described in Table 9-14 and in Table 9-15.

• PFDR—Port F data register. Reads value at pins. Writes to port F preload register.

• PFCR—Parallel Port F control register. This register is used to control the clocking of 
the upper and lower nibble of the final output register of the port. On reset, bits 0, 1, 4, 
and 5 are reset to zero.

• PFFR—Port F function register. Set bit to "1" to enable alternate output function. Bits 
7-4 enable the PWM outputs and bits 1-0 enable synchronous serial ports C and D 
clock outputs for when the serial port is configured for internal clock generation.

• PFDCR—Parallel Port F drive control register. A "0" makes the corresponding pin a 
regular output. A "1" makes the corresponding pin an open-drain output. Write only.

• PFDDR—Port F data direction register. Set to "1" to make corresponding pin an output. 
This register is zeroed on reset.

On reset, the data direction register is zeroed, making all pins inputs. In addition certain bits 
in the control register are zeroed (bits 0,1,4,5) to ensure that data is clocked into the output 
registers when loaded. All other registers associated with port F are not initialized on reset.

9.6.1  Using Parallel Port A and Parallel Port F

A bug has been discovered in the Rabbit 3000 that results in a conflict between Parallel 
Port F and Parallel Port A under certain conditions. This bug has been corrected in ver-
sions of the Rabbit chip designated 3000A and later. See Appendix B for further details.

The bug is rooted in an incomplete address decode for the data output register for Parallel 
Port A. This register responds to any of 16 addresses 30 to 3F (hex). When Parallel Port F 
was added, the addresses 38 to 3F were used, and the decode for Parallel Port A was not 
updated.

There are five registers in Parallel Port F at addresses in the range of 38 to 3F. Writing to 
any of these registers will also cause a write to the Parallel Port A output register, which is 
identical to the slave port number zero output register. If Parallel Port A is used as in input 
register or if the auxiliary I/O bus (which uses the pins of Parallel Port A as a data bus) is 
enabled, then the spurious write has no effect on operation because the Parallel Port A out-
put register is not used. However if Parallel Port A is used as an output or is used as the 
bidirectional bus of the slave port, then writing to any of the Parallel Port F registers will 
cause a spurious write to the Parallel Port A register, which will have a spurious effect on 
the operation of the Rabbit 3000 chip.

Table 9-15.  Parallel Port F Control Register (adr = 03Ch)

Bits 7, 6 Bits 5, 4 Bits 3, 2 Bits 1, 0

x,x

00—clock upper nibble on pclk/2

01—clock on timer A1

10—clock on timer B1

11—clock on timer B2

x,x

00—clock lower nibble on pclk/2

01—clock on timer A1

10—clock on timer B1

11—clock on timer B2
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The functionality of the Parallel Port F pins is not affected for pulse width modulation out-
puts and serial clock outputs, except that the Parallel Port F function and direction regis-
ters should be set up before a conflicting function on Parallel Port A is in use, since 
writing to these registers also writes to the Parallel Port A output register.

9.6.1.1  Summary

• If you enable the auxiliary I/O bus, which uses Parallel Port A, then the bug does not 
manifest itself and you can use the full functionality of Parallel Port F.

• If you use Parallel Port A as inputs, then the bug does not manifest itself and the full 
functionality of Parallel Port F is available.

• If you use Parallel Port A as outputs, then you cannot use Parallel Port F pins as outputs 
too, except that you can use the PWM and clock outputs provided that you are aware 
that writing to the control registers of Parallel Port F will also write to the data output 
register of Parallel Port A. A simple way to resolve this is to leave Parallel Port A as an 
input until you complete the setup of Parallel Port F and then switch Parallel Port A to 
be an output. You can always use pins on Parallel Port F as inputs.

• If you enable the slave port, then you cannot use Parallel Port F as parallel outputs, but 
you can still use the other output functions of Parallel Port F following the precautions 
regarding setup described above.

The easiest approach to avoid any problem when there is a conflict is to assign inputs and 
outputs in such a manner as to avoid the bug. Either Parallel Port A can be used as inputs, 
in which case Parallel Port F has full function, or if Parallel Port A cannot be used as 
inputs, use any pins on Parallel Port F not used for PWM or serial clock outputs as inputs 
and take the precaution of setting up Parallel Port F before the conflicting functionality of 
Parallel Port A is enabled.

Parallel Port A Parallel Port F

• Parallel Inputs • Full Functionality

• Parallel Outputs • Parallel Inputs, PWM, Serial Port Clocks

• Slave Port • Parallel Inputs, PWM, Serial Port Clocks

• Auxiliary I/O Bus • Full Functionality
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9.7  Parallel Port G

Parallel Port G is a byte-wide port with each bit programmable for data direction and 
drive. These are simple inputs and outputs controlled and reported in the Port G Data Reg-
ister. As outputs, the bits of the port are buffered, with the data written to the Port G Data 
Register transferred to the output pins on a selected timing edge. The outputs of Timer A1, 
Timer B1, or Timer B2 can be used for this function, with each nibble of the port having a 
separate select field to control this timing.

These inputs and outputs are also used for access to other peripherals on the chip. As out-
puts, Port G can carry the data and clock outputs from Serial Ports E and F. As inputs, Port 
G can carry the data and clock inputs for these two serial ports.

The following registers are described in Table 9-17 and in Table 9-18.

Table 9-16.  Parallel Port G Registers

Register Name Mnemonic I/O address R/W Reset

Port G Data Register PGDR 0x48 R/W xxxxxxxx

Port G Control Register PGCR 0x4C W xx00xx00

Port G Function Register PGFR 0x4D W xxxxxxxx

Port G Drive Control Register PGDCR 0x4E W xxxxxxxx

Port G Data Direction Register PGDDR 0x4F W 00000000

Table 9-17.  Parallel Port G Data Register Functions

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PGDR (R/W)
adr = 048h

PG7 PG6 PG5 PG4 PG3 PG2 PG1 PG0

PGFR (W)
adr = 04Dh

x SOUT_E RCLK_E TCLK_E x SOUT_F RCLK_F TCLK_F

PGDCR (W)
adr = 04Eh

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

out =
open 
drain

PGDDR (W)
adr = 04Fh

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out
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The following registers are described in Table 9-17 and in Table 9-18.

• PGDR—Port G data register. Reads value at pins. Writes to port G preload register.

• PGCR—Parallel Port G control register. This register is used to control the clocking of 
the upper and lower nibble of the final output register of the port. On reset, bits 0, 1, 4, 
and 5 are reset to zero.

• PGFR—Port G function register. Set bit to "1" to enable alternate output function. Bits 
6 and 2 enable the asycnhronous or SDLC/HDLC serial ports E and F outputs.  And 
bits 5-4 and 1-0 enable the SDLC/HDLC transmit and receive clock outputs for serial 
ports E and F.

• PGDCR—Parallel Port G drive control register. A "0" makes the corresponding pin a 
regular output. A "1" makes the corresponding pin an open-drain output. Write only.

• PGDDR—Port G data direction register. Set to "1" to make corresponding pin an out-
put. This register is zeroed on reset.

On reset, the data direction register is zeroed, making all pins inputs. In addition certain 
bits in the control register are zeroed (bits 0,1,4,5) to ensure that data is clocked into the 
output registers when loaded. All other registers associated with port G are not initialized 
on reset. 

Table 9-18.  Parallel Port G Control Register (adr= 04Ch)

Bits 7, 6 Bits 5, 4 Bits 3, 2 Bits 1, 0

x,x

00—clock upper nibble on pclk/2

01—clock on timer A1

10—clock on timer B1

11—clock on timer B2

x,x

00—clock lower nibble on pclk/2

01—clock on timer A1

10—clock on timer B1

11—clock on timer B2
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10.  I/O BANK CONTROL REGISTERS

The pins of Port E can be set individually to be I/O strobes. Each of the eight possible I/O 
strobes has a control register that controls the nature of the strobe and the number of wait 
states that will be inserted in the I/O bus cycle. Writes can also be suppressed for any of 
the strobes. The types of strobes are shown in Figure 10-1. Each of the eight I/O strobes is 
active for addresses occupying 1/8th of the 64K external I/O address space.

Figure 10-1.  External I/O Bus Cycles

Table 10-1 shows how the eight I/O bank control registers are organized.

Table 10-1.  I/O Bank Control Reg (adr IBxCR = 08xh)

Bits 7,6 Bits 5,4 Bit 3 Bits 2–0

Wait state code

11-1

10-3

01-7

00-15

/IX strobe type

00—chip select

01—read strobe

10—write strobe

11—or of read and 
write strobe

1—permit write

0—inhibit write
Ignored

ADDR

T1 Tw T2

write data

write strobe

read data

read strobe

chip select strobe

valid

valid

valid

External I/O Timing (with 1 wait state)
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The eight I/O bank control registers determine the number of I/O wait states applied to an 
external I/O access within the zone controlled by each register even if the associated 
strobes are not enabled. Note that the /IORD and /IOWR signals reflect these registers as 
well.

The control over the generation of wait states is independent of whether or not the associ-
ated strobe in Port E is enabled. The upper 2 bits of each register determine the number of 
wait states. The four choices are 1, 3, 7, or 15 wait states. On reset, the bits are cleared, 
resulting in 15 wait states. There is always at least one external I/O wait state, and thus the 
minimum external I/O read cycle is three clocks long. The inhibit write function applies to 
both the Port E write strobes and the /IOWR signal.

These control bits have no effect on the internal I/O space, which does not have wait states 
associated with read or write access. Internal I/O read or write cycles are two clocks long.

The I/O strobes greatly simplify the interfacing of external devices. On reset, the upper 5 
bits of each register are cleared. Parallel Port E will not output these signals unless the 
data-direction register bits are set for the desired output positions. In addition, the Port E 
function register must be set to "1" for each position.

Each I/O bank is selected by the three most significant bits of the 16-bit I/O address. 
Table 10-2 shows the relationship between the I/O control register and its corresponding 
space in the 64K address space.

NOTE: Refer to Section 3.3.8 for a fix to a bug that manifests itself if an I/O instruction 
(prefix IOI or IOE) is followed by one of 12 single-byte op codes that use HL as an 
index register.

Table 10-2.  External I/O Register Address Range and Pin Mapping

Control Register
Port E 

Pin
I/O Address 

A[15:13]
I/O Address 

Range

IB0CR PE0 000 0x0000–0x1FFF

IB1CR PE1 001 0x2000–0x3FFF

IB2CR PE2 010 0x4000–0x5FFF

IB3CR PE3 011 0x6000–0x7FFF

IB4CR PE4 100 0x8000–0x9FFF

IB5CR PE5 101 0xA000–0xBFFF

IB6CR PE6 110 0xC000–0xDFFF

IB7CR PE7 111 0xE000–0xFFFF
146 Rabbit 3000 Microprocessor



11.  TIMERS

There are two timers—Timer A and Timer B. Timer A is intended mainly for generating 
the clock for various peripherals, baud clock for the serial ports, a periodic clock for 
clocking Parallel Ports D and E, or for generating periodic interrupts. Timers A1–A7 are 
general-purpose timers, and Timers A8–A10 are dedicated to specific peripherals. Timer 
B can be used for the same functions, but it cannot generate the baud clock. Timer B is 
more flexible when it can be used because the program can read the time from a continu-
ously running counter and events can be programmed to occur at a specified future time.

Figure 11-1.  Block Diagram of Timers A and B

A1 A2

Timer A System

match reg

match reg

compare

Timer B System

match preload

match preload

10 bits Timer_B1

Timer_B2

A3

A4

A5

A6

A7

 

perclk
perclk

perclk/2

10-bit counter

A8

Serial E

Serial F

Serial A

Serial B

Serial C

Serial D

Input
Capture

PWM

Quadrature
Decode

A9

A10

Timer A1

perclk/2

perclk/8

Control Timer 
Synchronized 
outputs
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11.1  Timer A

Timer A consists of  ten separate countdown timers A1–A10 as shown in Figure 11-1.

Timers A1 and A2–A10 are 8-bit countdown registers as shown in Figure 11-2. The reload 
register can contain any number in the range from 0 to 255. The counter divides by (n+1). 
For example, if the reload register contains 127, then 128 pulses enter on the left before a 
pulse exits on the right. If the reload register contains zero, then each pulse on the left 
results in a pulse on the right, that is, there is division by one.

Figure 11-2.  Reload Register Operation

The timer systems can be driven by the peripheral clock, or peripheral clock divided by 
two.  This clock is always the same as the processor clock, or it is faster than the processor 
clock by a factor of eight. The output pulses are always one clock long. Clocking of the 
counters takes place on the negative edge of this pulse. When the counter reaches zero, the 
reload register is loaded on the next input pulse instead of a count being performed. The 
reload registers may be reloaded at any time since the peripheral clock is synchronous 
with the processor clock.

Timers A2, A3, A4, A5, A6 and A7 always provide the baud clock for Serial Ports E, F, A, 
B, C, and D respectively. Except for very low baud rates, clock A1 does not need to be 
used to prescale the input clock for timers A2–A7. For example, if the system clock is 
11.0592 MHz, and the timer A4 divides by 144, an asynchronous baud rate of 2400 bps can 
be achieved in one step (assuming that the timer is clocked by peripheral clock divided by 
two). The clock input to the serial port can be 8 or 16 times the baud rate for asynchronous 
mode and 8 times the baud rate for synchronous mode. The maximum asynchronous baud 
rate with a 11.0592 MHz clock would be (11,059,200/(1*8) = 1,382,400.

8-bit down counter

8-bit reload register

Clock in

pulse on zero count out

load

Input clock
Count value 2 1 0 N N-11 02

Output pulse
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For seven of the counters (A1–A7), the terminal count condition is reported in a status regis-
ter and can be programmed to generate an interrupt. There is one interrupt vector for Timer 
A and a common interrupt priority. A common status register (TACSR) has a bit for each 
timer that indicates if the output pulse for that timer has taken place since the last read of the 
status register. When the status register is read, these bits are cleared. No bit will be lost. 
Either it will be read by the status register read or it will be set after the status register read is 
complete. If a bit is on and the corresponding interrupt is enabled, an interrupt will occur 
when priorities allow. However, a separate interrupt is not guaranteed for each bit with an 
enabled interrupt. If the bit is read in the status register, it is cleared and no further interrupt 
corresponding to that bit will be requested. It is possible that one bit will cause an interrupt, 
and then one or more additional bits will be set before the status register is read. After these 
bits are cleared, they cannot cause an interrupt. If any bits are on, and the corresponding 
interrupt is enabled, then the interrupt will take place as soon as priorities allow. However, if 
the bit is cleared before the interrupt is latched, the bit will not cause an interrupt. The proper 
rule to follow is for the interrupt routine to handle all bits that it sees set.

Although timers A8-A10 are part of Timer A, they are dedicated to the input pulse cap-
ture, PWM, and quadrature decoder peripherals respectively. The peripherals clocked by 
these timers can generate interrupts but the timers themselves cannot.  Furthermore, these 
timers cannot be cascaded with Timer A1.

11.1.1  Timer A I/O Registers

The I/O registers for Timer A are listed in Table 11-1.

Table 11-1.  Timer A I/O Registers

Register Name Mnemonic I/O address R/W Reset

Timer A Control/Status Register TACSR 0xA0 R/W 00000000

Timer A Prescale Register TAPR 0xA1 W xxxxxxx1

Timer A Time Constant 1 Register TAT1R 0xA3 W xxxxxxxx

Timer A Control Register TACR 0xA4 W 00000000

Timer A Time Constant 2 Register TAT2R 0xA5 W xxxxxxxx

Timer A Time Constant 8 Register TAT8R 0xA6 W xxxxxxxx

Timer A Time Constant 3 Register TAT3R 0xA7 W xxxxxxxx

Timer A Time Constant 9 Register TAT9R 0xA8 W xxxxxxxx

Timer A Time Constant 4 Register TAT4R 0xA9 W xxxxxxxx

Timer A Time Constant 10 Register TAT10R 0xAA W xxxxxxxx

Timer A Time Constant 5 Register TAT5R 0xAB W xxxxxxxx

Timer A Time Constant 6 Register TAT6R 0xAD W xxxxxxxx

Timer A Time Constant 7 Register TAT7R 0xAF W xxxxxxxx
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The following table summarizes Timer A’s capabilities.

The control/status register for Timer A (TACSR) is laid out as shown in Table 11-3.

Bits 1–7—Read/write, terminal count reached on timers A1-A7. Reading this status regis-
ter clears any bits (bits 1-7) that are on. Writing to these bits enables the interrupts for the 
corresponding timer.

Bit 0—Write, set to a "1" to enable the clock (perclk/2) for Timer A, set to "zero" to dis-
able the clock (perclk/2 in Figure 11-1). Bits 1-7 are written (write only) to enable the 
interrupt for the corresponding timer.

Table 11-2.  Timer A Capabilities

Timer Cascade Interrupt Dedicated connection

A1 none yes Parallel Ports D-G, Timer B 

A2 from A1 yes Serial Port E

A3 from A1 yes Serial Port F

A4 from A1 yes Serial Port A

A5 from A1 yes Serial Port B

A6 from A1 yes Serial Port C

A7 from A1 yes Serial Port D

A8 none no Input Capture

A9 none no Pulse Width Modulator

A10 none no Quadrature Decoder

Table 11-3.  Timer A Control and Status Register (adr = 0A0h)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Read
A7 count 
done

A6 count 
done

A5 count 
done

A4 count 
done

A3 count 
done

A2 count 
done

A1 count 
done

This bit is 
write 
only.

Write
A7 
interrupt 
enable

A6 
interrupt 
enable

A5 
interrupt 
enable

A4 
interrupt 
enable

A3 
interrupt 
enable

A2 
interrupt 
enable

A1 
interrupt 
enable

1—enable 
Timer A 
main 
clock 
(pclk/2)
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The control register (TACR) is laid out as shown in Table 11-4.

The Timer A Prescale Register (TAPR) specifies the main clock for Timer A. By default 
Timer A is clocked by peripheral clock divided by two.

The prescale register (TAPR) is laid out as shown in Table 11-5.

The time constant register for each timer (TATxR) is simply an 8-bit data register holding 
a number between 0 and 255. This time constant will take effect the next time that the 
Timer A counter counts down to zero. The timer counts modulo (divide-by) n+1, where n 
is the programmed time constant. The time constant registers are write only.  The time 
constant registers are listed in Table 11-1.

11.1.2  Practical Use of Timer A

Timer A is disabled (bit 0 in control and status register) on power-up. Timer A is normally 
set up while the clock is disabled, but the timer setup can be changed while the timer is 
running when there is a need to do so. Timers that are not used should be driven from the 
output of A1 and the reload register should be set to 255. This will cause counting to be as 
slow as possible and consume minimum power.

As for general-purpose timers, Timer A has seven separate subtimer units, A1 and A2–A7, 
that are also referred to as timers. 

Most likely, if a serial port is going to be used and a timer is needed to provide the baud clock, 
that timer will be set up to be driven directly from the clock, and the interrupt associated with 
that timer will be disabled. (Serial port interrupts are generated by the serial port logic.)

The value in the reload register can be changed while the timer is running to change the 
period of the next timer cycle. When the reload register is initialized, the contents of the 
countdown counter may be unknown, for example, during power-up initialization. If inter-
rupts are enabled, then the first interrupt may take place at an unknown time. Similarly, if the 

Table 11-4.  Timer A Control Register (adr = 0A4h)

Bit 7

A7

Bit 6

A6

Bit 5

A5

Bit 4

A4

Bit 3

A3

Bit 2

A2
Bits 1, 0

Source A7

0–pclk/2

1–A1

Source A6

0–pclk/2

1–A1

Source A5

0–pclk/2

1–A1

Source A4

0–pclk/2

1–A1

Source A3

0–pclk/2

1–A1

Source A2 
0–pclk/2

1–A1

00—Interrupt disabled

01—priority 1 interrupt

10—priority 2 interrupt

11—priority 3 interrupt

Table 11-5.  Timer A Prescale Register (adr = 0A1h)

Bits 7:1 Bit 0

These bits are 
ignored.

0—The main clock for Timer A is the peripheral clock.

1—The main clock for Timer A is the peripheral clock divided by two.
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timer output is being used to drive the clock for a parallel port or serial port, the first clock 
may come at a random time. If a periodic clock is desired, it is probably not important when 
the first clock takes place unless a phase relationship is desired relative to a different timers. 

A phase relationship between two timers can be obtained in several ways. One way is to 
set both reload registers to zero and to wait long enough for both timers to reload (maxi-
mum 256 clocks). Then both timers’ reload registers can be set to new values before or 
after both are clocked.
152 Rabbit 3000 Microprocessor



11.2  Timer B

Figure 11-1 shows a block diagram of Timer B. The Timer B counter can be driven 
directly by perclk/2, by that clock divided by 8, or by the output of Timer A1. Timer B has 
a continuously running 10-bit counter. The counter is compared against two match regis-
ters, the B1 match register and the B2 match register. When the counter transitions to a 
value equal to a match register, an internal pulse with a length of 1 peripheral clock is gen-
erated. The match pulse can be used to cause interrupts and/or clock the output registers of 
Parallel Ports D and E.

The match registers are loaded from the match preload registers that are written to by an 
I/O instruction. The data byte in the match preload register is advanced to the next match 
register when the match pulse is generated.

Every time a match condition occurs, the processor sets an internal bit that marks the match 
value in TBLxR as invalid. Reading TBCSR clears the interrupt condition. TBLxR must be 
reloaded to re-enable the interrupt. TBMxR does not need to be reloaded every time.

If both match registers need to be changed, the most significant byte needs to be changed 
first.

The I/O registers for Timer B are listed in Table 11-6.

Table 11-6.  Timer B Registers

Register Name Mnemonic
I/O 

address
R/W Reset

Timer B Control/Status Register TBCSR 0xB0 R/W xxxxx000

Timer B Control Register TBCR 0xB1 W xxxx0000

Timer B MSB 1 Register TBM1R 0xB2 W xxxxxxxx

Timer B LSB 1 Register TBL1R 0xB3 W xxxxxxxx

Timer B MSB 2 Register TBM2R 0xB4 W xxxxxxxx

Timer B LSB 2 Register TBL2R 0xB5 W xxxxxxxx

Timer B Count MSB Register TBCMR 0xBE R xxxxxxxx

Timer B Count LSB Register TBCLR 0xBF R xxxxxxxx
User’s Manual 153



The control/status register for Timer B (TBCSR) is laid out as shown in Table 11-7.

The control register for Timer B (TBCR) is laid out as shown in Table 11-8.

The MSB x registers for Timer B (TBM1R/TBM2R) are laid out as shown in Table 11-9.

The LSB x registers for Timer B (TBL1R/TBL2R) are laid out as shown in Table 11-10.

Table 11-7.  Timer B Control and Status Register (TBCSR) (adr = 0B0h)

Bits 7:3 Bit 2 Bit 1 Bit 0

Not used

1—A match with match 
register 2 was detected. 
This bit is cleared when 
this register is read; 
setting this bit to 1 enables 
the interrupt.

1—A match with match 
register 1 was detected. 
This bit is cleared when 
this register is read; 
setting this bit to 1 enables 
the interrupt.

1—Enable the main clock 
for this timer.

Table 11-8.  Timer B Control Register (TBCR) 

Bits 7:4 Bits 3:2 Bits 1:0

Not used

00—Counter clocked by perclk/2

01—Counter clocked by output of timer A1

1x—Timer clocked by perclk/2 divided by 8

00—Interrupt disabled

xx—Interrupt priority xx enabled.

Table 11-9.  Timer B Count MSB x Registers

Timer B Count MSB x Register (TBM1R) (Address = 0xB2)
(TBM2R) (Address = 0xB4)

Bit(s) Value Description

7:6 Write
The two MSBs of the comparae value for the Timer B comparator are stored. 
This compare value will be loaded into the actual comparator when the current 
compare detects a match.

5:0 These bits are always read as zeroes.

Table 11-10.  Timer B Count LSB x Registers

Timer B Count LSB x Register (TBL1R) (Address = 0xB3)
(TBL2R) (Address = 0xB5)

Bit(s) Value Description

7:0 Write
The eight LSBs of the comparae value for the Timer B comparator are stored. 
This compare value will be loaded into the actual comparator when the current 
compare detects a match.
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11.2.1  Using Timer B

Normally the prescaler is set to divide perclk/2 by a number that provides a counting rate 
appropriate to the problem. For example, if the clock is 22.1184 MHz, then perclk/2 is 
11.0592 MHz. A Timer B clock rate of 11.0592 MHz will cause a complete cycle of the 
10-bit clock in 92.6 µs.

Normally an interrupt will occur when either of the comparators in Timer B generates a 
pulse. The interrupt routine must detect which comparator is responsible for the interrupt 
and dispatch the interrupt to a service routine. The service routine sets up the next match 
value, which will become the match value after the next interrupt. If the clocked parallel 
ports are being used, then a value will normally be loaded into some bits of the parallel 
port register. These bits will become the output bits on the next match pulse. (It is neces-
sary to keep a shadow register for the parallel port unless the bit-addressable feature of 
Ports D and E is used.) 

If you wish to read the time from the Timer B counter, either during an interrupt caused by 
the match pulse or in some other interrupt routine asynchronous to the match pulse, you 
will have to use a special procedure to read the counter because the upper 2 bits are in a 
different register than the lower 8 bits. The following method is suggested.

1. Read the lower 8 bits (read TBCLR register).

2. Read the upper 2 bits (read TBCMR register)

3. Read the lower 8 bits again (read TBCLR register)

4. If bit 7 changed from 1 to 0 between the first and second read of the lower 8 bits, there 
has been a carry to the upper 2 bits. In this case, read the upper 2 bits again and decre-
ment those 2 bits to get the correct upper 2 bits. Use the first read of the lower 8 bits.

This procedure assumes that the time between reads can be guaranteed to be less than 256 
counts. This can be guaranteed in most systems by disabling the priority 1 interrupts, 
which will normally be disabled in any case in an interrupt routine.

Table 11-11.  Timer B Count MSB Register

Timer B Count MSB Register (TBCMR) (Address = 0xBE)

Bit(s) Value Description

7:6 Read The current value of the two MSBs of the Timer B counter are reported.

5:0 These bits are always read as zeroes.

Table 11-12.  Timer B Count LSB Register

Timer B Count LSB Register (TBCLR) (Address = 0xBF)

Bit(s) Value Description

7:0 Read The current value of the eight LSBs of the Timer B counter are reported.
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It is inadvisable to disable the high-priority interrupts (levels 2 and 3) as that defeats their 
purpose.

If speed is critical, the three reads of the registers can be performed without testing for the 
carry. The three register values can be saved and the carry test can be performed by a 
lower priority analysis routine. Since the upper 2 bits are in the TBCMR register at 
address 0BEh, and the lower 8 bits are in TBCLR at address 0BFh, both registers can be 
read with a single 16-bit I/O instruction. The following sequence illustrates how the regis-
ters could be captured.

; enter from external interrupt on pulse input transition
; 19 clocks latency plus 10 clocks interrupt execution
push af  ; 7
push hl
ioi ld a,(TBCLR)  ; 11 get lower 8 bits of counter
ioi ld hl,(TBCMR)  ;13  get l=upper, h=lower

Timer B can be used for various purposes. The 10-bit counter can be read to record the 
time at which an event takes place. If the event creates an interrupt, the timer can be read 
in the interrupt routine. The known time of execution of the interrupt routine can be sub-
tracted. The variable interrupt latency is then the uncertainty in the event time. This can be 
as little 19 clocks if the interrupt is the highest priority interrupt. If the system clock is 20 
MHz, the counter can count as fast as 10 MHz. The uncertainty in a pulse width measure-
ment can be nearly as low as 38 clocks (2 x 19), or about 2 µs for a 20 MHz system clock.

Timer B can be used to change a parallel port output register at a particular specified time 
in the future. A pulse train with edges at arbitrary times can be generated with the restric-
tion that two adjacent edges cannot be too close to each other since an interrupt must be 
serviced after each edge to set up the time for the next edge. This restriction limits the 
minimum pulse width to about 5 µs, depending on the clock speed and interrupt priorities.
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12.  RABBIT SERIAL PORTS

The Rabbit 3000 has 6 on-chip serial ports designated A, B, C, D, E, and F.  All the ports can per-
form asynchronous serial communications at high baud rates.  Ports A-D can operate as clocked 
ports. Ports A and B can be switched to alternate pins.  Ports E and F support SDLC/HDLC syn-
chronous communications in addition to standard asynchronous communications. Port A has the 
special capability of being used to remote boot the microprocessor via asynchronous, synchro-
nous, or IrDA (asynchronous serial).

Table 12-1 lists the synchronous serial port signals.
Table 12-1.   Serial Port Signals

Serial Port Signal Name Function

Serial Port A TXA Serial Transmit Out

RXA Serial Transmit In

CLKA Clock for clocked mode (bidirectional)

ATXA Alternate serial transmit out

ARXA Alternate serial receive in

Serial Port B TXB Serial Transmit Out

RXB Serial Transmit In

CLKB Clock for clocked mode (bidirectional)

ATXB Alternate serial transmit out

ARXB Alternate serial receive in

Serial Port C TXC Serial Transmit Out

RXC Serial Transmit In

CLKC Clock for clocked mode (bidirectional)

Serial Port D TXD Serial Transmit Out

RXD Serial Transmit In

CLKD Clock for clocked mode (bidirectional)

Serial Port E TXE Serial Transmit Out

RXE Serial Transmit In

TCLKE Optional external transmit clock

RCLKE Optional external receive clock
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Figure 12-1 shows a block diagram of the serial ports.

Figure 12-1.  Block Diagram of Rabbit Serial Ports

Serial Port F TXF Serial Transmit Out

RXF Serial Transmit In

TCLKF Optional external transmit clock

RCLKF Optional external receive clock

Table 12-1.   Serial Port Signals (continued)

Serial Port Signal Name Function

Serial Port ATimer A4

Serial Port BTimer A5

TXA
RXA

TXB
RXB

CLKA

CLKB

Input to timers

perclk or

perclk/2 or

prescaled (Timer A1) 

ATXA

ATXB

Serial Port CTimer A6 TXC
RXC

CLKC

Serial Port DTimer A7 TXD
RXD

CLKD

Serial Port ETimer A2 TXE
RXE

RCLKE

TCLKE

Serial Port FTimer A3 TXF
RXF

RCLKF

TCLKF

ARXB

ARXA
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The individual serial ports are capable of operating at baud rates in excess of 500,000 bps 
in the asynchronous mode, and 8 times faster than that in the synchronous mode. Either 7 
or 8 data bits may be transmitted and received in the asynchronous mode. The so-called 
"9th" bit or address bit mode of operation is also supported. The “9th” bit can be set high 
or low by accessing the appropriate serial port register. Although Parity and multiple stop 
bits are not directly supported by the hardware, the “9th” bit can be used to issue an extra 
stop bit (9th-bit high) or toggled to indicate parity.
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12.1  Serial Port Register Layout

Figure 12-2 shows a functional block diagram of a serial port. Each serial port has a data 
register, a control register and a status register. Writing to the data register starts transmis-
sion. The least significant bit (LSB) is always transmitted first.  This is  true for both asyc-
nchronous and synchronous communication. If the write is performed to an alternate data 
register address, the extra address bit or 9th bit (8th bit if 7 data bits) is sent. When data 
bits have been received, they are read from the data register (LSB first). The control regis-
ter is used to set the transmit and receive parameters. The status register may be tested to 
check on the operation of the serial port.

Figure 12-2.  Functional Block Diagram of a Serial Port

Bit 0  1  2  3  4  5  6  7  stop   

Rx serial data in
Tx serial data out

Read Data Write Data

Input Shift Reg

Data In Reg
Data Out Reg

Start Bit
0  1  1  0  1  0  1  1  

Transmitting 0D6h

Stop Bit

Tx

Start Bit

Bit 0  1  2  3  4  5  6  7  A  stop   

0  1  1  0  1  0  1  1  

Transmitting 0D6h

Stop Bit

Tx

9th bit

with 9th bit zero

Signals Shown at Microprocessor Tx Pin

fifo ports E, F only
   (4-bytes deep) fifo ports E, F only

    (4-bytes deep)

output shift
reg

9th bit
zero

9th bit
one

alternate data out
registers

address register

long stop register

     LSB First
    LSB First
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The clock input to the serial port unit must be 8 or 16 (selectable) times the baud rate in the 
asynchronous mode and 2 times the baud rate for the clocked serial mode when the internal 
clock is used. Timers A2–A7 supply the input clock for Serial Ports A–F. These timers can 
divide the frequency by any number from 1 to 256 (see Chapter 11). The input frequency to 
the timers can be selected in different ways described in the documentation for the timers. 
One choice is the peripheral clock—with that choice and a well-chosen crystal frequency 
for the main oscillator, the most commonly used baud rates can be obtained down to 
approximately 2400 bps or lower by prescaling timer A0 at the highest Rabbit clock fre-
quencies (see Section A.3 in Appendix A).
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12.2  Serial Port Registers

Each serial port has 6 registers shown in the tables below. The status, control and extended 
registers may have somewhat different formats for different serial ports.

Table 12-2.  Serial Port A Registers

Register Name Mnemonic I/O Address R/W Reset

Serial Port A Data Register SADR 0xC0 R/W xxxxxxxx

Serial Port A Address Register SAAR 0xC1 W xxxxxxxx

Serial Port A Long Stop Register SALR 0xC2 W xxxxxxxx

Serial Port A Status Register SASR 0xC3 R 0xx00000

Serial Port A Control Register SACR 0xC4 W xx000000

Serial Port A Extended Register SAER 0xC5 W 00000000

Table 12-3.  Serial Port B Registers

Register Name Mnemonic I/O Address R/W Reset

Serial Port B Data Register SBDR 0xD0 R/W xxxxxxxx

Serial Port B Address Register SBAR 0xD1 W xxxxxxxx

Serial Port B Long Stop Register SBLR 0xD2 W xxxxxxxx

Serial Port B Status Register SBSR 0xD3 R 0xx00000

Serial Port B Control Register SBCR 0xD4 W xx000000

Serial Port B Extended Register SBER 0xD5 W 00000000

Table 12-4.  Serial Port C Registers

Register Name Mnemonic I/O Address R/W Reset

Serial Port C Data Register SCDR 0xE0 R/W xxxxxxxx

Serial Port C Address Register SCAR 0xE1 W xxxxxxxx

Serial Port C Long Stop Register SCLR 0xE2 W xxxxxxxx

Serial Port C Status Register SCSR 0xE3 R 0xx00000

Serial Port C Control Register SCCR 0xE4 W xx000000

Serial Port C Extended Register SCER 0xE5 W 00000000
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Table 12-5.  Serial Port D Registers

Register Name Mnemonic I/O Address R/W Reset

Serial Port D Data Register SDDR 0xF0 R/W xxxxxxxx

Serial Port D Address Register SDAR 0xF1 W xxxxxxxx

Serial Port D Long Stop Register SDLR 0xF2 W xxxxxxxx

Serial Port D Status Register SDSR 0xF3 R 0xx00000

Serial Port D Control Register SDCR 0xF4 W xx000000

Serial Port D Extended Register SDER 0xF5 W 00000000

Table 12-6.  Serial Port E Registers

Register Name Mnemonic I/O Address R/W Reset

Serial Port E Data Register SEDR 0xC8 R/W xxxxxxxx

Serial Port E Address Register SEAR 0xC9 W xxxxxxxx

Serial Port E Long Stop Register SELR 0xCA W xxxxxxxx

Serial Port E Status Register SESR 0xCB R 0xx00000

Serial Port E Control Register SECR 0xCC W xx000000

Serial Port E Extended Register SEER 0xCD W 000x000x

Table 12-7.  Serial Port F Registers

Register Name Mnemonic I/O Address R/W Reset

Serial Port F Data Register SFDR 0xD8 R/W xxxxxxxx

Serial Port F Address Register SFAR 0xD9 W xxxxxxxx

Serial Port F Long Stop Register SFLR 0xDA W xxxxxxxx

Serial Port F Status Register SFSR 0xDB R 0xx00000

Serial Port F Control Register SFCR 0xDC W xx000000

Serial Port F Extended Register SFER 0xDD W 000x000x
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Table 12-8.  Data Register All Ports

Serial Port x Data Register (SADR) (Address = 0xC0)
(SBDR) (Address = 0xD0)
(SCDR) (Address = 0xE0)
(SDDR) (Address = 0xF0)
(SEDR) (Address = 0xC8)
(SFDR) (Address = 0xD8)

Bit(s) Value Description

7:0
Read Returns the contents of the receive buffer.

Write Loads the transmit buffer with a data byte for transmission.

Table 12-9.  Address Register All Ports

Serial Port x Address Register (SAAR) (Address = 0xC1)
(SBAR) (Address = 0xD1)
(SCAR) (Address = 0xE1)
(SDAR) (Address = 0xF1)
(SEAR) (Address = 0xC9)
(SFAR) (Address = 0xD9)

Bit(s) Value Description

7:0

Read

Returns the contents of the receive buffer. In Clocked Serial mode reading the 
data from this register automatically causes the receiver to start a byte receive 
operation (the current contents of the receive buffer are read first), eliminating 
the need for software to issue the Start Receive command.

Write

Loads the transmit buffer with an address byte, marked with a “zero” address bit, 
for transmission. In HDLC mode, the last byte of a frame must be written to this 
register to enable subsequent CRC and closing Flag transmission. In Clocked 
Serial mode writing the data to this register causes the transmitter to start a byte 
transmit operation, eliminating the need for the software to issue the Start 
Transmit command.
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Table 12-10.  Long Stop Register All Ports

Serial Port x Long Stop Register (SALR) (Address = 0xC2)
(SBLR) (Address = 0xD2)
(SCLR) (Address = 0xE2)
(SDLR) (Address = 0xF2)
(SELR) (Address = 0xCA)
(SFLR) (Address = 0xDA)

Bit(s) Value Description

7:0

Read Returns the contents of the receive buffer.

Write
Loads the transmit buffer with an address byte, marked with a “one” address bit, 
for transmission. In HDLC mode the last byte of a frame is written to this register 
to enable subsequent closing Flag transmission.
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Table 12-11.  Status Register Asynchronous Mode Only (All Ports)

Serial Port x Status Register (SASR) (Address = 0xC3)
(SBSR) (Address =  0xD3)
(SCSR) (Address =  0xE3)
(SDSR) (Address =  0xF3)
(SESR) (Address =  0xCB)
(SFSR) (Address =  0xDB)

Bit(s) Value Description (Async mode only)

7

0 The receive data register is empty—no input character is ready.

1

There is a byte in the receive buffer.  The transition from "0" to "1" sets the 
receiver interrupt request flip-flop. The interrupt FF is cleared  when the 
character is read from the data buffer. The interrupt FF will be immediately set 
again if there are more characters available in the FIFO or shift register to be 
transferred into the data buffer.

6

0 The byte in the receive buffer is data, received with a valid Stop bit.

1

Address bit or 9th (8th) bit received. This bit is set if the character in the receiver 
data register has a 9th (8th) bit. This bit is cleared and should be checked before 
reading a data register since a new data value with a new address bit may be 
loaded immediately when the data register is read.

The byte in the receive buffer is an address, or a byte with a framing error. If an 
address bit is not expected. If the data in the buffer is all zeros, this may be a 
Break.

5

0 The receive buffer was not overrun.

1
This bit is set if the receiver is overrun. This happens if the shift register and the data 
register are full and a start bit is detected. This bit is cleared when the receiver data 
register is read.

4 0 This bit is always zero in async mode.

3

0 The transmit buffer is empty.

1

Transmitter data buffer full. This bit is set when the transmit data register is full, 
that is, a byte is written to the serial port data register. It is cleared when a byte is 
transferred to the transmitter shift register or FIFO, or a write operation is 
performed to the serial port status register. This bit will request an interrupt on 
the transition from 1 to 0 if interrupts are enabled. Transmit interrupts are cleared 
when the transmit buffer is written, or any value (which will be ignored) is 
written to this register.

2

0 The transmitter is idle.

1

Transmitter busy bit. This bit is set if the transmitter shift register is busy sending 
data. It is set on the falling edge of the start bit, which is also the clock edge that 
transfers data from the transmitter data register to the transmitter shift register. 
The transmitter busy bit is cleared at the end of the stop bit of the character sent. 
This bit will cause an interrupt to be latched when it goes from busy to not busy 
status after the last character has been sent (there are no more data in the 
transmitter data register).

1:0 00 These bits are always zero in async mode.
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Table 12-12.  Status Register Clocked Serial (Ports A-D only)

Serial Port x Status Register (SASR) (Address =  0xC3)
(SBSR) (Address =  0xD3)
(SCSR) (Address =  0xE3)
(SDSR) (Address =  0xF3)

Bit(s) Value Description (Clocked serial mode only)

7

0 The receive data register is empty

1
There is a byte in the receive buffer. The serial port will request an interrupt 
while this bit is set. The interrupt is cleared when the receive buffer is empty.

6 0 This bit is always zero in clocked serial mode.

5
0 The receive buffer was not overrun.

1 The receive buffer was overrun. This bit is cleared by reading the receive buffer.

4 0 This bit is always zero in clocked serial mode.

3

0 The transmit buffer is empty.

1

The transmit buffer is not empty. The serial port will request an interrupt when 
the transmitter takes a byte from the transmit buffer. Transmit interrupts are 
cleared when the transmit buffer is written, or any value (which will be ignored) 
is written to this register.

2

0 The transmitter is idle.

1
The transmitter is sending a byte. An interrupt is generated when the transmitter 
clears this bit, which occurs only if the transmitter is ready to start sending 
another byte but the transmit buffer is empty.

1:0 00 These bits are always zero in clocked serial mode.
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Table 12-13.  Status Register HDLC Mode (Ports E and F only)

Serial Port x Status Register (SESR) (Address =  0xCB)
(SFSR) (Address =  0xD3)

Bit(s) Value Description (HDLC mode only)

7

0 The receive data register is empty

1
There is a byte in the receive buffer. The serial port will request an interrupt 
while this bit is set. The interrupt is cleared when the receive buffer is empty.

6,4

00 The byte in the receive buffer is data.

01 The byte in the receive buffer was followed by an Abort.

10 The byte in the receive buffer is the last in the frame, with valid CRC.

11 The byte in the receive buffer is the last in the frame, with a CRC error.

5
0 The receive buffer was not overrun.

1 The receive buffer was overrun. This bit is cleared by reading the receive buffer.

3

0 The transmit buffer is empty.

1

The transmit buffer is not empty. The serial port will request an interrupt when 
the transmitter takes a byte from the transmit buffer, unless the byte is marked as 
the last in the frame. Transmit interrupts are cleared when the transmit buffer is 
written, or any value (which will be ignored) is written to this register.

2:1

00 Transmit interrupt due to buffer empty condition.

01
Transmitter finished sending CRC. An interrupt is generated at the end of CRC 
transmission. Data written in response to this interrupt will cause only one Flag 
to be transmitted between frames, and no interrupt will be generated by this Flag.

10
Transmitter finished sending an Abort. An interrupt is generated at the end of an 
Abort transmission.

11
The transmitter finished sending a closing Flag. Data written in response to this 
interrupt will cause at least two Flags to be transmitted between frames.

0
0 The byte in the receiver buffer is 8 bits.

1 The byte in the receiver buffer is less than 8 bits.
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Table 12-14.  Serial Port Control Register Ports A and B

Serial Port x Control Register (SACR) (Address =  0xC4)
(SBCR) (Address = 0xD4)

Bit(s) Value Description

7:6 00 No operation. These bits are ignored in the Async mode.

01 In clocked serial mode, start a byte receive operation.

10 In clocked serial mode, start a byte transmit operation.

11
In clocked serial mode, start a byte transmit operation and a byte receive 
operation simultaneously.

5:4 00 Parallel Port C is used for input.

01 Parallel Port D is used for input.

1x Disable the receiver input.

3:2 00 Async mode with 8 bits per character.

01
Async mode with 7 bits per character. In this mode the most significant bit of a 
byte is ignored for transmit, and is always zero in receive data.

10

Clocked serial mode with external clock. 

Serial Port A clock is on Parallel Port PB1

Serial Port B clock is on Parallel Port PB0

11

Clocked serial mode with internal clock.

Serial Port A clock is on Parallel Port PB1

Serial Port B clock is on Parallel Port PB0

1:0 00 The Serial Port interrupt is disabled.

01 The Serial Port uses Interrupt Priority 1.

10 The Serial Port uses Interrupt Priority 2.
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Table 12-15.  Serial Port Control Register Ports C and D

Serial Port x Control Register (SCCR) (Address =  0xE4)
(SDCR) (Address = 0xF4)

Bit(s) Value Description

7:6

00 No operation. These bits are ignored in the async mode.

01 In clocked serial mode, start a byte receive operation.

10 In clocked serial mode, start a byte transmit operation.

11
In clocked serial mode, start a byte transmit operation and a byte receive 
operation simultaneously.

5
0 Enable the receiver input.

1 Disable the receiver input.

4 x This bit is ignored.

3:2

00 8 bits per character.

01
7 bits per character. In this mode the most significant bit of a byte is ignored for 
transmit, and is always zero in receive data.

10

Clocked serial mode with external clock.

Serial Port C clock is on Parallel Port PF1

Serial Port D clock is on Parallel Port PF0

11

Clocked serial mode with internal clock.

Serial Port C clock is on Parallel Port PF1

Serial Port D clock is on Parallel Port PF0

1:0

00 The serial port interrupt is disabled.

01 The serial port uses Interrupt Priority 1.

10 The serial port uses Interrupt Priority 2.

11 The serial port uses Interrupt Priority 3.
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Table 12-16.  Serial Port Control Register Ports E and F

Serial Port x Control Register (SECR) (Address = 0xCC)
(SFCR) (Address = 0xDC)

Bit(s) Value Description

7:6

00 No operation. These bits are ignored in the Async mode.

01 In HDLC mode, force receiver in Flag Search mode.

10 No operation.

11 In HDLC mode, transmit an Abort pattern.

5
0 Enable the receiver input.

1 Disable the receiver input.

4 x This bit is ignored.

3:2

00 Async mode with 8 bits per character.

01
Async mode with 7 bits per character. In this mode the most significant bit of a 
byte is ignored for transmit, and is always zero in receive data.

10

HDLC mode with external clock. The external clocks are supplied as follows:

• Transmit clock (Serial Port F)—pins PG0 and PG1on Parallel Port G.

• Receive clock (Serial Port E)—pins PG4 and PG5 on Parallel Port G.

11

HDLC mode with internal clock. The clock is 16× the data rate, and the DPLL is 
used to recover the receive clock. If necessary, the clocks are supplied as follows:

• Transmit clock (Serial Port F)—pins PG0 and PG1on Parallel Port G.

• Receive clock (Serial Port E)—pins PG4 and PG5 on Parallel Port G.

1:0

00 The serial port interrupt is disabled.

01 The serial port uses Interrupt Priority 1.

10 The serial port uses Interrupt Priority 2.

11 The serial port uses Interrupt Priority 3.
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Table 12-17.  Extended Register Asynchronous Mode All Ports

Serial Port x Extended Register (SAER) (Address = 0xC5)
(SBER) (Address = 0xD5)
(SCER) (Address = 0xE5)
(SDER) (Address = 0xF5)
(SEER) (Address = 0xCD)
(SFER) (Address = 0xDD)

Bit(s) Value Description (Async mode only)

7:5 xxx These bits are ignored in async mode.

4
0 Normal async data encoding.

1 Enable RZI coding (3/16ths bit cell IrDA-compliant).

3

0
Normal Break operation. This option should be selected when address bits are 
expected.

1
Fast Break termination. At the end of Break a dummy character is written to the 
buffer, and the receiver can start character assembly after one bit time.

2
0 Async clock is 16X data rate.

1 Async clock is 8X data rate.

1:0 xx These bits are ignored in async mode.
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Table 12-18.  Extended Register Clocked Serial Mode (Ports A-D only)

Serial Port x Extended Register (SAER) (Address = 0xC5)
(SBER) (Address = 0xD5)
(SCER) (Address = 0xE5)
(SDER) (Address = 0xF5)

Bit(s) Value Description (Clocked serial mode only)

7
0 Normal clocked serial operation.

1 Timer synchronized clocked serial operation.

6
0 Timer-synchronized clocked serial uses Timer B1.

1 Timer-synchronized clocked serial uses Timer B2.

5:4

00 Normal clocked serial clock polarity, inactive High. Internal or external clock.

01 Normal clocked serial clock polarity, inactive Low. Internal clock only.

10 Inverted clocked serial clock polarity, inactive Low. Internal or external clock.

11 Inverted clocked serial clock polarity, inactive High. Internal clock only.

3:2 xx These bits are ignored in clocked serial mode.

1
0 No effect on transmitter.

1 Terminate current clocked serial transmission. No effect on buffer.

0
0 No effect on receiver.

1 Terminate current clocked serial reception.
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Table 12-19.  Extended Register HDLC Mode (Ports E and F only)

Serial Port x Extended Register (SEER) (Address = 0xCD)
(SFER) (Address = 0xDD)

Bit(s) Value Description (HDLC mode only)

7:5

000 NRZ data encoding for HDLC receiver and transmitter.

010 NRZI data encoding for HDLC receiver and transmitter.

100 Biphase-Level (Manchester) data encoding for HDLC receiver and transmitter.

110 Biphase-Space data encoding for HDLC receiver and transmitter.

111 Biphase-Mark data encoding for HDLC receiver and transmitter.

4

0 Normal HDLC data encoding.

1
Enable RZI coding (1/4th bit cell IRDA-compliant). This mode can only be used 
with internal clock and NRZ data encoding.

3
0 Idle line condition is Flags.

1 Idle line condition is all ones.

2
0 Transmit Flag on underrun.

1 Transmit Abort on underrun.

1:0 xx These bits are ignored in HDLC mode.
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12.3  Serial Port Interrupt

A common interrupt vector is used for the receive and transmit interrupts. There is a sepa-
rate interrupt request flip-flop for the receiver and transmitter. If either of these flip-flops 
is set, a serial port interrupt is requested. The flip-flops are set by a rising edge only. The 
flip-flops are cleared by a pulse generated by an I/O read or write operation as shown in 
Figure 12-3. When an interrupt is requested, it will take place immediately when priorities 
allow and an instruction execution is complete. The interrupt is lost if the request flip-flop 
is cleared before the interrupt takes place. If the flip-flop is not cleared in the interrupt, 
another interrupt will take place when priorities are lowered.

Figure 12-3.  Generation of Serial Port Interrupts

The receive interrupt request flip-flop is set after the stop bit is sampled on receive, nomi-
nally 1/2 of the way through the stop bit.  Data bits are transferred on this same clock from 
the receive shift register to the receive data register.

The transmit interrupt request flip-flop is set on the leading edge of the start bit for data 
register empty and at the trailing edge of the stop bit for shift register empty (transmitter 
idle). Unless the data register is empty on this trailing edge of the stop bit, the transmitter 
does not become idle. The transmitter becomes idle only if the data register is empty at the 
trailing edge of the stop bit.

The serial port interrupt vectors are shown in Table 6-1.

Transmitter IRQ

Request Interrupt

Receiver IRQ

Transmitter Data 
Buffer Empty or 
Transmitter not Busy

Receiver Data 
Buffer Full

Read Receiver Data 
Register

Write Transmitter 
Data Register or
Write Status Register
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12.4  Transmit Serial Data Timing

On transmit, if the interrupts are enabled, an interrupt is requested when the transmit regis-
ter becomes empty and, in addition, an interrupt occurs when the shift register and trans-
mit register both become empty, that is, when the transmitter becomes idle. The shift 
register is empty when the last bit is shifted out. When the transmit data register contains 
data and the shift register finishes sending data, the data bits are clocked from the transmit 
register to the shift register, and the shift register is never idle.  The interrupt request is 
cleared either by writing to the data register or by writing to the status register (which does 
not affect the status register).  The data register normally is clocked into the shift register 
each time the shift register finishes sending data, leaving the data register empty.  This 
causes an interrupt request.  The interrupt routine normally answers the interrupt before 
the shift register runs dry (9 to 11 baud clocks, depending on the mode of operation).  The 
interrupt routine stores the next data item in the data register, clearing the interrupt request 
and supplying the next data bits to be sent.  When all the characters have been sent, the 
interrupt service routine answers the interrupt once the data register becomes empty.  
Since it has no more data, it clears the interrupt request by storing to the status register.  At 
this point the routine should check if the shift register is empty; normally it won’t be.  If it 
is, because the interrupt was answered late, the interrupt routine should do any final 
cleanup and store to the status register again in case the shift register became empty after 
the pending interrupt is cleared.  Normally, though, the interrupt service routine will return 
and there will be a final interrupt to give the routine a chance to disable the output buffers, 
as in the case for RS-485 transmission.
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12.5  Receive Serial Data Timing

When the receiver is ready to receive data, a falling edge indicates that a start bit must be 
detected.  The falling edge is detected as a different Rx input between two different clocks, 
the clock being 8x or 16x the baud rate.  Once the start bit has been detected, data bits are 
sampled at the middle of each data bit and are shifted into the receive shift register.  After 
7 or 8 data bits have been received, the next bit will be either a 9th (8th) address bit, or a 
stop bit will be sampled.  If the Rx line is low, it is an address bit and the address bit 
received bit in the status register will be enabled.  If an address bit is detected, the receiver 
will attempt to sample the stop bit.  If the line is high when sampled, it is a stop bit and a 
new scan for a new start bit will begin after the sample point. At the same time, the data 
bits are transferred into the receive data register and an interrupt, if enabled, is requested.

On receive, an interrupt is requested when the receiver data register has data.  This hap-
pens when data bits are transferred from the receive shift register to the data register.  This 
also sets bit 7 of the status register.  The interrupt request and bit 7 are cleared when the 
data register is read.

An interrupt is requested if bit 7 is high.  The interrupt is requested on the edge of the 
transmitter data register becoming empty or the transmitter shift register becoming empty.  
The transmitter interrupt is cleared by writing to the status register or to the data register.

On receive, the scan for the next start bit starts immediately after the stop bit is detected.  
The stop bit is normally detected at a sample clock that nominally occurs in the center of 
the stop bit.  If there is a 9th (8th) address bit, the stop bit follows that bit.

The serial clock can be configured to be either 16× the data rate or 8× the data rate.

Figure 12-4.  Serial Port Synchronization

start bit

8 clocks

stop bit

Receiver Data 
Ready Bit

sampling
point

Serial Port
Input Clock

Asynchronous Receive

Asynchronous Transmit

Transmitter Data Reg Full
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12.6  Clocked Serial Ports

Ports A–D can operate in clocked mode. The data line and clock line are driven as shown in 
Figure 12-4. The data and clock are provided as 8-bit bursts with the LSB shifted out and/or 
received first. By default the transmit shift register advances on the falling edge of the clock 
and the receiver samples the data on the rising edge of the clock. The serial port can generate 
the clock or the clock can be provided externally.

The clock polarity is programmable in clocked serial mode according to Figure . The clocked 
serial transfer may also be synchronized to the output of either of the match conditions in 
Timer B to give precisely timed transfers.

To enable the clocked serial mode, a code must be in bits (3,2) of the control register, enabling 
the clocked serial mode with either an internal clock or an external clock.  The transition 
between the external and the internal clock should be performed with care.  Normally a pullup 
resistor is needed on the clock line to prevent spurious clocks while neither party is driving the 
clock.

Figure 12-5.  Clock Polarities Supported in Clocked Serial Mode

In clocked serial mode the shift register and the data register work in the same fashion as for 
asynchronous communications.  However, to initiate basic sending or receiving, a command 
must be issued by writing to bits (7,6) of the control register for each byte sent or received.  
One command is for sending a byte, a different command is for receiving a byte, and yet 
another command can initiate a transmit and receive at the same time for full duplex commu-
nication. Alternatively, a read or write to the Serial Ports A-D Address registers (SxAR) elim-
inates the need to issue separate receive and transmit commands. In clocked serial mode, 
reading the data from the corresponding SxAR register automatically causes  the receiver to 
start a byte receive operation, eliminating the need for software to issue the Start Receive 
command. Any data contained in the receive buffer will be read first before being replaced 

CLK (Mode 00)

Tx D0 D1 D2 D3 D4 D5 D6 D7

Rx D0 D1 D2 D3 D4 D5 D6 D7

CLK (Mode 10)

CLK (Mode 01)

CLK (Mode 11)
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with new incoming data. Similarly, writing the data to the SxAR register causes the trans-
mitter to start a byte transmit operation, eliminating the need for the software to issue the 
Start Transmit command.  The effect of these codes is different, depending on whether the 
mode is internal clock or external clock.

To transmit in internal clock mode, the user must first load the data register (which must 
be empty) and then store the send code. When the shift register finishes sending the cur-
rent character, if any, the data register will be loaded into the shift register and transmitted 
by an 8-clock burst. One character can be in the process of transmitting while another 
character is waiting in the data register tagged with the send code. The send code is effec-
tively double-buffered.

To receive a character in internal clock mode, the receive shift register should be idle. The 
user then stores the receive code in the control register. A burst of 8 clocks will be gener-
ated and the sender must detect the clocks and shift output data to the data line on the fall-
ing edge of each clock. The receiver will sample the data on the rising edge of each clock 
for clock modes 00 and 01 or the falling edge for clock modes 10 and 11.  The receive 
mode cannot double-buffer characters when using the internal clock.  The shift register 
must be idle before another character receive can be initiated.  However, the interrupt 
request and character ready takes place on the rising edge of the last clock pulse.  If the 
next receive code is stored before the natural location of the next falling edge, another 
receive will be initiated without pausing the clock.  To do this, the interrupt has to be ser-
viced within 1/2 clock.

To transmit each byte in external clock mode, the user must load the data register and then 
store the send code.  When the shift register is idle and the receiver provides a clock burst, 
the data bits are transferred to the shift register and are shifted out.  Once the transfer is 
made to the shift register, a new byte can be loaded into the transmit register and a new 
send code can be stored.

To receive a byte in external clock mode, the user must set the receive code for the first 
byte and then store the receive code for the next byte after each byte is removed from the 
data register.  Since the receive code must be stored before the transmitter sends the next 
byte, the receiver must service the interrupt within 1/2 baud clock to maintain full-speed 
transmission.  This is usually not practical unless a flow control arrangement is made or 
the transmitter inserts gaps between the clock bursts.

In order to carry on high-speed communication, the best arrangement will usually be for 
the receiver to provide the clock.  When the receiver provides the clock, the transmitter 
should always be able to keep up because it is double-buffered and has a full character 
time to answer the transmitter data register empty interrupt.  The receiver will answer 
interrupts that are generated on the last clock rising edge.  If the interrupt can be serviced 
within 1/2 clock, there will be no pause in the data rate.  If it takes the receiver longer to 
answer, then there will be a gap between bytes, the length of which depends on the inter-
rupt latency.  For example, if the baud rate is 400,000 bps, then up to 50,000 bytes per sec-
ond could be transmitted, or a byte every 20 µs.  No data will be lost if the transmitter can 
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answer its interrupts within 20 µs.  There will be no slow down if the receiver can answer 
its interrupt within 1/2 clock or 1.25 µs.  If it can answer within 1.5 clocks, or 2.75 µs, the 
data rate will slow to 44,444 bytes per second.  If it can answer in 2.5 clocks or 6.25 µs, 
the data rate slows to 40,000 bytes per second.  If it can answer in 3.5 clocks or 8.75 µs, 
the data rate will slow to 36,363 bytes per second, and so forth.

If two-way half-duplex communication is desired, the clock can be turned around so that 
the receiver always provides the clock.  This is slightly more complicated since the 
receiver cannot initiate a message.  If the receiver attempts to receive a character and the 
transmitter is not transmitting, the last bit sent will be received for all eight bits.
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12.7  Clocked Serial Timing

12.7.1  Clocked Serial Timing With Internal Clock

For synchronous serial communication, the serial clock can be either generated by the 
Rabbit or by an external device. The timing diagram in Figure 12-6 below can be applied 
to both full-duplex and half-duplex clocked serial communication where the serial clock is 
generated internally by the Rabbit. Other SPI compatible clock modes supported by the 
Rabbit 3000 are shown in Figure 12-5. With an internal clock, the maximum serial clock 
rate is perclk/2.

Figure 12-6.  Full-Duplex Clocked Serial Timing Diagram with Internal Clock (Mode 00)

12.7.2  Clocked Serial Timing with External Clock

In a system where the Rabbit serial clock is generated by an external device, the clock sig-
nal has to be synchronized with the internal peripheral clock (perclk) before data can be 
transmitted or received by the Rabbit. Depending on when the external serial clock is gen-
erated, in relation to perclk, it may take anywhere from 2 to 3 clock cycles for the exter-
nal clock to be synchronized with the internal clock before any data can be transferred. 
Figure 12-7 shows the timing relationship among perclk, the external serial clock, and 
data transmit.

Figure 12-7.  Synchronous Serial Data Transmit Timing with External Clock (Mode 00)
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Figure 12-8 shows the timing relationship among perclk, the external serial clock, and 
data receive. Note that RxA is sampled by the rising edge of perclk.

Figure 12-8.  Synchronous Serial Data Receive Timing with External Clock (Mode 00)

When clocking the Rabbit externally, the maximum serial clock frequency is limited by 
the amount of time required to synchronize the external clock with the Rabbit perclk.  If 
we sum the maximum number of perclk cycles required to perform clock synchroniza-
tion for each of the receive and transmit cases, then the fastest external serial clock fre-
quency would be limited to perclk/6.
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12.8  Synchronous Communications on Ports E and F

Serial Port E and F are a dual-function serial ports that can be used in either asynchronous 
or HDLC mode. Four bytes of buffering are available for both receiver and transmitter to 
reduce interrupt overhead. An interrupt is generated whenever at least one byte is avail-
able in the receiver buffer and every time a byte is removed from the transmitter buffer.

Serial Port E is clocked by the output of Timer A2 and Serial Port F by A3. In asynchro-
nous mode this clock can be either sixteen (the default) or eight times the data rate. In 
HDLC mode this clock is sixteen times the data rate. Note that the fastest output from 
Timer A2 or A3 is the same frequency as the peripheral clock. Thus the maximum data 
rate is the peripheral clock frequency divided by eight in async mode and divided by six-
teen in HDLC mode.

The HDLC receiver employs a Digital Phase-Locked-Loop (DPLL) to generate a synchro-
nized receive clock for the incoming data stream. HDLC mode also allows for an external 
1x (same speed as the data rate) clock for both the receiver and the transmitter. HDLC 
receive and transmit clocks can be input or output, as appropriate, via the specified pins. 
When using an external clock, the maximum data rate is one-sixth of the peripheral clock 
rate.

In asynchronous mode the port can send and receive seven or eight bits and has the option 
of appending and recognizing an additional address bit. On transmit, the address bit is 
automatically appended to the data when this data is written to the address register or long 
stop register. Writing to the address register appends an “zero” address bit to the data, 
while writing to the long stop register appends an “one” address bit to the data. The 
address bit is followed by a normal stop bit. Normal data is written to the data register to 
be transmitted. On receive, a status bit distinguishes normal data from “address” data. This 
status bit is set to one if a “zero” address bit is received. In non-address bit applications, 
this indicates a framing error. This status bit can also indicate a received break, if the 
accompanying data is all zeros (this is the definition of break). Asynchronous mode oper-
ates full-duplex. Either the receive data available, transmit buffer empty or transmit idle 
conditions can be programmed to generate an interrupt.

The HDLC mode allows full-duplex synchronous communication. Either an internal or 
external clock may be selected for both the receiver and the transmitter. HDLC mode 
encapsulates data within opening and closing Flags, and sixteen bits of CRC precedes the 
closing Flag. All information between the opening and closing Flag is "zero-stuffed". That 
is, if five consecutive ones occur, independent of byte boundaries, a zero is automatically 
inserted by the transmitter and automatically deleted by the receiver. This allows a Flag 
byte (07Eh) to be unique within the serial bit stream. The standard CRC-CCITT polyno-

mial (x16 + x12 + x5 + 1) is implemented, with the generator and checker preset to all ones.

Both receive and transmit operation are essentially automatic. In the receiver, each byte is 
marked with status to indicate end-of-frame, short frame and CRC error. The receiver 
automatically synchronizes on Flag bytes and presets the CRC checker appropriately. If 
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the current receive frame is not needed (because it is addressed to a different station, for 
example) a Flag Search command is available. This command forces the receiver to ignore 
the incoming data stream until another Flag is received. In the transmitter, the CRC gener-
ator is preset and the opening Flag is transmitted automatically after the first byte is writ-
ten to the transmitter buffer, and CRC and the closing flag are transmitted after the byte 
that is written to the buffer through the Address Register. If no CRC is required, writing 
the last byte of the frame to the Long Stop Register automatically appends a closing flag 
after the last byte. If the transmitter underflows, either an Abort or a Flag will be transmit-
ted, under program control. A command is available to send the Abort pattern (seven con-
secutive ones) if a transmit frame needs to be aborted prematurely. The Abort command 
takes effect on the next byte boundary, and causes the transmission of an FEh (a zero fol-
lowed by seven ones), after which the transmitter will send the idle line condition. The 
Abort command also purges the transmit FIFO. The idle line condition may be either 
Flags or all ones.

Both the receiver and transmitter contain four bytes of buffering for the data. Status bits 
are buffered along with the data in both receiver and transmitter. The receiver automati-
cally generates an interrupt at the end of a received frame, and the transmitter generates an 
interrupt at the end of CRC transmission, at the end of the transmission of an Abort 
sequence, and at the end of the transmission of a closing Flag.

The transmitter is not capable of sending an arbitrary number of bits, but only a multiple 
of bytes. However, the receiver can receive frames of any bit length. If the last "byte" in 
the frame is not eight bits, the receiver sets a status flag that is buffered along with this last 
byte. Software can then use the table below to determine the number of valid data bits in 
this last "byte." Note that the receiver transfers all bits between the opening and closing 
Flags, except for the inserted zeros, to the receiver data buffer.

Several types of data encoding are available in the HDLC mode. In addition to the normal 
NRZ, they are NRZI, Biphase-Level (Manchester), Biphase-Space (FM0) and Biphase-
Mark (FM1). Examples of these encodings are shown in the Figure below. Note that in 
NRZI, Biphase-Space and Biphase-Mark the signal level does not convey information. 
Rather it is the placement of the transitions that determine the data. In Biphase-Level it is 
the polarity of the transition that determines the data.

Last Byte Bit Pattern Valid Data Hits

bbbbbbb0 7

bbbbbb01 6

bbbbb011 5

bbbb0111 4

bbb01111 3

bb011111 2

b0111111 1
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In HDLC mode the internal clock comes from the output of Timer A2. This timer output is 
divided by sixteen to form the transmit clock, and is fed to the Digital Phase-Locked Loop 
(DPLL) to form the receive clock. The DPLL is basically just a divide-by-16 counter that 
uses the timing of the transitions on the receive data stream to adjust its count. The DPLL 
adjust the count so that the output of the DPLL will be properly placed in the bit cells to 
sample the receive data. To work properly, then, transitions are required in the receive data 
stream. NRZ data encoding does not guarantee transitions in all cases (a long string of 
zeros for example), but the other data encodings do. NRZI guarantees transitions because 
of the inserted zeros, and the Biphase encodings all have at least one transition per bit cell.

The DPLL counter normally counts by sixteen, but if a transition occurs earlier or later 
than expected the count will be modified during the next count cycle. If the transition 
occurs earlier than expected, it means that the bit cell boundaries are early with respect to 
the DPLL-tracked bit cell boundaries, so the count is shortened, either by one or two 
counts. If the transition occurs later than expected, it means that the bit cell boundaries are 
late with respect to the DPLL-tracked bit cell boundaries, so the count is lengthened, 
either by one or two counts. The decision to adjust by one or by two depends on how far 
off the DPLL-tracked bit cell boundaries are. This tracking allows for minor differences in 
the transmit and receive clock frequencies.

With NRZ and NRZI data encoding, the DPLL counter runs continuously, and adjusts 
after every receive data transition. Since NRZ encoding does not guarantee a minimum 
density of transitions, the difference between the sending data rate and the DPLL output 

Serial Clock

Biphase-Space

Biphase-Mark

NRZ Data

NRZI

Biphase-Level

NRZI

Biphase-Space

Biphase-Mark

data "1" "1" "1" "1""0" "0""0""0"
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clock rate must be very small, and depends on the longest possible run of zeros in the 
received frame. NRZI encoding guarantees at least one transition every six bits (with the 
inserted zeros). Since the DPLL can adjust by two counts every bit cell, the maximum dif-
ference between the sending data rate and the DPLL output clock rate is 1/48 (~2%).

With Biphase data encoding (either -Level, -Mark or -Space), the DPLL runs only as long 
as transitions are present in the receive data stream. Two consecutive missed transitions 
causes the DPLL to halt operation and wait for the next available transition. This mode of 
operation is necessary because it is possible for the DPLL to lock onto the optional transi-
tions in the receive data stream. Since they are optional, they will eventually not be 
present and the DPLL can attempt to lock onto the required transitions. Since the DPLL 
can adjust by one count every bit cell, the maximum difference between the sending data 
rate and the DPLL output clock rate is 1/16 (~6%).

With Biphase data encoding the DPLL is designed to work in multiple-access conditions 
where there may not be Flags on an idle line. The DPLL will properly generate an output 
clock based on the first transition in the leading zero of an opening Flag. Similarly, only the 
completion of the closing Flag is necessary for the DPLL to provide the extra two clocks to 
the receiver to properly assemble the data. In Biphase-Level mode, this means the transi-
tion that defines the last zero of the closing Flag. In Biphase-Mark and Biphase-Space 
modes this means the transition that defines the end of the last zero of the closing Flag.

The figure below shows the adjustment ranges and output clock for the different modes of 
operation of the DPLL. Each mode of operation will be described in turn.

Bit cell

Bi-S adj

Bi-M adj

NRZI adj

NRZI Clock

Bi-L Clock

Bi-L adj

Bi-S Clock

Bi-M Clock

nonenone add one add two subtract two subtract one

none add oneignore transitions subtract one

nonenone add one ignore transitions subtract one

nonenone add one ignore transitions subtract one

ignore transitions
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With NRZ and NRZI encoding all transitions occur on bit-cell boundaries and the data 
should be sampled in the middle of the bit cell. If a transition occurs after the expected bit-
cell boundary (but before the midpoint) the DPLL needs to lengthen the count to line up 
the bit-cell boundaries. This corresponds to the “add one” and “add two” regions shown. If 
a transition occurs before the bit cell boundary (but after the midpoint) the DPLL needs to 
shorten the count to line up the bit-cell boundaries. This corresponds to the “subtract one” 
and “subtract two” regions shown. The DPLL makes no adjustment if the bit-cell bound-
aries are lined up within one count of the divide-by-sixteen counter. The regions that 
adjust the count by two allow the DPLL to synchronize faster to the data stream when 
starting up.

With Biphase-Level encoding there is a guaranteed “clock” transition at the center of 
every bit cell and optional “data” transitions at the bit cell boundaries. The DPLL only 
uses the clock transitions to track the bit cell boundaries, by ignoring all transitions occur-
ring outside a window around the center of the bit cell. This window is half a bit-cell wide. 
Additionally, because the clock transitions are guaranteed, the DPLL requires that they 
always be present. If no transition is found in the window around the center of the bit cell 
for two successive bit cells the DPLL is not in lock and immediately enters the search 
mode. Search mode assumes that the next transition seen is a clock transition and immedi-
ately synchronizes to this transition. No clock output is provided to the receiver during the 
search operation. Decoding Biphase-Level data requires that the data be sampled at either 
the quarter or three-quarter point in the bit cell. The DPLL here uses the quarter point to 
sample the data.

Biphase-Mark and Biphase space encoding are identical as far as the DPLL is concerned, 
and are similar to Biphase-Level. The primary difference is the placement of the clock and 
data transitions. With these encodings the clock transitions are at the bit-cell boundary and 
the data transitions are at the center of the bit cell, and the DPLL operation is adjusted 
accordingly. Decoding Biphase-Mark or Biphase-Space encoding requires that the data be 
sampled by both edges of the recovered receive clock.

An optional IRDA (Infrared Data Association) -compliant encode and decode function is 
available in both asynchronous mode and HDLC mode. The encoder sends an active-High 
pulse for a zero and no pulse for a one. In the asynchronous 16x mode this pulse is 3/16ths 
of a bit cell wide, while in the asynchronous 8x mode it is 1/8th of a bit cell wide. In 
HDLC mode the pulse is 1/4th of a bit cell wide. In all modes the decoder watches for 
active-Low pulses, which are stretched to one bit time wide to recreate the normal asyn-
chronous  waveform for the receiver. Enabling the IRDA-compliant encode/decode modi-
fies the transmitter in HDLC mode so that there are always two opening Flags transmitted.
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12.9  Serial Port Software Suggestions

The receiver and transmitter share the same interrupt vector, but it is possible to make the 
receive and transmit interrupt service routines (ISRs) separate by dispatching the interrupt 
to either of two different routines.  This is desirable to make the ISR less complex and to 
reduce the interrupt off time.  No interrupts will be lost since distinct interrupt flip-flops 
exist for receive and transmit.  The dispatcher can test the receiver data register full bit to 
dispatch.  If this bit is on, the interrupt is dispatched for receive, otherwise for transmit.  
The receiver receives first consideration because it must be serviced attentively or data 
could be lost.

The dispatcher might look as follows.

interrupt:

PUSH AF ; 10
IOI LD A,(SCSR)  ; 7 get status register serial port C
JP m,receive ; 7 go service the receive interrupt
                   ;    else service transmit interrupt

The individual interrupts would assume that register AF has been saved and the status reg-
ister has been loaded into Register A.

The interrupt service routines can, as a matter of good practice and obtaining optimum 
performance, remove the cause of the interrupt and re-enable the interrupts as soon as pos-
sible.  This keeps the interrupt latency down and allows the fastest transmission speed on 
all serial ports.

All the serial ports will normally generate priority level 1 interrupts.  In exceptional circum-
stances, one or more serial ports can be configured to use a higher priority interrupt.  
There is an exception to be aware of when a serial port has to operate at an extremely high 
speed.  At 115,200 bps, the highest speed of a PC serial port, the interrupts must be serviced 
in 10 baud times, or 86 µs, in order not to lose the received characters.  If all six serial ports 
were operating at this receive speed, it would be necessary to service the interrupt in less 
than 21.5 µs to assure no lost characters.  In addition, the time taken by other interrupts of 
equal or higher priority would have to be considered.  A receiver service routine might 
appear as follows below.  The byte at bufptr is used to address the buffer where data bits 
are stored.  It is necessary to save and increment this byte because characters could be han-
dled out of order if two receiver interrupts take place in quick succession.

receive:

PUSH HL         ; 10 save HL
PUSH DE         ; 10 save DE
LD HL,struct    ; 6
LD A,(HL)       ; 5 get in-pointer
LD E,A          ; 2 save in pointer in E
INC HL          ; 2 point to out-pointer
CMP A,(HL)      ; 5 see if in-pointer=out-pointer (buffer full)
JR Z,roverrun   ; 5 go fix up receiver over run
INC A           ; 2 incement the in pointer
AND A,mask      ; 4 mask such as 11110000 if 16 buffer locs
DEC HL          ; 2
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LD (HL),A    ; 6 update the in pointer
IOI LD A,(SCDR) ; 11 get data register port C, clears interrupt request
IPRES           ; 4 restore the interrupt priority 

; 68 clocks to here
; to level before interrupt took place
; more interrupts could now take place, 
; but receiver data is in registers
; now handle the rest of the receiver interrupt routine
LD HL,bufbase   ; 6
LD D,0          ; 6
ADD HL,DE       ; 2 location to store data
LD (HL),A       ;  6 put away the data byte
POP DE          ; 7
POP HL          ; 7
POP AF          ; 7
RET             ; 8 from interrupt

; 117 clocks to here

This routine gets the interrupts turned on in about 68 clocks or 3.5 µs at a clock speed of 
20 MHz.  Although two characters may be handled out of order, this will be invisible to a 
higher level routine checking the status of the input buffer because all the interrupts will 
be completed before the higher level routine can perform a check on the buffer status.

A typical way to organize the buffers is to have an in-pointer and an out-pointer that incre-
ment through the addresses in the data buffer in a circular manner.  The interrupt routine 
manipulates the in-pointer and the higher level routine manipulates the out-pointer.  If the 
in-pointer equals the out-pointer, the buffer is considered full.  If the out-pointer plus 1 
equals the in-pointer, the buffer is empty.  All increments are done in a circular fashion, 
most easily accomplished by making the buffer a power of two in length, then anding a 
mask after the increment.  The actual memory address is the pointer plus a buffer base 
address.

12.9.1  Controlling an RS-485 Driver and Receiver

RS-485 uses a half-duplex method of communication.  One station enables its driver and 
sends a message.  After the message is complete, the station disables the driver and listens 
to the line for a reply.  The driver must be enabled before the start bit is sent and not dis-
abled until the stop bit has been sent.  The transmitter idle interrupt is normally used to 
disable the RS-485 driver and possibly enable the receiver.

12.9.2  Transmitting Dummy Characters

It may be desired to operate the serial transmitter without actually sending any data.  “Dummy” 
characters are transmitted to pass time or to measure time.

The output of the transmitter may be disconnected from the transmitter output pin by manip-
ulating the control registers for Parallel Port C or D, which are used as output pins.  For 
example, if Serial Port B is to be temporarily disconnected from its output pin, which is bit 
4 of Parallel Port C, this can be done as follows.

1. Store a "1" in bit 4 of the parallel port data output register to provide the quiescent state 
of the drive line.
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2. Clear bit 4 of the Parallel Port C function register so that the output no longer comes 
from the serial port.  Of course, this should not be done until the transmitter is idle.

A similar procedure can be used if the serial port is set up to use alternate output pins on 
port D.  Only Serial Ports A and B can use alternate outputs on Parallel Port D.

If an RS-485 driver is being used, dummy characters can be transmitted by disabling the 
driver after the stop bit has been sent.  This is an alternative to the above procedure.

12.9.3  Transmitting and Detecting a Break

A break is created when the output of the transmitter is driven low for an extended period.  
If a break is received, it will appear as a series of characters filled with zeros and with the 
9th bit detected low.  This could only be confused with a legitimate message if a protocol 
using the 9th bit was in effect.  Break is not usually used as a message in such protocols. 

A break can be transmitted by transmitting a byte of zeros at a very slow baud rate.  
Another and probably better method is to disconnect the transmitter from the output pin, 
and use the parallel port bit to set the line low while sending dummy characters to time out 
the break.

The use of break as a signaling device should be avoided because it is slow, erratically sup-
ported by different types of hardware, and usually creates more problems than it solves.

12.9.4  Using A Serial Port to Generate a Periodic Interrupt

A serial port may be used to generate a periodic interrupt by continuously transmitting 
characters. Since the Tx output via Parallel Port C or D can be disabled, the transmitted 
characters are transmitted to nowhere. Because the character output path is double-buff-
ered, there will be no gaps in the character transmission, and the interrupts will be exactly 
periodic. The interrupts can happen every 9, 10 or 11 baud times, depending on whether 7 
or 8 bits are transmitted and on whether the 9th (8th) bit is sent.

12.9.5  Extra Stop Bits, Sending Parity, 9th Bit Communication Schemes

Some systems may require two stop bits.  In some cases, it may be necessary to send a par-
ity bit.  Certain systems, such as some 8051-based multidrop communications systems, 
use a 9th data bit to mark the start of a message frame.  The Rabbit 3000 can receive parity 
or message formats that contain a 9th bit without problem.  Transmitting messages with 
parity or messages that always contain a 9th bit is also possible. It is quite easy to do so for 
byte formats that use only 7 data bits, in which case the 9th bit or parity bit is actually an 
8th bit.  Sending a 9th low bit is supported by hardware.  Sending a 9th bit as a high value 
requires a write to the Serial Port A-F Long Stop Register (SxLR) which is the same as 
two stop bits.
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Figure 12-9 illustrates the standard asynchronous serial output patterns.

Figure 12-9.  Asynchronous Serial Output Patterns

12.9.6  Parity, Extra Stop Bits with 7-Data-Bit Characters

If only 7 data bits are being sent, sending an additional parity or signal bit is easily solved 
by sending 8 bits and always setting bit 7 (the eighth bit) of the byte to "1" or “0” depend-
ing on what is desired. No special precautions are needed if two stop bits are to be 
received. If parity is received with 7 data bits, receive the data as 8 bits, and the parity will 
be in the high bit of the byte.

12.9.7  Parity, Extra Stop Bits with 8-Data-Bit Characters

In order to receive parity with 8 data bits, a check is made on each character for a 9th bit 
low. The 9th bit, or parity bit, is low if bit 6 of the serial port status register (SxSR) is set to 
a "1" after the character is received.  If the 9th bit is not a zero, then the serial port treats it 
as an extra stop bit. So if the 9th bit low flag is not set, it should be assumed that the parity 
bit is a "1."

Setting the 9th bit high or low can easily be done in the Rabbit 3000.  The 9th bit can be 
set low by a write to the Serial Port A-F Address Register (SxAR) and the 9th bit can be 
set high by a write to the Serial Port A-F Long Stop Register (SxLR).

start bit data bits
9th bit low

stop bit

0 7

0 7

stop bitCharacter with 9th bit low

Character w/o 9th bit lowstart bit

Signal shown at output pin on processor. A “1” is high.

start bit

0 7

stop bit

9th bit high
Character w. 9th bit high

Generated by a Write to SxLR
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12.9.8  Supporting 9th Bit Communication Protocols

This section describes how 9th bit communication protocols work. 9th bit communication 
protocols are supported by processors such as the 8051 and the Z180, and by companies 
such as Cimentrics Technology. The data bytes have an extra 9th bit appended where a 
parity bit would normally be placed. Requests from the network master to one of its slaves 
consist of a frame of bytes—the first byte has the 9th bit set to "1" (as the signal is 
observed at the Tx pin of the processor) and the following bytes have the 9th bit set to "0." 
The first byte is identified as the address byte, which specifies the slave unit where the 
message is directed. This enables a slave to find the start of a message, which is the byte 
with the 9th bit set, and to determine if the message is directed to it. If the message is 
directed to a particular slave, the slave will then read the characters in the rest of the mes-
sage; otherwise the slave will continue to scan for a start of message character containing 
its address.

Normally the 9th bit is set to "1" only on the first byte of a request transmitted by the net-
work master. The subsequent bytes and the slave replies have the 9th bit set to zero. Since 
the majority of the traffic has a 9th bit set low, it is only necessary to stretch the stop bit for 
the first bytes or address bytes. This can be done without sacrificing performance by send-
ing a dummy character (transmitter disconnected) after the address byte.

Some microprocessor serial ports have a “wake up” mode of operation. In this mode, char-
acters without the 9th bit set to "1" are ignored, and no interrupt is generated. When the 
start of a frame is detected, an interrupt takes place on that byte. If the byte contains the 
address of the slave, then the “wake up” mode is turned off so that the remaining charac-
ters in the frame can be read. This scheme reduces the overhead associated with messages 
directed to other slaves, but it does not really help with the worst-case load. In most cases, 
the worst-case compute load is the governing factor for embedded systems. In addition, it 
is quite easy for the interrupt driver to dismiss characters not directed to the system. For 
these reasons, the “wake up” mode was not implemented for the Rabbit.

The 9th bit protocols suffer from a major problem that the IBM-PC uarts can support the 
9th bit only by using special drivers.

12.9.9  Rabbit-Only Master/Slave Protocol

If only Rabbit microprocessors are connected, the 9th bit low can be set on the address 
byte, and the remaining bytes can be transmitted in the normal 8-bit mode.  This is more 
efficient than other 9th bit protocols because only the first byte requires 11 baud times; the 
remaining bytes are transmitted in 10 baud times.

12.9.10  Data Framing/Modbus

Some protocols, for example, Modbus, depend on a gap in the data frame to detect the 
beginning of the next frame.  The 9th bit protocol is another way to detect the start of a 
data frame.

The Modbus protocol requires that data frames begin with a minimum 3.5-character quiet 
time.  The receiver uses this 3.5-character gap to detect the start of a frame.  In order for 
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the receiving interrupt service routine to detect this gap, it is suggested that dummy char-
acters be transmitted to help detect the gap.  This can be done in the following manner.  
The transmitter starts transmitting dummy characters when the first character interrupt is 
received.  Each time there is an interrupt, either receiver data register full or transmitter 
data register empty, a dummy character is transmitted if the transmitter data register is 
empty.  Although the transmitter and receiver operate at approximately the same baud rate, 
there can be a difference of up to about 5% between their baud rates.  Thus the receiver 
full and transmitter empty interrupts will become out of phase with each other, assuming 
that the remote station transmits without gaps between characters.  A counter is zeroed 
each time a character is received, and the counter is incremented each time a character is 
transmitted.  If this counter holds (n), this indicates that a gap has been detected in the 
frame; the length of the gap is (n - 1) to (n) characters.  The start of frame could be marked 
by (n) reaching 3, indicating that the existence of a gap at least two characters long.
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13.  RABBIT SLAVE PORT

When a Rabbit microprocessor is configured as a slave, Parallel Port A and certain other 
data lines are used as communication lines between the slave and the master. The slave 
unit is a Rabbit configured as a slave. The master can be another Rabbit or any other type 
of processor. Rabbits configured as slaves can themselves have slaves.

The master and slave communicate with each other via the slave port. The slave port is a 
physical device that includes data registers, a data bus and various handshaking lines. The 
slave port is a part of the slave Rabbit, but logically it is an independent device that is used 
to communicate between the two processors. A diagram of the slave port is shown in 
Figure 13-1.

Figure 13-1.  Rabbit Slave Port

The slave port has three data registers for each direction of communication. Three regis-
ters, named SPD0R, SPD1R, and SPD2R, can be written by the master and read by the 
slave. Three different registers, also named SPD0R, SPD1R, and SPD2R, can be written 
by the slave and read by the master. The same names are used for different registers since 
it is usually clear from the context which register is meant. If it is necessary to distinguish 
between registers, we will refer to the registers as “SPD0R writable by the slave” or 
“SPD0R writable by the master.”
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A status register can be read by either the slave or the master. The status register has full/ 
empty bits for each of the six registers. A data register is considered full when it is written 
to by whichever side is capable of writing to it. If the same register is then read by either 
side it is considered to be empty. The flag for that register is thus set to a "1" when the reg-
ister is written to, and the flag is set to a "0" when the register is read.

The registers appear to be internal I/O registers to the slave. To the master, at least for a 
Rabbit master, the registers appear to be external I/O registers. The figure below shows the 
sequence of events when the master reads/writes the slave port registers.

Figure 13-2.  Slave Port R/W Sequencing
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The following table explains the parameters used in Figure 13-2.

The two SPD0R registers have special functionality not shared by the other data registers. 
If the master writes to SPD0R, an inbound interrupt flip-flop is set. If slave port interrupts 
are enabled, the slave processor will take a slave port interrupt. If the slave writes to the 
other SPD0R register, the slave attention line (/SLAVEATTN, pin 100) is asserted (driven 
low) by the slave processor. This line can be used to create an interrupt in the master. 
Either side that is interrupted can clear the signal that is causing an interrupt request by writ-
ing to the slave port status register. The data bits are ignored, but the flip-flop that is the 
source of the interrupt request is cleared. Figure 13-3 shows a logical schematic of this func-
tionality.

Symbol Parameter
Minimum

(ns)
Maximum

(ns)

Tsu(SCS) /SCS Setup Time 5 —

Th(SCS) /SCS Hold Time 0 —

Tsu(SA) SA Setup Time 5 —

Th(SA) SA Hold Time 0 —

Tw(SRD) /SRD Low Pulse Width 40 —

Ten(SRD) /SRD to SD Enable Time 0 —

Ta(SRD) /SRD to SD Access Time — 30

Tdis(SRD) /SRD to SD Disable Time — 15

Tsu(SRW – SRD) /SWR High to /SRD Low Setup Time 40 —

Tw(SWR) /SWR Low Pulse Width 40 —

Tsu(SD) SD Setup Time 10 —

Th(SD) SD Hold Time 5 —

Tsu(SRD – SWR) /SRD High to /SWR Low Setup Time 40 —
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Figure 13-3.  Slave Port Handshaking and Interrupts

Figure 13-4 shows a sample connection of two slave Rabbits to a master Rabbit. The mas-
ter drives the slave reset line for both slaves and provides the main processor clock from 
its own clock. There is no requirement that the master and slave share a clock, but doing 
so makes it unnecessary to connect a crystal to the slaves. Each Rabbit in Figure 13-4 has 
to have RAM memory. The master must also have flash memory. However, the slaves do 
not need nonvolatile memory since the master can cold boot them over the slave port and 
download their program. In order for this to happen, the SMODE0 and SMODE1 pins 
must be properly configured as shown in Figure 13-4 to begin a cold boot process at the 
end of the slave reset.

Master writes SPD0R

Slave writes status register

Slave inbound interrupt requested

Visible in status register

Slave writes SPD0R

Master writes status register

/SLAVEATTN (PB7)

Visible in status register
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Figure 13-4.  Typical Connection Slave Rabbit to Master Rabbit

The slave port lines are shown in Figure 13-1. The function of these lines is described 
below.

• SD0–SD7—These are bidirectional data lines, and are generally connected to the data 
bus of the master processor. Multiple slaves can be connected to the data bus. The slave 
drives the data lines only when /SCS and /SRD are both pulled low.

• SA1, SA0—These are address lines used to select one of the four data registers of the 
slave interface. Normally these lines are connected to the low-order address lines of the 
master. The master always drives these lines which are always inputs to the slave.

• /SCS—Input. Slave chip select. The slave ignores read or write requests unless the chip 
select is low. If a Rabbit is used as a master, this line can be connected to one of the 
master’s programmable chip select lines /I0–/I7.

• /SRD—Input. If /SCS is also low, this line pulled low causes the contents of the register 
selected by the address lines to be driven on the data bus. If a Rabbit is used as a master, 
this line is normally connected to the global I/O read strobe /IORD.

• /SWR—Input. If /SCS is also low, this line causes the data bits on the data bus to be 
clocked into the register selected by the address lines on the rising edge of /SWR or 
/SCS, whichever rises first. If a Rabbit is used as a master, this line is normally con-
nected to the global I/O write strobe /IOWR.
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• /SLAVEATTN—This line is set low (asserted) if the slave writes to the SPD0R register. 
This line is set high if the master writes anything to the slave status register. This line is 
usually connected to cause the master to be interrupted when it goes low.

The data lines of the slave port are shared with Parallel Port A that uses the same package 
pins. The slave port can be enabled, and Parallel Port A be disabled, by storing an appro-
priate code in the slave port control register (SCR). After the processor is reset, all the pins 
belonging to the slave interface are configured as parallel-port inputs unless (SMODE1, 
SMODE0) are set to (0,1), in which case the slave port is enabled after reset and the slave 
starts the cold-boot sequence using the slave port.

13.1  Hardware Design of Slave Port Interconnection

Figure 13-4 shows a typical circuit diagram for connecting two slave Rabbits to a master 
Rabbit. The designer has the option of cold-booting the slave and downloading the pro-
gram to RAM on each cold start. Another option is to configure the slave with both RAM 
and flash memory. In this case, the slave will only have the program downloaded for 
maintenance or upgrades. Usually, the flash would not be written to on every startup 
because of the limited number of lifetime writes to flash memory. The slaves’ reset in 
Figure 13-4 is under the program control of the master. If the master is reset, the slave will 
also be reset because the master’s drive of the reset line will be lost on reset and the pull-
down resistor will pull the slaves’ resets low. This may be undesirable because it forces 
the slave to crash if the master crashes and has a watchdog timeout.

13.2  Slave Port Registers 

The slave port registers are listed in Table 13-1. These registers, each of which is actually 
two separate registers, one for read and one for write, are accessible to the slave at the I/O 
addresses shown in the table and they are accessible to the master at the external address 
shown which specifies the value of the slave address (SA0, SA1) input to the slave when 
the master reads or writes the registers. The register that can be written by the slave can 
only be read by the master and vice versa. If one side were to attempt to read a register at 
the same time that the other side attempted to write the register the result of the read could 
be scrambled. However, the protocols and handshaking bits used in communication are 
normally such that this never happens.

Table 13-1.  Slave Port Registers

Register Mnemonic
Internal
Address

External
Address

Slave Port Data 0 Register SPD0R 20h 0

Slave Port Data 1 Register SPD1R 21h 1

Slave Port Data 2 Register SPD2R 22h 2

Slave Port Status Register SPSR 23h 3

Slave Port Control Register SPCR 24h N.A.
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If the user for some reason wants to depart from the suggested protocols and poll a register 
while waiting for the other side to write something to the register, the user should be aware 
that all the bits might not change at the exact same time when the result changes, and a 
transitional value could be read from the register where some bits have changed to the new 
value and others have not. To avoid being confused by a transitional value, the user can 
read the register twice and make sure both values are the same before accepting the value, 
or the user can test only one bit for a change. The transitional value can only exist for one 
read of the register, and each bit will have its old value change to the new value at some 
point without wavering back and forth. The existence of a transitional value could be very 
rare and has the potential to create a bug that happens often enough to be serious, but so 
infrequently as to be difficult to diagnose. Thus, the user is cautioned to avoid this situa-
tion.

Table 13-2 describes the slave port control register.

The functionality of the bits is as follows:

Bit 7—If set to "0," the cold-boot feature will be enabled. Normally this bit is set to a "1" 
after the cold boot is complete. The cold boot for the slave port is enabled automatically if 
(SMODE1, SMODE0) lines are set to (0,1) after the reset ends. This features disables the 
normal operation of the processor and causes commands to be accepted via the slave port 
register SPD0R. These commands cause data to be stored in memory or I/O space. When 
the master that is managing the cold boot has finished setting up memory and I/O space, 
the (SMODE1, SMODE0) pins are changed to code (0,0), which causes execution to start 
at address zero. Typically this will start execution of a secondary boot program. At some 
point, bit 7 will be set to a "1" so that the SMODEx pins can be used as normal input pins.

Bits 6,5—May be used to read the input pins SMODE, SMODE0.

Bits 3,2—A “10” written to bits 3,2 enables the slave port disabling Parallel Port A and vari-
ous other port lines. Bits 3,2 are automatically set to a "10" if a cold boot is done via the 
slave port. If bit 3 is "0," then bit 2 controls whether Parallel Port A is an input (bit 2 = 0) 
or an output (bit 2 = 1).  A “11” written to bits 3,2 enables the Auxilliary I/O bus.

Table 13-2.  Slave Port Control Register (SPCR) (adr = 024h)

Bit 7

(Write Only)

Bits 6,5

(Read Only) 
Bit 4

Bit 3,2

(Write Only)

Bits 1,0

(Write Only)

0—obey SMODE 
pins

1—ignore SMODE 
pins

Reads SMODE 
pins 
smode1,smode0

x

00—disable slave port, port A 
is a byte wide input port

01—disable slave port, port A 
is a byte wide output port

10—enable the slave port

11—Enable the auxilliary I/O 
bus. Parallel Port A is used 
for the data bus and Parallel 
Port B[7:2] is used for the 
address bus.

00—no slave 
interrupt

pp—enable slave 
port interrupt

01 priority 1

10 priority 2

11 priority 3
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Bits 1,0—This 2-bit field sets the priority of the slave port interrupt. The interrupt is disabled 
by (0,0).

Table 13-3 describes the slave port status register. The status register has 6 bits that are set if 
the particular register is full. That means that the register has been written by the processor that 
can write to it but it has not been read by the processor that can read it. The bits for SPD0R are 
used to control the slave interrupt and the handshaking lines as shown in Figure 13-3.

13.3  Applications and Communications Protocols for Slaves

The communications protocol used with the slave port depends on the application. A slave 
processor may be used for various reasons. Some possible applications are listed below.

Keep in mind that the Rabbit can also be operated as a slave processor via a serial port and 
some of the protocols will work well via a serial communications connection. If a serial 
connection is used, the protocol becomes more complicated if errors in transmission need 
to be taken into account. If the physical link can be controlled so that transmission errors 
do not occur, a realistic possibility if the interconnection environment is controlled, the 
serial protocol is simpler and faster than if error correction needs to be taken into account.

13.3.1  Slave Applications

• Motion Controller—Many types of motion control require fast action, may be com-
pute-intensive or both. Traditional servo system solutions may be overly expensive or 
not work very well because of system nonlinearities. The basic communications model 
for a motion controller is for the master to send short messages—positioning com-
mands—to the slave. The slave acknowledges execution of the commands and reports 
exception conditions.

• Communications Protocol Processor—Communications protocols may be very com-
plex, may require fast responses, or may be compute-intensive.

• Graphics Controller—The Rabbit can be used to perform operations such as drawing 
geometric figures and generating characters.

• Digital Signal Processing—Although the Rabbit is not a speciality digital signal pro-
cessor, it has enough compute speed to handle some types of jobs that might otherwise 

Table 13-3.  Slave Port Status Register (SPSR) (adr = 023h)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1—set by 
master 
write to 
SPD0R. 
Cleared by 
slave write 
to SPSR. 

1—set by 
master 
write to 
SPD2R. 
Cleared 
when slave 
reads 
register.

1—set by 
master 
write to 
SPD1R. 
Cleared 
when slave 
reads 
register.

1—set by 
master 
write to 
SPD0R. 
Cleared 
when slave 
reads 
register.

1—set by 
slave write 
to SPD0R. 
Cleared by 
master 
write to 
SPSR.

1—set by 
slave write 
to SPD2R. 
Cleared 
when 
master 
reads 
register.

1—set by 
slave write 
to SPD1R. 
Cleared 
when 
master 
reads 
register.

1—set by 
slave 
write to 
SPD0R. 
Cleared 
when 
master 
reads 
register.
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require a speciality processor. The slave processor can process data to perform pattern 
recognition or to extract a specific parameter from a data stream.

13.3.2  Master-Slave Messaging Protocol

In this protocol the master sends messages to the slave and receives an acknowledgement 
message. The protocol can be polled or interrupt driven. Generally, the master sends a 
message that has a message type code, perhaps a byte count, and the text of the message. 
The slave responds with a similar message as an acknowledgement. Nothing happens 
unless the master sends a message. The slave is not allowed to initiate a message, but the 
slave could signal the master by using a parallel port line other than /SLAVEATN or by 
placing data in one of the registers the master can read without interfering with the mes-
sage protocol.

The master sends a message byte by storing it in SPD0R. The slave notices that SPD0R is 
full and reads the byte. When the master notices that SPD0R is empty because the slave 
read it, the master stores the next byte in SPD0R. Either side can tell if any register is 
empty or full by reading the status register. When the slave acknowledges the message 
with a reply message, the process is reversed. To perform the protocol with interrupts, a 
slave interrupt can be generated each time the slave receives a character. The slave can 
acknowledge the master by reading SPD0R if the master is polling for the slave response 
to each character. If the master is to be interrupted to acknowledge each character, the 
slave can create an interrupt in the master by storing a dummy character in SPD0R to cre-
ate a master interrupt, assuming that the /SLAVEATTN line is wired to interrupt the mas-
ter. The acknowledgement message works in a similar manner, except that the master 
writes a dummy character to interrupt the slave to say that it has the character.

Several problems can arise if there are dual interrupts for each character transmitted. One 
problem is that the message transmission rate will free run at a speed limited by the inter-
rupt latency and compute speed of each processor. This could consume a high percentage 
of the compute resources of one or both processors, starving other processes and espe-
cially interrupt routines, for compute time. If this is a problem, then a timed interrupt can 
be used to drive the process on one side, thus limiting the data transmission rate.

Another solution, which may be better than limiting the transmission rate, is to use inter-
rupts only for the first byte of the message on the slave side, and then lower the interrupt 
priority and conduct the rest of the transaction as a polled transaction. On the master side 
the entire transaction can be a polled transaction. In this case, the entire transaction takes 
place in the interrupt routine on the slave, but other interrupts are not inhibited since the 
priority has been lowered.

A typical slave system consists of a Rabbit microprocessor and a RAM memory con-
nected to it. The clock can be provided either by connecting a crystal, or crystals to the 
slave or by providing an external clock, which could be the master’s clock. The reset line 
of the slave would normally be driven by the master. At system startup time the master 
resets the slave and cold boots it via the slave port. (The SMODE pins must be configured 
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for this.) Once the software is loaded into the slave, the slave can begin to perform its 
function.

As a simple example, suppose that the slave is to be used as a four-port UART. It has the 
capability to send or receive characters on any of its four serial ports. Leaving aside the 
question of setup for parameters, such as the baud rate, we could define a protocol as fol-
lows.

SPD0R readable by master is a status register with bits indicating which of the four 
receivers and four transmitters is ready, that is, has a character received or is ready to 
send a character.

SPD0R writable by the master is a control register used to send commands to the slave.

SPD1R is used to send or receive data characters or control bytes.

The line /SLAVEATTN is wired to the external interrupt request of the master so that 
the master is interrupted when the slave writes to SPD0R. Typically the slave will write 
to SPD0R when there is a change of status on one of the serial ports.

The slave can interrupt the master at any time by storing to SPD0R. It will do this every 
time an enabled transmitter is ready to accept a character or every time an enabled receiver 
receives a character. When it stores to SPD0R, it will store a code indicating the reason for 
the interrupt, that is, receive or transmit and channel number. If the cause is receive, the 
received character will also be placed in SPD1R writable by the slave. When the master is 
interrupted for any reason, the master will sneak a peek at SPD0R by reading SPSR. If the 
interrupt is caused by a receive character, it will remove the character from SPD1R and 
read SPD0R to handshake with the slave.

If the master is interrupted for transmitter ready, as determined by the sneak peek, it will 
place the outgoing character in SPD1R and write a code to SPD0R indicating transmit and 
channel number. This will cause the slave to be interrupted, and the slave will take the 
character and handshake by reading SPD0R. This handshake does not interrupt the master.
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14.  RABBIT 3000 CLOCKS

The Rabbit 3000 normally uses two clocks, the main clock and the 32.768 kHz clock. The 
32.768 kHz clock  is needed for the battery-backable clock, the watchdog timer, and the 
cold-boot function. The main oscillator provides the run-time clock for the microproces-
sor. Figure 14-1 shows the main oscillator circuit. TN235, External 32.768 kHz Oscillator 
Circuits, provides further information on the 32.768 kHz oscillator circuit and selecting 
the values of components to use in the oscillator circuit.

Figure 14-1.  Rabbit 3000 Main Oscillator Circuit

NOTE: You may have to adjust resistors and capacitors for various frequencies and 
crystal load capacitances.

The 32.768 kHz oscillator is slow to start oscillating after power-on. For this reason, a 
wait loop in the BIOS waits until this oscillator is oscillating regularly before continuing 
the startup procedure. If the clock is battery-backed, there will be no startup delay since 
the oscillator is already oscillating. The startup delay may be as much as 5 seconds. Crys-
tals with low series resistance (R < 35 kΩ) will start faster.
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14.1  Low-Power Design

The power consumption is proportional to the clock frequency and to the square of the 
operating voltage. Thus, operating at 3.3 V instead of 5 V will reduce the power consump-
tion by a factor of 10.9/25, or 43% of the power required at 5 V. The clock speed is 
reduced proportionally to the voltage at the lower operating voltage. Thus the clock speed 
at 3.3 V will be about 2/3 of the clock speed at 5 V. The operating current is reduced in 
proportion to the operating voltage.

The Rabbit 3000 does not have a "standby" mode that some microprocessors have. Instead, 
the Rabbit has the ability to switch its clock to the 32.768 kHz oscillator. This is called the 
sleepy mode. When this is done, the power consumption is decreased dramatically. The 
current consumption is often reduced to the region of 100 µA at this clock speed. The 
Rabbit executes about 6 instructions per millisecond at this low clock speed. Generally, 
when the speed is reduced to this extent, the Rabbit will be in a tight polling loop looking 
for an event that will wake it up. The clock speed is increased to wake up the Rabbit.
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15.  EMI CONTROL

EMI or electromagnetic interference from unintentional radiation is of concern to the 
microprocessor system designer. 

One concern is passing the tests sometimes required by the U.S. Federal Communications 
Commission (FCC) or by the European EMC Directive. For example, in the U.S. the FCC 
requires that computing devices intended for use in the home or in office environments 
(but not industrial or medical environments) not have unintentional electromagnetic radia-
tion above certain limits of field strength that depend on frequency and whether the device 
is intended for home or office use. This is verified by measuring radiation from the device 
at a test site. The device under test (DUT) is operated in a typical fashion with a typical 
mechanical and electrical configuration while the electromagnetic radiation is measured 
by a calibrated antenna located either 3 or 10 m from the device. The output of the antenna 
is connected to a spectrum analyzer. For the purposes of the test, the spectral power is 
measured by using a filter with a bandwidth of 120 kHz. The peak power is measured by 
using a “quasi peak” detector in the spectrum analyzer. The quasi peak detector has a 
charge time constant of 1 ms and a discharge time constant of  550 ms. In this manner the 
peak radiated signal strength is measured. The tests required by the FCC and the EC are 
practically identical.

The Rabbit 3000 has important features that aid in the control if EMI. 

• The power supply for the processor core is on separate pins from the power supply for 
the I/O buffers associated with the processor and various peripheral devices. 

• A spectrum spreader in the clock circuit can be enabled to spread the spectrum of the 
clock by varying the clock frequency in a regular pattern.

• The built in clock doubler allows the external oscillator circuitry to operate at 1/2 the 
ultimate clock frequency.

• In most cases it is not necessary to route the system clock outside the package, although 
a pin is provided for this purpose in the unusual circumstances where it might be neces-
sary. The high speed clock on PC board traces is a major cause of EMI.

If all the EMI suppression features of the Rabbit 3000 are properly utilized and low EMI 
design techniques are used on the printed circuit board, system EMI will likely be reduced 
to a very low level, probably much lower than is necessary to pass government tests.
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15.1  Power Supply Connections and Board Layout

Refer to Technical Note TN221, PC Board Layout Suggestions for the Rabbit 3000 
Microprocessor, for recommendations on laying out a PC board to minmize EMI emsis-
sions.

15.2  Using the Clock Spectrum Spreader

The spectrum spreader is very powerful for reducing EMI because it will reduce all sources 
of EMI above 100 MHz that are related to the clock by about 15 dB. This is a very large 
reduction since it is common to struggle to reduce EMI by 5 dB in order to pass government 
tests.

Figure 15-1.  Peak Spectral Amplitude Reduction from Spectrum Spreader

The spectrum spreader modulates the clock so as to spread out the spectrum of the clock 
and its harmonics. Since the government tests use a 120 kHz bandwidth to measure EMI, 
spreading the energy of a given harmonic over a wider bandwidth will decrease the 
amount of EMI measured for a given harmonic. The spectrum spreader not only reduces 
the EMI measured in government tests, but it will also often reduce the interference cre-
ated for radio and television reception. 

The spectrum spreader has three settings under software control (see Table 15-1 and 
Table 15-2): off, standard spreading and strong spreading. 

Two registers control the clock spectrum spreader. These registers must be loaded in a spe-
cific manner with proper time delays. GCM0R is only read by the spectrum spreader at the 
moment when the spectrum spreader is enabled by storing 080h in GCM1R. If GCM1R is 
cleared (when disabling the spectrum spreader), there is up to a 500-clock delay before the 
spectrum spreader is actually disabled. The proper procedure is to clear GCM1R, wait for 
500 clocks, set GCM0R, and then enable the spreader by storing 080h in GCM1R.
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When the spectrum spreader is engaged, the frequency is modulated, and individual clock 
cycles may be shortened or lengthened by an amount that depends on whether the clock 
doubler is engaged and whether the spectrum spreader is set to the normal or strong set-
ting. The frequency modulation amplitude and the change in clock cycle length is greater 
at lower voltages or higher temperatures since it is sensitive to process parameters. The 
spectrum spreader also introduces a time offset in the system clock edge and an equal off-
set in edges generated relative to the system clock. A feedback system limits the worst 
case time error of any signal edge derived from the system clock to plus or minus 20 ns for 
the normal setting and plus or minus 40 ns for the strong setting at 3.3 V. The maximum 
time offset is inversely proportional to operating voltage. The time error will not usually 
interfere with communications channels, except perhaps at the extreme upper data rates. 
More details on dealing with the clock variation introduced are available elsewhere (see 
Chapter 16, “AC Timing Specifications”).

If the input oscillator frequency is 4 MHz or less the spectrum spreader modulation of fre-
quency will enter the audio range of 20 kHz or less and may generate an audible whistle in 
FM stations. For this reason it may be desirable to disable the spreader for low speed oscil-
lators (where it is probably unnecessary anyway). However, in practical cases the whistle 
may not be audible due to the very low level of the interference from a system with low 
oscillator frequency and the spectrum spreader engaged. Each halving of clock frequency 
reduces the amplitude of the harmonics at a given frequency by 6 dB or more.

The effect of pure harmonic noise on an FM station is to either completely block out a sta-
tion near the harmonic frequency or to disturb reception of that station. If the spectrum 
spreader is engaged then interference will be spread across the band but will generally be 

Table 15-1.  Spread Spectrum Enable/Disable Register

Global Clock Modulator 0 Register (GCM0R) (Address = 0x0A)

Bit(s) Value Description

7
0 Enable normal spectrum spreading.

1 Enable strong spectrum spreading.

6:0 These bits are reserved.

Table 15-2.  Spread Spectrum Mode Select

Global Clock Modulator 1 Register (GCM1R) (Address = 0x0B)

Bit(s) Value Description

7
0 Disable the spectrum spreader. 

1 Enable the spectrum spreader.

6:0 These bits are reserved.
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so low as to be undetectable, except perhaps for extremely weak stations. The effect of a 
pure harmonic on TV reception is to create a herringbone pattern created by a harmonic 
falling within the station’s band. If the spreader is engaged the pattern will disappear 
unless the station is very weak, in which case the interference will be seen as noise distrib-
uted over the screen.
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16.  AC TIMING SPECIFICATIONS

The Rabbit 3000 processor may be operated at voltages between 1.8 V and 3.6 V, and at 
temperatures from –40°C to +85°C with use possible use over the extended range -55°C to 
+105°C. For long life it is desirable not to exceed a die temperature of 125°C. Most users 
will operate the Rabbit at 3.3 V.  

16.1  Memory Access Time

Required memory address and output enable access time for some important typical cases 
are given in the table below. It is assumed that the clock doubler is used, that the clock 
spreader is enabled in the normal mode, that the memory early output enable is on, and 
that the address bus has 60 pF load.

All important signals on the Rabbit 3000 are output synchronized with the internal clock. 
The internal clock is closely synchronized with the external clock (CLK) that may be 
optionally output from pin 2 of the TQFP package. The delay in signal output depends on 
the capacitive load on the output lines. In the case of the address lines, which are critically 
important for establishing memory access time requirements, the capacitive loading is 
usually in the range of 25–100 pF, and the load is due to the input capacitance of the mem-
ory devices and PC trace capacitance. Delays are expressed from the waveform midpoint 
in keeping with the convention used by memory manufacturers.

Table 16-1.  Memory Requirements at 3.3 V, -40°C to +85°C, Adr Bus 60 pF

Clock 
Frequency

(MHz)

Period

(ns)

Clock Doubler 
Nominal Delay

(ns)

Memory Address 
Access

(ns)

Memory Output 
Enable Access

(ns)

18.43 54 20 97 60

22.11 45 20 78 51

24.00 42 19 72 45

25.80 39 17 66 43

29.49 34 16 56 37

44.24 22.5 10 33.5 22
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Figure 16-1 illustrates the parameters used to describe memory access time.

Figure 16-1.  Parameters Used to Describe Memory Access Time

Table 16-2 lists the delays in gross memory access time for several values of VDD.

When the spectrum spreader is enabled with the clock doubler, every other clock cycle is 
shortened (sometimes lengthened) by a maximum amount given in the table above. The 
shortening takes place by shortening the high part of the clock. If the doubler is not 
enabled, then every clock is shortened during the low part of the clock period. The maxi-
mum shortening for a pair of clocks combined is shown in the table.

Table 16-2.  Data and Clock Delays VDD ±10%, Temp, -40°C–+85°C (maximum)

VDD

Clock to Address Output Delay
(ns) Data Setup 

Time Delay
(ns)

Spectrum Spreader Delay
(ns)

30 pF 60 pF 90 pF
Normal

no dbl/dbl

Strong

no dbl/dbl

3.3 6 8 11 1 3/4.5 4.5/9

2.7 7 10 13 1.5 3.5/5.5 5.5/11

2.5 8 11 15 1.5 4/6 6/12

1.8 18 24 33 3 8/12 11/22

delay capacitive
loading

setup time data to clock
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Figure 16-2 and Figure 16-3  illustrate the memory read and write cycles. The Rabbit 3000 
operates at 2 clocks per bus cycle plus any wait states that might be specified.

Figure 16-2.  Memory Read and Write Cycles
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The following memory read time delays were measured.

The measurements were taken at the 50% points under the following conditions.

• T = -40°C to 85°C, V = 3.3 V

• Internal clock to nonloaded CLK pin delay � 1 ns @ 85°C/3.0 V

The following memory write time delays were measured.

The measurements were taken at the 50% points under the same conditions that the mem-
ory read delays were measured.

See Table 16-2  for delays at other voltages.

Table 16-3.  Memory Read Time Delays

Time Delay
Output Capacitance

30 pF 60 pF 90 pF

Max. clock to address delay (Tadr) 6 ns 8 ns 11 ns

Max. clock to memory chip select delay (TCSx) 6 ns 8 ns 11 ns

Max. clock to memory read strobe delay (TOEx) 6 ns 8 ns 11 ns

Min. data setup time (Tsetup) 1 ns

Min. data hold time (Thold) 0 ns

Table 16-4.  Memory Write Time Delays

Time Delay
Output Capacitance

30 pF 60 pF 90 pF

Max. clock to address delay (Tadr) 6 ns 8 ns 11 ns

Max. clock to memory chip select delay (TCSx) 6 ns 8 ns 11 ns

Max. clock to memory write strobe delay (TWEx) 6 ns 8 ns 11 ns

Max. high Z to data valid rel. to clock (TDHZV) 10 ns 12 ns 15 ns

Max. data valid to high Z rel. to clock (TDVHZ) 10 ns 12 ns 15 ns
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Figure 16-3.  Memory Read and Write Cycles—Early
Output Enable and Write Enable Timing
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Figure 16-4 illustrates the sources that create memory access time delays.

Figure 16-4.  Sources of Memory Access Time Delays

The gross memory access time is 2T, where T is the clock period. To calculate the actual 
memory access time, subtract the clock to address output time, the data in setup time, and 
the clock period shortening due to the clock spectrum spreader from 2T.

Example

• clock = 29.49 MHz,

• T = 34 ns,

• operating voltage is 3.3 V,

• bus loading is 60 pF,

• address to output time = 8 ns (see Table 16-2),

• data setup time = 1 ns,

• the spectrum spreader is on in normal mode, resulting in a loss of 3 ns. 

The access time is given by

access time = 2T - (clock to address) - (data setup) - (spreader delay)
= 68 ns - 8 ns - 1 ns - 3 ns
=  56 ns

data out

address

memory access
time

clock period shortening

output enable

memory output enable
time

clock

data in setup time
clock to

 (early)

output
address

due to spectrum spreader
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The required memory output enable access time is more complicated since it is affected by 
the clock doubler delays. The clock doubler setup register creates a nominal delay time 
ranging from 6 to 20 ns, resulting in a nominal clock low time ranging from 6 to 20 ns. 
The clock low time depends on internal delays, and is subject to variation arising from 
process variation, operating voltage and temperature. Minimum and maximum clock low 
times for various doubler settings are given in the formulas and in the graph below.

Max. delay @ 3.3 V  = 6.1 + 1.21(n - 6)     [n is the nominal delay, 6–20 ns)

Min. delay @ 3.3 V = 3.7 + 0.75(n - 6)

Max. delay @ 2.5 V  =  7.6 + 1.67(n - 6)

Min. delay @ 2.5 V = 4.7 + 1.03(n - 6)

Max. delay @ 1.8 V = 12.2 + 2.7(n - 6)

Min. delay @ 1.8 V = 6.6 + 1.44(n - 6)

Figure 16-5.  Clock Doubler Max-Min Clock Low Times
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The following factors have to be taken into account when calculating the output enable 
access time required.

• The gross output enable access time is T + minimum clock low time (it is assumed that 
the early output enable option is enabled) This is reduced by the spectrum spreader 
loss, the time from clock to output for the output enable signal, the data setup time, and 
a correction for the asymmetry of the original oscillator clock.

Example

• Clock = 29.49 MHz,

• T = 34 ns,

• operating voltage is 3.3 V,

• the clock doubler has a nominal delay of 16 ns, resulting in  a minimum clock low time 
of 12.8 ns,

• the spectrum spreader is on in normal mode, resulting in a loss of 3 ns,

• clock to output enable is 5 ns (assuming 20 pF load),

• the clock asymmetry is 52-48, resulting in a loss of 4% of the clock period, or 1.4 ns.

The output enable access time is given by

access time
= T + (min. clock low) - (clock to output enable) - (spreader delay) - (asymmetry delay) 

- (data setup time)
= 34 ns + 12.8 ns - 5 ns - 3 ns - 1.36 ns - 1 ns
=  36.5 ns
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16.2  I/O Access Time

Figure 16-6  illustrates the I/O read and write cycles.

Figure 16-6.  I/O Read and Write Cycles—No Extra Wait States

NOTE: /IOCSx can be programmed to be active low (default) or active high.
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The following I/O read time delays were measured.

The measurements were taken at the 50% points under the following conditions.

• T = -40°C to 85°C, V = 3.3 V

• Internal clock to nonloaded CLK pin delay � 1 ns @ 85°C/3.0 V

The following I/O write time delays were measured.

The measurements were taken at the 50% points under the same conditions that the I/O 
read delays were measured.

I/O bus cycles have an automatic wait state and thus require 3 clocks plus any extra wait 
states specified.

See Table 16-2  for delays at other voltages.

Table 16-5.  I/O Read Time Delays

Time Delay
Output Capacitance

30 pF 60 pF 90 pF

Max. clock to address delay (Tadr) 6 ns 8 ns 11 ns

Max. clock to memory chip select delay (TCSx) 6 ns 8 ns 11 ns

Max. clock to I/O chip select delay (TIOCSx) 6 ns 8 ns 11 ns

Max. clock to I/O read strobe delay (TIORD) 6 ns 8 ns 11 ns

Max. clock to I/O buffer enable delay (TBUFEN) 6 ns 8 ns 11 ns

Min. data setup time (Tsetup) 1 ns

Min. data hold time (Thold) 0 ns

Table 16-6.  I/O Write Time Delays

Time Delay
Output Capacitance

30 pF 60 pF 90 pF

Max. clock to address delay (Tadr) 6 ns 8 ns 11 ns

Max. clock to memory chip select delay (TCSx) 6 ns 8 ns 11 ns

Max. clock to I/O chip select delay (TIOCSx) 6 ns 8 ns 11 ns

Max. clock to I/O write strobe delay (TIOWR) 6 ns 8 ns 11 ns

Max. clock to I/O buffer enable delay (TBUFEN) 6 ns 8 ns 11 ns

Max. high Z to data valid rel. to clock (TDHZV) 10 ns 12 ns 15 ns

Max. data valid to high Z rel. to clock (TDVHZ) 10 ns 12 ns 15 ns
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16.3  Further Discussion of Bus and Clock Timing

The clock doubler is normally used, except in situations where low-frequency systems are 
specifically being used. The clock doubler works by oring the clock with a delayed ver-
sion of itself. The nominal delay varies from 6 to 20 ns, and is settable under program con-
trol. Any asymmetry in the oscillator waveform before it is doubled will result in alternate 
clocks having slightly different periods. Using the suggested oscillator circuit, the asym-
metry is no worse than 52%–48%. This results in a given clock being shortened by the 
ratio 50/52, or 4%. Memory access time is not affected because memory bus cycle is 2 
clocks long and includes both a long and a short clock, resulting in no net change due to 
asymmetry. However, if an odd number of wait states is used, then the memory access 
time will be affected slightly.

When the clock spectrum spreader is enabled, clock periods are shortened by a small 
amount depending on whether the “normal” or the “strong” spreader setting is used, and 
depending on the operating voltage. If the clock doubler is used, the spectrum spreader 
affects every other cycle and reduces the clock high time. If the doubler is not used, then 
the spreader affects every clock cycle, and the clock low time is reduced. Of course, the 
spectrum spreader also lengthens clock cycles, but only the worst case shortening is rele-
vant for calculating worst case access times. The numbers given for clock shortening with 
the doubler disabled are the combined shortening for 2 consecutive clock cycles, worst 
case.

In computing memory requirements, the important considerations are address access time, 
output enable access time, and minimum write pulse required. Increasing the clock dou-
bler delay increases the output enable time, but decreases memory write pulse width. The 
early write pulse option can be used to ensure a long-enough write pulse, but then it must 
be ensured that the write pulse does not begin before the address lines have stabilized.
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Figure 16-7.  Clock Doubler and Memory Timing
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16.4  Maximum Clock Speeds

The Rabbit 3000 is rated for a minimum clock period of 17 ns (commercial specifications) 
and 18 ns (industrial specifications). The commercial rating calls for a ±5% voltage varia-
tion from 3.3 V and a temperature range from -40 to + 70°C. The industrial ratings stretch 
the voltage variation to ±10% and a temperature range from -40 to + 85°C. This corre-
sponds to maximum clock frequencies of 58.8 MHz (commercial) and  55.5 MHz (indus-
trial). If the clock doubler or spectrum spreader is used, these maximum ratings must be 
reduced as shown in the following table. When the doubler is used, the duty cycle of the 
clock becomes a critical parameter. The duty cycle should be measured at the separate 
clock output pin (pin 2). The minimum period must be increased by any amount that the 
clock high time is greater or less than specified in the duty-cycle requirement.

Table 16-7.  Maximum Clock Speeds at 3.3 V [Preliminary]

Conditions

Commercial Ratings Industrial Ratings
Duty Cycle 

Requirements
(ns)

Minimum 
Period

(ns)

Maximum 
Frequency 

(MHz)

Minimum 
Period

(ns)

Maximum 
Frequency 

(MHz)

No doubler or 
spreader

17 58.8 18 55.5

Spreader only 
normal

20 50.0 21 47.6

Spreader only 
strong

21 47.6 22 45.4

Doubler only
(8 ns delay)

19 52.6 20 50.0
1 > (clock low - 
clock high) > 0

Doubler only 
(internal 50% 
clock)

20 50 21 47.6
1 > (clock low - 
clock high) > -1

Spreader 
normal with 
doubler
(8 ns delay)

21 47.6 22 45.4
4 > (clock low - 
clock high) > 2

Spreader 
normal with 
doubler (8 ns 
delay), internal 
50% clock

24 41.6 25 40.0
1 > (clock low - 
clock high) > -1

Spreader only 
strong

21.5 46.5 22.5 45.0

Spreader strong 
with doubler
(8 ns delay)

23 43.5 24 41.6
8 > (clock low - 
clock high) > 6
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Example

The spreader and doubler are enabled, with 8 ns nominal delay in the doubler. The high 
and low clock are equal to within 1 ns. This violates the duty cycle requirement by 3 ns 
since (clock low - clock high) can be as small as -1 ns, but the requirement is that it not be 
less than 2 ns. Thus, 3 ns must be added to the minimum period of 21 ns, giving a mini-
mum period of 24 ns, and a maximum frequency of 41.6 MHz (commercial).

Since the built-in high-speed oscillator buffer generates a clock that is very close to having 
a 50% duty cycle, to obtain the highest clock speeds using the clock doubler you must use 
an external oscillator buffer that will allow for duty-cycle adjustment by changing the 
resistance of the power and ground connections as shown below.

Figure 16-8.  External Oscillator Buffer
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16.5  Power and Current Consumption

With the Rabbit 3000 it is possible to design systems that perform their task with very low 
power consumption. Unlike competitive processors, the Rabbit 3000 has short chip select 
features designed to minimize power consumption by external memories, which can easily 
become the dominant power consumers at low clock frequencies if not well handled.

The preferred configuration for a Rabbit-based system is to use an external crystal or reso-
nator that has a frequency ½ of the maximum internal clock frequency. The oscillator fre-
quency can be doubled or divided by 2, 4, 6, or 8, giving a variety of operating speeds 
from the same crystal frequency. In addition, the 32.768 kHz oscillator the drives the bat-
tery-backable clock can be used as the main processor clock and, to save the substantial 
power consumed by the fast oscillator,  the fast oscillator can be turned off. This scenario 
is called the sleepy mode with a clock speed in the range of 2 kHz to 32 kHz, and with an 
operating system current consumption in the range of 10 to 120 µA depending on fre-
quency and voltage.

Up to an operating speed of 29.5 MHz, a SST39LF512020 256K × 8, 45 ns access time 
flash memory combined with any of several 55 ns low-power SRAMs is assumed for cal-
culating the current consumption estimates below.

A crystal frequency of 3.6864 MHz is a good choice for a low-power system consuming 
between 2 and 18 mA at 3.3 V as the clock frequency is throttled between 0.46 MHz and 
7.37 MHz. The required memory access time is about 250 ns, however, a faster memory 
may result in less power since a short chip select cycle can then be used.

A crystal frequency of 11.0592 MHz is a good choice for a medium-power system con-
suming between 5 and 50 mA at 3.3 V as the clock frequency is throttled between 1.4 MHz 
and 22 MHz. The required memory access time is 70 ns. 

A crystal frequency of 14.7456 MHz is a good choice for a faster medium-power system 
consuming between 6 and 65 mA at 3.3 V as the clock frequency is throttled between 1.8 
and 29.5 MHz. The required memory access time is 55 ns. 

A maximum-speed system that will require fast RAM for program and data can be con-
structed using a 25.8048 MHz crystal. This system will consume between 12 and 112 mA 
at 3.3V as the clock speed is throttled between 3 and 51.6 MHz. The required memory 
access time is about 20 ns.

Typical system current consumptions are shown in the graphs below. These are for the 
processor and oscillator only, and do not include current consumed by memory and other 
devices. It is assumed that approximately 30 pF is connected to each address line, particu-
larly A0 and A1, which account for three quarters of the charging current due to the 
address lines.
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Figure 16-9.  Rabbit 3000 System Current vs. Frequency at 3.3 V

Figure 16-10.  Rabbit 3000 System Current vs. Frequency at 3.3 V
(enlarged view over 0–16 MHz range)
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Lowering the operating voltage will greatly reduce current consumption and power. Drop-
ping to 2.7 V from 3.3 V will result in 70% current consumption and 60% of the power. 
Further dropping to 1.8 V will reduce current to 40% and power to 20% compared to 3.3 V. 
Naturally this complicates the selection of memories, especially at 1.8 V.

It is important to know that the lowest speed crystal will not always give the lowest power 
consumption because when the crystal is divided internally the short chip select option can 
be used to reduce the chip select duty cycle of the flash memory or fast RAM, greatly 
reducing the static current consumption associated with some memories.

In sleepy mode, power consumption consists of the processor core, the external recom-
mended external tiny logic 32 kHz oscillator, and the memory. The oscillator consumes 
17 µA at 3.3 V, and this drops rapidly to about 2 µA at 1.8 V. The processor core con-
sumes between 3 and 50 µA at 3.3 V as the frequency is throttled from 2 kHz to 32 kHz, 
and about 40% as much at 1.8 V. If the flash memory specified above is used for memory 
and a self-timed 106 ns chip select is used, then the memory will consume 22 µA at 
32 MHz and 1.4 µA at 2 kHz.

In addition to these items, a low-power reset controller may consume about 8 µA and 
CMOS leakage may consume several µA, increasing with higher temperatures. The graph 
below shows current consumption including the tiny logic core, but not including memory 
or the reset controller.

Figure 16-11.  Sleepy Mode Current Consumption
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16.6  Current Consumption Mechanisms

The following mechanisms contribute to the current consumption of the Rabbit 3000 
while it is operating. 

1. A current proportional to voltage and clock frequency that results from the charging of 
internal and external capacitances. At 3.3 V (see 2 below) approximately 57% of the 
current is due to charging and 43% is due to crossover current.

2. A crossover current that is proportional to clock frequency and to the overdrive voltage, 
Vc. The crossover current results from a brief short circuit when both the P and N tran-
sistors of a CMOS buffer are turned on at the same time, and is proportional to V scaled 
by a factor of ((V/2) – 0.7), where V is the voltage the Rabbit 3000 is operating at. This 
component drops as the voltage drops, and becomes negligible at 1.4 V.

3. The current consumed by the built-in main oscillator when turned on. This current is 
also proportional to V × ((V/2) – 0.7), and is equal to 1 mA at 3.3 V.

4. The current drawn by the logic that is driven at the oscillator (crystal frequency). This is 
considered distinctly because it varies with the crystal frequency, but is not reduced 
when the clock frequency is divided. This current becomes zero when the main oscilla-
tor is turned off, and is 2.5 mA at 3.3 V when the crystal frequency is 14.7 MHz. This 
current is divided between capacitive and crossover components in the same manner as 
the currents in (1) and (2) above.

All of the above currents can be combined according to the following formula:

Itotal = 0.32 × V × f  + 0.23 × Vc × f  + 0.30 × Vc + 0.029 × V × fc + 0.025 × Vc × fc

where Vc = V × ((V/2) – 0.7), fc = frequency of crystal oscillator in MHz, and f = clock 
frequency in MHz
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16.7  Sleepy Mode Current Consumption

In sleepy mode the unit operates from the 32.768 kHz clock, which may be divided down 
to as slow as 2.048 kHz. The current consumption is given by:

Itotal = 0.32 × V × f + 0.23 × Vc × f + 5 × Vc

where f is in kHz, V is the operating voltage, and Vc = V × ((V/2) - 0.7).

Leakage, the standby current of the reset generator, the current consumption of the oscilla-
tor and the real-time clock, and the current consumption of memories must be added to the 
sleepy mode current consumption. Generally the self-timed chip select mode is used to 
reduce memory current consumption.
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16.8  Memory Current Consumption

Since there are many different memories available, let’s look at an example using one of 
the recommended flash and SRAM memories.

Flash memory—SST part SST39LF512020,  256K × 8, 45 ns access time. Standby cur-
rent: nil.

• Static Current (chip select low): 3.5 mA @ 3.3 V

• Dynamic Current: 7 mA at 14.7 MHz bus speed and 3.3 V

The total current is 10 mA at a clock speed of 29.49 MHz or a bus speed of 5 MHz.

The static part of the current is computed using

3.5 × (chip select duty cycle).

The dynamic part is computed using

0.5 × f in mA,

where f is the bus speed in MHz.

At 0.46 MHz (3.68 MHz/8), and using a short chip select, the duty cycle is about 10%, 
giving a static current of about 0.35 mA. The dynamic current is 0.25 mA, for a total cur-
rent of 0.6 mA. Added to the approximately 2.5 mA operating current gives a total current 
of 3.1 mA at 0.46 MHz.

In sleepy mode with a self-timed chip select of 106 ns and a clock speed of 32 kHz, the 
duty cycle will be 0.106/66 = 1/600, and the static current will be 3.5/600= 6 µA. If the 
clock is divided down by a factor of 2, then the static current is reduced to 3 µA. The 
dynamic current will be 16 µA at 32 kHz (1000×0.5×f) and 8 µA at 16 kHz.
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16.9  Battery-Backed Clock Current Consumption

When using the suggested tiny logic oscillator, the oscillator and clock consume current as 
shown in Figure 16-12 below. Normally a resistor is placed in the battery circuit to limit 
the current to about 3 µA, which results in a voltage setpoint of about 1.7 V. When operat-
ing at 3.3 V in sleepy mode, the current of the oscillator and the real-time clock—about 
12 µA—must be added.

Using the suggested tiny logic oscillator circuit, the external 32.768 kHz oscillator con-
sumes the following current in µA, where V is the operating voltage.

Iosc = 0.35×V2 + 0.31×V

Generally the oscillator will not start unless the voltage is about 1.4 V. However, the oscil-
lator will continue to run until the voltage drops to about 0.8 V. If the oscillator stops, the 
current draw is very much lower than when it is running. Below about 1.4 V most of the 
current draw is used to charge and discharge the capacitive load.

The current consumed by the battery-backed portion of the Rabbit 3000, which is driven 
by the 32.768 kHz oscillator, is given by

Irab = 0.91×V2 - 1.04×V     (V > 1.14 V)

where Irab is in µA. For V <1.14 V, the current is negligible.

Figure 16-12.  Current Consumption—Real-Time Clock and 32 kHz Oscillator Circuit
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16.10  Reduced-Power External Main Oscillator

The circuit in Figure 16-13 can be used to generate the main clock using less power than 
with the built-in oscillator buffer. The power consumption is less because of the current-
limiting resistors that cannot be used with the built-in buffer. The 2.2 kΩ series resistor 
must be reduced as the clock frequency increases, as must be the current-limiting resistors.

Figure 16-13.  Reduced-Power External Main Oscillator

Table 16-8 lists results for the reduced-power external oscillator with no current-limiting 
resistors.

Design Recommendations

• Add current-limiting resistors to reduce current without inhibiting oscillator start-up

• Increase the 1 MΩ resistor to improve gain

• Minimize loop area to reduce EMI

Table 16-8.  Current Draw Using Reduced-Power External Oscillator
(0 Ω current-limiting resistors)
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17.  RABBIT BIOS AND VIRTUAL DRIVER

When a program is compiled by Dynamic C for a Rabbit target, the Virtual Driver is auto-
matically incorporated into the program. Virtual Driver is the name given to some initial-
ization routines and a group of services performed by the periodic interrupt. The Rabbit 
BIOS, software that handles startup, shutdown and various basic features of the Rabbit, is 
compiled to the target along with the application program. 

Z-World provides the full source code for the BIOS and Virtual Driver so the user can 
modify them and examine details of the operation that are not apparent from the documen-
tation.

More details on the BIOS and Virtual Driver software can be found in the Dynamic C 
User’s Manual, the Rabbit 3000 Designer’s Handbook, and the source code in the 
Dynamic C libraries.

17.1  The BIOS

The BIOS provided with Dynamic C will work with all Z-World and Rabbit Semiconduc-
tor Rabbit board products. 

The BIOS is compiled separately from the user’s application. It occupies space at the bot-
tom of the root code segment. When execution of the user’s program starts at address zero 
on power-up or reset, it starts in the BIOS. When Dynamic C cold-boots the target and 
downloads the binary image of the BIOS, the BIOS symbol table is retained to make its 
entry points and global data available to the user application. Board specific drivers are 
compiled with the user’s program after the BIOS is compiled. 

17.1.1  BIOS Services

The BIOS includes support for the following services.

• System startup: including setup of memory, wait states and clock speed.

• Writing to flash. Writes to the primary code memory require turning off interrupts for 
up to 20 ms or so. To protect the System Identification Block (see the Rabbit 3000 
Designer’s Handbook for more information on the System ID Block), the flash driver 
will not write to that block. A routine that can actually write this block is not included 
in the BIOS to make it hard to accidently corrupt this block.

• Run-time exception handling and logging to handle fatal errors and watchdog time-outs 
(error logging not implemented in older versions).

• Debugging and PC-target communication
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17.1.2  BIOS Assumptions

The BIOS makes certain assumptions concerning the physical configuration of the proces-
sor. Processors are expected to have RAM connected to /CS1, /WE1, and /OE1. Flash is 
expected to be connected to /CS0, /WE0, and /OE0. (See the Rabbit 3000 Designer’s 
Handbook Memory Planning chapter if you want to design a board with RAM only.) The 
crystal frequency is expected to be n*1.8432 MHz.

The Rabbit 3000 Designer’s Handbook has a chapter on the Rabbit BIOS with more 
details.

17.2  Virtual Driver

The Virtual Driver is compiled with the user’s application. It includes support for the fol-
lowing services.

• Hitting the hardware watchdog timer.

• Decrementing software watchdog timers.

• Synchronizing the system timer variables with the real-time clock and keeping them 
updated.

• Driving uC/OS-II multi-tasking.

• Driving slice statement multi-tasking.

17.2.1  Periodic Interrupt

The periodic interrupt that drives the Virtual Driver occurs every 16 clocks or every 488 
µs. If the 32.768 kHz oscillator is absent, it is possible to substitute a different periodic 
interrupt. This alternative is not supported by Z-World since the cost of connecting a crys-
tal is very small. The periodic interrupt keeps the interrupts turned off (that is, the proces-
sor priority is raised to 1 from zero) for about 75 clocks, so it contributes little to interrupt 
latency.

The periodic interrupt is turned on by default before main() is called. It can be disabled if 
needed. The Dynamic C Users’s Manual chapter on the Virtual Driver provides more 
details on the periodic interrupt.

The Rabbit 3000 microprocessor requires the 32 kHz oscillator in order to boot via 
Dynamic C, unless a custom loader and BIOS are used.

17.2.2  Watchdog Timer Support

A microprocessor system can crash for a variety of reasons. A software bug or an electri-
cal upset are common reasons. When the system crashes the program will typically settle 
into an endless loop because parameters that govern looping behavior have been cor-
rupted. Typically, the stack becomes corrupted and returns are made to random addresses.

The usual corrective action taken in response to a crash is to reset the microprocessor and 
reboot the system. The crash can be detected either because an anomaly is detected by pro-
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gram consistency checking or because a part of the program that should be executing peri-
odically is not executing and the watchdog times out. 

The Virtual Driver’s periodic interrupt hits the hardware watchdog timer with a 2 second 
time-out. If the periodic interrupt stops working, then the watchdog will time out after 2 
seconds. The Virtual Driver provides a number of additional “virtual” watchdog timers for 
use in other parts of the code that must be entered periodically. The user program must hit 
each virtual watchdog periodically. 

The best practice is to let the periodic interrupt hit the hardware watchdog exclusively, and 
use virtual watchdogs for other code that must be run periodically. If hits to the hardware 
watchdog are scattered through a program, then it may be possible for the code to enter an 
endless loop where the watchdog is hit, and therefore rendered useless for detecting the 
endless loop condition. If no virtual watchdogs are used, an undetected endless loop con-
dition could still occur since the periodic interrupt can still hit the hardware watchdog.

If any of the virtual watchdogs times out, then hits are withheld from the hardware watch-
dog and it times out, resulting in a hardware reset. Virtual watchdogs may be allocated, 
deallocated, enabled and disabled. The advantage of the virtual watchdogs is that if any of 
them fail an error is detected. 

The Dynamic C Users’s Manual chapter on the Virtual Driver provides more details on 
virtual watchdogs.
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18.  OTHER RABBIT SOFTWARE

18.1  Power Management Support

The power consumption and speed of operation can be throttled up and down with rough 
synchronism. This is done by changing the clock speed or the clock doubler. The range of 
control is quite wide: the speed can vary by a factor of 16 when the main clock is driving 
the processor. In addition, the main clock can be switched to the 32.768 kHz clock. In this 
case, the slowdown is very dramatic, a factor of perhaps 500. In this ultra slow mode, each 
clock takes about 30 µs, and a typical instruction takes 150 µs to execute. At this speed, 
the periodic interrupt cannot operate because the interrupt routine would execute too 
slowly to keep up with an interrupt every 16 clocks. Only about 3 instructions could be 
executed between ticks.

A different set of rules applies in the ultra slow or “sleepy” mode. The Rabbit 3000 auto-
matically disables periodic interrupts when the clock mode is switched to 32 kHz or one of 
the multiples of 32 kHz. This means that the periodic-interrupt hardware does not function 
when running at any of these 32 kHz clock speeds simply because there are not enough 
clock cycles available to service the interrupt. Hence virtual watchdogs (which depend on 
the periodic interrupt) cannot be used in the sleepy mode. The user must set up an endless 
loop to determine when to exit sleepy mode. A routine, updateTimers(), is provided to 
update the system timer variables by directly reading the real-time clock and to hit the 
watchdog while in sleepy mode. If the user’s routine cannot get around the loop in the 
maximum watchdog timer time-out time, the user should put several calls to 
updateTimers() in the loop. The user should avoid indiscriminate direct access to the 
watchdog timer and real-time clock. The least significant bits of the real-time clock cannot 
be read in ultra slow mode because they count fast compared to the instruction execution 
time. To reduce bus activity and thus power consumption, it is useful to multiply zero by 
zero. This requires 12 clocks for one memory cycle and reduces power consumption. Typ-
ically a number of mul instructions can be executed between each test of the condition 
being waited for.

Dynamic C libraries also provide functions to change clock speeds to enter and exit sleepy 
mode. See the Rabbit 3000 Designer’s Handbook chapter Low Power Design and Sup-
port for more details.
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18.2  Reading and Writing I/O Registers

The Rabbit has two I/O spaces: internal I/O registers and external I/O registers.

18.2.1  Using Assembly Language

The fastest way to read and write I/O registers in Dynamic C is to use a short segment of 
assembly language inserted in the C program.  Access is the same as for accessing data 
memory except that the instruction is preceded by a prefix (IOI or IOE) to indicate the 
internal or external I/O space. For example:

// compute value and write to Port A Data Register
value=x+y

#asm
ld a,(value)     ; value to write
ioi ld (PADR),a  ; write value to PADR 
#endasm

In the example above the IOI prefix changes a store to memory to a store to an internal 
I/O port. The prefix ioe is used for writes to external I/O ports.

18.2.2  Using Library Functions

Dynamic C functions are available to read and write I/O registers. These functions are pro-
vided for convenience. For speed, assembly code is recommended. For a complete 
description of the functions noted in this section, refer to the Dynamic C User’s Manual 
or from the Help menu in Dynamic C, access the HTML Function Reference or Function 
Lookup options.

To read internal I/O registers, there are two functions.

int RdPortI(int PORT)                ; // returns PORT, high byte zero
int BitRdPortI(int PORT, int bitcode); // bit code 0-7

To write internal I/O registers, there are two functions.

void WrPortI(int PORT, char *PORTShadow, int value);
void BitWrPortI(int PORT, char *PORTShadow, int value, int bitcode);

The external registers are also accessible with Dynamic C functions.

int RdPortE(int PORT)                ; // returns PORT, high byte zero
int BitRdPortE(int PORT, int bitcode); // bit code 0-7
int WrPortE(int PORT, char *PORTShadow, int value); 
int BitWrPortE(int PORT, char *PORTShadow, int value, int bitcode);

In order to read a port the following code could be used:

k=RdPortI(PADR); // returns Port A Data Register
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18.3  Shadow Registers

Many of the registers of the Rabbit’s internal I/O devices are write-only. This saves gates 
on the chip, making possible greater capability at lower cost. Write-only registers are eas-
ier to use if a memory location, called a shadow register, is associated with each write-
only register. To make shadow register names easy to remember, the word shadow is 
appended to the register name. For example the register GOCR (Global Output Control 
register) has the shadow GOCRShadow. Some shadow registers are defined in the BIOS 
source code as shown below.

char GCSRShadow; // Global Control Status Register

char GOCRShadow; // Global Output Control Register
char GCDRShadow; // Global Clock Doubler Register

If the port is a write-only port, the shadow register can be used to find out the port’s con-
tents. For example GCSR has a number of write-only bits. These can be read by consult-
ing the shadow, provided that the shadow register is always updated when writing to the 
register.

k=GCSRShadow;

18.3.1  Updating Shadow Registers

If the address of a shadow register is passed as an argument to one of the functions that 
write to the internal or external I/O registers, then the shadow register will be updated as 
well as the specified I/O register. 

A NULL pointer may replace the pointer to a shadow register as an argument to WrPortI() 
and WrPortE(); the shadow register associated with the port will not be updated. A pointer 
to the shadow register is mandatory for BitWrPortI() and BitWrPortE().

18.3.2  Interrupt While Updating Registers

When manipulating I/O registers and shadow registers, the programmer must keep in 
mind that an interrupt can take place in the middle of the sequence of operations, and then 
the interrupt routine may manipulate the same registers. If this possibility exists, then a 
solution must be crafted for the particular situation. Usually it is not necessary to disable 
the interrupts while manipulating registers and their associated shadow registers.

18.3.2.1  Atomic Instruction

As an example, consider the Parallel Port D data direction register (PDDDR). This register 
is write only, and it contains 8 bits corresponding to the 8 I/O pins of Parallel Port D. If a 
bit in this register is a “1,” the corresponding port pin is an output, otherwise it is an input. 
It is easy to imagine a situation where different parts of the application, such as an inter-
rupt routine and a background routine, need to be in charge of different bits in the PDDDR 
register. The following code sets a bit in the shadow and then sets the I/O register. If an 
interrupt takes place between the set and the LDD, and changes the shadow register and 
PDDDR, the correct value will still be set in PDDDR.
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ld hl,PDDDRShadow    ; point to shadow register
ld de,PDDDR          ; set de to point to I/O reg
set 5,(hl)           ; set bit 5 of shadow register
; use ldd instruction for atomic transfer
ioi ldd              ; (io de)<-(hl)  side effect: hl--, de--

In this case, the ldd instruction when used with an I/O prefix provides a convenient data 
move from a memory location to an I/O location. Importantly, the ldd instruction is an 
atomic operation so there is no danger that an interrupt routine could change the shadow 
register during the move to the PDDDR register. 

18.3.2.2  Non-atomic Instructions

If the following two instructions were used instead of the ldd instruction,

ld a,(hl)
ld (PDDDR),a  ; output to PDDDR

then an interrupt could take place after the first instruction, change the shadow register and 
the PDDDR register, and then after a return from the interrupt, the second instruction 
would execute and store an obsolete copy of the shadow register in the PDDDR, setting it 
to a wrong value.

18.3.3  Write-only Registers Without Shadow Registers

Shadow register are not needed for many of the registers that can be written to. In some 
cases, writing to registers is used as a handy way of changing a peripheral’s state, and the 
data bits written are ignored. For example, a write to the status register in the Rabbit serial 
ports is used to clear the transmitter interrupt request, but the data bits are ignored, and the 
status register is actually a read-only register except for the special functionality attached 
to the act of writing the register. An illustration of a write-only register for which a shadow 
is unnecessary is the transmitter data register in the Rabbit serial port. The transmitter data 
register is a write-only register, but there is little reason to have a shadow register since 
any data bits stored are transmitted promptly on the serial port.

18.4  Timer and Clock Usage

The battery-backable real-time clock is a 48 bit counter that counts at 32768 counts per 
second. The counting frequency comes from the 32.768 kHz oscillator which is separate 
from the main oscillator. Two other important devices are also powered from the 32.768 
kHz oscillator: the periodic interrupt and the watchdog timer. It is assumed that all mea-
surements of time will derive from the real-time clock and not the main processor clock 
which operates at a much higher frequency (e.g. 22.1184 MHz). This allows the main pro-
cessor oscillator to use less expensive ceramic resonators rather than quartz crystals. 
Ceramic resonators typically have an error of 5 parts in 1000, while crystals are much 
more accurate, to a few seconds per day.
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Two library functions are provided to read and write the real-time clock:

unsigned long int read_rtc(void)       ; // read bits 15-46 rtc
void write_rtc(unsigned long int time) ; // write bits 15-46
// note: bits 0-14 and bit 47 are zeroed

However, it is not intended that the real-time clock be read and written frequently. The 
procedure to read it is lengthy and has an uncertain execution time. The procedure for 
writing the clock is even more complicated. Instead, Dynamic C software maintains a long 
variable SEC_TIMER in memory. SEC_TIMER is synchronized with the real-time clock 
when the Virtual Driver starts, and updated every second by the periodic interrupt. It may 
be read or written directly by the user’s programs. Since SEC_TIMER is driven by the 
same oscillator as the real-time clock there is no relative gain or loss of time between the 
two. A millisecond timer variable, MS_TIMER, is also maintained by the Virtual Driver.

Two utility routines are provided that can be used to convert times between the traditional 
format (10-Jan-2000 17:34:12) and the seconds since 1-Jan-1980 format.

// converts time structure to seconds
unsigned long mktime(struct tm *timeptr); 

// seconds to structure
unsigned int mktm(struct tm *timeptr, unsigned long time); 

The format of the structure used is the following

struct tm {
char tm_sec;             // seconds 0-59
char tm_min;             // 0-59
char tm_hour;            // 0-59
char tm_mday;            // 1-31
char tm_mon;             // 1-12
char tm_year;            // 00-150 (1900-2050)
char tm_wday;            // 0-6 0==sunday
};

The day of the week is not used to compute the long seconds, but it is generated when 
computing from long seconds to the structure. A utility program, setclock.c, is avail-
able to set the date and time in the real-time clock from the Dynamic C STDIO console.
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19.  RABBIT INSTRUCTIONS

Summary
“Load Immediate Data” on page 246
“8-bit Indexed Load and Store” on page 246
“16-bit Indexed Loads and Stores” on page 246
“16-bit Load and Store 20-bit Address” on page 247
“Register to Register Moves” on page 247
“Exchange Instructions” on page 248
“Stack Manipulation Instructions” on page 248
“16-bit Arithmetic and Logical Ops” on page 248
“8-bit Arithmetic and Logical Ops” on page 249
“8-bit Bit Set, Reset and Test” on page 250
“8-bit Increment and Decrement” on page 250
“8-bit Fast A Register Operations” on page 251
“8-bit Shifts and Rotates” on page 251
“Instruction Prefixes” on page 252
“Block Move Instructions” on page 252
“Control Instructions - Jumps and Calls” on page 253
“Miscellaneous Instructions” on page 253
“Privileged Instructions” on page 254
“Instructions in Alphabetical Order With Binary Encoding” on page 257
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Spreadsheet Conventions

ALTD (“A” Column) Symbol Key

IOI and IOE (“I” Column) Symbol Key

Flag Register Key

Flag Description

f ALTD selects alternate flags

fr ALTD selects alternate flags and register

r ALTD selects alternate register

s ALTD operation is a special case

Flag Description

b IOI and IOE affect source and destination

d IOI and IOE affect destination

s IOI and IOE affect source

S Z L/V*

* The L/V (logical/overflow) flag serves a dual purpose—
L/V is set to 1 for logical operations if any of the four 
most significant bits of the result are 1, and L/V is reset to 
0 if all four of the most significant bits of the result are 0.

C Description

* Sign flag affected

- Sign flag not affected

* Zero flag affected

- Zero flag not affected

L LV flag contains logical check result

V LV flag contains arithmetic overflow result

0 LV flag is cleared

* LV flag is affected

* Carry flag is affected

- Carry flag is not affected

0 Carry flag is cleared

1 Carry flag is set
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Symbols

Rabbit Z180 Meaning

b b

Bit select:
000 = bit 0, 001 = bit 1,
010 = bit 2, 011 = bit 3, 
100 = bit 4, 101 = bit 5, 
110 = bit 6, 111 = bit 7

cc cc

Condition code select: 
00 = NZ, 01 = Z, 
10 = NC, 11 = C

d d 7-bit (signed) displacement. Expressed in two’s complement.

dd ww Word register select destination: 00 = BC, 01 = DE, 10 = HL, 11 = SP

dd’ Word register select alternate: 00 = BC’, 01 = DE’, 10 = HL’

e j 8-bit (signed) displacement added to PC.

f f

Condition code select:
000 = NZ (non zero),001 = Z (zero), 
010 = NC (non carry), 011 = C (carry), 

100 = LZ* (logical zero), 101 = LO† (logical one), 
110 = P (sign plus), 111 = M (sign minus)

* Logical zero if all four of the most significant bits of the result are 0.
† Logical one if any of the four most significant bits of the result are 1.

m m MSB of a 16-bit constant.

mn mn 16-bit constant.

n n 8-bit constant or LSB of a 16-bit constant.

r, g g, g’

Byte register select: 
000 = B, 001 = C, 
010 = D, 011 = E, 
100 = H, 101 = L, 
111 = A

ss ww Word register select (source): 00 = BC, 01 = DE, 10 = HL, 11 = SP

v v

Restart address select: 
010 = 0020h, 011 = 0030h, 
100 = 0040h, 101 = 0050h, 
111 = 0070h

xx xx Word register select: 00 = BC, 01 = DE, 10 = IX, 11 = SP

yy yy Word register select: 00 = BC, 01 = DE, 10 = IY, 11 = SP

zz zz Word register select: 00 = BC, 01 = DE, 10 = HL, 11 = AF
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19.1  Load Immediate Data
Instruction   clk   A  I S Z V C  Operation
LD IX,mn      8          - - - -  IX = mn
LD IY,mn      8          - - - -  IY = mn
LD dd,mn      6     r    - - - -  dd = mn
LD r,n        4     r    - - - -  r = n

19.2  Load & Store to Immediate Address
Instruction   clk   A  I S Z V C  Operation
LD (mn),A     10       d - - - -  (mn) = A
LD A,(mn)     9     r  s - - - -  A = (mn)
LD (mn),HL    13       d - - - -  (mn) = L; (mn+1) = H
LD (mn),IX    15       d - - - -  (mn) = IXL; (mn+1) = IXH
LD (mn),IY    15       d - - - -  (mn) = IYL; (mn+1) = IYH
LD (mn),ss    15       d - - - -  (mn) = ssl; (mn+1) = ssh
LD HL,(mn)    11    r  s - - - -  L = (mn); H = (mn+1)
LD IX,(mn)    13       s - - - -  IXL = (mn); IXH = (mn+1)
LD IY,(mn)    13       s - - - -  IYL = (mn); IYH = (mn+1)
LD dd,(mn)    13    r  s - - - -  ddl = (mn); ddh = (mn+1)

19.3  8-bit Indexed Load and Store
Instruction   clk   A  I S Z V C  Operation
LD A,(BC)     6     r  s - - - -  A = (BC)
LD A,(DE)     6     r  s - - - -  A = (DE)
LD (BC),A     7        d - - - -  (BC) = A
LD (DE),A     7        d - - - -  (DE) = A
LD (HL),n     7        d - - - -  (HL) = n
LD (HL),r     6        d - - - -  (HL) = r = B, C, D, E, H, L, A
LD r,(HL)     5     r  s - - - -  r = (HL)
LD (IX+d),n   11       d - - - -  (IX+d) = n
LD (IX+d),r   10       d - - - -  (IX+d) = r
LD r,(IX+d)   9     r  s - - - -  r = (IX+d)
LD (IY+d),n   11       d - - - -  (IY+d) = n
LD (IY+d),r   10       d - - - -  (Iy+d) = r
LD r,(IY+d)   9     r  s - - - -  r = (IY+d)

19.4  16-bit Indexed Loads and Stores
Instruction   clk   A  I S Z V C  Operation
LD (HL+d),HL  13       d - - - -  (HL+d) = L; (HL+d+1) = H
LD HL,(HL+d)  11    r  s - - - -  L = (HL+d); H = (HL+d+1)
LD (SP+n),HL  11         - - - -  (SP+n) = L; (SP+n+1) = H
LD (SP+n),IX  13         - - - -  (SP+n) = IXL; (SP+n+1) = IXH
LD (SP+n),IY  13         - - - -  (SP+n) = IYL; (SP+n+1) = IYH
LD HL,(SP+n)  9     r    - - - -  L = (SP+n); H = (SP+n+1)
LD IX,(SP+n)  11         - - - -  IXL = (SP+n); IXH = (SP+n+1)
LD IY,(SP+n)  11         - - - -  IYL = (SP+n); IYH = (SP+n+1)
LD (IX+d),HL  11       d - - - -  (IX+d) = L; (IX+d+1) = H
LD HL,(IX+d)  9     r  s - - - -  L = (IX+d); H = (IX+d+1)
LD (IY+d),HL  13       d - - - -  (IY+d) = L; (IY+d+1) = H
LD HL,(IY+d)  11   r  s - - - -  L = (IY+d); H = (IY+d+1)
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19.5  16-bit Load and Store 20-bit Address
Instruction   clk   A  I S Z V C  Operation
LDP (HL),HL   12         - - - -  (HL) = L; (HL+1) = H. 
                                  (Adr[19:16] = A[3:0])
LDP (IX),HL   12         - - - -  (IX) = L; (IX+1) = H. 
                                  (Adr[19:16] = A[3:0])
LDP (IY),HL   12         - - - -  (IY) = L; (IY+1) = H. 
                                  (Adr[19:16] = A[3:0])
LDP HL,(HL)   10         - - - -  L = (HL); H = (HL+1). 
                                  (Adr[19:16] = A[3:0])
LDP HL,(IX)   10         - - - -  L = (IX); H = (IX+1). 
                                  (Adr[19:16] = A[3:0])
LDP HL,(IY)   10         - - - -  L = (IY); H = (IY+1). 
                                  (Adr[19:16] = A[3:0])
LDP (mn),HL   15         - - - -  (mn) = L; (mn+1) = H. 
                                  (Adr[19:16] = A[3:0])
LDP (mn),IX   15         - - - -  (mn) = IXL; (mn+1) = IXH.
                                  (Adr[19:16] = A[3:0])
LDP (mn),IY   15         - - - -  (mn) = IYL; (mn+1) = IYH.
                                  (Adr[19:16] = A[3:0])
LDP HL,(mn)   13         - - - -  L = (mn); H = (mn+1). 
                                  (Adr[19:16] = A[3:0])
LDP IX,(mn)   13         - - - -  IXL = (mn); IXH = (mn+1).
                                  (Adr[19:16] = A[3:0])
LDP IY,(mn)   13         - - - -  IYL = (mn); IYH = (mn+1).
                                  (Adr[19:16] = A[3:0])

Note that the LDP instructions wrap around on a 64K page boundary. Since the LDP instruc-
tion operates on two-byte values, the second byte will wrap around and be written at the 
start of the page if you try to read or write across a page boundary. Thus, if you fetch or 
store at address 0xn,0xFFFF, you will get the bytes located at 0xn,0xFFFF and 
0xn,0x0000 instead of 0xn,0xFFFFand 0x(n+1),0x0000 as you might expect. Therefore, 
do not use LDP at any physical address ending in 0xFFFF.

19.6  Register to Register Moves
Instruction   clk   A  I S Z V C  Operation
LD r,g        2     r    - - - -  r = g, r, g any of B, C, D, E, H, L, A
LD A,EIR      4     fr   * * - -  A = EIR
LD A,IIR      4     fr   * * - -  A = IIR
LD A,XPC      4     r    - - - -  A = MMU
LD EIR,A      4          - - - -  EIR = A
LD IIR,A      4          - - - -  IIR = A
LD XPC,A      4          - - - -  XPC = A
LD HL,IX      4     r    - - - -  HL = IX
LD HL,IY      4     r    - - - -  HL = IY
LD IX,HL      4          - - - -  IX = HL
LD IY,HL      4          - - - -  IY = HL
LD SP,HL      2          - - - -  SP = HL
LD SP,IX      4          - - - -  SP = IX
LD SP,IY      4          - - - -  SP = IY
LD dd’,BC     4          - - - -  dd’ = BC (dd’: 00-BC’, 01-DE’, 10-HL’)
LD dd’,DE     4          - - - -  dd’ = DE (dd’: 00-BC’, 01-DE’, 10-HL’)
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19.7  Exchange Instructions
Instruction   clk   A  I S Z V C  Operation
EX (SP),HL    15    r    - - - -  H <-> (SP+1); L <-> (SP)
EX (SP),IX    15         - - - -  IXH <-> (SP+1); IXL <-> (SP)
EX (SP),IY    15        - - - -  IYH <-> (SP+1); IYL <-> (SP)
EX AF,AF’     2          - - - -  AF <-> AF’
EX DE’,HL     2     s    - - - -  if (!ALTD) then DE’ <-> HL 
                                   else DE’ <-> HL’
EX DE’,HL’    4     s    - - - -   DE’ <-> HL’
EX DE,HL      2     s    - - - -  if (!ALTD) then DE <-> HL 
                                  else DE <-> HL’
EX DE,HL’     4     s    - - - -  DE <-> HL’
EXX           2          - - - -  BC <-> BC’; DE <-> DE’;
                                  HL <-> HL’

19.8  Stack Manipulation Instructions
Instruction   clk   A  I S Z V C  Operation
ADD SP,d      4     f    - - - *  SP = SP + d -- d=0 to 255
POP IP        7          - - - -  IP = (SP); SP = SP+1
POP IX        9          - - - -  IXL = (SP); IXH = (SP+1);  
                                  SP = SP+2
POP IY        9          - - - -  IYL = (SP); IYH = (SP+1);  
                                  SP = SP+2
POP zz        7     r    - - - -  zzl = (SP); zzh = (SP+1);  
                                  SP=SP+2 -- zz= BC,DE,HL,AF
PUSH IP       9          - - - -  (SP-1) = IP; SP = SP-1
PUSH IX       12         - - - -  (SP-1) = IXH; (SP-2) = IXL; 
                                   SP = SP-2
PUSH IY       12         - - - -  (SP-1) = IYH; (SP-2) = IYL; 
                                  SP = SP-2
PUSH zz       10         - - - -  (SP-1) = zzh; (SP-2) = zzl; 
                                   SP=SP-2 --zz= BC,DE,HL,AF

19.9  16-bit Arithmetic and Logical Ops
Instruction   clk   A  I S Z V C  Operation
ADC HL,ss     4     fr   * * V *  HL = HL + ss + CF  -- ss=BC, 
                                  DE, HL, SP
ADD HL,ss     2     fr   - - - *  HL = HL + ss
ADD IX,xx     4     f    - - - *  IX = IX + xx  -- xx=BC, 
                                  DE, IX, SP

A F

A’ F’

H

H’

D

D’

L

L’

E

E’

B

B’

C

C’

EX AF,AF’

EX DE’,HLEX DE,HL’

EX DE’,HL’

EX DE,HL

EXX - exchange HL,HL’,DE,DE’,BC,BC’
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ADD IY,yy     4     f    - - - *  IY = IY + yy  -- yy=BC, 
                                  DE, IY, SP
ADD SP,d      4     f    - - - *  SP = SP + d -- d=0 to 255
AND HL,DE     2     fr   * * L 0  HL = HL & DE
AND IX,DE     4     f    * * L 0  IX = IX & DE
AND IY,DE     4     f    * * L 0  IY = IY & DE
BOOL HL       2     fr   * * 0 0  if (HL != 0) HL = 1, 
                                   set flags to match HL
BOOL IX       4     f    * * 0 0  if (IX != 0) IX = 1
BOOL IY       4     f    * * 0 0  if (IY != 0) IY = 1
DEC IX        4          - - - -  IX = IX - 1
DEC IY        4          - - - -  IY = IY - 1
DEC ss        2     r    - - - -  ss = ss - 1 -- ss= BC, 
                                  DE, HL, SP
INC IX        4          - - - -  IX = IX + 1
INC IY        4          - - - -  IY = IY + 1
INC ss        2     r    - - - -  ss = ss + 1 -- ss= BC, 
                                  DE, HL, SP
MUL           12         - - - -  HL:BC = BC * DE, signed 
                                  32 bit result. DE unchanged
OR HL,DE      2     fr   * * L 0  HL = HL | DE -- bitwise or
OR IX,DE      4     f    * * L 0  IX = IX | DE
OR IY,DE      4     f    * * L 0  IY = IY | DE
RL DE         2     fr   * * L *  {CY,DE} = {DE,CY} -- 
                                  left shift with CF
RR DE         2     fr   * * L *  {DE,CY} = {CY,DE}
RR HL         2     fr   * * L *  {HL,CY} = {CY,HL}
RR IX         4     f    * * L *  {IX,CY} = {CY,IX}
RR IY         4     f    * * L *  {IY,CY} = {CY,IY}
SBC HL,ss     4     fr   * * V *  HL=HL-ss-CY 
                                  (cout if (ss-CY)>hl)

19.10  8-bit Arithmetic and Logical Ops
Instruction   clk   A  I S Z V C  Operation
ADC A,(HL)    5     fr s * * V *  A = A + (HL) + CF
ADC A,(IX+d)  9     fr s * * V *  A = A + (IX+d) + CF
ADC A,(IY+d)  9     fr s * * V *  A = A + (IY+d) + CF
ADC A,n       4     fr   * * V *  A = A + n + CF
ADC A,r       2     fr   * * V *  A = A + r + CF
ADD A,(HL)    5     fr s * * V *  A = A + (HL)
ADD A,(IX+d)  9     fr s * * V *  A = A + (IX+d)
ADD A,(IY+d)  9     fr s * * V *  A = A + (IY+d)
ADD A,n       4     fr   * * V *  A = A + n
ADD A,r       2     fr   * * V *  A = A + r
AND (HL)      5     fr s * * L 0  A = A & (HL)
AND (IX+d)    9     fr s * * L 0  A = A & (IX+d)
AND (IY+d)    9     fr s * * L 0  A = A & (IY+d)
AND n         4     fr   * * L 0  A = A & n
AND r         2     fr   * * L 0  A = A & r
CP* (HL)      5     f  s * * V *  A - (HL)
CP* (IX+d)    9     f  s * * V *  A - (IX+d)
CP* (IY+d)    9     f  s * * V *  A - (IY+d)
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CP* n         4     f    * * V *  A - n
CP* r         2     f    * * V *  A - r
OR (HL)       5     fr s * * L 0  A = A | (HL)
OR (IX+d)     9     fr s * * L 0  A = A | (IX+d)
OR (IY+d)     9     fr s * * L 0  A = A | (IY+d)
OR n          4     fr   * * L 0  A = A | n
OR r          2     fr   * * L 0  A = A | r
SBC* (IX+d)   9     fr s * * V *  A = A - (IX+d) - CY
SBC* (IY+d)   9     fr s * * V *  A = A - (IY+d) - CY
SBC* A,(HL)   5     fr s * * V *  A = A - (HL) - CY
SBC* A,n      4     fr   * * V *  A = A-n-CY (cout if (r-CY)>A)
SBC* A,r      2     fr   * * V *  A = A-r-CY (cout if (r-CY)>A)
SUB (HL)      5     fr s * * V *  A = A - (HL)
SUB (IX+d)    9     fr s * * V *  A = A - (IX+d)
SUB (IY+d)    9     fr s * * V *  A = A - (IY+d)
SUB n         4     fr   * * V *  A = A - n
SUB r         2     fr   * * V *  A = A - r
XOR (HL)      5     fr s * * L 0  A = [A & ~(HL)] | [~A & (HL)]
XOR (IX+d)    9      fr s * * L 0  A = [A & ~(IX+d)] | [~A & (IX+d)]
XOR (IY+d)    9      fr s * * L 0  A = [A & ~(IY+d)] | [~A & (IY+d)]
XOR n         4     fr   * * L 0  A = [A & ~n] | [~A & n]
XOR r         2     fr   * * L 0  A = [A & ~r] | [~A & r]

* SBC and CP instruction output inverted carry. C is set if A<B if the oper-
ation or virtual operation is (A-B). Carry is cleared if A>=B. SUB outputs 
carry in opposite sense from SBC and CP.

19.11  8-bit Bit Set, Reset and Test
Instruction   clk   A  I S Z V C  Operation
BIT b,(HL)    7     f  s - * - -  (HL) & bit
BIT b,(IX+d)) 10    f  s - * - -  (IX+d) & bit
BIT b,(IY+d)) 10    f  s - * - -  (IY+d) & bit
BIT b,r       4     f    - * - -  r & bit
RES b,(HL)    10       d - - - -  (HL) = (HL) & ~bit
RES b,(IX+d)  13       d - - - -  (IX+d) = (IX+d) & ~bit
RES b,(IY+d)  13       d - - - -  (IY+d) = (IY+d) & ~bit
RES b,r       4     r    - - - -  r = r & ~bit
SET b,(HL)    10       b - - - -  (HL) = (HL) | bit
SET b,(IX+d)  13       b - - - -  (IX+d) = (IX+d) | bit
SET b,(IY+d)  13       b - - - -  (IY+d) = (IY+d) | bit
SET b,r       4    r    - - - -  r = r | bit

19.12  8-bit Increment and Decrement
Instruction   clk   A  I S Z V C  Operation
DEC (HL)      8     f  b * * V -  (HL) = (HL) - 1
DEC (IX+d)    12    f  b * * V -  (IX+d) = (IX+d) -1
DEC (IY+d)    12    f  b * * V -  (IY+d) = (IY+d) -1
DEC r         2     fr   * * V -  r = r - 1
INC (HL)      8     f  b * * V -  (HL) = (HL) + 1
INC (IX+d)    12    f  b * * V -  (IX+d) = (IX+d) + 1
INC (IY+d)    12    f  b * * V -  (IY+d) = (IY+d) + 1
INC r         2     fr   * * V -  r = r + 1
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19.13  8-bit Fast A Register Operations
Instruction   clk   A  I S Z V C  Operation
CPL           2     r    - - - -  A = ~A
NEG           4     fr   * * V *  A = 0 - A
RLA           2     fr   - - - *  {CY,A} = {A,CY}
RLCA          2     fr   - - - *  A = {A[6,0],A[7]}; CY = A[7]
RRA           2     fr   - - - *  {A,CY} = {CY,A}
RRCA          2     fr   - - - *  A = {A[0],A[7,1]}; CY = A[0]

19.14  8-bit Shifts and Rotates

Instruction   clk   A  I S Z V C  Operation
RL (HL)       10    f  b * * L *  {CY,(HL)} = {(HL),CY}
RL (IX+d)     13    f  b * * L *  {CY,(IX+d)} = {(IX+d),CY}
RL (IY+d)     13    f  b * * L *  {CY,(IY+d)} = {(IY+d),CY}
RL r          4     fr   * * L *  {CY,r} = {r,CY}
RLC (HL)      10    f  b * * L *  (HL) = {(HL)[6,0],(HL)[7]}; 
                                  CY = (HL)[7]
RLC (IX+d)    13    f  b * * L *  (IX+d) = {(IX+d)[6,0],
                                   (IX+d)[7]}; CY = (IX+d)[7]
RLC (IY+d)    13    f  b * * L *  (IY+d) = {(IY+d)[6,0],
                                  (IY+d)[7]}; CY = (IY+d)[7]
RLC r         4     fr   * * L *  r = {r[6,0],r[7]}; CY = r[7]
RR (HL)       10    f  b * * L *  {(HL),CY} = {CY,(HL)}
RR (IX+d)     13    f  b * * L *  {(IX+d),CY} = {CY,(IX+d)}
RR (IY+d)     13    f  b * * L *  {(IY+d),CY} = {CY,(IY+d)}
RR r          4     fr   * * L *  {r,CY} = {CY,r}
RRC (HL)      10    f  b * * L *  (HL) = {(HL)[0],(HL)[7,1]}; 
                                   CY = (HL)[0]
RRC (IX+d)    13    f  b * * L *  (IX+d) = {(IX+d)[0],
                                  (IX+d)[7,1]}; CY = (IX+d)[0]
RRC (IY+d)    13    f  b * * L *  (IY+d) = {(IY+d)[0],(
                                   IY+d)[7,1]}; CY = (IY+d)[0]
RRC r         4     fr   * * L *  r = {r[0],r[7,1]}; CY = r[0]
SLA (HL)      10    f  b * * L *  (HL) = {(HL)[6,0],0}; CY = 
                                  (HL)[7]
SLA (IX+d)    13    f  b * * L *  (IX+d) = {(IX+d)[6,0],0}; 
                                   CY = (IX+d)[7]
SLA (IY+d)    13    f  b * * L *  (IY+d) = {(IY+d)[6,0],0}; 
                                   CY = (IY+d)[7]

CRL, RLA

CRLC, RLCA

RR, RRA C

CRRC, RRCA

SLA 0C

SRA

SRL 0 C

C
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SLA r         4     fr   * * L *  r = {r[6,0],0}; CY = r[7]
SRA (HL)      10    f  b * * L *  (HL) = {(HL)[7],(HL)[7,1]}; 
                                  CY = (HL)[0]
SRA (IX+d)    13    f  b * * L *  (IX+d) = {(IX+d)[7],
                                  (IX+d)[7,1]}; CY = (IX+d)[0]
SRA (IY+d)    13    f  b * * L *  (IY+d) = {(IY+d)[7],
                                  (IY+d)[7,1]}; CY = (IY+d)[0]
SRA r         4     fr   * * L *  r = {r[7],r[7,1]}; CY = r[0]
SRL (HL)      10    f  b * * L *  (HL) = {0,(HL)[7,1]}; 
                                  CY = (HL)[0]
SRL (IX+d)    13    f  b * * L *  (IX+d) = {0,(IX+d)[7,1]}; 
                                   CY = (IX+d)[0]
SRL (IY+d)    13    f  b * * L *  (IY+d) = {0,(IY+d)[7,1]}; 
                                   CY = (IY+d)[0]
SRL r         4     fr   * * L *  r = {0,r[7,1]}; 
                                  CY = r[0]

19.15  Instruction Prefixes
Instruction   clk   A  I S Z V C  Operation
ALTD          2          - - - - alternate register destinatIn
                                 for next Instruction
IOE           2          - - - -  I/O external prefix
IOI          2          - - - -  I/O internal prefix

19.16  Block Move Instructions
Instruction   clk   A  I S Z V C  Operation
LDD           10       d - - * -  (DE) = (HL); BC = BC-1; 
                                   DE = DE-1; HL = HL-1
LDDR          6+7i     d - - * -  if {BC != 0} repeat:
LDI           10       d - - * -  (DE) = (HL); BC = BC-1; 
                                   DE = DE+1; HL = HL+1
LDIR          6+7i     d - - * -  if {BC != 0} repeat:

If any of the block move instructions are prefixed by an I/O prefix, the destination will be 
in the specified I/O space. Add 1 clock for each iteration for the prefix if the prefix is IOI 
(internal I/O). If the prefix is IOE, add 2 clocks plus the number of I/O wait states enabled. 
The V flag is set when BC transitions from 1 to 0. If the V flag is not set another step is 
performed for the repeating versions of the instructions. Interrupts can occur between dif-
ferent repeats, but not within an iteration equivalent to LDD or LDI. Return from the inter-
rupt is to the first byte of the instruction which is the I/O prefix byte if there is one.

A new LDIR/LDDR bug was discovered in September, 2002. The problem has to do with 
wait states and the block move operations. With this problem, the first iteration of 
LDIR/LDDR uses the correct number of wait states for both the read and the write. How-
ever, all subsequent iterations use the number of waits programmed for the memory 
located at the write address for both the read and the write cycles. This becomes a problem 
when moving a block of data from a slow memory device requiring wait states to a fast 
memory device requiring no wait states. With respect to external I/O operations, the LDIR 
or LDDR performs reads with zero wait states independent of the waits programmed for the 
I/O for all but the first iteration. The first iteration is correct. This bug is automatically cor-
rected by Dynamic C, and will be fixed in future generations of the chip.
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19.17  Control Instructions - Jumps and Calls
Instruction   clk   A  I S Z V C  Operation
CALL mn       12         - - - -  (SP-1) = PCH; (SP-2) = PCL; 
                                   PC = mn; SP = SP-2
DJNZ j        5     r    - - - -  B = B-1; if {B != 0} PC = PC + j
JP (HL)       4          - - - -  PC = HL
JP (IX)       6          - - - -  PC = IX
JP (IY)       6          - - - -  PC = IY
JP f,mn       7          - - - -  if {f} PC = mn
JP mn         7          - - - -  PC = mn
JR cc,e       5          - - - -  if {cc} PC = PC + e
JR e          5          - - - -  PC = PC + e (if e==0 next 
                                  seq inst is executed)
LCALL xpc,mn  19         - - - -  (SP-1) = XPC; (SP-2) = PCH; 
                                  (SP-3) = PCL;  XPC=xpc;
                                  PC = mn; SP = (SP-3)
LJP xpc,mn    10         - - - -  XPC=xpc; PC = mn
LRET          13         - - - -  PCL = (SP); PCH = (SP+1); 
                                  XPC = (SP+2);  SP = SP+3
RET           8          - - - -  PCL = (SP); PCH = (SP+1); 
                                  SP = SP+2
RET f         8/2       - - - -   if {f} PCL = (SP); PCH = 
                                  (SP+1); SP = SP+2
RETI          12         - - - -  IP = (SP); PCL = (SP+1); 
                                  PCH = (SP+2);   SP = SP+3
RST v         10         - - - -  (SP-1) = PCH; (SP-2) = PCL; 
                                  SP = SP - 2; PC = {R,v)
                                  v=10,18,20,28,38 only

19.18  Miscellaneous Instructions
Instruction   clk   A  I S Z V C  Operation
CCF           2     f    - - - *  CF = ~CF
IPSET 0       4          - - - -  IP = {IP[5:0], 00}
IPSET 1       4          - - - -  IP = {IP[5:0], 01}
IPSET 2       4          - - - -  IP = {IP[5:0], 10}
IPSET 3       4          - - - -  IP = {IP[5:0], 11}
IPRES         4          - - - -  IP = {IP[1:0], IP[7:2]}
LD A,EIR      4     fr   * * - -  A = EIR
LD A,IIR      4     fr   * * - -  A = IIR
LD A,XPC      4     r    - - - -  A = MMU
LD EIR,A      4          - - - -  EIR = A
LD IIR,A      4          - - - -  IIR = A
LD XPC,A      4          - - - -  XPC = A
NOP           2          - - - -  No Operation
POP IP        7          - - - -  IP = (SP); SP = SP+1
PUSH IP       9          - - - -  (SP-1) = IP; SP = SP-1
SCF           2     f    - - - 1  CF = 1
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19.19  Privileged Instructions

The privileged instructions are described in this section. Privilege means that an interrupt 
cannot take place between the privileged instruction and the following instruction.

The three instructions below are privileged.

LD SP,HL  ; load the stack pointer 
LD SP,IY
LD SP,IX

The instructions to load the stack are privileged so that they can be followed by an instruc-
tion to load the stack segment (SSEG) register without the danger of an interrupt taking 
place with and incorrect association between the stack pointer and the stack segment reg-
ister. For example,

LD SP,HL
IOI LD (STACKSEG),A

The following instructions are privileged.

IPSET 0   ; shift IP left and set priority 00 in bits 1,0
IPSET 1
IPSET 2
IPSET 3
IPRES    ; rotate IP right 2 bits, restoring previous priority
POP IP   ; pop IP register from stack

The instructions to modify the IP register are privileged so that they can be followed by a 
return instructions that is guaranteed to execute before another interrupt takes place. This 
avoids the possibility of an ever-growing stack.

RETI     ; pops IP from stack and then pops return address

The instruction reti can be used to set both the return address and the IP in a single 
instruction. If preceded by a LD XPC, a complete jump or call to a computed address can 
be done with no possible interrupt.

LD A,XPC ; get and set the XPC
LD XPC,A

The instruction LD XPC,A is privileged so that it can be followed by other code setting 
interrupt priority or program counter without an intervening interrupt.

BIT B,(HL) ; test a bit in memory

The instruction bit B,(HL) is privileged to make it possible to implement a semaphore 
without disabling interrupts. The following sequence is used. A bit is a semaphore, and the 
first task to set the bit owns the semaphore and has a right to manipulate the resources 
associated with the semaphore.

BIT B,(HL)
SET B,(HL)
JP z,ihaveit
; here I don’t have it

The SET instruction has no effect on the flags. Since no interrupt takes place after the BIT 
instruction, if the flag is zero that means that the semaphore was not set when tested by the 
bit instruction and that the set instruction has set the semaphore. If an interrupt was 
allowed between the BIT and set instructions, another routine could set the semaphore and 
two routines could think that they both owned the semaphore.
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20.  DIFFERENCES RABBIT VS. Z80/Z180
INSTRUCTIONS

The Rabbit is highly code compatible with the Z80 and Z180, and it is easy to port non I/O 
dependent code. The main areas of incompatibility are instructions that are concerned with 
I/O or particular hardware implementations. The more important instructions that were 
dropped from the Z80/Z180 are automatically simulated by an instruction sequence in the 
Dynamic C assembler. A few fairly useless instructions have been dropped and cannot be 
easily simulated. Code using these instructions should be rewritten.

The following Z80/Z180 instructions have been dropped and there are no exact substi-
tutes.

DAA, HALT, DI, EI, IM 0, IM 1, IM 2, OUT, IN, OUT0, IN0, SLP, OUTI, 
IND, OUTD, INIR, OTIR, INDR, OTDR, TESTIO, MLT SP, RRD, RLD, CPI, 
CPIR, CPD, CPDR

Most of these op codes deal with I/O devices and thus do not represent transportable code. 
The only opcodes that are not processor I/O related are MLT SP, DAA, RRD, RLD, CPI, 
CPIR, CPD, and CPDR. MLT SP is not a practical op code. The codes that are concerned 
with decimal arithmetic, DAA, RRD, and RLD, could be simulated, but the simulation is very 
inefficient. (The bit in the status register used for half carry is available and can be set and 
cleared using the PUSH AF and POP AF instructions to gain access.) Usually code that 
uses these instructions should be rewritten. The instructions CPI, CPIR, CPD, and CPDR 
are repeating compare instructions. These instructions are not very useful because the scan 
stops when equal compare is detected. Unequal compare would be more useful. They are 
difficult to simulate efficiently, so it is suggested that code using these instructions be 
rewritten, which in most cases should be quite easy.

The following op codes are dropped.

RST 0, RST 8, RST 30h

The remaining RST instructions are kept, but the interrupt vector is relocated to a variable 
location the base of which is established by the EIR register. RST can be simulated by a 
call instruction, but this is not done automatically by the assembler since most of these 
instructions are used for debugging by Dynamic C.

The following instruction has had its op code changed.

EX (SP),HL    - old opcode  0E3h,  new opcode - 0EDh-054h
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The following instructions use different register names.

LD A,EIR
LD EIR,A    ; was  R register
LD IIR,A
LD A,IIR    ; was I register

The following Z80/Z180 instructions have been dropped and are not supported. Alterna-
tive Rabbit instructions are provided.

Z80/Z180 Instructions Dropped Rabbit Instructions to Use

CALL CC,ADR JR (JP)   ncc,xxx ; reverse condition
CALL ADR
xxx:

TST R ((HL),n) PUSH DE
PUSH AF
AND r ((HL), n)
POP DE  ; get a in h
LD A,d
POP DE
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21.  INSTRUCTIONS IN ALPHABETICAL ORDER
WITH BINARY ENCODING

Spreadsheet Conventions

ALTD (“A” Column) Symbol Key

IOI and IOE (“I” Column) Symbol Key

Flag Register Key

Flag Description

f ALTD selects alternate flags

fr ALTD selects alternate flags and register

r ALTD selects alternate register

s ALTD operation is a special case

Flag Description

b IOI and IOE affect source and destination

d IOI and IOE affect destination

s IOI and IOE affect source

S Z L/V*

* The L/V (logical/overflow) flag serves a dual purpose—L/V 
is set to 1 for logical operations if any of the four most signif-
icant bits of the result are 1, and L/V is reset to 0 if all four of 
the most significant bits of the result are 0.

C Description

* Sign flag affected

- Sign flag not affected

* Zero flag affected

- Zero flag not affected

L L/V flag contains logical check result

V L/V flag contains arithmetic overflow result

0 L/V flag is cleared

* L/V flag is affected

* Carry flag is affected

- Carry flag is not affected

0 Carry flag is cleared

1 Carry flag is set
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Symbols

Rabbit Z180 Meaning

b b

Bit select:
000 = bit 0, 001 = bit 1,
010 = bit 2, 011 = bit 3, 
100 = bit 4, 101 = bit 5, 
110 = bit 6, 111 = bit 7

cc cc
Condition code select: 
00 = NZ, 01 = Z, 
10 = NC, 11 = C

d d 7-bit (signed) displacement.  Expressed in two’s complement.

dd ww Word register select destination: 00 = BC, 01 = DE, 10 = HL, 11 = SP

dd’ Word register select alternate: 00 = BC’, 01 = DE’, 10 = HL’

e j 8-bit (signed) displacement added to PC.

f f

Condition code select:
000 = NZ (non zero), 001 = Z (zero), 
010 = NC (non carry), 011 = C (carry), 

100 = LZ* (logical zero), 101 = LO† (logical one), 
110 = P (sign plus), 111 = M (sign minus)

* Logical zero if all four of the most significant bits of the result are 0.
† Logical one if any of the four most significant bits of the result are 1.

m m MSB of a 16-bit constant.

mn mn 16-bit constant.

n n 8-bit constant or LSB of a 16-bit constant.

r, g g, g’

Byte register select: 
000 = B, 001 = C, 
010 = D, 011 = E, 
100 = H, 101 = L, 
111 = A

ss ww Word register select (source): 00 = BC, 01 = DE, 10 = HL, 11 = SP

v v

Restart address select: 
010 = 0020h, 011 = 0030h, 
100 = 0040h, 101 = 0050h, 
111 = 0070h

xx xx Word register select: 00 = BC, 01 = DE, 10 = IX, 11 = SP

yy yy Word register select: 00 = BC, 01 = DE, 10 = IY, 11 = SP

zz zz Word register select: 00 = BC, 01 = DE, 10 = HL, 11 = AF
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Instruction   Byte 1    Byte 2   Byte 3    Byte 4    clk  A  I S Z V C

ADC A,(HL)    10001110                                5  fr  s * * V *
ADC A,(IX+d)  11011101  10001110 ----d---             9  fr  s * * V *
ADC A,(IY+d)  11111101  10001110 ----d---             9  fr  s * * V *
ADC A,n       11001110  ----n---                      4  fr    * * V *
ADC A,r       10001-r-                                2  fr    * * V *
ADC HL,ss     11101101  01ss1010                      4  fr    * * V *
ADD A,(HL)    10000110                                5  fr  s * * V *
ADD A,(IX+d)  11011101  10000110 ----d---             9  fr  s * * V *
ADD A,(IY+d)  11111101  10000110 ----d---             9  fr  s * * V *
ADD A,n       11000110  ----n---                      4  fr    * * V *
ADD A,r       10000-r-                                2  fr    * * V *
ADD HL,ss     00ss1001                                2  fr    - - - *
ADD IX,xx     11011101  00xx1001                      4   f    - - - *
ADD IY,yy     11111101  00yy1001                      4   f    - - - *
ADD SP,d      00100111  ----d---                      4   f    - - - *
ALTD          01110110                                2        - - - -
AND (HL)      10100110                                5  fr  s * * L 0
AND (IX+d)    11011101  10100110 ----d---             9  fr  s * * L 0
AND (IY+d)    11111101  10100110 ----d---             9  fr  s * * L 0
AND HL,DE     11011100                                2  fr    * * L 0
AND IX,DE     11011101  11011100                      4   f    * * L 0
AND IY,DE     11111101  11011100                      4   f    * * L 0
AND n         11100110  ----n---                      4  fr    * * L 0
AND r         10100-r-                                2  fr    * * L 0
BIT b,(HL)    11001011  01-b-110                      7   f  s - * - -
BIT b,(IX+d)) 11011101  11001011 ----d---  01-b-110   10  f  s - * - -
BIT b,(IY+d)) 11111101  11001011 ----d---  01-b-110   10  f  s - * - -
BIT b,r       11001011  01-b--r-                      4   f    - * - -
BOOL HL       11001100                                2  fr    * * 0 0
BOOL IX       11011101  11001100                      4   f    * * 0 0
BOOL IY       11111101  11001100                      4   f    * * 0 0
CALL mn       11001101  ----n--- ----m---             12       - - - -
CCF           00111111                                2   f    - - - *
CP (HL)       10111110                                5   f  s * * V *
CP (IX+d)     11011101  10111110 ----d---             9   f  s * * V *
CP (IY+d)     11111101  10111110 ----d---             9   f  s * * V *
CP n          11111110  ----n---                      4   f    * * V *
CP r          10111-r-                                2   f    * * V *
CPL           00101111                                2   r    - - - -
DEC (HL)      00110101                                8   f  b * * V -
DEC (IX+d)    11011101  00110101 ----d---             12  f  b * * V -
DEC (IY+d)    11111101  00110101 ----d---             12  f  b * * V -
DEC IX        11011101  00101011                      4        - - - -
DEC IY        11111101  00101011                      4        - - - -
DEC r         00-r-101                                2  fr    * * V -
DEC ss        00ss1011                                2   r    - - - -
  ss= 00-BC, 01-DE, 10-HL, 11-SP
DJNZ j        00010000  --(j-2)-                      5   r    - - - -
EX (SP),HL    11101101  01010100                      15  r    - - - -
EX (SP),IX    11011101  11100011                      15       - - - -
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EX AF,AF’     00001000                                2        - - - -
EX DE,HL      11101011                                2   s    - - - -
EX DE’,HL     11100011                                2   s    - - - -
EX DE,HL’     01110110  11100011                      4   s    - - - -
EX DE’,HL’    01110110  11100011                      4   s    - - - -
EXX           11011001                                2        - - - -
INC (HL)      00110100                                8   f  b * * V -
INC (IX+d)    11011101  00110100 ----d---             12  f  b * * V -
INC (IY+d)    11111101  00110100 ----d---             12  f  b * * V -
INC IX        11011101  00100011                      4        - - - -
INC IY        11111101  00100011                      4        - - - -
INC r         00-r-100                                2  fr    * * V -
INC ss        00ss0011                                2   r    - - - -
  ss= 00-BC, 01-DE, 10-HL, 11-SP
IOE           11011011                                2        - - - -
IOI           11010011                                2        - - - -
IPSET 0       11101101  01000110                      4        - - - -
IPSET 1       11101101  01010110                      4        - - - -
IPSET 2       11101101  01001110                      4        - - - -
IPSET 3       11101101  01011110                      4        - - - -
IPRES         11101101  01011101                      4        - - - -
JP (HL)       11101001                                4        - - - -
JP (IX)       11011101  11101001                      6        - - - -
JP (IY)       11111101  11101001                      6        - - - -
JP f,mn       11-f-010  ----n--- ----m---             7        - - - -
JP mn         11000011  ----n--- ----m---             7        - - - -
JR cc,e       001cc000  --(e-2)-                      5        - - - -
JR e          00011000  --(e-2)-                      5        - - - -
  Note: If byte following op code is zero, next sequential instruction
  is executed. If byte is -2 (11111110) jr is to itself.
LCALL xpc,mn  11001111  ----n---  ----m---   --xpc--- 19       - - - -
LD (BC),A     00000010                                7      d - - - -
LD (DE),A     00010010                                7      d - - - -
LD (HL),n     00110110  ----n---                      7      d - - - -
LD (HL),r     01110-r-                                6      d - - - -
LD (HL+d),HL  11011101  11110100 ----d---             13     d - - - -
LD (IX+d),HL  11110100  ----d---                      11     d - - - -
LD (IX+d),n   11011101  00110110 ----d---  ----n---   11     d - - - -
LD (IX+d),r   11011101  01110-r- ----d---             10     d - - - -
LD (IY+d),HL  11111101  11110100 ----d---             13     d - - - -
LD (IY+d),n   11111101  00110110 ----d---  ----n---   11     d - - - -
LD (IY+d),r   11111101  01110-r- ----d---             10     d - - - -
LD (mn),A     00110010  ----n--- ----m---             10     d - - - -
LD (mn),HL    00100010  ----n--- ----m---             13     d - - - -
LD (mn),IX    11011101  00100010 ----n---  ----m---   15     d - - - -
LD (mn),IY    11111101  00100010 ----n---  ----m---   15     d - - - -
LD (mn),ss    11101101  01ss0011 ----n---  ----m---   15     d - - - -
LD (SP+n),HL  11010100  ----n---                      11       - - - -
LD (SP+n),IX  11011101  11010100 ----n---             13       - - - -
LD (SP+n),IY  11111101  11010100 ----n---             13       - - - -

Instruction   Byte 1    Byte 2   Byte 3    Byte 4    clk  A  I S Z V C
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LD A,(BC)     00001010                                6   r  s - - - -
LD A,(DE)     00011010                                6   r  s - - - -
LD A,(mn)     00111010  ----n--- ----m---             9   r  s - - - -

LD A,EIR      11101101  01010111                      4  fr    * * - -
LD A,IIR      11101101  01011111                      4  fr    * * - -
LD A,XPC      11101101  01110111                      4   r    - - - -
LD dd,(mn)    11101101  01dd1011 ----n---  ----m---   13  r  s - - - -
LD dd’,BC     11101101  01dd1001                      4        - - - -
LD dd’,DE     11101101  01dd0001                      4        - - - -
LD dd,mn      00dd0001  ----n--- ----m---             6   r    - - - -
LD bc,mn      00000001  ...
LD de,mn      00010001  ...
LD hl,mn      00100001  ...
LD sp,mn      00110001  ...
LD EIR,A      11101101  01000111                      4        - - - -
LD HL,(HL+d)  11011101  11100100 ----d---             11  r  s - - - -
LD HL,(IX+d)  11100100  ----d---                      9   r  s - - - -
LD HL,(IY+d)  11111101  11100100 ----d---             11  r  s - - - -
LD HL,(mn)    00101010  ----n--- ----m---             11  r  s - - - -
LD HL,(SP+n)  11000100  ----n---                      9   r    - - - -
LD HL,IX      11011101  01111100                      4   r    - - - -
LD HL,IY      11111101  01111100                      4   r    - - - -
LD IIR,A      11101101  01001111                      4        - - - -
LD IX,(mn)    11011101  00101010 ----n---  ----m---   13     s - - - -
LD IX,(SP+n)  11011101  11000100 ----n---             11       - - - -
LD IX,HL      11011101  01111101                      4        - - - -
LD IX,mn      11011101  00100001 ----n---  ----m---   8        - - - -
LD IY,(mn)    11111101  00101010 ----n---  ----m---   13     s - - - -
LD IY,(SP+n)  11111101  11000100 ----n---             11       - - - -
LD IY,HL      11111101  01111101                      4        - - - -
LD IY,mn      11111101  00100001 ----n---  ----m---   8        - - - -
LD r,(HL)     01-r-110                                5   r  s - - - -
LD r,(IX+d)   11011101  01-r-110 ----d---             9   r  s - - - -
LD r,(IY+d)   11111101  01-r-110 ----d---             9   r  s - - - -
LD r,g        01-r---g                                2   r    - - - -
LD r,n        00-r-110  ----n---                      4   r    - - - -
LD SP,HL      11111001                                2        - - - -
LD SP,IX      11011101  11111001                      4        - - - -
LD SP,IY      11111101  11111001                      4        - - - -
LD XPC,A      11101101  01100111                      4        - - - -
LDD           11101101  10101000                      10     d - - * -
LDDR          11101101  10111000                     6+7i    d - - * -
LDI           11101101  10100000                      10     d - - * -
LDIR          11101101  10110000                     6+7i    d - - * -
LDP (HL),HL   11101101  01100100                      12       - - - -
LDP (IX),HL   11011101  01100100                      12       - - - -
LDP (IY),HL   11111101  01100100                      12       - - - -
LDP (mn),HL   11101101  01100101 ----n---  ----m---   15       - - - -
LDP (mn),IX   11011101  01100101 ----n---  ----m---   15       - - - -
LDP (mn),IY   11111101  01100101 ----n---  ----m---   15       - - - -

Instruction   Byte 1    Byte 2   Byte 3    Byte 4    clk  A  I S Z V C
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LDP HL,(HL)   11101101  01101100                      10       - - - -
LDP HL,(IX)   11011101  01101100                      10       - - - -
LDP HL,(IY)   11111101  01101100                      10       - - - -
LDP HL,(mn)   11101101  01101101 ----n---  ----m---   13       - - - -
LDP IX,(mn)   11011101  01101101 ----n---  ----m---   13       - - - -
LDP IY,(mn)   11111101  01101101 ----n---  ----m---   13       - - - -
LJP nbr,mn    11000111  ----n--- ----m---  --nbr---   10       - - - -
LRET          11101101  01000101                      13       - - - -
MUL           11110111                                12       - - - -
NEG           11101101  01000100                      4  fr    * * V *
NOP           00000000                                2        - - - -
OR (HL)       10110110                                5  fr  s * * L 0
OR (IX+d)     11011101  10110110 ----d---             9  fr  s * * L 0
OR (IY+d)     11111101  10110110 ----d---             9  fr  s * * L 0
OR HL,DE      11101100                                2  fr    * * L 0
OR IX,DE      11011101  11101100                      4   f    * * L 0
OR IY,DE      11111101  11101100                      4   f    * * L 0
OR n          11110110  ----n---                      4  fr    * * L 0
OR r          10110-r-                                2  fr    * * L 0
POP IP        11101101  01111110                      7        - - - -
POP IX        11011101  11100001                      9        - - - -
POP IY        11111101  11100001                      9        - - - -
POP zz        11zz0001                                7   r    - - - -
PUSH IP       11101101  01110110                      9        - - - -
PUSH IX       11011101  11100101                      12       - - - -
PUSH IY       11111101  11100101                      12       - - - -
PUSH zz       11zz0101                                10       - - - -
RES b,(HL)    11001011  10-b-110                      10     d - - - -
RES b,(IX+d)  11011101  11001011 ----d---  10-b-110   13     d - - - -
RES b,(IY+d)  11111101  11001011 ----d---  10-b-110   13     d - - - -
RES b,r       11001011  10-b--r-                      4   r    - - - -
RET           11001001                                8        - - - -
RET f         11-f-000                                8/2      - - - -
RETI          11101101  01001101                      12       - - - -
RL (HL)       11001011  00010110                      10  f  b * * L *
RL (IX+d)     11011101  11001011 ----d---  00010110   13  f  b * * L *
RL (IY+d)     11111101  11001011 ----d---  00010110   13  f  b * * L *
RL DE         11110011                                2  fr    * * L *
RL r          11001011  00010-r-                      4  fr    * * L *
RLA           00010111                                2  fr    - - - *
RLC (HL)      11001011  00000110                      10  f  b * * L *
RLC (IX+d)    11011101  11001011 ----d---  00000110   13  f  b * * L *
RLC (IY+d)    11111101  11001011 ----d---  00000110   13  f  b * * L *
RLC r         11001011  00000-r-                      4  fr    * * L *
RLCA          00000111                                2  fr    - - - *
RR (HL)       11001011  00011110                      10  f  b * * L *
RR (IX+d)     11011101  11001011 ----d---  00011110   13  f  b * * L *
RR (IY+d)     11111101  11001011 ----d---  00011110   13  f  b * * L *
RR DE         11111011                                2  fr    * * L *
RR HL         11111100                                2  fr    * * L *
RR IX         11011101  11111100                      4   f    * * L *
RR IY         11111101  11111100                      4   f    * * L *

Instruction   Byte 1    Byte 2   Byte 3    Byte 4    clk  A  I S Z V C
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RR r          11001011  00011-r-                      4  fr    * * L *
RRA           00011111                                2  fr    - - - *
RRC (HL)      11001011  00001110                      10  f  b * * L *
RRC (IX+d)    11011101  11001011 ----d---  00001110   13  f  b * * L *
RRC (IY+d)    11111101  11001011 ----d---  00001110   13  f  b * * L *
RRC r         11001011  00001-r-                      4  fr    * * L *
RRCA          00001111                                2  fr    - - - *
RST v         11-v-111    [v=2,3,4,5,7 only]          8        - - - -
SBC (IX+d)    11011101  10011110 ----d---             9  fr  s * * V *
SBC (IY+d)    11111101  10011110 ----d---             9  fr  s * * V *
SBC A,(HL)    10011110                                5  fr  s * * V *
SBC A,n       11011110  ----n---                      4  fr    * * V *
SBC A,r       10011-r-                                2  fr    * * V *
SBC HL,ss     11101101  01ss0010                      4  fr    * * V *
SCF           00110111                                2   f    - - - 1
SET b,(HL)    11001011  11-b-110                      10     b - - - -
SET b,(IX+d)  11011101  11001011 ----d---  11-b-110   13     b - - - -
SET b,(IY+d)  11111101  11001011 ----d---  11-b-110   13     b - - - -
SET b,r       11001011  11-b--r-                      4   r    - - - -
SLA (HL)      11001011  00100110                      10  f  b * * L *
SLA (IX+d)    11011101  11001011 ----d---  00100110   13  f  b * * L *
SLA (IY+d)    11111101  11001011 ----d---  00100110   13  f  b * * L *
SLA r         11001011  00100-r-                      4  fr    * * L *
SRA (HL)      11001011  00101110                      10  f  b * * L *
SRA (IX+d)    11011101  11001011 ----d---  00101110   13  f  b * * L *
SRA (IY+d)    11111101  11001011 ----d---  00101110   13  f  b * * L *
SRA r         11001011  00101-r-                      4  fr    * * L *
SRL (HL)      11001011  00111110                      10  f  b * * L *
SRL (IX+d)    11011101  11001011 ----d---  00111110   13  f  b * * L *
SRL (IY+d)    11111101  11001011 ----d---  00111110   13  f  b * * L *
SRL r         11001011  00111-r-                      4  fr    * * L *
SUB (HL)      10010110                                5  fr  s * * V *
SUB (IX+d)    11011101  10010110 ----d---             9  fr  s * * V *
SUB (IY+d)    11111101  10010110 ----d---             9  fr  s * * V *
SUB n         11010110  ----n---                      4  fr    * * V *
SUB r         10010-r-                                2  fr    * * V *
XOR (HL)      10101110                                5  fr  s * * L 0
XOR (IX+d)    11011101  10101110 ----d---             9  fr  s * * L 0
XOR (IY+d)    11111101  10101110 ----d---             9  fr  s * * L 0
XOR n         11101110  ----n---                      4  fr    * * L 0
XOR r         10101-r-                                2  fr    * * L 0
ZINTACK    (interrupt)                                10       - - - -

Instruction   Byte 1    Byte 2   Byte 3    Byte 4    clk  A  I S Z V C
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APPENDIX A.
THE RABBIT PROGRAMMING PORT

The programming port provides a standard physical and electrical interface between a 
Rabbit-based system and the Dynamic C programming platform. A special interface cable 
and converter connects a PC serial port to the programming port. The programming port is 
implemented by means of a 10-pin standard 2 mm connector. (Of course the user can 
change the physical implementation of the connector if he so desires.)  With this setup the 
PC can communicate with the target, reset it and reboot it. The DTR line on the PC serial 
interface is used to drive the target reset line, which should be drivable by an external 
CMOS driver. The STATUS pin is used to by the Rabbit-based target to request attention 
when a breakpoint is encountered in the target under test. The SMODE pins are pulled up 
by a +5 V/+3 V level from the interface. They should be pulled down on the board when 
the interface is not in use by approximately 5 kΩ resistors to ground. The target under test 
provides the +5 V or +3 V to the interface cable which is used to power the RS-232 driver 
and receiver.

Figure A-1.  Rabbit Programming Port
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A.1  Use of the Programming Port as a Diagnostic/Setup Port

The programming port, which is already in place, can serve as a convenient communica-
tions port for field setup, diagnosis or other occasional communication need (for example, 
as a diagnostic port). There are several ways that the port can be automatically integrated 
into the user’s software scheme. If the purpose of the port is simply to perform a setup 
function, that is, write setup information to flash memory, then the controller can be reset 
through the programming port, followed by a cold boot to start execution of a special pro-
gram dedicated to this functionality.

The standard programming cable connects the programming interface to a PC program-
ming port. The /RESET line can be asserted by manipulating DTR on the PC serial port 
and the STATUS line can be read by the PC as DSR on the serial port. The PC can restart 
the target by pulsing reset and then, after a short delay, sending a special character string at 
2400 bps. To simply restart the BIOS, the string 80h, 24h, 80h can be sent.  When the 
BIOS is started, it can tell whether the PROG connector on the programming cable is con-
nected because the SMODE1, SMODE0 pins are sensed as high.  This will cause the 
BIOS to think that it should enter programming mode. The Dynamic C programming 
mode then can have an escape message that will enable the diagnostic serial port function.

Another approach to enabling the diagnostic port is to poll the serial port periodically to 
see if communication needs to begin or to enable the port and wait for interrupts. The 
SMODE pins can be used for signaling and can be detected by a poll. However, recall that 
the SMODE pins have a special function after reset and will inhibit normal reset behavior 
if not held low. The pull-up resistors on RXA and CLKA prevent spurious data reception 
that might take place if the pins floated.

If the clocked serial mode is used, the serial port can be driven by having two toggling 
lines that can be driven and one line that can be sensed. This allows a conversation with a 
device that does not have an asynchronous serial port but that has two output signal lines 
and one input signal line.

The line TXA (also called PC6) is zero after reset if cold boot mode is  not enabled. A pos-
sible way to detect the presence of a cable on the programming port is for the cable to con-
nect TXA to one of the SMODE pins and then test for the connection by raising PC6 and 
reading the SMODE pin after the cold boot mode has been disabled.

A.2  Alternate Programming Port

The programming port uses Serial Port A.  If the user needs to use Serial Port A in an 
application, an alternate method of programming is possible using the same 10-pin pro-
gramming port.  For his own application the user should use the alternate I/O pins for port 
A that share pins with Parallel Port D.  The TXA and RXA pins on the 10-pin program-
ming port are then a parallel port output and parallel port input using pins 6 and 7 on Par-
allel Port C.  Using these two ports plus the STATUS pin as an output clock, the user can 
create a synchronous clocked communication port using instructions to toggle the clock 
and data.  Another Rabbit-based board can be used to translate the clocked serial signal to 
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an asynchronous signal suitable for the PC.  Since the target controls the clock for both 
send and receive, the data transmission proceeds at a rate controlled by the target board 
under development.

This scheme does not allow for an interrupt, and it is not desirable to use up an external 
interrupt for this purpose.  The serial port may be used, if desired, During program load 
because there is no conflict with the user’s program at compile load time.  However, the 
user’s program will conflict during debugging.  The nature of the transmissions during 
debugging is such that the user program starts at a break point or otherwise wants to get 
the attention of the PC.  The other type of message is when the PC wants to read or write 
target memory while the target is running.

The target toggling the clock can simply send a clocked serial message to get the attention 
of the PC.  The intermediate communications board can accept these unsolicited messages 
using its clocked serial port.  To prevent overrunning the receiver, the target can wait for a 
handshake signal on one of the SMODE lines or there can be suitable pre-arranged delays. 

If the PC wants attention from the target it can set a line to request attention (SMODE). 
The target will detect this line in the periodic interrupt routine and handle the complete 
message in the periodic interrupt routine. This may slow down target execution, but the 
interrupts will be enabled on the target while the message is read. The intermediate board 
could split long messages into a series of shorter messages if this is a problem.

A.3  Suggested Rabbit Crystal Frequencies

Table A-1 provides a list of suggested Rabbit operating frequencies. The numbers in 
Table A-1 are based on the following assumptions:

• spectrum spreader set to normal,

• doubler in use (52/48 duty cycle), and

• a combined 6 ns for clock to address and data setup times.

The crystal can be half the operating frequency if the clock doubler is used up to 27 MHz. 
Beyond this operating clock speed, it is necessary to use an X1 crystal or an external oscil-
lator because asymmetry in the waveform generated by the oscillator becomes a variation 
in the clock speed if the clock speed is doubled.
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Table A-1.  Preliminary Crystal Frequencies, 
Memory Access Times, and Baud Rates 

Crystal 
Frequency 

(MHz)

Doubled 
Frequency 

(MHz)

Doubled 
Period

(ns)

Access Time
(ns)

Divisor for 
115,200 baud

1.8432 3.6864 271 522 4

3.6864 7.3728 136 257 8

7.3728 14.7456 68 124 16

9.216 18.432 54 97 20

11.0592 22.1184 45 79 24

12.9024 25.8048 39 67 28

14.7456 29.4912 34 57 32

18.432 36.864 27 44 40

22.1184 44.2368 23 35 48

25.8048 51.6096 19 29 56

Non-Stock Crystals

20.2752 40.5504 25 39 44

21.1968 42.3936 24 37 46

23.04 46.08 22 33 50

23.9616 47.9232 21 32 52

24.8832 49.7664 20 30 54

26.7264 53.4528 19 27 58
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APPENDIX B. RABBIT 3000 REVISIONS

Since its release, the Rabbit 3000 microprocessor has gone through one revision. The revi-
sion reflects bug fixes, improvements, and the introduction of new features. All Rabbit 
3000 revisions are pin-compatible, and transparently replace previous versions of the chip.

The Rabbit 3000 has been supplied in the following versions.

1. Original Rabbit 3000—Available in two packages and identified by IL1T for the 
LQFP package and IZ1T for the TFBGA package. The LQFP package began shipping 
in March 2002, and the TFBGA package began shipping in January 2003. There were 
several bugs: 

(a) Port A decode bug—This bug is documented in TN228, Rabbit 3000 Parallel 
Port F Bug. The problem involves an incomplete address decode of the data 
output register for Parallel Port A. If Parallel Port A is used as an output or is 
used as the bidirectional bus for the slave port, then writing to any of the Paral-
lel Port F registers will cause a spurious write to the Parallel Port A register.

(b) LDIR/LDDR with wait states—This bug is documented in Section 19.16. The 
nature of the problem is such that first iteration of LDIR/LDDR uses the cor-
rect number of wait states for both the read and the write. However, all subse-
quent iterations use the number of waits programmed for the memory located 
at the write address for both the read and the write cycles. This becomes a 
problem when moving a block of data from a slow memory device requiring 
wait states to a fast memory device requiring no wait states.

(c) Interrupt after I/O with Short /CSx enabled—This bug is documented in 
Section 7.5. When the short chip select option is enabled, the interrupt 
sequence will attempt to write the return address to the stack if an interrupt 
takes place immediately after an internal or an external I/O instruction. The 
chip select will be suppressed during the write cycle, and the correct return 
address will not be stored on the stack. This happens only when an interrupt 
takes place immediately after an I/O instruction when the short chip select 
option is enabled. 

(d) IrDA bug—This bug is documented in TN236, Rabbit 3000 IrDA Bug. When 
configured to operate in the IrDA mode, the serial port may at times generate 
an extra pulse before the start bit is transmitted. This pulse may appear either 
before a multi-character transmission or before a single-character transmission. 
If the beginning of the start bit coincides with when the IrDA pulse generator 
output is high, there will be a spurious 1/16th-bit cell pulse on the transmit 
output.
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2. First revision (Rabbit 3000A)—Available in two packages and identified by IL2T for 
the LQFP package and IZ2T for the TFBGA package. This version began shipping in 
August 2003. All the bugs in the original Rabbit 3000 were fixed. The Rabbit 3000A 
contains a number of new features and improvements. 

(a) A new mode of operation known as System/User mode was added. This mode 
provides a framework for separating application code from system-critical 
code, which helps prevent application code from crashing the entire device. 
System/User mode is described in detail in Appendix C.

(b) The ability to write-protect 64 KB physical memory blocks was added, with 
the option of further protecting two of the 64 KB blocks in 4 KB segments. 
Attempts to write to a protected block triggers a Priority 3 write protection 
interrupt.

(c) Stack protection was added. Writing outside set stack boundaries triggers a 
Priority 3 stack violation interrupt.

(d) RAM segment relocation was added. This feature allows a 1, 2, or 4 KB 
segment of the logical memory space to be mapped as data (or for program 
execution) when separate I/D space is enabled.

(e) Secondary watchdog timer added. The secondary watchdog timer was added to 
function as a safety net for the periodic interrupt. 

(f) Two new opcodes were added to support multiply-and-add and multiply-and-
subtract operations on large unsigned integers. These operations can be used to 
speed up public-key calculations.

(g) Six new opcodes were added to support block-copy operations from I/O 
addresses to memory addresses and vice-versa.

(h) The I/O address space has been expanded to 16 bits to make room for new 
peripherals.

(i) Two new features were added to further expand the external I/O interface 
capabilities of the processor. First, an option was added to enable or disable the 
auxiliary I/O bus interface for a given I/O bank. If the auxiliary I/O bus is dis-
abled for a given external I/O bank, the processor uses the memory bus for 
external I/O transactions. The second feature is the addition of an option for 
enabling hold time for external I/O read operations. The option shortens the 
read strobes by one clock cycle.

(j) The low-power capability of the processor was further expanded with the addi-
tion of short chip select timing for all clock modes (except for divide-by-one 
mode) and for reads, writes, or both.

(k) The PWM outputs can now trigger a PWM interrupt each cycle or every 
other/fourth/eighth cycle. In addition, the PWM output can be suppressed 
every other cycle, three out of every four cycles, or seven out of every eight 
cycles. These options were added to provide support for driving servos in addi-
tion to generating audio using the Rabbit 3000A.
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(l) The quadrature decoder hardware can be configured to use a 10-bit counter in 
place of the existing 8-bit counter.

(m)An option was added to alternatively multiplex PWM outputs, slave chip select 
(/SCS), and Serial Ports E and F transmit and receive clocks on other pins.

(n) The Schmitt trigger IC normally required for the low power 32.768 kHz oscil-
lator circuit is now integrated inside the Rabbit 3000A.

NOTE: Based on this modification, a new low-power oscillator circuit is recommended 
for use with Rabbit 3000A-based systems. Please refer to TN235, External 32.768 kHz 
Oscillator Circuits, for more information on the circuit.
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B.1  Discussion of Fixes and Improvements

Table B-1 lists the bug fixes, improvements, and additions for the various revisions of the 
Rabbit 3000.

Table B-1.  Summary of Rabbit 3000 Improvements and Fixes

Description
Rabbit 
3000 

(IL1T/IZ1T)

Rabbit 
3000A

(IL2T/IZ2T)

ID Registers for version/revision identification. X X

System/User mode. X

Memory protection scheme. X

Stack protection. X

RAM segment relocation. X

Secondary watchdog timer. X

Multiply-add and multiply-subtract. X

Variants of block move opcodes. X

16-bit internal I/O address space. X

External I/O interface enhancements. X

Expanded low-power capability. X

PWM improvements. X

Quadrature decoder improvements. X

Integrated Schmitt trigger for 32 kHz oscillator input. X

Alternate output port connection for numerous peripherals. X

Port A decode bug fix. X

LDIR/LDDR with wait states bug fix. X

Interrupt after I/O with short /CSx enabled bug fix. X

IrDA bug fix. X
272 Rabbit 3000 Microprocessor



B.1.1  Rabbit Internal I/O Registers

Table B-2 summarizes the reset state of the new I/O registers added in the Rabbit 3000A 
revision. Table B-3 summarizes the reset state of the existing I/O registers with new features.

Table B-2.  Reset State of New Rabbit 3000A I/O Registers

Register Name Mnemonic
I/O 

Address
R/W Reset

Secondary Watchdog Timer Register SWDTR 000Ch W 11111111

Stack Segment Register STKSEG 0011h R/W 00000000

Data Segment Register DATSEG 0012h R/W 00000000

Segment Size Register SEGSIZ 0013h R/W 11111111

RAM Segment Register RAMSR 0448h W 00000000

Write Protect Control Register WPCR 0440h W 00000000

Stack Limit Control Register STKCR 0444h W 00000000

Stack Low Limit Register STKLLR 0445h W xxxxxxxx

Stack High Limit Register STKHLR 0446h W xxxxxxxx

Write Protect Low Register WPLR 0460h W 00000000

Write Protect High Register WPHR 0461h W 00000000

Write Protect Segment A Register WPSAR 0480h W 00000000

Write Protect Segment A Low Register WPSALR 0481h W 00000000

Write Protect Segment A High Register WPSAHR 0482h W 00000000

Write Protect Segment B Register WPSBR 0484h W 00000000

Write Protect Segment B Low Register WPSBLR 0485h W 00000000

Write Protect Segment B High Register WPSBHR 0486h W 00000000

Real Time Clock User Enable Register RTUER 0300h W 00000000

Slave Port User Enable Register SPUER 0320h W 00000000

Parallel Port A User Enable Register PAUER 0330h W 00000000

Parallel Port F User Enable Register PFUER 0338h W 00000000

Parallel Port B User Enable Register PBUER 0340h W 00000000

Parallel Port G User Enable Register PGUER 0348h W 00000000

Parallel Port C User Enable Register PCUER 0350h W 00000000

Input Capture User Enable Register ICUER 0358h W 00000000

Parallel Port D User Enable Register PDUER 0360h W 00000000

Parallel Port E User Enable Register PEUER 0370h W 00000000
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I/O Bank User Enable Register IBUER 0380h W 00000000

PWM User Enable Register PWUER 0388h W 00000000

Quad Decode User Enable Register QDUER 0390h W 00000000

External Interrupt User Enable Register IUER 0398h W 00000000

Timer A User Enable Register TAUER 03A0h W 00000000

Timer B User Enable Register TBUER 03B0h W 00000000

Serial Port A User Enable Register SAUER 03C0h W 00000000

Serial Port E User Enable Register SEUER 03C8h W 00000000

Serial Port B User Enable Register SBUER 03D0h W 00000000

Serial Port F User Enable Register SFUER 03D8h W 00000000

Serial Port C User Enable Register SCUER 03E0h W 00000000

Serial Port D User Enable Register SDUER 03F0h W 00000000

Enable Dual Mode Register EDMR 0420h W 00000000

Quad Decode Count1 High Register QDC1HR 0095h R xxxxxxxx

Quad Decode Count 2 High Register QDC2HR 0097h R xxxxxxxx

Table B-2.  Reset State of New Rabbit 3000A I/O Registers (continued)

Register Name Mnemonic
I/O 

Address
R/W Reset
274 Rabbit 3000 Microprocessor



Table B-3.  Reset State of I/O Registers Modified in Rabbit 3000A

Register Name Mnemonic
I/O 

Address
R/W

R3000

Reset

R3000A

Reset

Global Power Save Control Register GPSCR 000Dh W 0000x000 00000000

Global Revision Register GREV 002Fh R 0xx00000 0xx00001

MMU Expanded Code Register MECR 0018h R/W xxxxx000 00000000

Memory Timing Control Register MTCR 0019h W xxxx0000 00000000

Breakpoint/Debug Control Register BDCR 001Ch W 0xxxxxxx 00000000

I/O Bank 0 Control Register IB0CR 0080h W 000000xx 00000000

I/O Bank 1 Control Register IB1CR 0081h W 000000xx 00000000

I/O Bank 2 Control Register IB2CR 0082h W 000000xx 00000000

I/O Bank 3 Control Register IB3CR 0083h W 000000xx 00000000

I/O Bank 4 Control Register IB4CR 0084h W 000000xx 00000000

I/O Bank 5 Control Register IB5CR 0085h W 000000xx 00000000

I/O Bank 6 Control Register IB6CR 0086h W 000000xx 00000000

I/O Bank 7 Control Register IB7CR 0087h W 000000xx 00000000

PWM LSB 0 Register PWL0R 0088h W xxxxxxxx xxxxx00x

PWM LSB 1 Register PWL1R 008Ah W xxxxxxxx xxxxx00x

PWM LSB 2 Register PWL2R 008Ch W xxxxxxxx xxxxx00x

PWM LSB 3 Register PWL3R 008Eh W xxxxxxxx xxxxx00x

Quad Decode Control Register QDCR 0091h W 00xx0000 00000000
User’s Manual 275



B.1.2  Peripheral and ISR Address

Table B-4.  Rabbit 3000 I/O Address Ranges
and Interrupt Service Vectors

On-Chip Peripheral I/O Address Range ISR Starting Address

System Management 0000h–000Fh {R[7:1], 0, 0x00}

Memory Management
0010h–001Fh and

0400h–04FFh
No interrupts

Slave Port 0020h–002Fh {IIR[7:1], 0, 0x80}

Parallel Port A 0030h–0037h No interrupts

Parallel Port F 0038h–003Fh No interrupts

Parallel Port B 0040h–0047h No interrupts

Parallel Port G 0048h–004Fh No interrupts

Parallel Port C 0050h–0055h No interrupts

Input Capture 0056h–005Fh {IIR[7:1], 1, 0xA0}

Parallel Port D 0060h–006Fh No interrupts

Parallel Port E 0070h–007Fh No interrupts

External I/O Control 0080h–0087h No interrupts

Pulse Width Modulator 0088h–008Fh No interrupts

Quadrature Decoder 0090h–0097h {IIR[7:1], 1, 0x90}

External Interrupts 0098h–009Fh
INT0 {EIR, 0x00}

INT1 {EIR, 0x10}

Timer A 00A0h–00AFh {IIR[7:1], 0, 0xA0}

Timer B 00B0h–00BFh {IIR[7:1], 0, 0xB0}

Serial Port A (async/cks) 00C0h–00C7h {IIR[7:1], 0, 0xC0}

Serial Port E (async/HDLC) 00C8h–00CFh {IIR[7:1], 1, 0xC0}

Serial Port B (async/cks) 00D0h–00D7h {IIR[7:1], 0, 0xD0}

Serial Port F (async/HDLC) 00D8h–00DFh {IIR[7:1], 1, 0xD0}

Serial Port C (async/cks) 00E0h–00E7h {IIR[7:1], 0, 0xE0}

Serial Port D (async/cks) 00F0h–00F7h {IIR[7:1], 0, 0xF0}

RST 10 instruction n/a {IIR[7:1], 0, 0x20}

RST 18 instruction n/a {IIR[7:1], 0, 0x30}

RST 20 instruction n/a {IIR[7:1], 0, 0x40}

RST 28 instruction n/a {IIR[7:1], 0, 0x50}
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SYSCALL instruction n/a {IIR[7:1], 0, 0x60}

RST 38 instruction n/a {IIR[7:1], 0, 0x70}

Secondary Watchdog 000Ch {IIR[7:1], 0, 0x10}

Stack Limit Violation n/a {IIR[7:1], 1, 0xB0}

Write Protection Violation n/a {IIR[7:1], 0, 0x90}

System Mode Violation n/a {IIR[7:1], 1, 0x80}

Table B-4.  Rabbit 3000 I/O Address Ranges
and Interrupt Service Vectors (continued) (continued)

On-Chip Peripheral I/O Address Range ISR Starting Address
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B.1.3  Revision-Level ID Register

Two read-only registers are provided to allow software to identify the Rabbit microproces-
sor and recognize the features and capabilities of the chip. Five bits in each of these regis-
ters are unique to each version of the chip. One register identifies the CPU (GCPU), and 
the other register is reserved for revision identification (GREV). The CPU identification 
(GCPU) of all revisions of the Rabbit 3000 microprocessor is the same. Rabbit 3000 revi-
sions are differentiated by the value in the GREV register. 

Table B-5 summarizes the processor identification information for the different Rabbit 
3000 versions.

Table B-5.  Rabbit 3000 Revision Identification Information

Processor Revision
Package 
Identifier

GCPU 
[4:0]

GREV 
[4:0]

Rabbit 3000 IL1T, IZ1T 00001 00000

Rabbit 3000A IL2T, IZ2T 00001 00001
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B.1.4  System/User Mode

By default, all of the hardware is accessible by the programmer. However, if a control bit 
in the Enable Dual Mode Register (EDMR) is set to one, two operating modes, System 
and User, become available. The System mode is just like the normal operating mode, but 
the User mode restricts program access to the hardware and to the System mode. Individ-
ual peripherals may be enabled for User mode access in the User Enable registers listed 
below. When enabled for User mode access, a peripheral interrupt (if it is capable of gen-
erating an interrupt) can only be requested at interrupt priority level -2 or -1, and it is 
assumed that the interrupt service routine will be executed by User mode code. Note that 
the processor automatically enters the System mode when entering the ISR area in 
response to an interrupt, and the User mode must be specifically entered before continuing 
with the interrupt service routine. The System/User mode is discussed in great detail in 
Appendix C.
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B.1.5  Memory Protection

The ability to inhibit writes to physical memory was added. The sixteen 64 KB physical 
memory blocks can be individually protected, and two of those blocks can additionally be 
subdivided and protected at a granularity of 4 KB. When a write is attempted, a new 
Priority 3 write-protection interrupt request is generated.

The write protection can be enabled for the User mode only or for all modes (see 
Appendix C for more information).

Figure B-1.  Sample Memory Protection Layout

The new memory-protection registers are listed in Table B-6 through Table B-11.

Table B-6.  Write Protect Control Register

Write Protect Control Register (WPCR) (Address = 0x0440)

Bit(s) Value Description

7:1 These bits are reserved and should be written with zeros.

0
0 Write protection in User mode only.

1 Write protection in System and User modes.

0x00000

0xFFFFF

0x40000

0x4FFFF

0x48000

WPHR = 0x85
WPLR = 0x6C

WPSAR = 0x04
WPSAHR = 0x07 
WPSALR = 0xCC
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Table B-7.  Write Protect Low Register

Write Protect Low Register (WPLR) (Address = 0x0460)

Bit(s) Value Description

7
0 Disable 64K write protect for physical address 70000h–7FFFFh.

1 Enable 64K write protect for physical address 70000h–7FFFFh.

6
0 Disable 64K write protect for physical address 60000h–6FFFFh.

1 Enable 64K write protect for physical address 60000h–6FFFFh.

5
0 Disable 64K write protect for physical address 50000h–5FFFFh.

1 Enable 64K write protect for physical address 50000h–5FFFFh.

4
0 Disable 64Kwrite protect for physical address 40000h–4FFFFh.

1 Enable 64K write protect for physical address 40000h–4FFFFh.

3
0 Disable 64K write protect for physical address 30000h–3FFFFh.

1 Enable 64Kwrite protect for physical address 30000h–3FFFFh.

2
0 Disable 64K write protect for physical address 20000h–2FFFFh.

1 Enable 64K write protect for physical address 20000h–2FFFFh.

1
0 Disable 64K write protect for physical address 10000h–1FFFFh.

1 Enable 64K write protect for physical address 10000h–1FFFFh.

0
0 Disable 64K write protect for physical address 00000h–0FFFFh.

1 Enable 64K write protect for physical address 00000h–0FFFFh.
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Table B-8.  Write Protect High Register

Write Protect High Register (WPHR) (Address = 0x0461)

Bit(s) Value Description

7
0 Disable 64K write protect for physical address F0000h–FFFFFh.

1 Enable 64K write protect for physical address F0000h–FFFFFh.

6
0 Disable 64K write protect for physical address E0000h–EFFFFh.

1 Enable 64K write protect for physical address E0000h–EFFFFh.

5
0 Disable 64K write protect for physical address D0000h–DFFFFh.

1 Enable 64K write protect for physical address D0000h–DFFFFh.

4
0 Disable 64K write protect for physical address C0000h–CFFFFh.

1 Enable 64K write protect for physical address C0000h–CFFFFh.

3
0 Disable 64K write protect for physical address B0000h–BFFFFh.

1 Enable 64K write protect for physical address B0000h–BFFFFh.

2
0 Disable 64K write protect for physical address A0000h–AFFFFh.

1 Enable 64K write protect for physical address A0000h–AFFFFh.

1
0 Disable 64K write protect for physical address 90000h–9FFFFh.

1 Enable 64K write protect for physical address 90000h–9FFFFh.

0
0 Disable 64K write protect for physical address 80000h–8FFFFh.

1 Enable 64K write protect for physical address 80000h–8FFFFh.

Table B-9.  Write Protect Segment x Register

Write Protect Segment x Register (WPSAR) (Address = 0x0480)

(WPSBR) (Address = 0x0484)

Bit(s) Value Description

7:4 These bits are reserved and should be written with all zeros.

3:0
When these four bits match bits [19:16] of the physical address, write-protect 
that 64K range in 4K increments using WPSxLR and WPSxHR.
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Table B-10.  Write Protect Segment x Low Register

Write Protect Segment x Low Register (WPALR) (Address = 0x0481)

(WPBLR) (Address = 0x0485)

Bit(s) Value Description

7
0 Disable 4K write protect for physical address 7000h–7FFFh in WP Segment x.

1 Enable 4K write protect for physical address 7000h–7FFFh in WP Segment x.

6
0 Disable 4K write protect for physical address 6000h–6FFFh in WP Segment x.

1 Enable 4K write protect for physical address 6000h–6FFFh in WP Segment x.

5
0 Disable 4K write protect for physical address 5000h–5FFFh in WP Segment x.

1 Enable 4K write protect for physical address 5000h–5FFFh in WP Segment x.

4
0 Disable 4K write protect for physical address 4000h–4FFFh in WP Segment x.

1 Enable 4K write protect for physical address 4000h–4FFFh in WP Segment x.

3
0 Disable 4K write protect for physical address 3000h–3FFFh in WP Segment x.

1 Enable 4K write protect for physical address 3000h–3FFFh in WP Segment x.

2
0 Disable 4K write protect for physical address 2000h–2FFFh in WP Segment x.

1 Enable 4K write protect for physical address 2000h–2FFFh in WP Segment x.

1
0 Disable 4K write protect for physical address 1000h–1FFFh in WP Segment x.

1 Enable 4K write protect for physical address 1000h–1FFFh in WP Segment x.

0
0 Disable 4K write protect for physical address 0000h–0FFFh in WP Segment x.

1 Enable 4K write protect for physical address 0000h–0FFFh in WP Segment x.
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Table B-11.  Write Protect Segment x High Register

Write Protect Segment x High Register (WPAHR) (Address = 0x0482)

(WPBHR) (Address = 0x0486)

Bit(s) Value Description

7
0 Disable 4K write protect for physical address F000h–FFFFh in WP Segment x.

1 Enable 4K write protect for physical address F000h–FFFFh in WP Segment x.

6
0 Disable 4K write protect for physical address E000h–EFFFh in WP Segment x.

1 Enable 4K write protect for physical address E000h–EFFFh in WP Segment x.

5
0 Disable 4K write protect for physical address D000h–DFFFh in WP Segment x.

1 Enable 4K write protect for physical address D000h–DFFFh in WP Segment x.

4
0 Disable 4K write protect for physical address C000h–CFFFh in WP Segment x.

1 Enable 4K write protect for physical address C000h–CFFFh in WP Segment x.

3
0 Disable 4K write protect for physical address B000h–BFFFh in WP Segment x.

1 Enable 4K write protect for physical address B000h–BFFFh in WP Segment x.

2
0 Disable 4K write protect for physical address A000h–AFFFh in WP Segment x.

1 Enable 4K write protect for physical address A000h–AFFFh in WP Segment x.

1
0 Disable 4K write protect for physical address 9000h–9FFFh in WP Segment x.

1 Enable 4K write protect for physical address 9000h–9FFFh in WP Segment x.

0
0 Disable 4Kwrite protect for physical address 8000h–8FFFh in WP Segment x.

1 Enable 4K write protect for physical address 8000h–8FFFh in WP Segment x.
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B.1.6  Stack Protection

Stack overflow and underflow can now be detected. Low and high stack limits can be set 
on 256-byte boundaries. When a stack-relative memory access occurs within 16 bytes of 
these limits (or outside of them), a new Priority 3 stack violation interrupt occurs. The 16-
byte buffer exists to allow stack protection even if the stack is placed against a memory 
segment boundary.

Figure B-2 shows one possible stack layout. A 2048-byte stack is set up by setting 
STKHLR to 0xE0, STKLLR to 0xD8, and SP to 0xDFF0. Any stack-relative memory 
accesses above 0xDFEF (i.e., stack underflow) or below 0xD810 (i.e., overflow) would 
trigger the stack violation interrupt.

Figure B-2.  Simple Stack Protection Layout

Stack access in this 
region triggers an 
interrupt

Stack access in this 
region triggers an 
interrupt

Stack access in this 
region is allowed

0xE000

0xDFF0
0xDFEF

0xD810
0xD80F
0xD800

TKHLR = 0xE0

TKLLR = 0xD8
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The stack protection registers are listed in Table B-12, Table B-13, and Table B-14.

Table B-12.  Stack Limit Control Register

Stack Limit Control Register (STKCR) (Address = 0x0444)

Bit(s) Value Description

7:1 These bits are reserved and should be written with zeros.

0
0 Write protection in User mode only.

1 Write protection in System and User modes.

Table B-13.  Stack Low Limit Register

Stack Low Limit Register (STKLLR) (Address = 0x0445)

Bit(s) Value Description

7:0
Lower limit for stack limit checking. If a stack operation or stack-relative 
memory access is attempted at an address less than {STKLLR, 10h} a stack limit 
violation interrupt is generated.

Table B-14.  Stack High Limit Register

Stack High Limit Register (STKHLR) (Address = 0x0446)

Bit(s) Value Description

7:0
Upper limit for stack limit checking. If a stack operation or stack-relative 
memory access is attempted at an address greater than {STKHLR, 0EFh} a stack 
limit violation interrupt is generated.
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B.1.7  RAM Segment Relocation

Normally when instruction/data separation is enabled, instructions are stored in flash 
memory and data are stored in RAM memory. This can present a problem for the Interrupt 
Service Routine area, which often requires run-time modification. The RAM Segment 
Register (RAMSR) allows a 1, 2, or 4 KB segment of the logical memory space to be 
mapped as data would be mapped, even for program execution.

Table B-15.  RAM Segment Register

              RAM Segment Register                           (RAMSR)                      (Address = 0x0448)

Bit(s) Value Description

7:2 Compare value for RAM segment limit checking.

1:0 00 Disable RAM segment limit checking.

01 Select data-type MMU translation if PC[15:10] is equal to RAMSR[7:2].

10 Select data-type MMU translation if PC[15:11] is equal to RAMSR[7:3].

11 Select data-type MMU translation if PC[15:12] is equal to RAMSR[7:4].
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B.1.8  Secondary Watchdog Timer

The secondary watchdog timer (SWDT) is an eight-bit modulo n + 1 counter clocked by 
the 32.768 kHz clock. The timer is off by default, and is enabled by writing a 0x5F to the 
WDTCR. The secondary watchdog timer register (SWDTR) holds the time constant 
value. Depending on the value loaded into the SWDTR, the timer can request an interrupt 
anywhere from 30.5 µs to 7.8 ms. If a 0x5F is written to the WDTCR prior to end of the 
countdown period, the timer will not request an interrupt. If the counter counts down to 
zero, a level-3 interrupt is generated. The SWDT is intended as a safety net for the peri-
odic interrupt, and would normally be restarted in the service routine for the periodic inter-
rupt. Although the hardware was intended to primarily be used by an operating system 
when the System/User mode is enabled, it can be used as a configurable periodic interrupt 
as well. 

Table B-16.  Watchdog Timer Control Register—Updated

              Watchdog Timer Control Register        (WDTCR)                                Address = 0x0008)

Bit(s) Value Description

7:0 5Ah Restart the watchdog timer, with a 2-second time-out period.

57h Restart the watchdog timer, with a 1-second time-out period.

59h Restart the watchdog timer, with a 500 ms time-out period.

53h Restart the watchdog timer, with a 250 ms time-out period.

5Fh Restart the secondary watchdog timer.

other No effect on watchdog timer or secondary watchdog timer.

Table B-17.  Secondary Watchdog Timer Register

              Secondary Watchdog Timer Register              (SWDTR)        (Address = 0x000C)

Bit(s) Value Description

7:0

The time constant for the secondary watchdog timer is stored. This time constant 
will take effect the next time that the secondary watchdog counter counts down 
to zero. The timer counts modulo n + 1, where n is the programmed time 
constant. The secondary watchdog can be disabled by writing the sequence 5Ah-
52h-44h to this register.

other Normal clocking (32 kHz oscillator) for the WDT timer.
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B.1.9  New Opcodes

Eight new opcodes were added to the Rabbit 3000A. UMA and UMS allow multiply-and-
add and multiply-and-subtract operations on large integers, and were added to speed up 
common cryptographic math used in public-key calculations. The remaining six expand 
the block copy operations available, especially to and from I/O addresses (internal and 
external). These opcodes are listed in Table B-18.

B.1.9.1  New UMA/UMS Opcodes

The new UMA and UMS opcodes perform the following operation:

{CY:DE':(HL)} = (IX) ± [(IY) * DE + DE' + CY];

where HL, IX, and IY increment after each byte, repeated BC times. This fundamental 
operation allows the addition or subtraction of two arbitrarily-long unsigned integers after 
one is scaled by a single-byte value. This operation is common in many cryptographic 
operations.

Table B-18.  New Rabbit 3000 Opcodes

Instruction Bytes Clks A I S Z V C Operation

UMA 2 8+8i - - - - *

{CY:DE’:(HL) = (IX) + [(IY) * DE + DE’ + CY];

BC = BC-1; IX = IX+1; IY = IY+1; HL = HL+1;

repeat while BC !=0

UMS 2 8+8i - - - - *

{CY:DE:(HL) = (IX) - [(IY) * DE + DE’ + CY];

BC = BC-1; IX = IX+1; IY = IY+1; HL = HL+1;

repeat while BC !=0

LDDSR 2 6+7i d - - * -
(DE) = (HL); BC = BC - 1; HL = HL - 1;
repeat while BC != 0

LDISR 2 6+7i d - - * -
(DE) = (HL); BC = BC - 1; HL = HL + 1;
repeat while BC != 0

LSDR 2 6+7i s - - * -
(DE) = (HL); BC = BC - 1; DE = DE - 1; 
HL = HL - 1; repeat while BC != 0

LSIR 2 6+7i s - - * -
(DE) = (HL); BC = BC - 1; DE = DE + 1; 
HL = HL + 1; repeat while BC != 0

LSDDR 2 6+7i s - - * -
(DE) = (HL); BC = BC - 1; DE = DE - 1;
repeat while BC != 0

LSIDR 2 6+7i s - - * -
(DE) = (HL); BC = BC - 1; DE = DE + 1;
repeat while BC != 0
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B.1.9.2  New Block Copy Opcodes

The LDxR family of block move opcodes has been expanded. In the Rabbit 3000 proces-
sor, block copy operations could only be done between memory addresses, or from mem-
ory to an I/O address. In addition, the destination I/O address would increment (or 
decrement if using LDDR) after each byte, making the block copy opcodes effectively 
useless for repeated reads or writes to a peripheral (for example, a device on the external 
I/P bus).

Six new block copy opcodes were added to the Rabbit 3000 revision. These opcodes can 
copy from an I/O address as well as to one, and either the source or destination address can 
remain fixed instead of changing after each byte. The new opcodes are described in 
Table B-19.

Table B-19.  Rabbit 3000 Revision Block Copy Opcode Effects

Opcode
Source 

Address 
Change

Destination 
Address 
Change

IOI/IOE 
Affects

LDDR - - destination

LDIR + + destination

LDDSR - none destination

LDISR + none destination

LSDR - - source

LSIR + + source

LSDDR none - source

LSIDR none + source
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B.1.10  Expanded I/O Memory Addressing

In the Rabbit 3000, only the lower 8 bits of an I/O address were decoded. To provide room 
for new peripherals, this was expanded to 16 bits. To ensure backwards compatibility, the 
processor always comes up in 8-bit I/O address mode; the 16-bit I/O address mode needs 
to be enabled in the MMIDR register by setting bit 7 to 1.

The updated MMIDR register is listed in Table B-20.

NOTE: Bits 7 was always written with a zero in the original Rabbit 3000 chip.

Table B-20.  MMU Instruction/Data Register

MMU Instruction/Data Register (MMIDR) (Address = 0x0010)

Bit(s) Value Description

7

0
Internal I/O addresses are decoded using only the lower eight bits of the internal 
I/O address bus. This restricts internal I/O addresses to the range 0000h-00FFh.

1
Internal I/O addresses are decoded using all 15 bits of the address internal I/O 
address bus. This option must be selected to access internal I/O addresses of 
0100h and higher.

6 0 This bit is ignored and will always return zero when read.

5

0 Enable A16 and A19 inversion independent of instruction/data.

1
Enable A16 and A19 inversion (controlled by bits 0-3) for data accesses only. 
This enables the instruction/data split. This is separate I and D space.

4

0 Normal /CS1 operation.

1
Force /CS1 always active. This will not cause any conflicts as long as the 
memory using /CS1 does not also share an Output Enable or Write Enable with 
another memory.

3
0 Normal operation.

1 For a DATASEG access, invert A19 before MBxCR (bank select) decision.

2
0 Normal operation.

1 For a DATASEG access: invert A16

1
0 Normal operation.

1 For root access, invert A19 before MBxCR (bank select) decision. 

0
0 Normal operation.

1 For root access, invert A16
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B.1.11  External I/O Improvements

Three new features have been added to the external I/O strobes: the ability to invert the 
strobe signal, the ability to shorten a read strobe by one clock, and the ability to direct a 
strobe to either the alternate I/O bus (if enabled) or the memory bus.

The new control bits for the external I/O strobes are listed in Table B-21.

NOTE: Bits [2:0] were always written with zero in the original Rabbit 3000 chip.

Table B-21.  I/O Bank x Control Register

I/O Bank x Control Register (IB0CR) (Address = 0x0080)
(IB1CR) (Address = 0x0081)
(IB2CR) (Address = 0x0082)
(IB3CR) (Address = 0x0083)
(IB4CR) (Address = 0x0084)
(IB5CR) (Address = 0x0085)
(IB6CR) (Address = 0x0086)
(IB7CR) (Address = 0x0087)

Bit(s) Value Description

7:6 00 Fifteen wait states for accesses in this bank.

01 Seven wait states for accesses in this bank.

10 Three wait states for accesses in this bank.

11 One wait state for accesses in this bank.

5:4 00 The Ix signal is an I/O chip select.

01 The Ix signal is an I/O read strobe.

10 The Ix signal is an I/O write strobe.

11 The Ix signal is an I/O data (read or write) strobe.

3
0

Writes are not allowed to this bank. Transactions are normal in every other way; 
only the write strobe is inhibited.

1 Writes are allowed to this bank.

2
0 Active-Low Ix signal.

1 Inverted (active-High) Ix.

1
0 Normal I/O Transaction timing.

1 Shorten read strobe by one clock cycle. Transaction length remains the same.

0
0 Use I/O bus if enabled.

1 Always use memory data bus.
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B.1.12  Short Chip Select Timing for Writes

The Rabbit 3000 provided the ability to produce shorter chip select strobes for reads when 
in a reduced-speed mode. A new feature has been added to produce short chip select 
strobes for writes as well, and can be controlled by the GPCSR register.

The new control bit for the short chip selects are listed in Table B-22.

NOTE: Bit 3 was always written with zero in the original Rabbit 3000 chip.

Table B-22.  Global Power Save Control Register

Global Power Save Control Register (GPSCR) (Address = 0x000D)

Bit(s) Value Description

7:5 000 Self-timed chip selects are disabled.

001 This bit combination is reserved and should not be used.

010 This bit combination is reserved and should not be used.

011 This bit combination is reserved and should not be used.

100 296 ns self-timed chip selects (192 ns best case, 457 ns worst case).

101 234 ns self-timed chip selects (151 ns best case, 360 ns worst case).

110 171 ns self-timed chip selects (111 ns best case, 264 ns worst case).

111 109 ns self-timed chip selects (71 ns best case, 168 ns worst case).

4
0 Normal Chip Select timing for read cycles.

1 Short Chip Select timing for read cycles (not available in full speed).

3
0 Normal Chip Select timing for write cycles

1 Short Chip Select timing for write cycles (not available in full speed).

2:0 000 The 32 kHz clock divider is disabled.

001 This bit combination is reserved and should not be used.

010 This bit combination is reserved and should not be used.

011 This bit combination is reserved and should not be used.

100 32 kHz oscillator divided by two (16.384 kHz).

101 32 kHz oscillator divided by four (8.192 kHz).

110 32 kHz oscillator divided by eight (4.096 kHz).

111 32 kHz oscillator divided by sixteen (2.048 kHz).
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B.1.12.1  Clock Select and Power Save Modes

Table B-24 outlines the power save modes available in the Rabbit 3000A. The GCSR is
shown in Table B-23 for reference.

Table B-23.  Global Control/Status Register

Global Control/Status Register (GCSR) (Address = 0x00)

Bit(s) Value Description

7:6
(rd-only)

00 No reset or watchdog timer time-out since the last read.

01
The watchdog timer timed out. These bits are cleared by a read of this 
register.

10 This bit combination is not possible.

11 Reset occurred. These bits are cleared by a read of this register.

5
0 No effect on the periodic interrupt. This bit will always be read as zero.

1 Force a periodic interrupt to be pending.

4:2 xxx See table below for decode of this field.

1:0

00 Periodic interrupts are disabled.

01 Periodic interrupts use Interrupt Priority 1.

10 Periodic interrupts use Interrupt Priority 2.

11 Periodic interrupts use Interrupt Priority 3.

Table B-24.  Clock Select Field of GCSR

Clock Select
Bits 4:2 GCSR

CPU Clock
Peripheral

Clock
Main

Oscillator

Power-Save CS 
if Enabled by 

GPSCR

000 osc/8 osc/8 on short CS option

001 osc/8 osc on short CS option

010 osc osc on none

011 osc/2 osc/2 on short CS option

100 32 kHz or fraction 32 kHz or fraction on
self-timed option

short CS option

101 32 kHz or fraction 32KHz or fraction off
self-timed option

short CS option

110 osc/4 osc/4 on short CS option

111 osc/6 osc/6 on short CS option
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B.1.12.2  Short Chip Select Timing

When short chip selects are enabled for read cycles, the chip select signals are active only 
for the last part of the bus cycle. Wait states are inserted between T1 and T2, so this will 
have no effect on the duration of the chip select signals in this mode. The timing diagrams 
below illustrate the actual timing for the different divided cases. In these cases the chip 
selects are two clock cycles (of the fast oscillator) long.

Figure B-3.  Short Chip Select Timing: CLK/8, Read Operation
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Figure B-4.  Short Chip Select Timing: CLK/6, Read Operation

Figure B-5.  Short Chip Select Timing: CLK/4, Read Operation
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Figure B-6.  Short Chip Select Timing: CLK/2, Read Operation
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When operating from the 32 kHz oscillator, the same options are available, but the timing 
is somewhat different. This is illustrated in the diagrams below for the four different cases. 
In these case the chip selects are one clock cycle (of the 32 kHz clock) long.

Figure B-7.  Short Chip Select Timing: 2 kHz, Read Operation

Figure B-8.  Short Chip Select Timing: 4 kHz, Read Operation
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Figure B-9.  Short Chip Select Timing: 8 kHz, Read Operation

Figure B-10.  Short Chip Select Timing: 16 kHz, Read Operation
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Figure B-11.  Short Chip Select Timing: 32 kHz, Read Operation
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In the case of write cycles, the chip select signals are active only around the trailing edge 
of the write signal. Wait states are inserted between T1 and T2, and this will have no effect 
on the duration of the chip select signals in this mode. The timing diagrams below illus-
trate the actual timing for the different divided cases. In these cases the chip selects are 
active for two clock cycles before and two clock cycles after the trailing edge of the write 
signal.

Figure B-12.  Short Chip Select Timing: CLK/8, Write Operation
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Figure B-13.  Short Chip Select Timing: CLK/6, Write Operation

Figure B-14.  Short Chip Select Timing: CLK/4, Write Operation
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Figure B-15.  Short Chip Select Timing: CLK/2, Write Operation
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The timing diagrams below illustrate the actual timing for the 32KHz cases of write 
cycles. In these cases the chip selects are active for one clock cycle before and one clock 
cycle after the trailing edge of the write signal.

Figure B-16.  Short Chip Select Timing: 2 kHz, Write Operation

Figure B-17.  Short Chip Select Timing: 4 kHz, Write Operation
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Figure B-18.  Short Chip Select Timing: 8 kHz, Write Operation

Figure B-19.  Short Chip Select Timing: 16 kHz, Write Operation
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Figure B-20.  Short Chip Select Timing: 32 kHz, Write Operation
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B.1.13  Pulse Width Modulator Improvements

Several new features have been added to the pulse width modulator. First, a new PWM 
interrupt can be set up to be requested on every PWM cycle, every other cycle, every 
fourth cycle, or every eighth cycle. The setup for this interrupt is done in the PWL0R and 
PWL1R registers, listed in Table B-25 and Table B-26.

Options are available to suppress the PWM output for seven-of-eight, three-of-four and 
one-of-two iterations of the PWM counter The one-of-eight option works nicely with R/C 
servos, which require a 1 ms to 2 ms pulse width and a 20 ms period. This option gives the 
full resolution for the pulse width while still meeting the period requirements. The one-of-
four and one-of-two options can be used to create more virtual PWM channels using soft-
ware to multiplex the PWM outputs. There is a separate option to only generate an inter-
rupt during the active iteration of the PWM count. The timing is shown below.

Figure B-21.  PWM Interrupt and Output Timing

NOTE: Bits [5:0] of PWML0R, bits [5:4] and [2:1] of PWL1R, and bits [5:4] of PWL2R 
and PWL3R were always written with a zero in the original Rabbit 3000 chip.

iteration 

1/4 output 

1/8 output 

1/2 output 

1/8 interrupt  

1/4 interrupt  

1/2 interrupt  
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Table B-25.  PWM LSB 0 Register

PWM LSB 0 Register (PWL0R) (Address = 0x0088)

Bit(s) Value Description

7:6 write The least significant two bits for the Pulse Width Modulator count are stored.

5:4 00 Normal PWM operation.

01 Suppress PWM output seven out of eight iterations of PWM counter.

10 Suppress PWM output three out of four iterations of PWM counter.

11 Suppress PWM output one out of two iterations of PWM counter.

3 This bit is ignored and should be written with zero.

2:1 00 Pulse Width Modulator interrupts are disabled.

01 Pulse Width Modulator interrupts use Interrupt Priority 1.

10 Pulse Width Modulator interrupts use Interrupt Priority 2.

11 Pulse Width Modulator interrupts use Interrupt Priority 3.

0
0 PWM output High for single block.

1 Spread PWM output throughout the cycle.

Table B-26.  PWM LSB 1 Register

PWM LSB 1 Register (PWL1R) (Address = 0x008A)

Bit(s) Value Description

7:6 write The least significant two bits for the Pulse Width Modulator count are stored.

5:4 00 Normal PWM operation.

01 Suppress PWM output seven out of eight iterations of PWM counter.

10 Suppress PWM output three out of four iterations of PWM counter.

11 Suppress PWM output one out of two iterations of PWM counter.

3 This bit is ignored and should be written with zero.

2:1 00 Normal PWM interrupt operation.

01 Suppress PWM interrupts seven out of eight iterations of PWM counter.

10 Suppress PWM interrupts three out of four iterations of PWM counter.

11 Suppress PWM interrupts one out of two iterations of PWM counter.

0
0 PWM output High for single block.

1 Spread PWM output throughout the cycle.
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Table B-27.  PWM LSB 2 and 3 Registers

PWM LSB x Register (PWL2R) (Address = 0x008C)

(PWL3R) (Address = 0x008E)

Bit(s) Value Description

7:6 write The least significant two bits for the Pulse Width Modulator count are stored.

5:4 00 Normal PWM operation.

01 Suppress PWM output seven out of eight iterations of PWM counter.

10 Suppress PWM output three out of four iterations of PWM counter.

11 Suppress PWM output one out of two iterations of PWM counter.

3:1 These bits are ignored and should be written with zero.

0
0 PWM output High for single block.

1 Spread PWM output throughout the cycle.
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B.1.14  Quadrature Decoder Improvements

The quadrature decoder counters can now be expanded to 10 bits instead of 8 bits. This is 
controlled by a bit in QDCR, listed in Table B-28. The additional two bits can be read in 
the QDCxHR registers, listed in Table B-29.

NOTE: Bit 5 of QDCR was always written with a zero in the original Rabbit 3000 chip.

Table B-28.  Quad Decode Control Register

Quad Decode Control Register (QDCR) (Address = 0x0091)

Bit(s) Value Description

7:6 00
Disable Quadrature Decoder 2 inputs. Writing a new value to these bits will not 
cause Quadrature Decoder 2 to increment or decrement.

01 This bit combination is reserved and should not be used.

10 Quadrature Decoder 2 inputs from Port F bits 3 and 2.

11 Quadrature Decoder 2 inputs from Port F bits 7 and 6.

5 0 Eight bit quadrature decoder counters.

1 Ten bit quadrature decoder counters.

4 This bit is reserved and should be written as zero.

3:2 00
Disable Quadrature Decoder 1 inputs. Writing a new value to these bits will not 
cause Quadrature Decoder 1 to increment or decrement.

01 This bit combination is reserved and should not be used.

10 Quadrature Decoder 1 inputs from Port F bits 1 and 0.

11 Quadrature Decoder 1 inputs from Port F bits 5 and 4.

1:0 00 Quadrature Decoder interrupts are disabled.

01 Quadrature Decoder interrupt use Interrupt Priority 1.

10 Quadrature Decoder interrupt use Interrupt Priority 2.

11 Quadrature Decoder interrupt use Interrupt Priority 3.

Table B-29.  Quad Decode Count High Register

Quad Decode Count High Register (QDC1HR) (Address = 0x0095)

(QDC2HR) (Address = 0x0097)

Bit(s) Value Description

7:2 read These bits are reserved and will always read as zeros.

1:0 read The current value of bits 9-8 of the Quadrature Decoder counter is reported.
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Figure B-22.  Quadrature Decode, 8-bit and 10-bit Counter Timing

Cnt (8 bit) 

Interrupt 

I input 

Q input 

00 01 02 03 04 05 06 07 08 07 06 05 04 03 02 01 00 FF FF 

Cnt (10 bit) 000 001 002 003 004 005 006 007 008 007 006 005 004 003 002 001 000 3FF 3FF 
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B.2  Pins with Alternate Functions

The Rabbit 3000A provides greater flexibility for multiplexing I/O functions to other pins. 
The following alternate connections were introduced in the Rabbit 3000A for these 
peripherals, and are indicated by an asterisk in Table 5-2.

• Slave port CS

/ASCS: Alternate slave port chip select input

• Serial Ports E/F

ARXE: Alternate Serial Port E receive

ARCLKE: Alternate Serial Port E receive clock (HDLC)

ARXF: Alternate Serial Port F receive

ARCLKF: Alternate Serial Port F receive clock (HDLC)

• PWM outputs

APWM3: Alternate PWM output, bit 3

APWM2: Alternate PWM output, bit 2

APWM1: Alternate PWM output, bit 1

APWM0: Alternate PWM output, bit 0
312 Rabbit 3000 Microprocessor



APPENDIX C. SYSTEM/USER MODE

The Rabbit 3000A is the first Rabbit microprocessor to incorporate a “system/user mode.” 
The purpose of the System/User mode is to provide two tiers of control in the CPU: sys-
tem, which provides full access to all processor resources; and user, a more restricted 
mode. 

Table C-1 describes the essential differences between the System mode and the User 
mode. The System mode is essentially the same as the normal operation of the Rabbit 
3000 and earlier processors.

The main intent of the System/User mode is to protect critical code (for example, code that 
performs remote firmware updates), data, and the current processor state (memory setup, 
peripheral control, etc.) from inadvertent changes by the user’s standard code. By remov-
ing access to the processor’s I/O registers and preventing memory writes to critical 
regions, the user’s code can run without the danger of locking up the processor to the point 
where it cannot be restarted remotely and/or new code uploaded.

Table C-1.  Differences Between System and User Modes

System Mode User Mode

All peripherals accessible. No peripherals accessible by default.

All processor control registers available. No processor control registers available.

All interrupt priorities available. Interrupt Priority 3 not allowed.

IDET opcode has no effect.
IDET opcode causes Priority 3 “system mode 
violation” interrupt.

No write protection when 0x00 is written to 
WPCR (write protection in User mode only)

Write to protected segment causes Priority 3 
“write protection violation” interrupt.

Easy to enter user mode (SETUSR opcode).
Difficult to enter system mode (requires 
interrupt, SYSCALL, or RST opcode).
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C.1  System/User Mode Opcodes

Seven new opcodes have been added to support the System/User mode, and are listed in 
Table C-2. All but IDET are placed in previously empty opcode table assignments. IDET 
shares the value of LD E,E in the opcode table, and will perform that operation when the 
System/User mode is disabled, or when it is enabled and in the System mode. In addition, 
if the ALTD prefix appears before the opcode, LD E’,E is always executed instead.

The processor keeps a one-byte stack (called the SU register) that is analogous to the IP 
register that keeps track of the interrupt priority. Every time SETUSR is executed (to enter 
the User mode), or an interrupt occurs, or SYSCALL or RST is executed (to enter the Sys-
tem mode), the current mode is pushed onto the SU register. When a SURES is executed, 
the previous mode is popped off the SU register.

The effects of each opcode are:

• The SETUSR opcode puts the processor into the User mode by pushing the correct value 
into the SU register.

• PUSH SU and POP SU push and pop the single-byte SU register on/off the SP stack.

• SURES pops the current processor mode off the SU register, returning it to the previous 
mode.

• IDET causes an interrupt if executed in the User mode, and does nothing in the System 
mode.

• RDMODE returns the current mode in the carry flag (0 for System mode, 1 for User mode).

• SYSCALL is essentially a new RST opcode, and was added to allow User mode access to 
the System mode without using one of the existing RST opcodes. It will put the processor 
into the System mode and execute code in the corresponding interrupt-vector table entry.

Table C-2.  New System/User Mode Opcodes

Instruction Bytes clk A I S Z V C Operation
Priv

?

SETUSR 2 4 - - - - - SU = {SU[5:0], 0x01} Yes

PUSH SU 2 9 - - - - - (SP-1) = SU; SP = SP - 1 Yes

POP SU 2 7 - - - - - SU = (SP); SP = SP + 1 Yes

SURES 2 4 - - - - - SU = {SU[1:0], SU[7:2]} Yes

IDET 1 2 - - - - -

Performs LD E,E, but if 
(EDMF && SU[0]) then the System 
Violation interrupt flag is set; if ALTD 
appears before it always does LD E’,E

No

RDMODE 2 4 - - - - * CF = SU[0] Yes

SYSCALL 2 10 - - - - -
SP = SP - 2; PC = {R,v} where 
v = SYSCALL offset

No
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C.2  System/User Mode Registers

Table C-3 lists the new I/O registers added to support the System/User mode.

The Enable Dual Mode Register (EDMR) is used to enable and disable the System/User 
mode. All other I/O registers listed in the table are “User mode enable” registers for each 
peripheral. On startup, User mode access is not allowed to all the peripherals (all writes to 
I/O registers for that peripheral are ignored), but can be enabled by writing to the appropri-
ate register. Note that User mode writes to all other I/O registers are always ignored.

Table C-3.  System/User Mode I/O Registers

Register Name Mnemonic
I/O 

Address
R/W Reset

Enable Dual Mode Register EDMR 0x0420 W 00000000

Real Time Clock User Enable Register RTUER 0x0300 W 00000000

Slave Port User Enable Register SPUER 0x0320 W 00000000

Parallel Port A User Enable Register PAUER 0x0330 W 00000000

Parallel Port B User Enable Register PBUER 0x0340 W 00000000

Parallel Port C User Enable Register PCUER 0x0350 W 00000000

Parallel Port D User Enable Register PDUER 0x0360 W 00000000

Parallel Port E User Enable Register PEUER 0x0370 W 00000000

Parallel Port F User Enable Register PFUER 0x0338 W 00000000

Parallel Port G User Enable Register PGUER 0x0348 W 00000000

I/O Bank User Enable Register IBUER 0x0380 W 00000000

PWM User Enable Register PWUER 0x0388 W 00000000

Quad Decode User Enable Register QDUER 0x0390 W 00000000

External Interrupt User Enable Register IUER 0x0398 W 00000000

Timer A User Enable Register TAUER 0x03A0 W 00000000

Timer B User Enable Register TBUER 0x03B0 W 00000000

Serial Port A User Enable Register SAUER 0x03C0 W 00000000

Serial Port B User Enable Register SBUER 0x3D0 W 00000000

Serial Port C User Enable Register SCUER 0x3E0 W 00000000

Serial Port D User Enable Register SDUER 0x3F0 W 00000000

Serial Port E User Enable Register SEUER 0x03C8 W 00000000

Serial Port F User Enable Register SFUER 0x3D8 W 00000000
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The I/O banks on Port E (enabled for the User mode by IBUER) have a slightly different 
operation in the User mode. Disabling user access to a given I/O bank not only causes 
writes to the corresponding IBxCR register to be ignored in the User mode, but also inhib-
its the strobe associated with that I/O bank.

Access to internal I/O registers is always denied in the User mode. Those registers are 
listed in Table C-4.

Table C-4.  I/O Addresses Inaccessible in User Mode

Register Name Mnemonic I/O Address

Global Control/Status Register GCSR 0000h

Watch-Dog Timer Control Register WDTCR 0008h

Watch-Dog Timer Test Register WDTTR 0009h

Global Clock Modulator 0 Register GCM0R 000Ah

Global Clock Modulator 1 Register GCM1R 000Bh

Secondary Watchdog Timer Register SWDTR 000Ch

Global Power Save Control Register GPSCR 000Dh

Global Output Control Register GOCR 000Eh

Global Clock Double Register GCDR 000Fh

MMU Instruction/Data Register MMIDR 0010h

Stack Segment Register STKSEG 0011h

Data Segment Register DATSEG 0012h

Segment Size Register SEGSIZ 0013h

Memory Bank 0 Control Register MB0CR 0014h

Memory Bank 1 Control Register MB1CR 0015h

Memory Bank 2 Control Register MB2CR 0016h

Memory Bank 3 Control Register MB3CR 0017h

MMU Expanded Code Register MECR 0018h

Memory Timing Control Register MTCR 0019h

Reserved 001Ah

Reserved 001Bh

Breakpoint/Debug Control Register BDCR 001Ch

Reserved 001Dh

Reserved 001Eh

Reserved 001Fh

User Enable registers 03xxh

Memory Protection registers 04xxh
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C.3  Interrupts

When enabled for User mode access, a peripheral interrupt (if it is capable of generating 
an interrupt) can only be requested at Interrupt Priority Level -2 or -1. Interrupts (and RSTs 
and SYSCALL) all enter the System mode automatically. There will be times, however, that 
an interrupt should be handled in the User mode. The solution to this is for the System 
mode interrupt vector to reenter User mode before calling the User mode interrupt handler. 
An example of both system and user interrupt handling is shown in Figure C-1.

Figure C-1.  Interrupt Handing in System/User Mode

Some sample code for both System mode interrupts and User mode interrupts is shown 
below.

system_isr:                    ; jumped to from interrupt vector table
    ... handle interrupt ...
   sures                       ; reenter previous mode
   ret

user_isr:                      ; jumped to from interrupt vector table
   push su                     ; preserve current SU stack
   setusr                      ; enter user mode
    ... handle interrupt ...
   pop su                      ; restore previous SU stack
   sures                       ; reenter previous mode
   ret

Application code (us er)

IS R  (s ys tem)

Application code (us er)

Application code (us er)

IS R  (s ys tem)

Application code (us er)

Application IS R  (us er)

Interrupt under s ys tem control

Interrupt under us er control
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C.3.1  Peripheral Interrupt Prioritization

Most interrupts can be programmed to occur at any of three priority levels, but several are 
restricted to Level 3 (the highest priority) only. The interrupts restricted to Level 3 are sys-
tem mode violation, stack limit violation, write protection violation, and the secondary 
watchdog. In addition, any interrupt assigned to User mode is prevented (by hardware) 
from requesting a Level 3 interrupt. If a user-assigned interrupt is programmed to occur at 
Level 3, the hardware will automatically modify the request to occur at Level 2. Within a 
given interrupt priority level, the interrupts are prioritized according to Table C-5.
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Table C-5.  Interrupts—Priority and Action to Clear Requests

Priority Interrupt Source Action required to clear the interrupt

Highest System Mode Violation Automatically cleared by the interrupt acknowledge.

Stack Limit Violation Automatically cleared by the interrupt acknowledge.

Write Protection Violation Automatically cleared by the interrupt acknowledge.

Secondary Watchdog Restart the Secondary Watchdog by writing to WDTCR.

External 1 Automatically cleared by the interrupt acknowledge.

External 0 Automatically cleared by the interrupt acknowledge.

Periodic (2 kHz) Read the status from the GCSR.

Quadrature Decoder Read the status from the QDSR.

Timer B Read the status from the TBSR.

Timer A Read the status from the TASR.

Input Capture Read the status from the ICCSR.

PWM Write any PWM register.

Slave Port
Rd: Read the data from the SPD0R, SPD1R or SPD2R.

Wr: Write data to the SPD0R, SPD1R, SPD2R or write a 
dummy byte to the SPSR.

Serial Port E
Rx: Read the data from the SEDR or SEAR.

Tx: Write data to the SEDR, SEAR, SELR or write a dummy 
byte to the SESR.

Serial Port F
Rx: Read the data from the SFDR or SFAR.

Tx: Write data to the SFDR, SFAR, SFLR or write a dummy 
byte to the SFSR.

Serial Port A
Rx: Read the data from the SADR or SAAR.

Tx: Write data to the SADR, SAAR, SALR or write a dummy 
byte to the SASR.

Serial Port B
Rx: Read the data from the SBDR or SBAR.

Tx: Write data to the SBDR, SBAR, SBLR or write a dummy 
byte to the SBSR.

Serial Port C
Rx: Read the data from the SCDR or SCAR.

Tx: Write data to the SCDR, SCAR, SCLR or write a dummy 
byte to the SCSR.

Lowest Serial Port D
Rx: Read the data from the SDDR or SDAR.

Tx: Write data to the SDDR, SDAR, SDLR or write a dummy 
byte to the SDSR.
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C.4  Using the System/User Mode

The System/User mode is designed to work with new features in the Rabbit 3000A 
(memory protection, stack protection, etc.) to provide a seamless framework for protection 
of critical code. However, there are many levels at which the System/User mode can be 
used; some examples are described here.

C.4.1  Memory Protection Only

At the beginning of the user program, all necessary peripherals are enabled, all peripheral 
interrupts to be used are set up for the User mode, critical memory regions are protected, 
stack limits are set, and the various system/memory/stack violation interrupts are enabled. 
The processor then enters the User mode and remains in the User mode for all operations 
(interrupts can be handled however the user desires). Obviously the critical interrupts can 
be handled in the System mode, but at that point the device is typically reset and the error 
is logged. An overview of this level of operation is shown in Figure C-2.

Figure C-2.  System/User Mode Setup for Memory Protection Only
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C.4.2  Mixed System/User Mode Operation

This mode is similar to the previous mode, but with some portions of the program written 
for the System mode—for example, peripheral interrupts where latency is critical. By 
keeping the System mode code sections small, potential system crashes are still mini-
mized. An overview of this level of operation is shown in Figure C-3.

Figure C-3.  System/User Mode Setup for Mixed Operation
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C.4.3  Complete Operating System

This section describes a “full” use of the System/User mode—separating all common 
functions into a System mode “operating system” while letting the application-specific 
code run in the User mode.By default, the System mode handles all peripherals and inter-
rupts, as well as high-level interfaces such as a flash file system. However, the processor 
will be running the application code in the User mode most of the time.

The application code can request direct access to a peripheral and/or interrupt from the 
System mode. If allowed, the System mode can create an interrupt vector as described in 
Section C.3 that will execute the user code interrupt handler.

When the application code wants to perform an action that is controlled by the System 
mode, it can request the particular action by loading the appropriate value into HL and 
executing SYSCALL. This requires generating a list of all the actions that the application 
code would want to do, assigning values to each action, and implementing a SYSCALL 
handler in the System mode that parses the value passed to it and calls the appropriate 
function.

Write protection should be enabled (User mode only) for all blocks containing system 
code and data as well as any critical memory regions.

If any critical interrupts occur (stack limit violation, system mode violation, write protec-
tion violation), the System mode handlers can perform any of a number of operations: 
restart the application code, signal another device, halt operation, and so on.

An overview of this level of operation is shown in Figure C-4.

Figure C-4.  System/User Mode Setup for Operating System
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APPENDIX D.
RABBIT 3000A INTERNAL I/O REGISTERS

Table D-1 provides a list of all the Rabbit 3000A internal I/O registers.

Table D-1.  Rabbit 3000A Internal I/O Registers

Register Name Mnemonic I/O Address R/W Reset

Global Control/Status Register GCSR 0000h R/W 11000000

Real Time Clock Control Register RTCCR 0001h W 00000000

Real Time Clock Byte 0 Register RTC0R 0002h R/W xxxxxxxx

Real Time Clock Byte 1 Register RTC1R 0003h R xxxxxxxx

Real Time Clock Byte 2 Register RTC2R 0004h R xxxxxxxx

Real Time Clock Byte 3 Register RTC3R 0005h R xxxxxxxx

Real Time Clock Byte 4 Register RTC4R 0006h R xxxxxxxx

Real Time Clock Byte 5 Register RTC5R 0007h R xxxxxxxx

Watch-Dog Timer Control Register WDTCR 0008h W 00000000

Watch-Dog Timer Test Register WDTTR 0009h W 00000000

Global Clock Modulator 0 Register GCM0R 000Ah W 00000000

Global Clock Modulator 1 Register GCM1R 000Bh W 00000000

Secondary Watchdog Timer Register SWDTR 000Ch W 11111111

Global Power Save Control Register GPSCR 000Dh W 00000000

Global Output Control Register GOCR 000Eh W 00000000

Global Clock Double Register GCDR 000Fh W 00000000

Global ROM Configuration Register GROM 002Ch R 0xx00000

Global RAM Configuration Register GRAM 002Dh R 0xx00000

Global CPU Configuration Register GCPU 002Eh R 0xx00001

Global Revision Register GREV 002Fh R 0xx00001

MMU Instruction/Data Register MMIDR 0010h R/W 00000000
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Stack Segment Register STKSEG 0011h R/W 00000000

Data Segment Register DATSEG 0012h R/W 00000000

Segment Size Register SEGSIZ 0013h R/W 11111111

Memory Bank 0 Control Register MB0CR 0014h W 00001000

Memory Bank 1 Control Register MB1CR 0015h W xxxxxxxx

Memory Bank 2 Control Register MB2CR 0016h W xxxxxxxx

Memory Bank 3 Control Register MB3CR 0017h W xxxxxxxx

MMU Expanded Code Register MECR 0018h R/W 00000000

Memory Timing Control Register MTCR 0019h W 00000000

Breakpoint/Debug Control Register BDCR 001Ch W 00000000

RAM Segment Register RAMSR 0448h W 00000000

Write Protect Control Register WPCR 0440h W 00000000

Stack Limit Control Register STKCR 0444h W 00000000

Stack Low Limit Register STKLLR 0445h W xxxxxxxx

Stack High Limit Register STKHLR 0446h W xxxxxxxx

Write Protect Low Register WPLR 0460h W 00000000

Write Protect High Register WPHR 0461h W 00000000

Write Protect Segment A Register WPSAR 0480h W 00000000

Write Protect Segment A Low Register WPSALR 0481h W 00000000

Write Protect Segment A High Register WPSAHR 0482h W 00000000

Write Protect Segment B Register WPSBR 0484h W 00000000

Write Protect Segment B Low Register WPSBLR 0485h W 00000000

Write Protect Segment B High Register WPSBHR 0486h W 00000000

Real Time Clock User Enable Register RTUER 0300h W 00000000

Slave Port User Enable Register SPUER 0320h W 00000000

Parallel Port A User Enable Register PAUER 0330h W 00000000

Parallel Port F User Enable Register PFUER 0338h W 00000000

Parallel Port B User Enable Register PBUER 0340h W 00000000

Parallel Port G User Enable Register PGUER 0348h W 00000000

Parallel Port C User Enable Register PCUER 0350h W 00000000

Table D-1.  Rabbit 3000A Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
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Input Capture User Enable Register ICUER 0358h W 00000000

Parallel Port D User Enable Register PDUER 0360h W 00000000

Parallel Port E User Enable Register PEUER 0370h W 00000000

I/O Bank User Enable Register IBUER 0380h W 00000000

PWM User Enable Register PWUER 0388h W 00000000

Quad Decode User Enable Register QDUER 0390h W 00000000

External Interrupt User Enable Register IUER 0398h W 00000000

Timer A User Enable Register TAUER 03A0h W 00000000

Timer B User Enable Register TBUER 03B0h W 00000000

Serial Port A User Enable Register SAUER 03C0h W 00000000

Serial Port E User Enable Register SEUER 03C8h W 00000000

Serial Port B User Enable Register SBUER 03D0h W 00000000

Serial Port F User Enable Register SFUER 03D8h W 00000000

Serial Port C User Enable Register SCUER 03E0h W 00000000

Serial Port D User Enable Register SDUER 03F0h W 00000000

Enable Dual Mode Register EDMR 0420h W 00000000

Slave Port Data 0 Register SPD0R 0020h R/W xxxxxxxx

Slave Port Data 1 Register SPD1R 0021h R/W xxxxxxxx

Slave Port Data 2 Register SPD2R 0022h R/W xxxxxxxx

Slave Port Status Register SPSR 0023h R 00000000

Slave Port Control Register SPCR 0024h R/W 0xx00000

Port A Data Register PADR 0030h R/W xxxxxxxx

Port B Data Register PBDR 0040h R/W 00xxxxxx

Port B Data Direction Register PBDDR 0047h W 11000000

Port C Data Register PCDR 0050h R/W x0x1x1x1

Port C Function Register PCFR 0055h W x0x0x0x0

Port D Data Register PDDR 0060h R/W xxxxxxxx

Port D Control Register PDCR 0064h W xx00xx00

Port D Function Register PDFR 0065h W xxxxxxxx

Port D Drive Control Register PDDCR 0066h W xxxxxxxx

Table D-1.  Rabbit 3000A Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
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Port D Data Direction Register PDDDR 0067h W 00000000

Port D Bit 0 Register PDB0R 0068h W xxxxxxxx

Port D Bit 1 Register PDB1R 0069h W xxxxxxxx

Port D Bit 2 Register PDB2R 006Ah W xxxxxxxx

Port D Bit 3 Register PDB3R 006Bh W xxxxxxxx

Port D Bit 4 Register PDB4R 006Ch W xxxxxxxx

Port D Bit 5 Register PDB5R 006Dh W xxxxxxxx

Port D Bit 6 Register PDB6R 006Eh W xxxxxxxx

Port D Bit 7 Register PDB7R 006Fh W xxxxxxxx

Port E Data Register PEDR 0070h R/W xxxxxxxx

Port E Control Register PECR 0074h W xx00xx00

Port E Function Register PEFR 0075h W 00000000

Port E Data Direction Register PEDDR 0077h W 00000000

Port E Bit 0 Register PEB0R 0078h W xxxxxxxx

Port E Bit 1 Register PEB1R 0079h W xxxxxxxx

Port E Bit 2 Register PEB2R 007Ah W xxxxxxxx

Port E Bit 3 Register PEB3R 007Bh W xxxxxxxx

Port E Bit 4 Register PEB4R 007Ch W xxxxxxxx

Port E Bit 5 Register PEB5R 007Dh W xxxxxxxx

Port E Bit 6 Register PEB6R 007Eh W xxxxxxxx

Port E Bit 7 Register PEB7R 007Fh W xxxxxxxx

Port F Data Register PFDR 0038h R/W xxxxxxxx

Port F Control Register PFCR 003Ch W xx00xx00

Port F Function Register PFFR 003Dh W xxxxxxxx

Port F Drive Control Register PFDCR 003Eh W xxxxxxxx

Port F Data Direction Register PFDDR 003Fh W 00000000

Port G Data Register PGDR 0048h R/W xxxxxxxx

Port G Control Register PGCR 004Ch W xx00xx00

Port G Function Register PGFR 004Dh W xxxxxxxx

Port G Drive Control Register PGDCR 004Eh W xxxxxxxx

Table D-1.  Rabbit 3000A Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
326 Rabbit 3000 Microprocessor



Port G Data Direction Register PGDDR 004Fh W 00000000

I/O Bank 0 Control Register IB0CR 0080h W 00000000

I/O Bank 1 Control Register IB1CR 0081h W 00000000

I/O Bank 2 Control Register IB2CR 0082h W 00000000

I/O Bank 3 Control Register IB3CR 0083h W 00000000

I/O Bank 4 Control Register IB4CR 0084h W 00000000

I/O Bank 5 Control Register IB5CR 0085h W 00000000

I/O Bank 6 Control Register IB6CR 0086h W 00000000

I/O Bank 7 Control Register IB7CR 0087h W 00000000

PWM LSB 0 Register PWL0R 0088h W xxxxx00x

PWM MSB 0 Register PWM0R 0089h W xxxxxxxx

PWM LSB 1 Register PWL1R 008Ah W xxxxx00x

PWM MSB 1 Register PWM1R 008Bh W xxxxxxxx

PWM LSB 2 Register PWL2R 008Ch W xxxxx00x

PWM MSB 2 Register PWM2R 008Dh W xxxxxxxx

PWM LSB 3 Register PWL3R 008Eh W xxxxx00x

PWM MSB 3 Register PWM3R 008Fh W xxxxxxxx

Input Capture Ctrl/Status Register ICCSR 0056h R/W 00000000

Input Capture Control Register ICCR 0057h W xxxxxx00

Input Capture Trigger 1 Register ICT1R 0058h W 00000000

Input Capture Source 1 Register ICS1R 0059h W xxxxxxxx

Input Capture LSB 1 Register ICL1R 005Ah R xxxxxxxx

Input Capture MSB 1 Register ICM1R 005Bh R xxxxxxxx

Input Capture Trigger 2 Register ICT2R 005Ch W 00000000

Input Capture Source 2 Register ICS2R 005Dh W xxxxxxxx

Input Capture LSB 2 Register ICL2R 005Eh R xxxxxxxx

Input Capture MSB 2 Register ICM2R 005Fh R xxxxxxxx

Quad Decode Ctrl/Status Register QDCSR 0090h R/W xxxxxxxx

Quad Decode Control Register QDCR 0091h W 00000000

Quad Decode Count 1 Register QDC1R 0094h R xxxxxxxx

Table D-1.  Rabbit 3000A Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
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Quad Decode Count1 High Register QDC1HR 0095h R xxxxxxxx

Quad Decode Count 2 Register QDC2R 0096h R xxxxxxxx

Quad Decode Count 2 High Register QDC2HR 0097h R xxxxxxxx

Interrupt 0 Control Register I0CR 0098h W xx000000

Interrupt 1 Control Register I1CR 0099h W xx000000

Timer A Control/Status Register TACSR 00A0h R/W 00000000

Timer A Prescale Register TAPR 00A1h W xxxxxxx1

Timer A Time Constant 1 Register TAT1R 00A3h W xxxxxxxx

Timer A Control Register TACR 00A4h W 00000000

Timer A Time Constant 2 Register TAT2R 00A5h W xxxxxxxx

Timer A Time Constant 8 Register TAT8R 00A6h W xxxxxxxx

Timer A Time Constant 3 Register TAT3R 00A7h W xxxxxxxx

Timer A Time Constant 9 Register TAT9R 00A8h W xxxxxxxx

Timer A Time Constant 4 Register TAT4R 00A9h W xxxxxxxx

Timer A Time Constant 10 Register TAT10R 00AAh W xxxxxxxx

Timer A Time Constant 5 Register TAT5R 00ABh W xxxxxxxx

Timer A Time Constant 6 Register TAT6R 00ADh W xxxxxxxx

Timer A Time Constant 7 Register TAT7R 00AFh W xxxxxxxx

Timer B Control/Status Register TBCSR 00B0h R/W xxxxx000

Timer B Control Register TBCR 00B1h W xxxx0000

Timer B MSB 1 Register TBM1R 00B2h W xxxxxxxx

Timer B LSB 1 Register TBL1R 00B3h W xxxxxxxx

Timer B MSB 2 Register TBM2R 00B4h W xxxxxxxx

Timer B LSB 2 Register TBL2R 00B5h W xxxxxxxx

Timer B Count MSB Register TBCMR 00BEh R xxxxxxxx

Timer B Count LSB Register TBCLR 00BFh R xxxxxxxx

Serial Port A Data Register SADR 00C0h R/W xxxxxxxx

Serial Port A Address Register SAAR 00C1h W xxxxxxxx

Serial Port A Long Stop Register SALR 00C2h W xxxxxxxx

Serial Port A Status Register SASR 00C3h R 0xx00000

Table D-1.  Rabbit 3000A Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
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Serial Port A Control Register SACR 00C4h W xx000000

Serial Port A Extended Register SAER 00C5h W 00000000

Serial Port B Data Register SBDR 00D0h R/W xxxxxxxx

Serial Port B Address Register SBAR 00D1h W xxxxxxxx

Serial Port B Long Stop Register SBLR 00D2h W xxxxxxxx

Serial Port B Status Register SBSR 00D3h R 0xx00000

Serial Port B Control Register SBCR 00D4h W xx000000

Serial Port B Extended Register SBER 00D5h W 00000000

Serial Port C Data Register SCDR 00E0h R/W xxxxxxxx

Serial Port C Address Register SCAR 00E1h W xxxxxxxx

Serial Port C Long Stop Register SCLR 00E2h W xxxxxxxx

Serial Port C Status Register SCSR 00E3h R 0xx00000

Serial Port C Control Register SCCR 00E4h W xx000000

Serial Port C Extended Register SCER 00E5h W 00000000

Serial Port D Data Register SDDR 00F0h R/W xxxxxxxx

Serial Port D Address Register SDAR 00F1h W xxxxxxxx

Serial Port D Long Stop Register SDLR 00F2h W xxxxxxxx

Serial Port D Status Register SDSR 00F3h R 0xx00000

Serial Port D Control Register SDCR 00F4h W xx000000

Serial Port D Extended Register SDER 00F5h W 00000000

Serial Port E Data Register SEDR 00C8h R/W xxxxxxxx

Serial Port E Address Register SEAR 00C9h W xxxxxxxx

Serial Port E Long Stop Register SELR 00CAh W xxxxxxxx

Serial Port E Status Register SESR 00CBh R 0xx00000

Serial Port E Control Register SECR 00CCh W xx000000

Serial Port E Extended Register SEER 00CDh W 00000000

Serial Port F Data Register SFDR 00D8h R/W xxxxxxxx

Serial Port F Address Register SFAR 00D9h W xxxxxxxx

Serial Port F Long Stop Register SFLR 00DAh W xxxxxxxx

Serial Port F Status Register SFSR 00DBh R 0xx00000

Table D-1.  Rabbit 3000A Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
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Serial Port F Control Register SFCR 00DCh W xx000000

Serial Port F Extended Register SFER 00DDh W 00000000

Table D-1.  Rabbit 3000A Internal I/O Registers (continued)

Register Name Mnemonic I/O Address R/W Reset
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NOTICE TO USERS

RABBIT SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COM-
PONENTS IN LIFE-SUPPORT DEVICES OR SYSTEMS UNLESS A SPECIFIC WRITTEN AGREE-
MENT REGARDING SUCH INTENDED USE IS ENTERED INTO BETWEEN THE CUSTOMER AND 
RABBIT SEMICONDUCTOR PRIOR TO USE. Life-support devices or systems are devices or systems 
intended for surgical implantation into the body or to sustain life, and whose failure to perform, when prop-
erly used in accordance with instructions for use provided in the labeling and user’s manual, can be reason-
ably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present in a system of any size. In 
order to prevent danger to life or property, it is the responsibility of the system designer to incorporate 
redundant protective mechanisms appropriate to the risk involved.

All Rabbit Semiconductor products are 100 percent functionally tested. Additional testing may include 
visual quality control inspections or mechanical defects analyzer inspections. Specifications are based on 
characterization of tested sample units rather than testing over temperature and voltage of each unit. Rabbit 
Semiconductor products may qualify components to operate within a range of parameters that is different 
from the manufacturer’s recommended range. This strategy is believed to be more economical and effective. 
Additional testing or burn-in of an individual unit is available by special arrangement.
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