

Holtek 32-Bit Microcontroller with Arm® Cortex®-M3 Core

HT32F12365/HT32F12366/HT32F22366 User Manual

Revision: V1.10 Date: November 22, 2018

www.holtek.com

Table of Contents

1	Introduction	29
	Overview	. 29
	Features	. 30
	Device Information	
	Block Diagram	
	block blagfairi	. 50
2	Document Conventions	37
3	System Architecture	38
	Arm® Cortex®-M3 Processor	. 38
	Bus Architecture	. 39
	Memory Organization	
	Memory Map	
	Embedded Flash Memory	
	Embedded SRAM Memory	
	AHB Peripherals	. 44
	APB Peripherals	. 44
1	Flash Memory Controller (FMC)	15
7	Introduction	
	Features	
	Functional Descriptions	
	Flash Memory Map	
	Flash Memory Architecture	
	Wait State Setting Page Erase	
	Mass Erase	
	Word Programming	
	Option Byte Description	
	Page Erase/Program Protection	
	Security Protection	
	Register Map	. 55
	Register Descriptions	. 56
	Flash Target Address Register – TADR	
	Flash Write Data Register – WRDR	
	Flash Operation Command Register – OCMR	. 58
	Flash Operation Control Register – OPCR	. 59
	Flash Operation Interrupt Enable Register – OIER	. 60
	Flash Operation Interrupt and Status Register – OISR	
	Flash Page Erase/Program Protection Status Register – PPSR	
	Flash Security Protection Status Register – CPSR	
	Flash Vector Mapping Control Register – VMCR	. 64

	Flash Manufacturer and Device ID Register – MDID	65
	Flash Page Number Status Register – PNSR	
	Flash Page Size Status Register – PSSR	
	Device ID Register – DID	
	Flash Pre-fetch Control Register – CFCR	68
	SRAM Booting Vector Register n – SBVTn (n = 0 ~ 3)	69
	Custom ID Register n – CIDRn (n = 0 ~ 3)	70
5	Power Control Unit (PWRCU)	71
	Introduction	71
	Features	
	Functional Descriptions	
	Backup Domain	
	V _{DD} Power Domain	
	1.5 V Power Domain	
	Operation Modes	
	Register Map	77
	Register Descriptions	78
	Backup Domain Status Register – BAKSR	
	Backup Domain Control Register – BAKCR	79
	Backup Domain Test Register – BAKTEST	81
	Low Voltage / Brown Out Detect Control and Status Register – LVDCSR	82
	Backup Register n – BAKREGn (n = 0 ~ 9)	83
6	Clock Control Unit (CKCU)	84
	Introduction	84
	Features	
	Function Descriptions	
	High Speed External Crystal Oscillator – HSE	
	High Speed Internal RC Oscillator – HSI	
	Auto Trimming of High Speed Internal RC Oscillator – HSI	
	Phase Locked Loop – PLL	89
	USB Phase Locked Loop – USB PLL	91
	Low Speed External Crystal Oscillator – LSE	93
	Low Speed Internal RC Oscillator – LSI	93
	Clock Ready Flag	
	System Clock (CK_SYS) Selection	
	HSE Clock Monitor	
	Clock Output Capability	
	Register Map	96
	Register Descriptions	
	Global Clock Configuration Register – GCFGR	
	Global Clock Control Register – GCCR	
	Global Clock Status Register – GCSR	100

Olahal Olahak Intarnunt Danistan OOID	404
Global Clock Interrupt Register – GCIR	
PLL Configuration Register – PLLCFGR	
PLL Control Register – PLLCR	
AHB Configuration Register – AHBCFGRAHB Clock Control Register – AHBCCR	
APB Clock Control Register – APBCCR0	
APB Clock Control Register 0 – APBCCR0	
APB Clock Control Register 1 – APBCCR1	
Clock Source Status Register – CKSTAPB Peripheral Clock Selection Register 0 – APBPCSR0	
APB Peripheral Clock Selection Register 1 – APBPCSR1	
HSI Control Register – HSICR	
HSI Auto Trimming Counter Register – HSIATCR	
Low Power Control Register – LPCR	
MCU Debug Control Register – MCUDBGCR	117
7 Reset Control Unit (RSTCU)	120
Introduction	120
Functional Descriptions	121
Power On Reset	
System Reset	
AHB and APB Unit Reset	121
Register Map	
Register Descriptions	
Global Reset Status Register – GRSR	
AHB Peripheral Reset Register – AHBPRSTR	
APB Peripheral Reset Register 0 – APBPRSTR0	
APB Peripheral Reset Register 1 – APBPRSTR1	
8 General Purpose I/O (GPIO)	128
Introduction	128
Features	129
Functional Descriptions	
Default GPIO Pin Configuration	
General Purpose I/O – GPIO	
GPIO Locking Mechanism	
Register Map	
-	
Register Descriptions Port A Data Direction Control Register – PADIRCR	
-	
Port A Input Function Enable Control Register – PAINER Port A Pull-Up Selection Register – PAPUR	
Port A Pull-Down Selection Register – PAPDR	
Port A Open Drain Selection Register – PAODR	
Port A Output Current Drive Selection Register – PADRVR	
TOILA Output Outfell Dilve Selection Register - FADRVR	130

Port A Lordy Position - PALOCKE	400
Port A Lock Register – PALOCKR	
Port A Output Data Register – PADOUTR	
Port A Output Set/Reset Control Register – PASRR	
Port A Output Reset Register – PARR	
Port B Data Direction Control Register – PBDIRCR	
Port B Input Function Enable Control Register – PBINER	
Port B Pull-Up Selection Register – PBPUR	
Port B Pull-Down Selection Register – PBPDR	
Port B Open Drain Selection Register – PBODR	
Port B Output Current Drive Selection Register – PBDRVR	
Port B Lock Register – PBLOCKR	
Port B Data Input Register – PBDINR	
Port B Output Data Register – PBDOUTR	
Port B Output Set/Reset Control Register – PBSRR	
Port B Output Reset Register – PBRR	
Port C Data Direction Control Register – PCDIRCR	
Port C Input Function Enable Control Register – PCINER	
Port C Pull-Up Selection Register – PCPUR	
Port C Pull-Down Selection Register – PCPDR	154
Port C Open Drain Selection Register – PCODR	155
Port C Output Current Drive Selection Register – PCDRVR	156
Port C Lock Register – PCLOCKR	157
Port C Data Input Register – PCDINR	158
Port C Output Data Register – PCDOUTR	158
Port C Output Set/Reset Control Register – PCSRR	159
Port C Output Reset Register – PCRR	160
Port D Data Direction Control Register – PDDIRCR	160
Port D Input Function Enable Control Register – PDINER	161
Port D Pull-Up Selection Register – PDPUR	162
Port D Pull-Down Selection Register – PDPDR	163
Port D Open Drain Selection Register – PDODR	164
Port D Output Current Drive Selection Register – PDDRVR	165
Port D Lock Register – PDLOCKR	
Port D Data Input Register – PDDINR	167
Port D Output Data Register – PDDOUTR	167
Port D Output Set/Reset Control Register – PDSRR	168
Port D Output Reset Register – PDRR	
Port E Data Direction Control Register – PEDIRCR	
Port E Input Function Enable Control Register – PEINER	170
Port E Pull-Up Selection Register – PEPUR	171
Port E Pull-Down Selection Register – PEPDR	
Port E Open Drain Selection Register – PEODR	
Port E Output Current Drive Selection Register – PEDRVR	
Port E Lock Register – PELOCKR	175

Port E Data Input Register – PEDINR	176
Port E Output Data Register – PEDOUTR	
Port E Output Set/Reset Control Register – PESRR	177
Port E Output Reset Register – PERR	178
Alternate Function Input/Output Control Unit (AFIO)	
Introduction	179
Features	180
Functional Descriptions	18
External Interrupt Pin Selection	18
Alternate Function	18
Lock Mechanism	18
Register Map	18
Register Descriptions	182
EXTI Source Selection Register 0 – ESSR0	18
EXTI Source Selection Register 1 – ESSR1	
GPIO x Configuration Low Register – GPxCFGLR (x = A, B, C, D, E)	
GPIO x Configuration High Register – GPxCFGHR (x = A, B, C, D, E)	18
10 Nested Vectored Interrupt Controller (NVIC)	
Introduction	18
Features	188
Function Descriptions	189
SysTick Calibration	18
Register Map	189
11 External Interrupt/Event Controller (EXTI)	19 [.]
Introduction	19
Features	19
Functional Descriptions	19
Wakeup Event Management	19
External Interrupt/Event Line Mapping	19
Interrupt and Debounce	19
Register Map	19
Register Descriptions	19
EXTI Interrupt Configuration Register n – EXTICFGRn (n = 0 ~ 15)	19
EXTI Interrupt Control Register – EXTICR	
EXTI Interrupt Edge Flag Register – EXTIEDGEFLGR	
EXTI Interrupt Edge Status Register – EXTIEDGESR	19
EXTI Interrupt Software Set Command Register – EXTISSCR	
	198

Analog to Digital Converter (ADC)	
Introduction	
Features	
Function Descriptions	
ADC Clock Setup	
Regular and High Priority Channel Selection	
Conversion Modes	
Start Conversion on External Event	
High Priority Group Management	
Sampling Time Setting	
Data Format and Alignment	
Analog Watchdog	
Interrupts	
PDMA Request	
Register Map	
Register Descriptions	
ADC Reset Register – ADCRST	
ADC Regular Conversion Mode Register – ADCCONV	
ADC High Priority Conversion Mode Register – ADCHCONV	
ADC Regular Conversion List Register 0 – ADCLST0	
ADC Regular Conversion List Register 1 – ADCLST1	
ADC Regular Conversion List Register 2 – ADCLST2	
ADC Regular Conversion List Register 3 – ADCLST3	
ADC High Priority Conversion List Register – ADCHLST	
ADC Input Offset Register n – ADCOFRn (n = 0 ~ 15)	
ADC Input Sampling Time Register n – ADCSTRn (n = 0 ~ 15)	
ADC Regular Conversion Data Register y – ADCDRy (y = 0 ~ 15)	
ADC High Priority Conversion Data Register y – ADCHDRy (y = 0 ~ 3)	
ADC Regular Trigger Control Register – ADCTCR	
ADC Regular Trigger Source Register – ADCTSR	
ADC High Priority Trigger Control Register – ADCHTCR	
ADC High Priority Trigger Source Register – ADCHTSR	
ADC Watchdog Control Register – ADCWCR	
ADC Watchdog Lower Threshold Register – ADCLTR	
ADC Watchdog Upper Threshold Register – ADCUTR	
ADC Interrupt Enable Register – ADCIER	
ADC Interrupt Raw Status Register – ADCIRAW	
ADC Interrupt Status Register – ADCISR	
ADC Interrupt Clear Register – ADCICLR	
ADC DMA Request Register – ADCDMAR	
Comparator (CMP)	
Introduction	

Function Descriptions	220
Function Descriptions Comparator Inputs and Output	
Comparator Voltage Reference	
Interrupts and Wakeup	
Power Mode and Hysteresis	
Comparator Write-Protected mechanism	
Register Map	
Register Descriptions	
Comparator Control Register n – CMPCRn (n = 0 or 1)	
Comparator Voltage Reference Value Register n – CVRVALRn (n = 0 or 1)	
Comparator Interrupt Enable Register n – CMPIERn (n = 0 or 1)	
Comparator Transition Flag Register n – CMPTFRn (n = 0 or 1)	246
General-Purpose Timer (GPTM)	247
Introduction	247
Features	248
Functional Descriptions	248
Counter Mode	
Clock Controller	
Trigger Controller	
Slave Controller	
Master Controller	25
Channel Controller	25
Input Stage	257
Output Stage	259
Update Management	263
Quadrature Decoder	264
Digital Filter	266
Clearing the CHxOREF when ETIF is high	266
Single Pulse Mode	267
Asymmetric PWM Mode	269
Time Interconnection	269
Trigger ADC Start	272
PDMA Request	272
Register Map	273
Register Descriptions	274
Timer Counter Configuration Register – CNTCFR	
Timer Mode Configuration Register – MDCFR	
Timer Trigger Configuration Register – TRCFR	
Timer Counter Register – CTR	
Channel 0 Input Configuration Register – CH0ICFR	
Channel 1 Input Configuration Register – CH1ICFR	
Channel 2 Input Configuration Register – CH2ICFR	
Channel 3 Input Configuration Register – CH3ICFR	

Channel 0 Output Configuration Register – CH0OCFR	
Channel 1 Output Configuration Register – CH1OCFR	
Channel 2 Output Configuration Register – CH2OCFR	
Channel 3 Output Configuration Register – CH3OCFR	
Channel Control Register – CHCTR	
Channel Polarity Configuration Register – CHPOLR	
Timer PDMA/Interrupt Control Register – DICTR	
Timer Interrupt Status Register - INTSR	
Timer Interrupt Status Register – INTSR Timer Counter Register – CNTR	
Timer Prescaler Register – PSCR	
· · · · · · · · · · · · · · · · · · ·	
Timer Counter Reload Register – CRR Channel 0 Capture/Compare Register – CH0CCR	
Channel 1 Capture/Compare Register – CH1CCR	
Channel 2 Capture/Compare Register – CH2CCR	
Channel 3 Capture/Compare Register – CH3CCR	
·	
Channel 0 Asymmetric Compare Register – CH0ACR Channel 1 Asymmetric Compare Register – CH1ACR	
Channel 2 Asymmetric Compare Register – CH1ACR	
Channel 3 Asymmetric Compare Register – CH3ACR	
Offamilie of Asymmetric Compare Register – OffsAcre	
15 Basic Function Timer (BFTM)	310
Introduction	310
	310
Features	
FeaturesFunctional Description	311
Features Functional Description Repetitive Mode	311
Features Functional Description Repetitive Mode One Shot Mode	311 311 312
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start	311 311 312
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start. Register Map	311 312 312 313
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start Register Map Register Descriptions	311 312 312 313
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start Register Map Register Descriptions BFTM Control Register – BFTMCR	311 312 312 313 313
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start Register Map Register Descriptions BFTM Control Register – BFTMCR BFTM Status Register – BFTMSR	
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start Register Map Register Descriptions BFTM Control Register – BFTMCR BFTM Status Register – BFTMSR BFTM Counter Register – BFTMCNTR	
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start Register Map Register Descriptions BFTM Control Register – BFTMCR BFTM Status Register – BFTMSR	
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start Register Map Register Descriptions BFTM Control Register – BFTMCR BFTM Status Register – BFTMSR BFTM Counter Register – BFTMCNTR	
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start Register Map Register Descriptions BFTM Control Register – BFTMCR BFTM Status Register – BFTMSR BFTM Counter Register – BFTMCNTR BFTM Compare Value Register – BFTMCMPR	
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start Register Map Register Descriptions BFTM Control Register – BFTMCR BFTM Status Register – BFTMSR BFTM Counter Register – BFTMCNTR BFTM Compare Value Register – BFTMCMPR 16 Motor Control Timer (MCTM) Introduction	311 312 312 313 313 314 315 315 316
Features. Functional Description Repetitive Mode. One Shot Mode. Trigger ADC Start. Register Map. Register Descriptions. BFTM Control Register – BFTMCR. BFTM Status Register – BFTMSR. BFTM Counter Register – BFTMCNTR. BFTM Compare Value Register – BFTMCMPR 16 Motor Control Timer (MCTM) Introduction. Features.	
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start. Register Map Register Descriptions BFTM Control Register – BFTMCR BFTM Status Register – BFTMSR BFTM Counter Register – BFTMCNTR BFTM Compare Value Register – BFTMCMPR 16 Motor Control Timer (MCTM) Introduction Features Functional Descriptions	
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start Register Map Register Descriptions BFTM Control Register – BFTMCR BFTM Status Register – BFTMSR BFTM Counter Register – BFTMCNTR BFTM Compare Value Register – BFTMCMPR 16 Motor Control Timer (MCTM) Introduction Features Functional Descriptions Counter Mode	
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start Register Map Register Descriptions BFTM Control Register – BFTMCR BFTM Status Register – BFTMSR BFTM Counter Register – BFTMCNTR BFTM Compare Value Register – BFTMCMPR 16 Motor Control Timer (MCTM) Introduction Features Functional Descriptions Counter Mode Clock Controller	
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start. Register Map Register Descriptions BFTM Control Register – BFTMCR BFTM Status Register – BFTMSR. BFTM Counter Register – BFTMCNTR BFTM Compare Value Register – BFTMCMPR 16 Motor Control Timer (MCTM) Introduction Features Functional Descriptions Counter Mode Clock Controller	
Features Functional Description Repetitive Mode One Shot Mode Trigger ADC Start Register Map Register Descriptions BFTM Control Register – BFTMCR BFTM Status Register – BFTMSR BFTM Counter Register – BFTMCNTR BFTM Compare Value Register – BFTMCMPR 16 Motor Control Timer (MCTM) Introduction Features Functional Descriptions Counter Mode Clock Controller	

Channel Controller	328
Input Stage	330
Output Stage	331
Update Management	341
Quadrature Decoder	342
Digital Filter	344
Clearing CHxOREF when ETIF is high	345
Single Pulse Mode	345
Asymmetric PWM Mode	348
Timer Interconnection	348
Trigger ADC Start	352
Lock Level Table	352
PDMA Request	353
Register Map	354
Register Descriptions	355
Timer Counter Configuration Register – CNTCFR	
Timer Mode Configuration Register – MDCFR	
Timer Trigger Configuration Register – TRCFR	
Timer Counter Register – CTR	
Channel 0 Input Configuration Register – CH0ICFR	
Channel 1 Input Configuration Register – CH1ICFR	
Channel 2 Input Configuration Register – CH2ICFR	
Channel 3 Input Configuration Register – CH3ICFR	
Channel 0 Output Configuration Register – CH0OCFR	
Channel 1 Output Configuration Register – CH1OCFR	
Channel 2 Output Configuration Register – CH2OCFR	
Channel 3 Output Configuration Register – CH3OCFR	
Channel Control Register – CHCTR	
Channel Polarity Configuration Register – CHPOLR	
Channel Break Configuration Register – CHBRKCFR	
Channel Break Control Register – CHBRKCTR	
Timer PDMA / Interrupt Control Register – DICTR	
Timer Event Generator Register – EVGR	384
Timer Interrupt Status Register – INTSR	386
Timer Counter Register – CNTR	
Timer Prescaler Register – PSCR	
Timer Counter Reload Register – CRR	389
Timer Repetition Register – REPR	390
Channel 0 Capture / Compare Register – CH0CCR	
Channel 1 Capture / Compare Register – CH1CCR	
Channel 2 Capture / Compare Register – CH2CCR	392
Channel 3 Capture / Compare Register – CH3CCR	
Channel 0 Asymmetric Compare Register – CH0ACR	394
Channel 1 Asymmetric Compare Register – CH1ACR	
Channel 2 Asymmetric Compare Register – CH2ACR	395

Channel 3 Asymmetric Compare Register – CH3ACR	399
17 Real Time Clock (RTC)	390
Introduction	396
Features	396
Functional Descriptions	39 [.]
RTC Related Register Reset	
Reading RTC Register	39
Low Speed Clock Configuration	39
RTC Counter Operation	
Interrupt and Wakeup Control	
RTCOUT Output Pin Configuration	
Register Map	40
Register Descriptions	40
RTC Counter Register – RTCCNT	
RTC Compare Register – RTCCMP	
RTC Control Register – RTCCR	
RTC Status Register – RTCSR	
RTC Interrupt and Wakeup Enable Register – RTCIWEN	40
8 Watchdog Timer (WDT)	
Introduction	40
Features	40
Functional Description	40
Register Map	40
Register Descriptions	40
Watchdog Timer Control Register – WDTCR	
Watchdog Timer Mode Register 0 – WDTMR0	
Watchdog Timer Mode Register 1 – WDTMR1	41
Watchdog Timer Status Register – WDTSR	41
Watchdog Timer Protection Register – WDTPR	
Watchdog Timer Clock Selection Register – WDTCSR	41
19 Inter-Integrated Circuit (I ² C)	41
Introduction	41
Features	41
Functional Descriptions	41
Two Wire Serial Interface	41
START and STOP Conditions	41
Data Validity	41
Addressing Format	41
Data Transfer and Acknowledge	41
Clock Synchronization	
Arbitration	42

General Call Addressing	
Bus Error	
Address Mask Enable	
Address Snoop	
Operation Mode	
Conditions of Holding SCL Line	
I ² C Timeout Function	
PDMA Interface	
Register Map	4
Register Descriptions	
I ² C Control Register – I2CCR	
I ² C Interrupt Enable Register – I2CIER	
I ² C Address Register – I2CADDR	
I ² C Status Register – I2CSR	
I ² C SCL High Period Generation Register – I2CSHPGR	
I ² C SCL Low Period Generation Register – I2CSLPGR	
I ² C Data Register – I2CDR	
I ² C Target Register – I2CTAR	
I ² C Address Mask Register – I2CADDMR	
1 0 7 taar ood maak 1 taglotor 1207 taar 1 tarriin taariin taariin taariin taariin taariin taariin taariin taar	
I ² C Address Snoop Register – I2CADDSR	
I ² C Address Snoop Register – I2CADDSRI ² C Timeout Register – I2CTOUT	
I ² C Address Snoop Register – I2CADDSR	
I ² C Address Snoop Register – I2CADDSR I ² C Timeout Register – I2CTOUT	
I ² C Address Snoop Register – I2CADDSR	
I ² C Address Snoop Register – I2CADDSR I ² C Timeout Register – I2CTOUT 20 Serial Peripheral Interface (SPI) Introduction Features Function Descriptions	
I ² C Address Snoop Register – I2CADDSR I ² C Timeout Register – I2CTOUT 20 Serial Peripheral Interface (SPI) Introduction Features Function Descriptions Master Mode	
I ² C Address Snoop Register – I2CADDSR I ² C Timeout Register – I2CTOUT 20 Serial Peripheral Interface (SPI) Introduction Features Function Descriptions Master Mode Slave Mode	
I ² C Address Snoop Register – I2CADDSR I ² C Timeout Register – I2CTOUT 20 Serial Peripheral Interface (SPI) Introduction Features Function Descriptions Master Mode Slave Mode SPI Serial Frame Format	
I ² C Address Snoop Register – I2CADDSR I ² C Timeout Register – I2CTOUT 20 Serial Peripheral Interface (SPI) Introduction Features Function Descriptions Master Mode Slave Mode SPI Serial Frame Format Status Flags	
I²C Address Snoop Register – I2CADDSR I²C Timeout Register – I2CTOUT 20 Serial Peripheral Interface (SPI) Introduction Features Function Descriptions Master Mode Slave Mode SPI Serial Frame Format Status Flags PDMA Interface	
I²C Address Snoop Register – I2CADDSR I²C Timeout Register – I2CTOUT 20 Serial Peripheral Interface (SPI) Introduction Features Function Descriptions Master Mode Slave Mode SPI Serial Frame Format Status Flags PDMA Interface Register Map	
I²C Address Snoop Register – I2CADDSR I²C Timeout Register – I2CTOUT	
I²C Address Snoop Register – I2CADDSR I²C Timeout Register – I2CTOUT. 20 Serial Peripheral Interface (SPI) Introduction Features Function Descriptions Master Mode Slave Mode SPI Serial Frame Format Status Flags PDMA Interface Register Map Register Descriptions SPI Control Register 0 – SPICR0	
I²C Address Snoop Register – I2CADDSR I²C Timeout Register – I2CTOUT 20 Serial Peripheral Interface (SPI) Introduction Features Function Descriptions Master Mode Slave Mode SPI Serial Frame Format Status Flags PDMA Interface Register Map Register Descriptions SPI Control Register 0 – SPICR0 SPI Control Register 1 – SPICR1	
I²C Address Snoop Register – I2CADDSR I²C Timeout Register – I2CTOUT. 20 Serial Peripheral Interface (SPI) Introduction Features. Function Descriptions Master Mode. Slave Mode. SPI Serial Frame Format. Status Flags. PDMA Interface. Register Map Register Descriptions. SPI Control Register 0 – SPICR0. SPI Control Register 1 – SPICR1. SPI Interrupt Enable Register – SPIIER	
I²C Address Snoop Register – I2CADDSR I²C Timeout Register – I2CTOUT. 20 Serial Peripheral Interface (SPI) Introduction Features Function Descriptions Master Mode Slave Mode SPI Serial Frame Format Status Flags PDMA Interface. Register Map Register Descriptions SPI Control Register 0 – SPICR0 SPI Control Register 1 – SPICR1 SPI Interrupt Enable Register – SPIIER SPI Clock Prescaler Register – SPICPR	
I²C Address Snoop Register – I2CADDSR I²C Timeout Register – I2CTOUT	
I²C Address Snoop Register – I2CADDSR I²C Timeout Register – I2CTOUT	
I²C Address Snoop Register – I2CADDSR I²C Timeout Register – I2CTOUT	

Features Function Descriptions Serial Data Format Baud Rate Generation Hardware Flow Control IrDA RS485 Mode Synchronous Master Mode Interrupts and Status PDMA Interface Register Map Register Descriptions USART Data Register – USRDR USART Control Register – USRCR USART Interrupt Enable Register – USRIER USART Status & Interrupt Flag Register – USRSIFR USART Timing Parameter Register – USRTPR USART IrDA Control Register – USRTPR	
Serial Data Format Baud Rate Generation Hardware Flow Control IrDA RS485 Mode Synchronous Master Mode Interrupts and Status PDMA Interface Register Map Register Descriptions USART Data Register – USRDR USART Control Register – USRCR USART FIFO Control Register – USRFCR USART Interrupt Enable Register – USRIER USART Status & Interrupt Flag Register – USRSIFR USART Timing Parameter Register – USRTPR	
Baud Rate Generation Hardware Flow Control IrDA RS485 Mode Synchronous Master Mode Interrupts and Status PDMA Interface Register Map Register Descriptions USART Data Register – USRDR USART Control Register – USRCR USART FIFO Control Register – USRFCR USART Interrupt Enable Register – USRIER USART Status & Interrupt Flag Register – USRSIFR USART Timing Parameter Register – USRTPR	
Hardware Flow Control IrDA. RS485 Mode. Synchronous Master Mode. Interrupts and Status PDMA Interface. Register Map. Register Descriptions. USART Data Register – USRDR. USART Control Register – USRCR. USART FIFO Control Register – USRFCR. USART Interrupt Enable Register – USRIER USART Status & Interrupt Flag Register – USRSIFR. USART Timing Parameter Register – USRTPR	
IrDA	
RS485 Mode Synchronous Master Mode Interrupts and Status PDMA Interface Register Map Register Descriptions USART Data Register – USRDR USART Control Register – USRCR USART FIFO Control Register – USRFCR USART Interrupt Enable Register – USRIER USART Status & Interrupt Flag Register – USRSIFR USART Timing Parameter Register – USRTPR	
Synchronous Master Mode Interrupts and Status PDMA Interface Register Map Register Descriptions USART Data Register – USRDR USART Control Register – USRCR USART FIFO Control Register – USRFCR USART Interrupt Enable Register – USRIER USART Status & Interrupt Flag Register – USRSIFR USART Timing Parameter Register – USRTPR	
Interrupts and Status PDMA Interface. Register Map Register Descriptions. USART Data Register – USRDR. USART Control Register – USRCR. USART FIFO Control Register – USRFCR. USART Interrupt Enable Register – USRIER. USART Status & Interrupt Flag Register – USRSIFR. USART Timing Parameter Register – USRTPR.	
PDMA Interface Register Map Register Descriptions USART Data Register – USRDR USART Control Register – USRCR USART FIFO Control Register – USRFCR USART Interrupt Enable Register – USRIER USART Status & Interrupt Flag Register – USRSIFR USART Timing Parameter Register – USRTPR	
Register Descriptions USART Data Register – USRDR USART Control Register – USRCR USART FIFO Control Register – USRFCR USART Interrupt Enable Register – USRIER USART Status & Interrupt Flag Register – USRSIFR USART Timing Parameter Register – USRTPR	
Register Descriptions USART Data Register – USRDR USART Control Register – USRCR USART FIFO Control Register – USRFCR USART Interrupt Enable Register – USRIER USART Status & Interrupt Flag Register – USRSIFR USART Timing Parameter Register – USRTPR	
USART Data Register – USRDR USART Control Register – USRCR USART FIFO Control Register – USRFCR USART Interrupt Enable Register – USRIER USART Status & Interrupt Flag Register – USRSIFR USART Timing Parameter Register – USRTPR	
USART Control Register – USRCR USART FIFO Control Register – USRFCR USART Interrupt Enable Register – USRIER USART Status & Interrupt Flag Register – USRSIFR USART Timing Parameter Register – USRTPR	
USART FIFO Control Register – USRFCR USART Interrupt Enable Register – USRIER USART Status & Interrupt Flag Register – USRSIFR USART Timing Parameter Register – USRTPR	
USART Interrupt Enable Register – USRIER USART Status & Interrupt Flag Register – USRSIFR USART Timing Parameter Register – USRTPR	
USART Status & Interrupt Flag Register – USRSIFRUSART Timing Parameter Register – USRTPR	
USART IrDA Control Register – IrDACR	
USART RS485 Control Register – RS485CR	
USART Synchronous Control Register – SYNCR	
USART Divider Latch Register – USRDLR	
USART Test Register – USRTSTR	
2 Universal Asynchronous Receiver Transmitter (UART)	4
Introduction	
Features	
Function Descriptions	
Serial Data Format	
Baud Rate Generation	
Interrupts and Status	
PDMA Interface	
Register Map	
Register Descriptions	
UART Data Register – URDR	
UART Control Register – URCR	
UART Interrupt Enable Register – URIER	
UART Status & Interrupt Flag Register – URSIFR	
UART Divider Latch Register – URDLR	

Introduction	4
Features	4
Functional Descriptions	4
Elementary Time Unit Counter	4
Guard Time Counter	5
Waiting Time Counter	5
Card Clock and Data Selection	5
Card Detection	5
SCI Data Transfer Mode	5
Interrupt Generator	5
PDMA Interface	5
Register Map	5
Register Descriptions	5
SCI Control Register – CR	5
SCI Status Register – SR	5
SCI Contact Control Register – CCR	5
SCI Elementary Time Unit Register – ETUR	5
SCI Guard Time Register – GTR	5
SCI Waiting Time Register – WTR	5
SCI Interrupt Enable Register – IER	5
SCI Interrupt Pending Register – IPR	5
SCI Transmit Buffer – TXB	5
SCI Receive Buffer – RXB	
SCI Prescaler Register – PSCR	5
4 USB Device Controller (USB)	5
Introduction	5
Features	5
Functional Descriptions	5
Endpoints	
EP SRAM	5
Serial Interface Engine – SIE	5
Double-Buffering	
Suspend Mode and Wake-up	5
Remote Wake-up	5
Register Map	5
Register Descriptions	5
USB Control and Status Register – USBCSR	
USB Interrupt Enable Register – USBIER	
USB Interrupt Status Register – USBISR	
USB Frame Count Register – USBFCR	
USB Device Address Register – USBDEVAR	
COB Bevice / tagleter CobbE v/ tr	
USB Endpoint 0 Control and Status Register – USBEP0CSR	

USB Endpoint 0 Interrupt Status Register – USBEP0ISR	533
USB Endpoint 0 Transfer Count Register – USBEP0TCR	
USB Endpoint 0 Configuration Register – USBEP0CFGR	
USB Endpoint 1 ~ 3 Control and Status Register – USBEPnCSR (n = 1 ~ 3)	
USB Endpoint 1 ~ 3 Interrupt Enable Register – USBEPnIER (n = 1 ~ 3)	
USB Endpoint 1 ~ 3 Interrupt Status Register – USBEPnISR (n = 1 ~ 3)	
USB Endpoint 1 ~ 3 Transfer Count Register – USBEPnTCR (n = 1 ~ 3)	
USB Endpoint 1 ~ 3 Configuration Register – USBEPnCFGR (n = 1 ~ 3)	
USB Endpoint 4 ~ 7 Control and Status Register – USBEPnCSR (n = 4 ~ 7)	
USB Endpoint 4 ~ 7 Interrupt Enable Register – USBEPnIER (n = 4 ~ 7)	
USB Endpoint 4 ~ 7 Interrupt Status Register – USBEPnISR (n = 4 ~ 7)	
USB Endpoint 4 ~ 7 Transfer Count Register – USBEPnTCR (n = 4 ~ 7)	
USB Endpoint 4 ~ 7 Configuration Register – USBEPnCFGR (n = 4 ~ 7)	
25 Parinhard Direct Memory Access (PDMA)	E 10
25 Peripheral Direct Memory Access (PDMA)	
Introduction	
Features	548
Functional Description	549
AHB Master	549
PDMA Channel	549
PDMA Request Mapping	549
Channel Transfer	550
Channel Priority	550
Transfer Request	551
Address Mode	551
Auto-Reload	552
Transfer Interrupt	552
Register Map	553
Register Descriptions	555
PDMA Channel n Control Register – PDMACHnCR (n = 0 ~ 11)	555
PDMA Channel n Source Address Register – PDMACHnSADR (n = 0 ~ 11)	557
PDMA Channel n Destination Address Register – PDMACHnDADR (n = 0 ~ 11)	557
PDMA Channel n Transfer Size Register – PDMACHnTSR (n = 0 ~ 11)	558
PDMA Channel n Current Transfer Size Register – PDMACHnCTSR (n = 0 ~ 11)	559
PDMA Interrupt Status Register 0 – PDMAISR0	560
PDMA Interrupt Status Register 1 – PDMAISR1	561
PDMA Interrupt Status Clear Register 0 – PDMAISCR0	562
PDMA Interrupt Status Clear Register 1 – PDMAISCR1	563
PDMA Interrupt Enable Register 0 – PDMAIER0	564
PDMA Interrupt Enable Register 1 – PDMAIER1	565
26 Extend Bus Interface (EBI)	566
Introduction	
Introduction	

Features	
Functional Descriptions	
Non-multiplexed 8-bit Data 8-bit Address Mode	
Non-multiplexed 16-bit Data N-bit Address Mode	
Multiplexed 16-bit Data, 16-bit Address Mode	
Multiplexed 8-bit Data, 24-bit Address Mode	
Page Read Operation Write Buffer and EBI Status	
Bus Turn-around and Idle Cycles	
AHB Transaction Width Conversion	
EBI Bank Access	
EBI Ready	
PDMA Request	
Register Map	
Register Descriptions	
EBI Control Register – EBICR	
EBI Page Control Register – EBIPCR	
EBI Status Register – EBISR	
EBI Address Timing Register n – EBIATRn (n = 0 ~ 3)	
EBI Read Timing Register n – EBIRTRn (n = 0 ~ 3)	
EBI Write Timing Register n – EBIWTRn (n = 0 ~ 3)	
EBI Parity Register n – EBIPR (n = 0 ~ 3)	
EBI Interrupt Enable Register – EBIIENR	
EBI Interrupt Flag Register – EBIIFR	
EBI Interrupt Clear Register – EBIIFCR	
7 Inter-IC Sound (I ² S)	
Introduction	5
Features	5
Functional Description	5
I ² S Master and Slave Mode	!
I ² S Clock Rate Generator	!
I ² S Interface Format	
FIFO Control and Arrangement	6
PDMA and Interrupt	6
Register Map	6
Register Descriptions	6
I ² S Control Register – I2SCR	
I ² S Interrupt Enable Register – I2SIER	
I ² S Clock Divider Register – I2SCDR	
I ² S TX Data Register – I2STXDR	
I ² S RX Data Register – I2SRXDR	
I ² S FIFO Control Register – I2SFCR	6

28 Cyclic Redundancy Check (CRC)	61
Introduction	
Features	
Function Descriptions	
CRC Computation	
Byte and Bit Reversal for CRC Computation	
CRC with PDMA	
Register Map	61
Register Descriptions	61
CRC Control Register – CRCCR	61
CRC Seed Register – CRCSDR	61
CRC Checksum Register – CRCCSR	61
CRC Data Register – CRCDR	61
29 AES Encrypt/Decrypt Interface (AES)	61
Introduction	
Features	61
Function Descriptions	
AES Mode Description	
AES Status	
AES PDMA Interface	62
AES Interrupt	62
AES Initial Vector	62
AES Word Swap	62
Register Map	62
Register Descriptions	62
AES Enable Register – ASE_CTRL	62
AES Status Register – AES_STAT	
AES DMA Register – AES_DMA	
AES Interrupt Status Register – AES_INTST	
AES Interrupt Enable Register – AES_INTEN	
AES DATA OUT Position AES DOUT	
AES DATA OUT Register – AES_DOUT AES Key Register n – AES_Keyn (n = 0 ~ 7)	
AES Initial Vector Register $n - AES_IVn (n = 0 \sim 7)$	
30 SDIO Host Controller (SDIO)	
Introduction	
Features	63
Functional Description	63
SD Clock	63

05 1 10(0001	63
Command	63
Response	63
Data	63
Buffer Status	63
Interrupt	63
DMA Request	63
Register Map	63
Register Description	64
Block Size Register – BLSIZE	
Block Count Register – BLCNT	64
Argument Register – ARG	64
Transfer Mode Register – TMR	
Command Register – CMD	
Response Register n – RESPn (n = 0 \sim 3)	
Data Port Register – DR	
Present State Register – PSR Control Register – CR	
Clock Control Register – CLKCR	
Timeout Control Register – TMOCR	
Software Reset Register – SWRST	
Status Register – SR	
Status Enable Register – SER	65
Interrupt Enable Register – IER	65
1 CMOS Sensor In	terface (CSIF
	·······
or HT32F22366 Only	
Introduction	65
THE OCCUPIT	
Features	65
Features	65
Features Functional Descriptions CSIF Signal CSIF Frame Timing	
Features Functional Descriptions CSIF Signal CSIF Frame Timing Pixel Data Format	65 65 66
Features Functional Descriptions CSIF Signal CSIF Frame Timing Pixel Data Format Window Capture	65 65 65 66 66
Features Functional Descriptions CSIF Signal CSIF Frame Timing Pixel Data Format Window Capture Row & Column Sub-Sampling	65 65 65 66 66
Features Functional Descriptions CSIF Signal CSIF Frame Timing Pixel Data Format Window Capture Row & Column Sub-Sampling PDMA Data Transmission – Trigger PDMA by RX	65 65 66 66 66
Features Functional Descriptions CSIF Signal CSIF Frame Timing. Pixel Data Format Window Capture Row & Column Sub-Sampling PDMA Data Transmission – Trigger PDMA by RX. Interrupts and Status	65 65 65 66 66 66
Features Functional Descriptions CSIF Signal CSIF Frame Timing Pixel Data Format Window Capture Row & Column Sub-Sampling PDMA Data Transmission – Trigger PDMA by RX Interrupts and Status Register Map	65 65 66 66 66 66 66
Features Functional Descriptions CSIF Signal	65 65 65 66 66 66 66 66
Features Functional Descriptions CSIF Signal CSIF Frame Timing Pixel Data Format Window Capture Row & Column Sub-Sampling PDMA Data Transmission – Trigger PDMA by RX Interrupts and Status Register Map	65 65 65 66 66 66 66 66

CSIF Window Capture Register 0 – CSIFWCR0	671
CSIF Window Capture Register 1 – CSIFWCR1	672
CSIF Sub-Sample Register – CSIFSMP	673
CSIF Column Sub-Sample Register – CSIFSMPCOL	674
CSIF Row Sub-Sample Register – CSIFSMPROW	675
CSIF FIFO Register n – CSIFFIFOn (n = 0 ~ 7)	676
CSIF Interrupt Enable Register – CSIFIER	677
CSIF Status Register – CSIFSR	678

List of Tables

Table 1	Features and Peripheral List	35
	Document Conventions	
	HT32F12365/12366/22366 Register Map	
	Flash Memory and Option Byte	
	Relationship Between Wait State Cycle and HCLK	
	Booting Modes	
	Option Byte Memory Map	
	Access Permission of Protected Main Flash Page	
	Access Permission When Security Protection is Enabled	
	FMC Register Map	
	Operation Mode Definitions	
Table 12.	Enter/Exit Power Saving Modes	76
	Power Status after System Reset	
	PWRCU Register Map	
Table 15.	Output Divider 2 Value Mapping	90
Table 16.	Feedback Divider 2 Value Mapping	90
	USB PLL Output Divider 2 Value Mapping	
Table 18.	USB PLL Feedback Divider 2 Value Mapping	92
Table 19.	CKOUT Clock Source	95
Table 20.	CKCU Register Map	96
Table 21.	RSTCU Register Map	. 122
Table 22.	AFIO, GPIO and I/O Pad Control Signal True Table	. 130
Table 23.	GPIO Register Map	. 131
Table 24.	AFIO Selection for Peripheral Map Example	. 181
Table 25.	AFIO Register Map	. 181
Table 26.	Exception types	. 186
Table 27.	NVIC Register Map	. 189
Table 28.	EXTI Register Map	. 194
Table 29.	Data Format in ADCDRy[15:0] (y = 0~15) and ADCHDRy[15:0] (y = 0~3)	. 210
Table 30.	A/D Converter Register Map	. 212
Table 31.	CMP Register Map	. 241
Table 32.	Counting Direction and Encoding Signals	. 265
Table 33.	Register Map of GPTM	. 273
Table 34.	GPTM internal Trigger Connection	. 279
Table 35.	BFTM Register Map	. 313
Table 36.	Compare Match Output Setup	. 332
Table 37.	Output Control Bits for Complementary Output with a Break Event Occurrence	. 340
Table 38.	Counting Direction and Encoding Signals	. 343
Table 39.	Lock Level Table	352

Table 40	MCTM Register Map	354
	MCTM Internal Trigger Connection	
	LSE Startup Mode Operating Current and Startup Time	
	RTCOUT Output Mode and Active Level Setting	
	RTC Register Map	
	Watchdog Timer Register Map	
	Conditions of Holding SCL line	
	I ² C Register Map	
	I ² C Clock Setting Example	
	SPI Interface Format Setup	
	SPI Mode Fault Trigger Conditions	
	SPI Master Mode SEL Pin Status	
	SPI Register Map	
	Baud Rate Deviation Error Calculation – CK_USART = 48 MHz	
	Table 2 Baud Rate Deviation Error Calculation – CK_USART = 96 MHz	
Table 55.	USART Register Map	473
Table 56.	Baud Rate Deviation Error Calculation – CK_UART = 48 MHz	490
Table 57.	Baud Rate Deviation Error Calculation – CK_UART = 96 MHz	490
Table 58.	UART Register Map	491
Table 59.	DI Field Based D _i Encoded Decimal Values	500
Table 60.	FI Field Based F _i Encoded Decimal Values	500
Table 61.	Possible ETU Values Obtained with the Fi/Di Ratio	500
Table 62.	SCI Register Map	507
Table 63.	Endpoint Characteristics	520
Table 64.	USB Data Types and Buffer Size	520
Table 65.	USB Register Map	523
Table 66.	Resume Event Detection	526
Table 67.	PDMA Channel Assignments	550
Table 68.	PDMA Address Modes	551
Table 69.	PDMA Register Map	553
Table 70.	EBI Maps the AHB Transactions Width to External Device Transactions	576
	EBI Maps the AHB Transactions Width to External Device Transactions Width Using Byte [0]	
Table 72.	EBI Register Map	579
Table 73.	Recommend F _S List @ 8 MHz PCLK	594
Table 74.	Recommend F _S List @ 48 MHz PCLK	594
Table 75.	Recommend F _S List @ 72 MHz PCLK	594
	Recommend F _S List @ 96 MHz PCLK	
Table 77.	I ² S Register Map	603
Table 78.	Register map of CRC	615
Table 79.	AES Register Map	624

Table 80.	Command Format	635
Table 81.	Response R1 Format	635
Table 82.	Response R2 Format	636
Table 83.	Response R3 Format	636
Table 84.	Response R6 Format	636
Table 85.	Response R7 Format	636
Table 86.	SDIO Command Register Fields and Values	638
Table 87.	SDIO Register Map	639
Table 88.	CSIF Signals	659
Table 89.	CSIF_MCK Output Setup - Refer to the CKCU Chapter	659
Table 90.	Pixel Data Format – Without Window-capturing and Sub-sampling	661
Table 91.	Window Capture Setting	662
Table 92.	Row & Column Sub-sampling Setting	664
Table 93.	Interrupts and Status	666
Table 94.	Interrupts Status	667
Table 95.	CSIF Register Map	667

List of Figures

Figure 1. Block Diagram
Figure 2. Cortex®-M3 Block Diagram
Figure 3. Bus Architecture
Figure 4. Memory Map41
Figure 5. Flash Memory Controller Block Diagram45
Figure 6. Flash Memory Map46
Figure 7. Vector Remapping
Figure 8. Page Erase Operation Flowchart
Figure 9. Mass Erase Operation Flowchart
Figure 10. Word Programming Operation Flowchart51
Figure 11. PWRCU Block Diagram71
Figure 12. Power On Reset / Power Down Reset Waveform
Figure 13. CKCU Block Diagram85
Figure 14. External Crystal, Ceramic and Resonators for HSE
Figure 15. The Block Diagram of HSI Auto Trimming
Figure 16. PLL block diagram
Figure 17. USB PLL Block Diagram91
Figure 18. External Crystal, Ceramic and Resonators for LSE
Figure 19. RSTCU Block Diagram
Figure 20. Power On Reset Sequence
Figure 21. GPIO Block Diagram
Figure 22. AFIO / GPIO Control Signal
Figure 23. AFIO Block Diagram
Figure 24. EXTI Channel Input Selection
Figure 25. EXTI Block Diagram
Figure 26. EXTI Wake-up Event Management
Figure 27. EXTI Interrupt Debounce Function
Figure 28. ADC Block Diagram
Figure 29. One Shot Conversion Mode
Figure 30. Continuous Conversion Mode
Figure 31. Regular Group Discontinuous Conversion Mode
Figure 32. High Priority Group Discontinuous Conversion Mode
Figure 33. High Priority Group Management
Figure 34. CMP with Digital I/O Block Diagram
Figure 35. 6-Bit Scaler for Comparator Voltage Reference Block Diagram
Figure 36. Interrupt Signals of Comparators
Figure 37. Wakeup Signals of Comparators
Figure 38. GPTM Block Diagram247
Figure 39. Up-counting Example

Figure 40.	Down-counting Example	. 249
Figure 41.	Center-aligned Counting Example	. 250
Figure 42.	GPTM Clock Selection Source	. 251
Figure 43.	Trigger Control Block	. 252
Figure 44.	Slave Controller Diagram	. 253
Figure 45.	GPTM in Restart Mode	. 253
Figure 46.	GPTM in Pause Mode	. 254
Figure 47.	GPTM in Trigger Mode	. 254
Figure 48.	Master GPTMn and Slave GPTMm Connection	. 255
Figure 49.	MTO Selection	. 255
Figure 50.	Capture/Compare Block Diagram	. 256
Figure 51.	Input Capture Mode	. 256
Figure 52.	PWM Pulse Width Measurement Example	. 257
Figure 53.	Channel 0 and Channel 1 Input Stage	. 258
Figure 54.	Channel 2 and Channel 3 Input Stage	. 258
Figure 55.	Output Stage Block Diagram	. 259
Figure 56.	Toggle Mode Channel Output Reference Signal (CHxPRE = 0)	. 260
Figure 57.	Toggle Mode Channel Output Reference Signal (CHxPRE = 1)	. 260
Figure 58.	PWM Mode Channel Output Reference Signal and Counter in Up-counting Mode	. 261
Figure 59.	PWM Mode Channel Output Reference Signal and Counter in Down-counting Mode	. 261
Figure 60.	PWM Mode Channel Output Reference Signal and Counter in Centre-align Mode	. 262
Figure 61.	Update Event Setting Diagram	. 263
Figure 62.	Input Stage and Quadrature Decoder Block Diagram	. 264
Figure 63.	Both TI0 and TI1 Quadrature Decoder Counting.	. 265
Figure 64.	GTn_ETI Pin Digital Filter Diagram with N = 2	. 266
Figure 65.	Clearing CHOxREF by ETIF	. 266
Figure 66.	Single Pulse Mode	. 267
Figure 67.	Immediate Active Mode Minimum Delay	. 268
Figure 68.	Asymmetric PWM Mode versus Center-aligned Counting Mode	. 269
Figure 69.	Pausing GPTM1 using the GPTM0 CH0OREF Signal	. 270
Figure 70.	Triggering GPTM1 with GPTM0 Update Event	. 270
Figure 71.	Trigger GPTM0 and GPTM1 with the GPTM0 CH0 Input	. 271
Figure 72.	GPTM PDMA Mapping Diagram	. 272
Figure 73.	BFTM Block Diagram	. 310
Figure 74.	BFTM – Repetitive Mode	311
Figure 75.	BFTM – One Shot Mode	. 312
Figure 76.	BFTM – One Shot Mode Counter Updating	. 312
Figure 77.	MCTM Block Diagram	. 316
Figure 78.	Up-counting Example	. 318
Figure 79.	Down-counting Example	. 319
Figure 80.	Center-aligned Counting Example	. 320

Figure 81. Update Event Dependent Repetition Mechanism Example	
Figure 82. MCTM Clock Selection Source	323
Figure 83. Trigger Control Block	324
Figure 84. Slave Controller Diagram	325
Figure 85. MCTM in Restart Mode	
Figure 86. MCTM in Pause Mode	
Figure 87. MCTM in Trigger Mode	
Figure 88. Master MCTMn and Slave GPTM Connection	327
Figure 89. MTO Selection	327
Figure 90. Capture/Compare Block Diagram	328
Figure 91. Input Capture Mode	328
Figure 92. PWM Pulse Width Measurement Example	329
Figure 93. Channel 0 and Channel 1 Input Stages	330
Figure 94. Channel 2 and Channel 3 Input Stages	330
Figure 95. Output Stage Block Diagram	331
Figure 96. Toggle Mode Channel Output Reference Signal – CHxPRE = 0.	
Figure 97. Toggle Mode Channel Output Reference Signal – CHxPRE = 1.	
Figure 98. PWM Mode Channel Output Reference Signal and Counter in U	p-counting Mode333
Figure 99. PWM Mode Channel Output Reference Signal and Counter in D	own-counting Mode 334
Figure 100. PWM Mode 1 Channel Output Reference Signal and Counter i	•
Mode	
Figure 101. Dead-time Insertion Performed for Complementary Outputs	
Figure 102. MCTM Break Signal Bolck Diagram	
Figure 103. MT_BRK Pin Digital Filter Diagram with N = 2	
Figure 104. Channel 3 Output with a Break Event Occurrence	
Figure 105. Channel 0 ~ 2 Complementary Outputs with a Break Event Oc	
Figure 106. Channel 0 ~ 2 Only One Output Enabled when Break Event Oo	
Figure 107. Hardware Protection When Both CHxO and CHxNO Are in Acti	
Figure 108. Update Event 1 Setup Diagram	
Figure 109. CHxE, CHxNE and CHxOM Updated by Update Event 2	
Figure 110. Update Event 2 Setup Diagram	
Figure 111. Input Stage and Quadature Decoder Block Diagram	
Figure 112. Both TI0 and TI1 Quadrature Decoder Counting	
Figure 113. MTn_ETI Pin Digital Filter Diagram with N = 2	
Figure 114. Clearing CHxOREF by ETIF	
Figure 115. Single Pulse Mode	
Figure 116. Immediate Active Mode Minimum Delay	
Figure 117. Asymmetric PWM Mode versus Center-aligned Counting mode	
Figure 118. Pausing GPTM0 Using the MCTM0 CH0OREF Signal	
Figure 119. Triggering GPTM0 with MCTM0 Update Event 1	
Figure 120. Trigger MCTM0 and GPTM0 with the MCTM0 CH0 Input	350

Figure 121	CH1XOR Input as Hall Sensor Interface	251
_	MCTM PDMA Mapping Diagram	
_	RTC Block Diagram	
_	Watchdog Timer Block Diagram	
_		
_	Watchdog Timer Behavior	
	START and STOP Condition	
· ·	Data Validity	
•	7-bit Addressing Mode	
-	10-bit Addressing Write Transmit Mode	
	10-bit Addressing Read Receive Mode	
_	I ² C Bus Acknowledge	
_	Clock Synchronization during Arbitration	
_	Two Master Arbitration Procedure	
	Master Transmitter Timing Diagram	
_	Master Receiver Timing Diagram	
	Slave Transmitter Timing Diagram	
_	Slave Receiver Timing Diagram	
_	SCL Timing Diagram	
Figure 140.	SPI Block Diagram	442
Figure 141.	SPI Single Byte Transfer Timing Diagram – CPOL = 0, CPHA = 0	444
Figure 142.	SPI Continuous Data Transfer Timing Diagram – CPOL = 0, CPHA = 0	445
Figure 143.	SPI Single Byte Transfer Timing Diagram – CPOL = 0, CPHA = 1	445
Figure 144.	SPI Continuous Transfer Timing Diagram – CPOL = 0, CPHA = 1	446
Figure 145.	SPI Single Byte Transfer Timing Diagram – CPOL = 1, CPHA = 0	446
Figure 146.	SPI Continuous Transfer Timing Diagram – CPOL = 1, CPHA = 0	447
Figure 147.	SPI Single Byte Transfer Timing Diagram – CPOL = 1, CPHA = 1	447
Figure 148.	SPI Continuous Transfer Timing Diagram – CPOL = 1, CPHA = 1	448
Figure 149.	SPI Multi-Master Slave Environment	449
Figure 150.	USART Block Diagram	462
Figure 151.	USART Serial Data Format	464
Figure 152.	USART Clock CK_USART and Data Frame Timing	464
Figure 153.	Hardware Flow Control between 2 USARTs	465
Figure 154.	USART RTS Flow Control	466
Figure 155.	USART CTS Flow Control	466
Figure 156.	IrDA Modulation and Demodulation	467
•	USART I/O and IrDA Block Diagram	
_	RS485 Interface and Waveform	
_	USART Synchronous Transmission Example	
_	8-bit Format USART Synchronous Waveform	
Figure 161.	UART Block Diagram	487

Figure 162.	UART Serial Data Format	. 489
Figure 163.	UART Clock CK_UART and Data Frame Timing	. 489
Figure 164.	SCI Block Diagram	. 498
Figure 165.	Character Frame and Compensation Mode	. 501
Figure 166.	Guard Time Duration	. 502
Figure 167.	Character and Block Waiting Time Duration – CWT and BWT	. 503
Figure 168.	SCI Card Detection Diagram	. 504
Figure 169.	SCI Interrupt Structure	. 506
Figure 170.	USB Block Diagram	. 519
Figure 171.	Endpoint Buffer Allocation Example	. 521
Figure 172.	Double-buffering Operation Example	. 522
Figure 173.	PDMA Block Diagram	. 548
Figure 174.	PDMA Request Mapping Architecture	. 549
Figure 175.	PDMA Channel Arbitration and Scheduling Example	. 551
Figure 176.	EBI Block Diagram	. 567
Figure 177.	EBI Non-multiplexed 8-bit Data, 8-bit Address Read Operation	. 568
Figure 178.	EBI Non-multiplexed 8-bit Data, 8-bit Address Write Operation	. 568
Figure 179.	EBI Non-multiplexed 16-bit Data, N-bit Address Read Operation	. 569
Figure 180.	EBI Non-multiplexed 16-bit Data, N-bit Address Write Operation	. 569
Figure 181.	An EBI Address Latch Setup Diagram	. 570
Figure 182.	EBI Multiplexed 16-bit Data, 16-bit Address Read Operation	. 570
Figure 183.	EBI Multiplexed 16-bit Data, 16-bit Address Write Operation	. 571
Figure 184.	EBI Multiplexed 8-bit Data, 24-bit Address Read Operation	. 571
Figure 185.	EBI Multiplexed 8-bit Data, 24-bit Address Write Operation	. 572
Figure 186.	EBI Non-multiplexed 8-bit Data, 8-bit Address Mode for Page Read Operation	. 572
Figure 187.	EBI Non-multiplexed 16-bit Data, N-bit Address Mode for Page Read Operation	. 573
Figure 188.	EBI Multiplexed 16-bit Data, 16-bit Address Mode for Page Read Operation	. 573
Figure 189.	EBI Multiplexed 8-bit Data, 24-bit Address Mode for Page Read Operation	. 573
Figure 190.	EBI Page Close Example	. 574
Figure 191.	EBI Inserts an IDLE Cycle between Transactions in the Same Bank (NOIDLE = 0)	. 575
Figure 192.	EBI De-asserts an IDLE Cycle between Transactions in the Same Bank (NOIDLE = 1).	. 575
Figure 193.	EBI Bank Memory Map	. 578
Figure 194.	I ² S Block Diagram	. 591
Figure 195.	Simple I ² S Master/Slave Configuration	. 592
Figure 196.	I ² S Clock Generator Diagram	. 593
Figure 197.	I ² S-justified Stereo Mode Waveforms	. 595
Figure 198.	I ² S-justified Stereo Mode Waveforms (32-bit Channel Enabled)	. 595
Figure 199.	Left-justified Stereo Mode Waveforms	. 596
Figure 200.	Left-justified Stereo Mode Waveforms (32-bit Channel Enabled)	. 596
Figure 201.	Right-justified Stereo Mode Waveforms	. 597
Figure 202.	Right-justified Stereo Mode Waveforms (32-bit Channel Enabled)	. 597

F	igure 203.	I ² S-justified Mono Mode Waveforms	598
F	igure 204.	I ² S-justified Mono Mode Waveforms (32-bit Channel Enabled)	598
F	igure 205.	Left-justified Mono Mode Waveforms	599
F	igure 206.	Left-justified Mono Mode Waveforms (32-bit Channel Enabled)	599
F	igure 207.	Right-justified Mono Mode Waveforms	600
F	igure 208.	Right-justified Mono Mode Waveforms (32-bit Channel Enabled)	600
F	igure 209.	I ² S-justified Repeat Mode Waveforms	601
F	igure 210.	I ² S-justified Repeat Mode Waveforms (32-bit Channel Enabled)	601
F	igure 211.	FIFO Data Content Arrangement for Various Modes	602
F	igure 212.	CRC Block Diagram	613
F	igure 213.	CRC Data Bit and Byte Reversal Example	614
F	igure 214.	AES Block Diagram	619
F	igure 215.	ECB Mode of AES	620
F	igure 216.	CBC Mode of AES	621
F	igure 217.	CTR Mode of AES	622
F	igure 218.	AES Interrupt	623
F	igure 219.	Initial Vector for CTR Mode	623
F	igure 220.	AES Word Swap Function	624
F	igure 221.	SDIO Bus Topology	632
F	igure 222.	SDIO Block Diagram	632
F	igure 223.	Normal Speed Timing	633
F	igure 224.	High Speed Timing	633
F	igure 225.	SDCLK Duty Cycle	633
F	igure 226.	"No Response" and "No Data" Operations	634
F	igure 227.	"Multiple" Block Read Operation	634
F	igure 228.	"Multiple" Block Write Operation	634
F	igure 229.	Command Format	635
F	igure 230.	Response Format	635
F	igure 231.	Usual Data Format for Standard Bus – only DAT0 used	636
F	igure 232.	Usual Data Format for Wide Bus – DAT0~DAT3 used	637
F	igure 233.	Wide Width Data Format for Standard Bus – Only DAT0 used	637
F	igure 234.	Wide Width Data Format for Wide Bus – DAT0~DAT3 used	637
F	igure 235.	CSIF Block Diagram	658
F	igure 236.	VSYNC & HSYNC Timing	660
F	igure 237.	CSIF Frame Timing	660
F	igure 238.	Image Structure	661
F	igure 239.	Proper Window Capture	662
F	igure 240.	Improper Window Capture	663
F	igure 241.	Row and Column Sub-sampling Example	665

1 Introduction

Overview

This user manual provides detailed information including how to use the HT32F12365/12366/22366 devices, system and bus architecture, memory organization and peripheral instructions. The target audiences for this document are software developers, application developers and hardware developers. For more information regarding pin assignment, package and electrical characteristics, please refer to the HT32F12365/12366/22366 datasheet.

The HT32F12365/12366/22366 devices are high performance and low power consumption 32-bit microcontrollers based around an Arm® Cortex®-M3 processor core. The Cortex®-M3 is a next-generation processor core which is tightly coupled with Nested Vectored Interrupt Controller (NVIC), SysTick timer, and including advanced debug support.

The HT32F12365/12366/22366 devices operate at a frequency of up to 96 MHz with a Flash accelerator to obtain maximum efficiency. It provides 256 KB of embedded Flash memory for code/data storage and up to 128 KB of embedded SRAM memory for system operation and application program usage. A variety of peripherals, such as ADC, I²C, USART, UART, SPI, I²S, PDMA, GPTM, MCTM, SCI, EBI, CRC-16/32, AES-128/256, USB2.0 FS, SDIO, CSIF and SWJ-DP (Serial Wire JTAG Debug Port), etc., are also implemented in the device series. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The above features ensure that the HT32F12365/12366/22366 devices are suitable for use in a wide range of applications, especially in areas such as white goods application control, power monitors, alarm systems, consumer products, handheld equipment, data logging applications, motor control, fingerprint recognition and so on.

Rev. 1.10 29 of 680 November 22, 2018

Features

■ Core

- 32-bit Arm® Cortex®-M3 processor core
- Up to 96 MHz operation frequency
- Single-cycle multiplication and hardware division
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer

On-chip Memory

- 256 KB on-chip Flash memory for instruction/data and options storage
- Up to 128 KB on-chip SRAM
- Supports multiple boot modes

■ Flash Memory Controller – FMC

- Flash accelerator to obtain maximum efficiency
- 32-bit word programming with In System Programming Interface (ISP) and In Application Programming (IAP)
- Flash protection capability to prevent illegal access

■ Reset Control Unit – RSTCU

 Supply supervisor: Power On Reset/Power Down Reset (POR/PDR), Brown-out Detector (BOD) and Programmable Low Voltage Detector (LVD)

■ Clock Control Unit – CKCU

- External 4 to 16 MHz crystal oscillator
- External 32.768 kHz crystal oscillator
- Internal 8 MHz RC oscillator trimmed to ± 2 % accuracy at 3.3 V operating voltage and 25 °C operating temperature
- Internal 32 kHz RC oscillator
- Integrated system clock PLL
- Independent clock divider and gating bits for peripheral clock sources

■ Power Management – PWRCU

- Single V_{DD} power supply: 2.0 V to 3.6 V
- Integrated 1.5 V LDO regulator for CPU core, peripherals and memories power supply
- ullet V_{BAT} battery power supply for RTC and backup registers
- Three power domains: V_{DD}, 1.5 V and Backup
- Four power saving modes: Sleep, Deep-Sleep1, Deep-Sleep2, Power-Down

■ External Interrupt/Event Controller – EXTI

- Up to 16 EXTI lines with configurable trigger source and type
- All GPIO pins can be selected as EXTI trigger source
- Source trigger type includes high level, low level, negative edge, positive edge or both edge
- Individual interrupt enable, wakeup enable and status bits for each EXTI line
- Software interrupt trigger mode for each EXTI line
- Integrated deglitch filter for short pulse blocking

■ Analog to Digital Converter – ADC

- 12-bit SAR ADC engine
- Up to 1 MSPS conversion rate
- Up to 16 external analog input channels
- External reference voltage input possibility
- Conversion range: $V_{REF+} \sim V_{REF-}$

■ Analog Comparator – CMP

- Rail-to-rail comparator
- Each comparator has configurable negative inputs used for flexible voltage selection
- Dedicated I/O pin or internal voltage reference provided by 6-bit scaler.
- Programmable hysteresis
- Programming speed and consumption
- Comparator output can be output to I/O or to timers or ADC trigger inputs
- 6-bit scaler can be configurable to dedicated I/O for voltage reference.
- Comparator has interrupt generation capability with wakeup from Sleep or Deep Sleep modes through the EXTI controller.

■ I/O Ports – GPIO

- Up to 80 GPIOs
- Port A ~ E are mapped on 16 external interrupts (EXTI)
- Almost I/O pins are configurable output driving current

■ Motor Control Timer – MCTM

- 16-bit up, down, up/down auto-reload counters
- Up to 4 independent channels for each timer
- 16-bit programmable prescaler allowing dividing the counter clock frequency by any factor between 1 and 65536
- Input Capture function
- Compare Match Output
- PWM waveform generation with Edge-aligned and Center-aligned Counting Modes
- Single Pulse Mode Output
- Complementary Outputs with programmable dead-time insertion
- Supports 3-phase motor control and hall sensor interface
- Break input to force the timer's output signals into a reset or fixed condition

■ PWM Generation and Capture Timer – GPTM

- 16-bit up, down, up/down auto-reload counters
- Up to 4 independent channels for each timer
- 16-bit programmable prescaler allowing dividing the counter clock frequency by any factor between 1 and 65536
- Input Capture function
- Compare Match Output
- PWM waveform generation with Edge-aligned and Center-aligned Counting Modes
- Single Pulse Mode Output
- Encoder interface controller with two inputs using quadrature decoder

■ Basic Function Timer – BFTM

- 32-bit compare/match count-up counters no I/O control features
- One shot mode counting stops after a match condition
- Repetitive mode restart counter after a match condition

■ Watchdog Timer – WDT

- 12-bit down counter with 3-bit prescaler
- Interrupt or reset event for the system
- Programmable watchdog timer window function
- Registers write protection function

■ Real Time Clock – RTC

- 32-bit up-counter with a programmable prescaler
- Alarm function
- Interrupt and Wake-up event

■ Inter-integrated Circuit – I²C

- Supports both master and slave modes with a frequency of up to 1 MHz
- Provides an arbitration function and clock synchronization
- Supports 7-bit and 10-bit addressing modes and general call addressing
- Supports slave multi-addressing mode with maskable address

■ Serial Peripheral Interface – SPI

- Supports both master and slave mode
- Frequency of up to (f_{PCLK}/2) MHz for master mode and (f_{PCLK}/3) MHz for slave mode
- FIFO Depth: 8 levels
- Multi-master and multi-slave operation

■ Universal Synchronous Asynchronous Receiver Transmitter – USART

- Supports both asynchronous and clocked synchronous serial communication modes
- Asynchronous operating baud rate up to $(f_{PCLK}/16)$ MHz and synchronous operating rate up to $(f_{PCLK}/8)$ MHz
- Capability of full duplex communication
- Fully programmable characteristics of serial communication including: word length, parity bit, stop bit and bit order
- Error detection: Parity, overrun, and frame error
- Supports Auto hardware flow control mode RTS, CTS
- IrDA SIR encoder and decoder
- RS485 mode with output enable control
- FIFO Depth: 8×9 bits for both receiver and transmitter

■ Universal Asynchronous Receiver Transmitter – UART

- Asynchronous serial communication operating baud-rate up to (f_{PCLK}/16) MHz
- Capability of full duplex communication
- Fully programmable characteristics of serial communication including: word length, parity bit, stop bit and bit order
- Error detection: Parity, overrun and frame error

■ Smart Card Interface – SCI

- Supports ISO 7816-3 Standard
- Character mode
- Single transmit buffer and single receive buffer
- 11-bit ETU (Elementary Time Unit) counter
- 9-bit guard time counter
- 24-bit general purpose waiting time counter
- Parity generation and checking
- Automatic character retry on parity error detection in transmission and reception modes

■ Inter-IC Sound – I²S

- Master or slave mode
- Mono and stereo
- I²S-justified, Left-justified, and Right-justified mode
- 8/16/24/32-bit sample size with 32-bit channel extended
- 8 × 32-bit TX & RX FIFO with PDMA supported
- 8-bit Fractional Clock Divider with rate control

■ Cyclic Redundancy Check – CRC

- Supports CRC16 polynomial: 0x8005, $X^{16}+X^{15}+X^2+1$
- Supports CCITT CRC16 polynomial: 0x1021, X¹⁶+X¹²+X⁵+1
- Supports IEEE-802.3 CRC32 polynomial: 0x04C11DB7, $X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1$
- Supports 1's complement, byte reverse & bit reverse operation on data and checksum
- Supports byte, half-word & word data size
- Programmable CRC initial seed value
- CRC computation done in 1 AHB clock cycle for 8-bit data and 4 AHB clock cycles for 32-bit data
- Supports PDMA to complete a CRC computation of a block of memory

■ Peripheral Direct Memory Access – PDMA

- 12 channels with trigger source grouping
- 8/16/32-bit width data transfer
- Supports Address increment, decrement or fixed mode
- 4-level programmable channel priority
- Auto reload mode
- Supports trigger source: ADC, SPI, EBI, CRC, USART, UART, I²C, I²S, GPTM, MCTM, SCI, AES, SDIO and software request

■ External Bus Interface – EBI

- Programmable interface for various memory types
- Translates the AHB transactions into the appropriate external device protocol
- 4 Memory bank regions and independent chip select control for each memory bank
- Accurate control of setup, strobe, hold and turn-around timing per memory bank
- Supports page mode read
- Automatic translation when AHB transaction width and external memory interface width is different
- Write buffer to decrease the stalling of the AHB write burst transaction
- Both multiplexed and non-multiplexed address and data line configurations
 - Up to 25 address lines
 - Up to 16-bit data bus width

- Universal Serial Bus Device Controller USB
 - Complies with USB 2.0 full-speed (12 Mbps) specification
 - On-chip USB full-speed transceiver
 - 1 control endpoint (EP0) for control transfer
 - 3 single-buffered endpoint (EP1~EP3) for bulk and interrupt transfer
 - 4 double-buffered endpoint (EP4~EP7) for bulk, interrupt and isochronous transfer
 - 1 KB EP SRAM used as the endpoint data buffers
- Advanced Encryption Standard AES
 - Supports AES Encrypt / Decrypt Function
 - Supports AES ECB/CBC/CTR mode
 - Supports Key Sizes of 128, 192 and 256 bits
 - Supports 4 words Initial Vector for CBC and CTR mode
 - 8 × 32 bits (Each IN and OUT FIFO Capacity) for 2 AES Data blocks
 - Supports Word Data Swap Function
 - Supports PDMA Interface
- Secure Digital Input Output Interface SDIO
 - Supports two different data bus modes: 1-bit (default) and 4-bit
 - Supports two different speed modes: Normal speed (default) and High speed
 - SD clock frequency of up to system frequency
 - SPI mode and MMC stream mode not supported
- CMOS Sensor Interface CSIF (HT32F22366 Only)
 - Up to 2048 × 2048 input resolution
 - Supports 8-bit YUV422 and Raw RGB formats
 - Up to (f_{HCLK}/3) MHz input pixel clock frequency
 - VSYNC and HSYNC various settings for image capture
 - Hardware window capture function
 - Fractional hardware sub-sample function
 - Dual FIFOs each with a capacity of 8 × 32 bits which can be read by PDMA or CPU
- Debug support
 - Serial Wire JTAG Debug Port SWJ-DP
 - 6 instruction comparators and 2 literal comparators for hardware breakpoint/watchpoint or code patch
 - 1-bit asynchronous trace (TRACESWO)
- Package and Operation Temperature
 - 46-pin QFN, 48/64/100-pin LQFP package
 - Operation temperature range: -40 °C to 85 °C

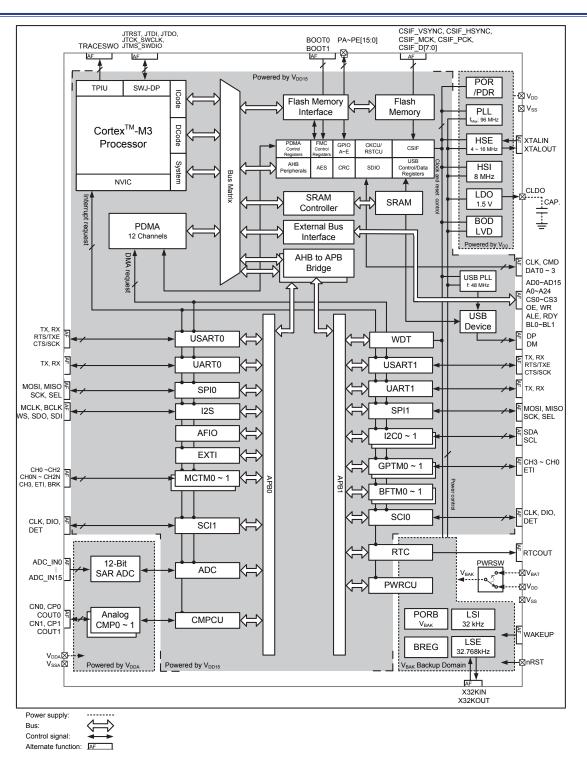

Device Information

Table 1. Features and Peripheral List

Peripherals		HT32F12365	HT32F12366	HT32F22366	
Main Flash (KB)		255	255	255	
Option Bytes Fla	sh (KB)	1	1	1	
SRAM (KB)		64	128	128	
	MCTM	2			
	GPTM	2			
Timers	BFTM	2			
	RTC	1			
	WDT	1			
	CSIF	_	_	1	
	USB	1			
	SCI	2			
Communication	USART	2			
Communication	UART	2			
	SPI	2			
	I ² C	2			
	I ² S	1			
PDMA		12 channels			
AES		1			
SDIO		1			
EBI		1			
CRC		1			
GPIO		Up to 80			
EXTI		16			
12-bit ADC		1			
Number of chann	nels	Max. 16 Channels			
Comparator		2			
CPU frequency		Up to 96 MHz			
Operating voltag	е	2.0 V ~ 3.6 V			
Operating tempe	rature	-40 °C ~ 85 °C			
Package		46-pin QFN, 48/64/100-pin LQFP			

Block Diagram

Note: The AHB peripheral function, CSIF, is only available in the HT32F22366.

Figure 1. Block Diagram

2 Document Conventions

Unless otherwise specified, this document uses the conventions which showed as follows.

Table 2. Document Conventions

Notation	Example	Description
0x	0x5a05	The number string with a 0x prefix indicates a hexadecimal number.
0xnnnn_nnnn	0x2000_0100	32-bit Hexadecimal address or data.
b	b0101	The number string with a lowercase b prefix indicates a binary number.
NAME [n]	ADDR [5]	Specific bit of NAME. NAME can be a register or field of register. For example, ADDR [5] means bit 5 of ADDR register (field).
NAME [m:n]	ADDR [11:5]	Specific bits of NAME. NAME can be a register or field of register. For example, ADDR [11:5] means bit 11 to 5 of ADDR register (field).
X	b10X1	Don't care notation which means any value is allowed.
RW	19 18	Software can read and write to this bit.
RO	3 2 HSIRDY HSERDY RO	Software can only read this bit. Write operation has no effort.
RC	1 0 PDF BAK_PORF RC 0 RC 1	Software can read this bit. Read operation clears it to 0 automatically.
WC	3 2 SERDYF PLLRDYF WC 0 WC 0	Software can read this bit or clear it by writing 1. Write 0 to it has no effort.
WO	31 30 DB_CKSRC WO 0 WO 0	Software can only write to this bit. Read operation always returns 0.
Reserved	1 0 LLRDY Reserved RO 0	Reserved bit(s) for future use. Software should not rely on the value of the reserved bit. In general case, reserved bits are set to 0. Note that reserved bit must be kept at reset value.
Word		Data length of word is 32-bit.
Half-word		Data length of half-word is 16-bit.
Byte		Data length of byte is 8-bit.

3 System Architecture

The system architecture of the HT32F12365/12366/22366 series of devices that includes the Arm® Cortex®-M3 processor, bus architecture and memory organization will be described in the following sections. The Cortex®-M3 is a next generation processor core which offers many new features. Integrated and advanced features make the Cortex®-M3 processor suitable for high performance and low power microcontroller market. In brief, Cortex®-M3 processor includes three AHB-Lite buses, ICode, DCode, and System bus. All memory accesses of Cortex®-M3 are performed on those three buses according to the different purpose and target memory space. The memory organization with Harvard architecture, pre-defined memory map, and up to 4 GB memory space makes the system flexible and extendable.

Arm® Cortex®-M3 Processor

Cortex®-M3 is a general purpose 32-bit processor core which very suitable for high performance and low power microcontroller market. It offers many new features including a Thumb-2 instruction sets, hardware divide, low latency interrupt respond time, atomic bit-banding access, and multiple buses for simultaneous accesses. Cortex®-M3 is based on ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals are also provided by the Cortex®-M3 including:

- Internal Bus Matrix connected with ICode bus, DCode bus, System bus, Private Peripheral Bus (PPB), and debug accesses (AHB-AP)
- Nested Vectored Interrupt Controller (NVIC)
- Flash Patch and Breakpoint (FPB)
- Data Watchpoint and Trace (DWT)
- Instrument Trace Macrocell (ITM)
- Memory Protection Unit (MPU)
- Serial Wire JTAG Debug Port (SWJ-DP)
- Embedded Trace Macrocell (ETM)
- Trace Port Interface Unit (TPIU)

The following figure shows the Cortex®-M3 block diagram. For more information, please refer to Arm® Cortex®-M3 Technical Reference Manual.



Figure 2. Cortex®-M3 Block Diagram

Bus Architecture

The HT32F12365/12366/22366 series consists of four master and six slaves in the bus architecture. Cortex®-M3 ICode, DCode, System bus, and Peripheral Direct Memory Access (PDMA) are the masters, internal SRAM, internal Flash memory, AHB peripherals, external bus interface and two AHB to APB bridges are the slaves. The ICode bus is used for instruction and vector fetches from Code region (0x0000_0000 ~ 0x1FFF_FFFF) to Cortex®-M3 core. The DCode bus is used for data load/stores and debugging accesses of Code region. Similarly, the System bus is used for instruction/vector fetches, data load/stores, and debugging accesses of system regions. The system regions include internal SRAM region and peripheral region. All of these master buses are based on 32-bit Advanced High-performance Bus-Lite (AHB-Lite) protocol. The following figure shows the bus architecture of HT32F12365/12366/22366 series.

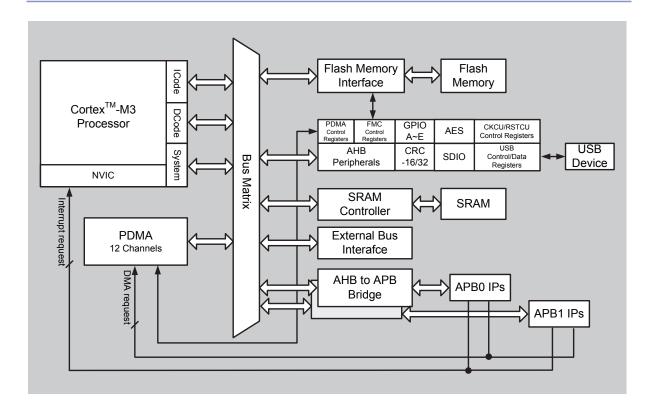


Figure 3. Bus Architecture

Memory Organization

Arm® Cortex®-M3 is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. The instruction code and data bus share the same memory address space but in different address ranges. The maximum addressing range of the Cortex®-M3 is 4 GB since it has 32-bit bus address width. Additionally, a pre-defined memory map is provided by the Cortex®-M3 to reduce the software complexity of repeated implementation of different device venders. However, some regions are used by Arm® Cortex®-M3 system peripherals. Refer to Arm® Cortex®-M3 Technical Reference Manual for more information. The following figure shows the memory map of the HT32F12365/12366/22366 series of devices, including Code, SRAM, peripheral, and other pre-defined regions.

Memory Map

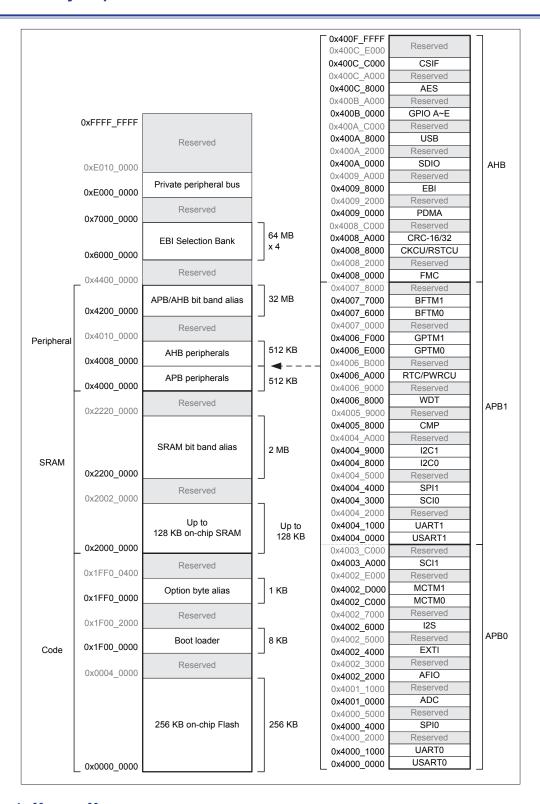


Figure 4. Memory Map

Table 3. HT32F12365/12366/22366 Register Map

0x4000_0000 0x4000_0FFF USART0 0x4000_1000 0x4000_1FFF UART0 0x4000_2000 0x4000_3FFF Reserved 0x4000_4000 0x4000_4FFF SPI0 0x4000_5000 0x4001_0FFF Reserved 0x4001_0000 0x4001_0FFF ADC 0x4001_1000 0x4002_1FFF Reserved 0x4002_2000 0x4002_2FFF AFIO 0x4002_3000 0x4002_3FFF Reserved 0x4002_4000 0x4002_5FFF Reserved 0x4002_5000 0x4002_5FFF Reserved 0x4002_6000 0x4002_5FFF Reserved 0x4002_6000 0x4002_5FFF Reserved 0x4002_7000 0x4002_5FFF Reserved 0x4002_0000 0x4002_0FFF MCTM0 0x4002_0000 0x4003_9FFF Reserved 0x4004_2000 0x4003_9FFF Reserved 0x4004_1000 0x4004_9FFF USART1 0x4004_2000 0x4004_9FFF USART1 0x4004_2000 0x4004_9FF SCI0	Start Address	End Address	End Address Peripheral					
0x4000_2000 0x4000_3FFF Reserved 0x4000_4000 0x4000_4FFF SPI0 0x4000_5000 0x4000_FFFF Reserved 0x4001_0000 0x4001_0FFF ADC 0x4001_1000 0x4002_1FFF Reserved 0x4002_2000 0x4002_2FFF AFIO 0x4002_3000 0x4002_3FFF Reserved 0x4002_5000 0x4002_3FFF Reserved 0x4002_5000 0x4002_5FFF Reserved 0x4002_5000 0x4002_5FFF Reserved 0x4002_5000 0x4002_6FFF I'S 0x4002_7000 0x4002_8FFF Reserved 0x4002_7000 0x4002_8FFF Reserved 0x4002_000 0x4002_9FFF MCTMM 0x4002_000 0x4003_9FFF Reserved 0x4003_A000 0x4003_9FF Reserved 0x4004_1000 0x4004_1FFF USART1 0x4004_2000 0x4004_1FF UART1 0x4004_3000 0x4004_1FF SPI1 0x4004_4000 0x4004_1FF SPI1 0x4	0x4000_0000	0x4000_0FFF	-					
0x4000_4000 0x4000_4FFF SPI0 0x4001_5000 0x4000_FFFF Reserved 0x4001_0000 0x4001_0FFF ADC 0x4001_1000 0x4002_1FFF Reserved 0x4002_2000 0x4002_3FFF Reserved 0x4002_3000 0x4002_3FFF Reserved 0x4002_4000 0x4002_4FFF EXTI 0x4002_5000 0x4002_5FFF Reserved 0x4002_6000 0x4002_6FFF I'S 0x4002_7000 0x4002_6FFF I'S 0x4002_7000 0x4002_6FFF MCTM0 0x4002_0000 0x4002_0FFF MCTM0 0x4002_0000 0x4003_9FFF Reserved 0x4003_A000 0x4003_9FFF Reserved 0x4003_C000 0x4003_9FFF Reserved 0x4004_0000 0x4004_0FF USART1 0x4004_1000 0x4004_1FF UART1 0x4004_2000 0x4004_1FF Reserved 0x4004_3000 0x4004_1FF SPI1 0x4004_5000 0x4004_1FF I'C0 0x4004_800	0x4000_1000	0x4000_1FFF	UART0					
0x4000_5000 0x4000_0FFFF Reserved 0x4001_0000 0x4001_0FFF ADC 0x4001_1000 0x4002_1FFF Reserved 0x4002_2000 0x4002_2FFF AFIO 0x4002_3000 0x4002_3FFF Reserved 0x4002_4000 0x4002_3FFF Reserved 0x4002_5000 0x4002_5FFF Reserved 0x4002_6000 0x4002_6FFF I'S 0x4002_7000 0x4002_BFFF Reserved 0x4002_7000 0x4002_BFFF Reserved 0x4002_0000 0x4002_BFFF MCTMM 0x4002_0000 0x4002_BFFF Reserved 0x4002_0000 0x4003_9FFF Reserved 0x4003_A000 0x4003_BFFF SCI1 0x4004_0000 0x4004_0FFF USART1 0x4004_0000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_4000 0x4004_3FFF I'C0 0x4004_5000 0x4004_9FFF I'C1 0x4004_8000 0x4004_9FFF I'C0 0	0x4000_2000	0x4000_3FFF	Reserved					
0x4001_0000 0x4001_0FFF ADC 0x4001_1000 0x4002_1FFF Reserved 0x4002_2000 0x4002_2FFF AFIO 0x4002_3000 0x4002_3FFF Reserved 0x4002_4000 0x4002_4FFF EXTI 0x4002_5000 0x4002_5FFF Reserved 0x4002_7000 0x4002_6FFF I'S 0x4002_7000 0x4002_BFFF Reserved 0x4002_0000 0x4002_DFFF MCTM0 0x4002_0000 0x4002_DFFF MCTM1 0x4002_0000 0x4003_9FFF Reserved 0x4003_A000 0x4003_FFF Reserved 0x4004_0000 0x4003_FFF Reserved 0x4004_0000 0x4004_0FFF USART1 0x4004_1000 0x4004_1FFF USART1 0x4004_1000 0x4004_1FFF Reserved	0x4000_4000	0x4000_4FFF	SPI0					
0x4001_1000 0x4002_1FFF Reserved 0x4002_2000 0x4002_2FFF AFIO 0x4002_3000 0x4002_3FFF Reserved 0x4002_4000 0x4002_4FFF EXTI 0x4002_6000 0x4002_5FFF Reserved 0x4002_6000 0x4002_6FFF i'S 0x4002_7000 0x4002_BFFF Reserved 0x4002_0000 0x4002_CFFF MCTM0 0x4002_0000 0x4002_DFFF MCTM1 0x4002_0000 0x4003_BFFF Reserved 0x4003_A000 0x4003_BFFF SCI1 0x4004_0000 0x4004_0FFF USART1 0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_2FFF SCI0 0x4004_4000 0x4004_2FFF SPI1 0x4004_8000 0x4004_2FFF Reserved 0x4004_8000 0x4004_9FFF i'C0 0x4004_8000 0x4004_9FFF i'C1 0x4004_8000 0x4006_8FFF CMP 0x4006_8000<	0x4000_5000	0x4000_FFFF	Reserved					
0x4002_2000 0x4002_2FFF AFIO 0x4002_3000 0x4002_3FFF Reserved 0x4002_4000 0x4002_4FFF EXTI 0x4002_6000 0x4002_6FFF Reserved 0x4002_6000 0x4002_6FFF I²S 0x4002_7000 0x4002_BFFF Reserved 0x4002_0000 0x4002_DFFF MCTM0 0x4002_D000 0x4003_9FFF Reserved 0x4002_E000 0x4003_9FFF Reserved 0x4003_A000 0x4003_BFFF SCI1 0x4004_0000 0x4004_0FFF USART1 0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_3000 0x4004_4FFF SPI1 0x4004_5000 0x4004_FFF Reserved 0x4004_8000 0x4004_8FFF I²C0 0x4004_A000 0x4004_8FFF I²C1 0x4004_B000 0x4006_8FFF CMP 0x4006_8000 0x4006_8FF WDT 0x4006_8000	0x4001_0000	0x4001_0FFF	ADC					
0x4002_3000 0x4002_4FFF Reserved 0x4002_4000 0x4002_4FFF EXTI 0x4002_5000 0x4002_5FFF Reserved 0x4002_7000 0x4002_BFFF Reserved 0x4002_C000 0x4002_CFFF MCTM0 0x4002_D000 0x4002_DFFF MCTM1 0x4002_D000 0x4002_DFFF MCTM1 0x4002_D000 0x4003_9FFF Reserved 0x4003_A000 0x4003_BFFF SCI1 0x4003_A000 0x4003_FFF Reserved 0x4004_0000 0x4004_0FFF USART1 0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_2FFF Reserved 0x4004_4000 0x4004_4FFF SPI1 0x4004_8000 0x4004_4FFF I²C0 0x4004_9000 0x4004_9FFF I²C1 0x4004_9000 0x4004_9FFF I²C1 0x4004_9000 0x4006_FFF Reserved 0x4005_8000 0x4006_FFF Reserved 0x40	0x4001_1000	0x4002_1FFF	Reserved					
0x4002_4000 0x4002_4FFF EXTI 0x4002_5000 0x4002_5FFF Reserved 0x4002_6000 0x4002_6FFF I'S 0x4002_7000 0x4002_FFF Reserved 0x4002_0000 0x4002_CFFF MCTM0 0x4002_D000 0x4002_DFFF MCTM1 0x4002_E000 0x4003_9FFF Reserved 0x4003_A000 0x4003_9FFF Reserved 0x4003_C000 0x4003_9FFF Reserved 0x4004_0000 0x4004_9FFF USART1 0x4004_0000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_3000 0x4004_3FFF SCI0 0x4004_3000 0x4004_7FFF Reserved 0x4004_9000 0x4004_7FFF Reserved 0x4004_9000 0x4004_9FFF I'C0 0x4004_9000 0x4004_9FFF I'C1 0x4005_8000 0x4006_7FFF Reserved 0x4006_8000 0x4006_9FFF Reserved	0x4002_2000	0x4002_2FFF	AFIO					
0x4002_4000 0x4002_4FFF EXTI 0x4002_5000 0x4002_5FFF Reserved 0x4002_7000 0x4002_BFFF Reserved 0x4002_C000 0x4002_CFFF MCTM0 0x4002_D000 0x4002_DFFF MCTM1 0x4002_E000 0x4003_9FFF Reserved 0x4003_A000 0x4003_BFFF SCI1 0x4003_C000 0x4003_FFFF Reserved 0x4004_0000 0x4004_OFFF USART1 0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_4000 0x4004_3FFF I°C0 0x4004_3000 0x4004_7FFF Reserved 0x4004_8000 0x4004_7FFF Reserved 0x4004_8000 0x4004_9FFF I°C1 0x4004_A000 0x4004_9FFF I°C1 0x4005_8000 0x4006_7FFF Reserved 0x4006_9000 0x4006_9FFF Reserved 0x4006_9000 0x4006_9FFF Reserved <t< td=""><td>0x4002_3000</td><td>0x4002_3FFF</td><td>Reserved</td><td>ADDO</td></t<>	0x4002_3000	0x4002_3FFF	Reserved	ADDO				
0x4002_6000 0x4002_6FFF I²S 0x4002_7000 0x4002_BFFF Reserved 0x4002_C000 0x4002_CFFF MCTM0 0x4002_D000 0x4002_DFFF MCTM1 0x4003_A000 0x4003_BFFF SCI1 0x4003_C000 0x4003_FFFF Reserved 0x4004_0000 0x4004_OFFF USART1 0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_3000 0x4004_3FFF SCI0 0x4004_4000 0x4004_7FF Reserved 0x4004_5000 0x4004_7FF Reserved 0x4004_8000 0x4004_8FF I²C0 0x4004_8000 0x4004_8FF I²C1 0x4004_9000 0x4004_9FF I²C1 0x4004_8000 0x4005_8FF CMP 0x4005_8000 0x4006_8FF WDT 0x4006_8000 0x4006_8FF WDT 0x4006_9000 0x4006_8FF Reserved 0x4006_B000 <t< td=""><td>0x4002_4000</td><td>0x4002_4FFF</td><td>EXTI</td><td>APBU</td></t<>	0x4002_4000	0x4002_4FFF	EXTI	APBU				
0x4002_7000 0x4002_BFFF Reserved 0x4002_C000 0x4002_CFFF MCTM0 0x4002_D000 0x4002_DFFF MCTM1 0x4002_E000 0x4003_9FFF Reserved 0x4003_A000 0x4003_BFFF SCI1 0x4003_C000 0x4003_FFFF Reserved 0x4004_0000 0x4004_0FFF USART1 0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_3000 0x4004_3FFF SPI1 0x4004_3000 0x4004_4FFF SPI1 0x4004_8000 0x4004_8FFF I°C0 0x4004_8000 0x4004_9FFF I°C1 0x4004_9000 0x4005_FFF Reserved 0x4005_8000 0x4006_8FF WDT 0x4006_8000 0x4006_8FF WDT 0x4006_9000 0x4006_AFFF REserved 0x4006_B000 0x4006_FFF GPTM0 0x4006_B000 0x4006_FFF GPTM0 0x4006_F000	0x4002_5000	0x4002_5FFF	Reserved					
0x4002_C000 0x4002_CFFF MCTM0 0x4002_D000 0x4002_DFFF MCTM1 0x4002_E000 0x4003_9FFF Reserved 0x4003_A000 0x4003_BFFF SCI1 0x4003_C000 0x4003_FFFF Reserved 0x4004_0000 0x4004_0FFF USART1 0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_3000 0x4004_4FFF SPI1 0x4004_8000 0x4004_8FFF I°C0 0x4004_8000 0x4004_9FFF I°C1 0x4004_A000 0x4004_9FFF I°C1 0x4004_A000 0x4005_8FF CMP 0x4005_8000 0x4006_8FF WDT 0x4006_8000 0x4006_8FF WDT 0x4006_8000 0x4006_AFFF REserved 0x4006_B000 0x4006_AFFF Reserved 0x4006_B000 0x4006_FFF GPTM0 0x4006_F000 0x4006_FFF GPTM1 0x4007_0000	0x4002_6000	0x4002_6FFF	I ² S					
0x4002_D000 0x4002_DFFF MCTM1 0x4002_E000 0x4003_9FFF Reserved 0x4003_A000 0x4003_BFFF SCI1 0x4003_C000 0x4003_FFFF Reserved 0x4004_0000 0x4004_0FFF USART1 0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_4000 0x4004_4FFF SPI1 0x4004_5000 0x4004_7FFF Reserved 0x4004_8000 0x4004_9FFF I²C0 0x4004_9000 0x4004_9FFF I²C1 0x4004_A000 0x4005_7FFF Reserved 0x4005_8000 0x4005_8FFF CMP 0x4006_8000 0x4006_8FFF WDT 0x4006_8000 0x4006_9FFF Reserved 0x4006_A000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_BFFF GPTM0 0x4006_B000 0x4006_FFFF GPTM1 0x4006_F000 0x4006_FFFF Reserved 0x4007	0x4002_7000	0x4002_BFFF	Reserved					
0x4002_E000 0x4003_9FFF Reserved 0x4003_A000 0x4003_BFFF SCI1 0x4003_C000 0x4003_FFFF Reserved 0x4004_0000 0x4004_0FFF USART1 0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_4000 0x4004_4FFF SPI1 0x4004_5000 0x4004_7FFF Reserved 0x4004_8000 0x4004_8FFF I²C0 0x4004_9000 0x4004_9FFF I²C1 0x4004_A000 0x4005_7FFF Reserved 0x4005_8000 0x4005_8FFF CMP 0x4005_9000 0x4006_8FFF WDT 0x4006_8000 0x4006_8FFF REServed 0x4006_8000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_FFF GPTM0 0x4006_B000 0x4006_FFF GPTM1 0x4007_0000 0x4007_5FFF Reserved 0x4007_6000 0x4007_6FFF BFTM0 0x4007_7	0x4002_C000	0x4002_CFFF	MCTM0					
0x4003_A000 0x4003_BFFF SCI1 0x4003_C000 0x4003_FFFF Reserved 0x4004_0000 0x4004_0FFF USART1 0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_4000 0x4004_4FFF SPI1 0x4004_5000 0x4004_7FFF Reserved 0x4004_8000 0x4004_8FFF I²C0 0x4004_9000 0x4004_9FFF I²C1 0x4004_A000 0x4005_7FFF Reserved 0x4005_8000 0x4005_8FFF CMP 0x4005_9000 0x4006_7FFF Reserved 0x4006_8000 0x4006_8FFF WDT 0x4006_9000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_FFF GPTM0 0x4006_B000 0x4006_FFF GPTM1 0x4006_F000 0x4006_FFF Reserved 0x4007_0000 0x4007_5FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4002_D000	0x4002_DFFF	MCTM1					
0x4003_C000 0x4003_FFFF Reserved 0x4004_0000 0x4004_0FFF USART1 0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_4000 0x4004_4FFF SPI1 0x4004_5000 0x4004_7FFF Reserved 0x4004_8000 0x4004_8FFF I²C0 0x4004_9000 0x4004_9FFF I²C1 0x4004_A000 0x4005_7FFF Reserved 0x4005_8000 0x4006_7FFF Reserved 0x4006_9000 0x4006_8FFF WDT 0x4006_9000 0x4006_9FFF Reserved 0x4006_B000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_FFF GPTM0 0x4006_E000 0x4006_FFF GPTM1 0x4006_F000 0x4006_FFF Reserved 0x4007_0000 0x4007_6FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4002_E000	0x4003_9FFF	Reserved					
0x4004_0000 0x4004_0FFF USART1 0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_4000 0x4004_4FFF SPI1 0x4004_5000 0x4004_7FFF Reserved 0x4004_8000 0x4004_8FFF I²C0 0x4004_9000 0x4004_9FFF I²C1 0x4004_4000 0x4005_7FFF Reserved 0x4005_8000 0x4005_8FF CMP 0x4005_9000 0x4006_8FF WDT 0x4006_8000 0x4006_9FFF Reserved 0x4006_9000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_DFFF Reserved 0x4006_B000 0x4006_FFF GPTM0 0x4006_F000 0x4006_FFF GPTM1 0x4007_0000 0x4007_6FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4003_A000	0x4003_BFFF	SCI1					
0x4004_1000 0x4004_1FFF UART1 0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_4000 0x4004_4FFF SPI1 0x4004_5000 0x4004_7FFF Reserved 0x4004_8000 0x4004_8FFF I²C0 0x4004_9000 0x4004_9FFF I²C1 0x4004_A000 0x4005_7FFF Reserved 0x4005_8000 0x4005_8FFF CMP 0x4005_9000 0x4006_7FFF Reserved 0x4006_8000 0x4006_8FFF WDT 0x4006_9000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_FFF GPTM0 0x4006_B000 0x4006_FFF GPTM1 0x4006_F000 0x4007_5FFF Reserved 0x4007_0000 0x4007_6FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4003_C000	0x4003_FFFF	Reserved					
0x4004_2000 0x4004_2FFF Reserved 0x4004_3000 0x4004_3FFF SCI0 0x4004_4000 0x4004_4FFF SPI1 0x4004_5000 0x4004_7FFF Reserved 0x4004_8000 0x4004_8FFF I²C0 0x4004_9000 0x4004_9FFF I²C1 0x4004_A000 0x4005_7FFF Reserved 0x4005_8000 0x4005_8FFF CMP 0x4005_9000 0x4006_7FFF Reserved 0x4006_8000 0x4006_8FFF WDT 0x4006_9000 0x4006_9FF Reserved 0x4006_B000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_FFF GPTM0 0x4006_F000 0x4006_FFF GPTM1 0x4007_0000 0x4007_5FF Reserved 0x4007_6000 0x4007_7FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4004_0000	0x4004_0FFF	USART1					
0x4004_3000 0x4004_3FFF SCI0 0x4004_4000 0x4004_4FFF SPI1 0x4004_5000 0x4004_7FFF Reserved 0x4004_8000 0x4004_8FFF I²C0 0x4004_9000 0x4004_9FFF I²C1 0x4004_A000 0x4005_7FFF Reserved 0x4005_8000 0x4005_8FF CMP 0x4005_9000 0x4006_7FFF Reserved 0x4006_8000 0x4006_8FFF WDT 0x4006_9000 0x4006_AFFF RTC/PWRCU 0x4006_A000 0x4006_AFFF Reserved 0x4006_B000 0x4006_FFF GPTM0 0x4006_F000 0x4006_FFF GPTM1 0x4007_0000 0x4007_5FFF Reserved 0x4007_6000 0x4007_7FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4004_1000	0x4004_1FFF	UART1					
0x4004_4000 0x4004_4FFF SPI1 0x4004_5000 0x4004_7FFF Reserved 0x4004_8000 0x4004_8FFF I²C0 0x4004_9000 0x4004_9FFF I²C1 0x4004_A000 0x4005_7FFF Reserved 0x4005_8000 0x4005_8FFF CMP 0x4005_9000 0x4006_7FFF Reserved 0x4006_8000 0x4006_8FFF WDT 0x4006_9000 0x4006_9FFF Reserved 0x4006_A000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_DFFF Reserved 0x4006_B000 0x4006_FFFF GPTM0 0x4006_F000 0x4006_FFFF GPTM1 0x4007_0000 0x4007_5FFF Reserved 0x4007_6000 0x4007_7FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4004_2000	0x4004_2FFF	Reserved					
0x4004_5000 0x4004_7FFF Reserved 0x4004_8000 0x4004_8FFF I²C0 0x4004_9000 0x4004_9FFF I²C1 0x4004_A000 0x4005_7FFF Reserved 0x4005_8000 0x4005_8FF CMP 0x4005_9000 0x4006_7FFF Reserved 0x4006_8000 0x4006_8FF WDT 0x4006_9000 0x4006_9FF Reserved 0x4006_A000 0x4006_AFF RTC/PWRCU 0x4006_B000 0x4006_DFFF Reserved 0x4006_B000 0x4006_FFF GPTM0 0x4006_F000 0x4006_FFF GPTM1 0x4007_0000 0x4007_5FF Reserved 0x4007_6000 0x4007_6FF BFTM0 0x4007_7000 0x4007_7FF BFTM1	0x4004_3000	0x4004_3FFF	SCI0					
0x4004_8000 0x4004_8FFF I²C0 0x4004_9000 0x4004_9FFF I²C1 0x4004_A000 0x4005_7FFF Reserved 0x4005_8000 0x4005_8FF CMP 0x4005_9000 0x4006_7FFF Reserved 0x4006_8000 0x4006_8FFF WDT 0x4006_9000 0x4006_9FF Reserved 0x4006_A000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_DFFF Reserved 0x4006_E000 0x4006_FFF GPTM0 0x4006_F000 0x4006_FFF GPTM1 0x4007_0000 0x4007_5FF Reserved 0x4007_6000 0x4007_7FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4004_4000	0x4004_4FFF	SPI1					
0x4004_9000 0x4004_9FFF I²C1 0x4004_A000 0x4005_7FFF Reserved 0x4005_8000 0x4005_8FFF CMP 0x4005_9000 0x4006_7FFF Reserved 0x4006_8000 0x4006_8FFF WDT 0x4006_9000 0x4006_9FFF Reserved 0x4006_A000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_DFFF Reserved 0x4006_E000 0x4006_FFF GPTM0 0x4006_F000 0x4006_FFF GPTM1 0x4007_0000 0x4007_5FF Reserved 0x4007_6000 0x4007_7FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4004_5000	0x4004_7FFF	Reserved					
0x4004_A000 0x4005_7FFF Reserved 0x4005_8000 0x4005_8FFF CMP 0x4005_9000 0x4006_7FFF Reserved 0x4006_8000 0x4006_8FFF WDT 0x4006_9000 0x4006_9FFF Reserved 0x4006_A000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_DFFF Reserved 0x4006_E000 0x4006_FFF GPTM0 0x4006_F000 0x4006_FFF GPTM1 0x4007_0000 0x4007_5FFF Reserved 0x4007_6000 0x4007_6FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4004_8000	0x4004_8FFF	I ² C0					
0x4005_8000 0x4005_8FFF CMP 0x4005_9000 0x4006_7FFF Reserved 0x4006_8000 0x4006_8FFF WDT 0x4006_9000 0x4006_9FFF Reserved 0x4006_A000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_DFFF Reserved 0x4006_E000 0x4006_EFFF GPTM0 0x4006_F000 0x4006_FFF GPTM1 0x4007_0000 0x4007_5FFF Reserved 0x4007_6000 0x4007_7FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4004_9000	0x4004_9FFF	I ² C1					
0x4005_9000 0x4006_7FFF Reserved APB1 0x4006_8000 0x4006_8FFF WDT 0x4006_9000 0x4006_9FFF Reserved 0x4006_A000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_DFFF Reserved 0x4006_E000 0x4006_EFFF GPTM0 0x4006_F000 0x4006_FFFF GPTM1 0x4007_0000 0x4007_5FFF Reserved 0x4007_6000 0x4007_7FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4004_A000	0x4005_7FFF	Reserved					
0x4006_8000 0x4006_8FFF WDT 0x4006_9000 0x4006_9FF Reserved 0x4006_A000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_DFFF Reserved 0x4006_E000 0x4006_EFFF GPTM0 0x4006_F000 0x4006_FFF GPTM1 0x4007_0000 0x4007_5FF Reserved 0x4007_6000 0x4007_6FF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4005_8000	0x4005_8FFF	CMP					
0x4006_8000 0x4006_8FFF WDT 0x4006_9000 0x4006_9FFF Reserved 0x4006_A000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_DFFF Reserved 0x4006_E000 0x4006_EFFF GPTM0 0x4006_F000 0x4006_FFF GPTM1 0x4007_0000 0x4007_5FFF Reserved 0x4007_6000 0x4007_6FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4005_9000	0x4006_7FFF	Reserved	APB1				
0x4006_A000 0x4006_AFFF RTC/PWRCU 0x4006_B000 0x4006_DFFF Reserved 0x4006_E000 0x4006_EFFF GPTM0 0x4006_F000 0x4006_FFFF GPTM1 0x4007_0000 0x4007_5FFF Reserved 0x4007_6000 0x4007_6FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4006_8000	0x4006_8FFF	WDT					
0x4006_B000 0x4006_DFFF Reserved 0x4006_E000 0x4006_EFFF GPTM0 0x4006_F000 0x4006_FFF GPTM1 0x4007_0000 0x4007_5FFF Reserved 0x4007_6000 0x4007_6FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4006_9000	0x4006_9FFF	Reserved					
0x4006_E000 0x4006_EFFF GPTM0 0x4006_F000 0x4006_FFFF GPTM1 0x4007_0000 0x4007_5FFF Reserved 0x4007_6000 0x4007_6FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4006_A000	0x4006_AFFF	RTC/PWRCU					
0x4006_F000 0x4006_FFFF GPTM1 0x4007_0000 0x4007_5FFF Reserved 0x4007_6000 0x4007_6FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4006_B000	0x4006_DFFF	Reserved					
0x4007_0000 0x4007_5FFF Reserved 0x4007_6000 0x4007_6FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4006_E000	0x4006_EFFF	GPTM0					
0x4007_6000 0x4007_6FFF BFTM0 0x4007_7000 0x4007_7FFF BFTM1	0x4006_F000	0x4006_FFFF	GPTM1					
0x4007_7000	0x4007_0000	0x4007_5FFF	Reserved					
	0x4007_6000	0x4007_6FFF	BFTM0					
0x4007_8000	0x4007_7000	0x4007_7FFF	BFTM1					
	0x4007_8000	0x4007_FFFF	Reserved					

Start Address	End Address	Peripheral	Bus		
0x4008_0000	0x4008_1FFF	FMC			
0x4008_2000	0x4008_7FFF	Reserved			
0x4008_8000	0x4008_9FFF	CKCU/RSTCU			
0x4008_A000	0x4008_BFFF	CRC			
0x4008_C000	0x4008_FFFF	Reserved			
0x4009_0000	0x4009_1FFF	PDMA Control Registers			
0x4009_2000	0x4009_7FFF	Reserved			
0x4009_8000	0x4009_9FFF	EBI Control Registers			
0x4009_A000	0x4009_FFFF	Reserved			
0x400A_0000	0x400A_1FFF	SDIO			
0x400A_2000	0x400A_7FFF	Reserved			
0x400A_8000	0x400A_9FFF	0x400A_9FFF USB Control Registers			
0x400A_A000	0x400A_BFFF	EP_SRAM	AHB		
0x400A_C000	0x400A_FFFF	Reserved			
0x400B_0000	0x400B_1FFF	GPIOA			
0x400B_2000	0x400B_3FFF	GPIOB			
0x400B_4000	0x400B_5FFF	GPIOC			
0x400B_6000	0x400B_7FFF	GPIOD			
0x400B_8000	0x400B_9FFF	GPIOE			
0x400B_A000	0x400C_7FFF	Reserved			
0x400C_8000	0C_8000				
0x400C_A000					
0x400C_C000	0x400C_DFFF	CSIF			
0x400C_E000	0x400F_FFFF	Reserved			

Embedded Flash Memory

The HT32F12365/12366/22366 devices provide 256 Kbytes on-chip Flash memory which is located at address 0x0000_0000. It supports bytes, halt-words, and word access. Note that Flash memory only supports read operation for Cortex®-M3 ICode or DCode bus access. Any write operation to the Flash memory (via DCode bus) will cause a bus fault exception. The Flash memory has a capacity of 256 pages. Each page has a memory capacity of 1 KB and can be erased independently. A 32-bit programming interface provides the capability of changing bits from 1 to 0. A data storage or firmware upgrade can be implemented using several methods such as In System Programming (ISP), In Application Programming (IAP) or In Circuit Programming (ICP). The above programming methods provide flexibility to user for data storage and firmware upgrade purpose. For more information, refer to the Flash Memory Controller section.

Embedded SRAM Memory

The HT32F12365/12366/22366 devices contain up to 128 KB on-chip SRAM which is located at address 0x2000_0000. It supports bytes, half-words and full words access operations. In order to reduce the time of read-modify-write operations, the Cortex®-M3 provides a bit-banding function to perform a single atomic bit operation. Users can modify a single bit in SRAM bit-band region by accessing the corresponding bit-band alias. For more information about bit-binding, refer to the Arm® Cortex®-M3 Technical Reference Manual. The following formulas and examples show how to access a bit in the bit-band region by calculate the bit-band alias.

Bit-band alias = Bit-band base + (byte offset \times 32) + (bit number \times 4)

For example, if you want to access bit 7 of address 0x2000 0200, the bit-band alias is:

Bit-band alias =
$$0x2200 \ 0000 + (0x200 \times 32) + (7 \times 4) = 0x2200 \ 401C$$

Write to address $0x2200_401C$ causes the bit 7 of address $0x2000_0200$ changed. On the contrary, read address $0x2200_401C$ returns 0x01 or 0x00 according to the value of bit 7 at SRAM address $0x2000_0200$.

AHB Peripherals

The address of the AHB peripherals ranges from 0x4008_0000 to 0x400F_FFFF. Some peripherals such as Clock Control Unit, Reset Control Unit, and Flash Memory Controller are connected to the AHB bus directly. The AHB peripheral clocks are always enabled after system reset. Access to registers for these peripherals can be achieved directly via the AHB bus. Note that all peripheral registers in AHB bus support only word access.

APB Peripherals

The address of APB peripherals ranges from 0x4000_0000 to 0x4007_FFFF. An APB to AHB bridge provides access capability between the Cortex®-M3 and the APB peripherals. Additionally, the APB peripheral clocks are disabled after a system reset. Software must enable peripheral clock by setting up the APBCCRn registers in Clock Control Unit before accessing the corresponding peripheral register. Note that the APB to AHB bridge will duplicate the half-word or byte data to word width when a half-word or byte access is performed on APB peripheral register. In other words, the access result of half-word or byte access on APB peripheral register will vary depending on the data bit width of the access operation on the peripheral registers.

4

Flash Memory Controller (FMC)

Introduction

The Flash Memory Controller, FMC, provides all the necessary functions, pre-fetch buffer and branch cache for the embedded on-chip Flash memory. The figure below shows the block diagram of FMC which includes programming interface, control register, pre-fetch buffer, and access interface. Since the access speed of Flash memory is slower than the CPU, a wide access interface with a pre-fetch buffer is provided to the Flash memory in order to reduce the CPU waiting timing which will cause CPU instruction execution delay. The Flash memory word program/page erase functions are also provided for instruction/data storage.

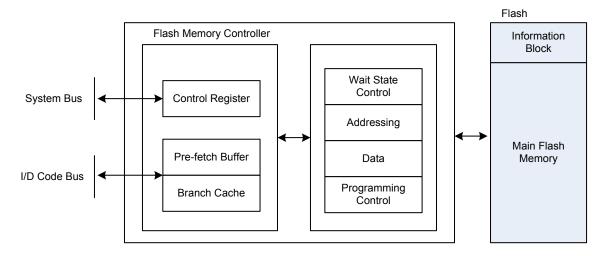


Figure 5. Flash Memory Controller Block Diagram

Features

- 256 KB of on-chip Flash memory for storing instruction/data and options
 - 256 KB: 255 KB + 1 KB (instruction/data + Option Byte)
- Page size of 1 KB, totally 255 pages
- Wide access interface with pre-fetch buffer and branch cache to reduce instruction gaps
- Page erase and mass erase capability
- 32-bit word programming
- Interrupt function to indicate end of Flash memory operations or an error occurs
- Flash read protection to prevent illegal code/data access
- Page erase/program protection to prevent unexpected operation

Functional Descriptions

Flash Memory Map

The following figure is the Flash memory map of the system. The address ranges from $0x0000_0000$ to $0x1FFF_FFFF$ (0.5 GB). The address from $0x1F00_0000$ to $0x1F00_1FFF$ is mapped to Boot Loader with a capacity of 8 KB. Additionally, the region addressed from $0x1FF0_0000$ to $0x1FF0_03FF$ is the alias of Option Byte block with a capacity of 1 KB. The memory mapping on system view is shown as below.

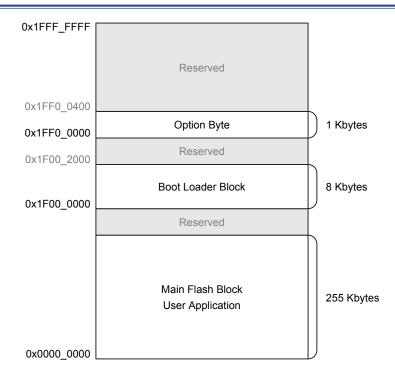


Figure 6. Flash Memory Map

Flash Memory Architecture

The Flash memory consists of 256 KB main Flash with 1 KB per page and an 8 KB Information Block for the Boot Loader. The main Flash memory contains a total of 256 pages which can be erased individually. The following table shows the base address, size and protection setting bit of each page.

Table 4. Flash Memory and Option Byte

Block	Name	Address	Page Protection Bit	Size
	Page 0	0x0000_0000 ~ 0x0000_03FF	OB PP [0]	1 KB
	Page 1	0x0000_0400 ~ 0x0000_07FF	OB_PP [0]	1 KB
	Page 2	0x0000_0800 ~ 0x0000_0BFF	OB PP [1]	1 KB
	Page 3	0x0000_0C00 ~ 0x0000_0FFF	OB_PP [1]	1 KB
Main Flash Block				:
DIOCK	Page 252	0x0003_F000 ~ 0x0003_F3FF	OD DD (400)	1 KB
	Page 253	0x0003_F400 ~ 0x0003_F7FF	OB_PP [126]	1 KB
	Page 254	0x0003_F800 ~ 0x0003_FBFF	OB_PP [127]	1 KB
	Page 255 (Option Byte)	Physical: 0x0003_FC00 ~ 0x0003_FFFF Alias: 0x1FF0_0000 ~ 0x1FF0_03FF	OB_CP [1]	1 KB
Information Block	Boot Loader	0x1F00_0000 ~ 0x1F00_1FFF	NA	8 KB

Notes: 1. Information Block stores boot loader, this block cannot be programmed or erased by user.

2. Option Byte is always located at last page of main Flash block.

Wait State Setting

When the CPU clock, HCLK, is greater than the access speed of the Flash memory, the wait state cycles must be inserted during the CPU fetch instructions or load data from Flash memory. The wait state can be changed by setting the WAIT [2:0] bits of the Flash Cache and Pre-fetch Control Register, CFCR. In order to match the wait state requirement, the following two rules shall be considered.

- HCLK clock is changed from lower to higher: Change the wait state setting first and then switch the HCLK clock.
- HCLK clock is changed from higher to lower: Switch the HCLK clock first and then change the wait state setting.

The following table shows the relationship between the wait state cycle and HCLK. The default wait state is 0 since the High Speed Internal oscillator HSI which operates at a frequency of 8 MHz is selected as the HCLK clock source after reset.

Table 5. Relationship Between Wait State Cycle and HCLK

Wait State Cycle	HCLK
0	0 MHz < HCLK ≤ 24 MHz
1	24 MHz < HCLK ≤ 48 MHz
2	48 MHz < HCLK ≤ 72 MHz
3	72 MHz < HCLK ≤ 96 MHz

Booting Configuration

The system provides three kinds of booting mode which can be selected through BOOT0 and BOOT1 pins. The BOOT0 and BOOT1 pins are sampled during a power-on reset or a system reset. Once the logic value on these pins has been determined, the first 4 words of vector will be remapped to the corresponding source according to the booting mode. The booting modes are shown in the following table.

Table 6. Booting Modes

Booting mode	selection pins	Mode	Descriptions
BOOT1	воото	Mode	Descriptions
0	0	SRAM	The source of Vector is SBVT0 ~ 3
0	1	Boot Loader	The source of Vector is Boot Loader
1	X	Main Flash	The source of Vector is main Flash

The Vector Mapping Control Register (VMCR) is provided to change the setting of the vector remapping setting temporarily after a device reset. The initial reset value of the VMCR register is determined by the BOOT0 and BOOT1 pins which will be sampled during the reset duration.

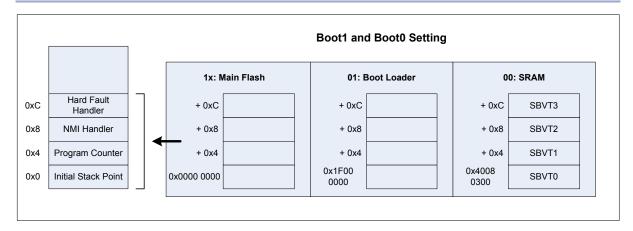


Figure 7. Vector Remapping

Page Erase

The FMC provides a page erase function which is used to initialize the contents of a Flash memory. Any page can be erased independently without affecting others. The following steps show the access sequence of the register for a page erase operation.

- Check the OPCR register to confirm that no Flash memory operation is in progress (OPM [3:0] equal to 0xE or 0x6). Otherwise, wait until the previous operation has been finished.
- Write the page address to TADR register
- Write the page erase command to OCMR register (CMD [3:0] = 0x8).
- \blacksquare Send the page erase command to FMC by setting OPCR register (set OPM [3:0] = 0xA).
- Wait until all the operations have been completed by checking the value of OPCR register (OPM [3:0] equal to 0xE).
- Read and verify the page if required using DCODE access.

Note that a correct target page address must be confirmed. The software may run out of control if the target erase page is being used for fetching code or access data. The FMC will not provide any notification when this occurs. Additionally, the page erase operation will be ignored on the protected pages. A Flash Operation Error interrupt will be triggered by the FMC if the OREIEN bit in the OIER register is set. Software can check the PPEF bit in the OISR register to detect this condition in the interrupt handler. The following figure shows the page erase operation flow.

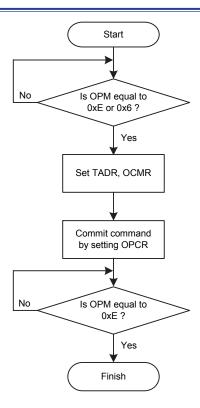


Figure 8. Page Erase Operation Flowchart

Mass Erase

The FMC provides a mass erase function which is used to initialize the complete Flash memory contents to a high state. The following steps show the mass erase operation sequence.

- Check the OPCR register to confirm that no Flash memory operation is in progress (OPM [3:0] equal to 0xE or 0x6). Otherwise, wait until the previous operation has been finished.
- Write the mass erase command to the OCMR register (CMD [3:0] = 0xA).
- Send the mass erase command to the FMC by setting the OPCR register (set OPM [3:0] = 0xA).
- Wait until all operations have been completed by checking the value of the OPCR register (OPM [3:0] equal to 0xE).
- Read and verify the Flash memory if required using DCODE access.

Since all Flash data will be reset as 0xFFFF_FFFF, the mass erase operation can be implemented by an application that runs in the SRAM or by the debug tool that access the FMC register directly. An application that executes on the Flash memory will not trigger a mass erase operation. The following figure shows the mass erase operation flow.

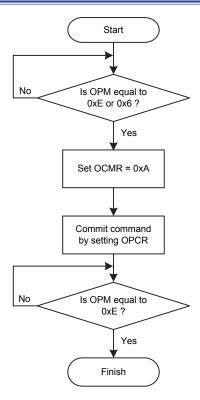


Figure 9. Mass Erase Operation Flowchart

Word Programming

The FMC provides a 32-bit word programming function which is used to modify the Flash memory contents. The following steps show the word programming register access sequence.

- Check the OPCR register to confirm that no Flash memory operation is in progress (OPM [3:0] equal to 0xE or 0x6). Otherwise, wait until the previous operation has been finished.
- Write the word address to the TADR register. Write data to WRDR register.
- Write the word program command to the OCMR register (CMD [3:0] = 0x4).
- \blacksquare Send the word program command to the FMC by setting the OPCR register (set OPM [3:0] = 0xA).
- Wait until all operations have been completed by checking the value of the OPCR register (OPM [3:0] equal to 0xE).
- Read and verify the Flash memory if required using DCODE access.

Note that the word programming operation cannot be applied to the same address twice. Successive word programming operation to the same address must be separated by a page erase operation. Additionally, the word programming operation will be ignored on protected pages. A Flash Operation Error interrupt will be triggered by the FMC if the OREIEN bit in the OIER register is set. Software can check the PPEF bit in the OISR register to detect this condition in the interrupt handler. The following figure shows the word programming operation flow.

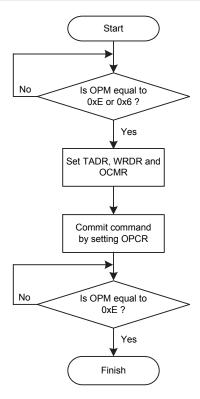


Figure 10. Word Programming Operation Flowchart

Option Byte Description

The Option Byte can be treated as an independent Flash memory which base address is 0x1FF0_0000. The following table shows the function description and memory map of Option Byte.

Table 7. Option Byte Memory Map

Option Byte	Offset	Reset Value									
Option Byte Base Address = 0x1FF0_0000											
OB_PP	0x000 0x004 0x008 0x00C	OB_PP [n]: Main Flash Page Erase/Program Protection (n = 0 ~ 127 for page 254 ~ page 0) 0: Flash Page 2n and 2n+1 Erase / Program Protection is enabled 1: Flash Page 2n and 2n+1 Erase / Program Protection is disabled	0xFFFF_FFFF 0xFFFF_FFFF 0xFFFF_FFFF								
OB_CP	0x010	OB_CP [0]: Flash Security Protection 0: Flash Security protection is enabled 1: Flash Security protection is disabled OB_CP [1]: Option Byte Protection 0: Option Byte protection is enabled 1: Option Byte protection is disabled OB_CP [31:2]: Reserved	0xFFFF_FFFF								
OB_CK	0x020	OB_CK [31:0]: Flash Option Byte Checksum OB_CK should be set as the sum of 5 words Option Byte content, of which the offset address ranges form 0x000 to 0x010 (0x000 + 0x004 + 0x008 + 0x00C + 0x010), when the OB_PP or OB_CP register content is not equal to 0xFFFF_FFF. Otherwise, both page erase/program protection and security protection will be enabled.									

Page Erase/Program Protection

The FMC provides page erase/program protection functions to prevent inadvertent operations on the Flash memory. The page erase or word programming command will not be accepted by the FMC on the protected pages. When the page erase or word programming command is sent to the FMC on a protected page, the PPEF bit in the OISR register will then be set by FMC. If the OREIEN bit in the OIER register is also set to 1 then the Flash operation error interrupt will be triggered by the FMC. The page protection function can be individually enabled for each page by configuring the OB_PP [127:0] bit field in the Option Byte. The following table shows the access permission of the main Flash page when the page protection is enabled.

Table 8. Access Permission of Protected Main Flash Page

Mode Operation	ISP/IAP	ICP/Debug Mode	Boot from SRAM
DCODE Read	0	0	0
Program	X	X	X
Page Erase	X	X	X
Mass Erase	0	0	0

Notes: 1. The write protection is based on specific pages. The above access permission only affects the pages of which the protection function has been enabled. Other pages are not affected

- 2. Main Flash page protection is configured by OB_PP [127:0]. Option Byte is physically located at the last page of main Flash. Option Byte page protection is configured by the OB_CP [1] bit.
- 3. The page erase on Option Byte area can disable the page protection of main Flash.
- 4. The page protection of Option Byte can only be disabled by a mass erase operation.

The following steps show the page erase/program protection procedure register access sequence.

- Check the OPCR register to confirm that no Flash memory operation is in progress (OPM [3:0] equal to 0xE or 0x6). Otherwise, wait until the previous operation has been finished.
- Write the OB_PP address to the TADR register (TADR = $0x1FF0_0000$).
- Write the data which indicates the protection function of corresponding page is enabled or disabled into the WRDR register (0: Enabled, 1: Disabled).
- Write the word program command to the OCMR register (CMD [3:0] = 0x4).
- Commit the word program command to the FMC by setting the OPCR register (set OPM [3:0] = 0xA).
- Wait until all operations have been finished by checking the value of the OPCR register (OPM [3:0] equal to 0xE).
- Read and verify the Option Byte if required using DCODE access.
- Before to activate the new OB_PP setting, the OB_CK must be updated according to the Option Byte checksum rule.
- Apply a system reset to activate the new setting.

Security Protection

The FMC provides a security protection function to prevent illegal code/data access of the Flash memory. This function is useful for protecting the software / firmware from the illegal users. The function is activated by configuring the OB_CP [0] bit in the Option Byte. Once the function has been enabled, all the main Flash DCODE access, programming and page erase operations will not be allowed except for the user's application. However, the mass erase operation will still be accepted by the FMC in order to disable this security protection function. The following table shows the access permission of Flash memory when the security protection is enabled.

Table 9. Access Permission When Security Protection is Enabled

Mode Operation	User Application (1)	ICP/Debug Mode	Boot from SRAM
DCODE Read	0	X (read as 0)	X (read as 0)
Program	O ⁽¹⁾	X	X
Page Erase	O ⁽¹⁾	X	X
Mass Erase	0	0	0

Notes: 1. User application means the software that is executed or booted from the main Flash memory with the JTAG/SW debugger being disconnected. However, the Option Byte block and page 0 are still protected in which Programming and Page Erase operations cannot be executed.

2. Mass erase operation can erase Option Byte block and disable security protection.

The following steps show the Security protection procedure register access sequence.

- Check the OPCR register to confirm that no Flash memory operation is in progress (OPM [3:0] equal to 0xE or 0x6). Otherwise, wait until the pervious operation has been finished.
- Write the OB CP address to the TADR register (TADR = 0x1FF0 0010).
- Write the data into the WRDR register to clear OB_CP [0] bit to 0.
- Write the word program command to the OCMR register (CMD [3:0] = 0x4).
- \blacksquare Send the word program command to the FMC by setting the OPCR register (set OPM = 0xA).
- Wait until all operations have been finished by checking the value of the OPCR register (OPM [3:0] equals to 0xE).
- Read and verify the Option Byte if required using DCODE access.
- Before to activate the security protection function, the OB_CK field must be update according to the Option Byte checksum rule.
- Apply a system reset to activate the new setting.

Register Map

The following table shows the FMC registers and reset values.

Table 10. FMC Register Map

Register	Offset	Description	Reset Value
TADR	0x000	Flash Target Address Register	0x0000_0000
WRDR	0x004	Flash Write Data Register	0x0000_0000
OCMR	0x00C	Flash Operation Command Register	0x0000_0000
OPCR	0x010	Flash Operation Control Register	0x0000_000C
OIER	0x014	Flash Operation Interrupt Enable Register	0x0000_0000
OISR	0x018	Flash Operation Interrupt and Status Register	0x0001_0000
PPSR	0x020 0x024 0x028 0x02C	Flash Page Erase/Program Protection Status Register	0xXXXX_XXX 0xXXXX_XXXX 0xXXXX_XXXX 0xXXXX_XXXX
CPSR	0x030	Flash Security Protection Status Register	0x0000_000X
VMCR	0x100	Flash Vector Mapping Control Register	0x0000_000X
MDID	0x180	Flash Manufacturer and Device ID Register	0x0376_XXXX
PNSR	0x184	Flash Page Number Status Register	0x0000_00XX
PSSR	0x188	Flash Page Size Status Register	0x0000_0400
DIDR	0x18C	Device ID Register	0x000X_XXXX
CFCR	0x200	Flash Cache and Pre-fetch Control Register	0x0000_1091
SBVT0	0x300	SRAM Booting Vector 0 (Stack Point)	0x200X_0000
SBVT1	0x304	SRAM Booting Vector 1 (Program Counter)	0x2000_0159
SBVT2	0x308	SRAM Booting Vector 2 (NMI Handler)	0x0000_0000
SBVT3	0x30C	SRAM Booting Vector 3 (Hard Fault Handler)	0x0000_0000
CIDR0	0x310	Custom ID Register 0	0xXXXX_XXXX
CIDR1	0x314	Custom ID Register 1	0xXXXX_XXXX
CIDR2	0x318	Custom ID Register 2	0xXXXX_XXXX
CIDR3	0x31C	Custom ID Register 3	0xXXXX_XXXX

Note: "X" means various reset values which depend on the Device, Flash value, option byte value, or power on reset setting.

Register Descriptions

Flash Target Address Register - TADR

This register specifies the target address of the page erase and word programming operations.

Offset: 0x000

Reset value: 0x0000 0000

	31		30		29		28		27		26		25		24	
									TADB							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									TADB	,						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
									TADB							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
									TADB	,						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits Field Descriptions

[31:0] TADB F

Flash Target Address Bits

For programming operations, the TADR register specifies the address where the data is written. Since the programming length is 32-bit, the TADR should be set as word-aligned (4 bytes). The TADB [1:0] will be ignored during programming operations. For page erase operations, the TADR register contains the page address which is going to be erased. Since the page size is 1 KB, the TADB [9:0] will be ignored in order to limit the target address as 1 Kbyte-aligned. For 256 KB main Flash addressing, TADB [31:18] should be zero. The Option Byte which has a 1 KB capacity ranges from 0x1FF0_0000 to 0x1FF0_03FF. This field is used to specify the Flash address which must be within the range from 0x0000_0000 to 0x1FFF_FFFF. Otherwise, an Invalid Target Address interrupt will be generated if the corresponding interrupt enable bit is set.

Flash Write Data Register - WRDR

This register stores the data to be written into the TADR register for programming operation.

Offset: 0x004

Reset value: 0x0000_0000

	31		30		29		28		27		26		25	5	24	
									WRD	В						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17	7	16	
									WRD	В						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
									WRD	В						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
									WRD	В						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

BITS	Field	Descriptions
[31:0]	WRDB	Flash Write Data Bits

The data value for programming operation.

Flash Operation Command Register - OCMR

This register is used to specify the Flash operation commands that include word program, page erase and mass erase.

Offset: 0x00C Reset value: 0x0000_0000

	31	30	29	28	27	26	;	25	24
					Reserv	/ed			
Type/Reset									
	23	22	21	20	19	18	}	17	16
					Reserv	/ed			
Type/Reset						'			
	15	14	13	12	11	10)	9	8
					Reserv	/ed			
Type/Reset									
	7	6	5	4	3	2		1	0
			Reserved					CMD	
Type/Reset	·	·			RW	0 RW	0	RW	0 RW 0

Bits Field Descriptions

[3:0] CMD Flash Operation Command

The following table shows the definitions of the operation command bits CMD [3:0] which determine the Flash memory operation. If an invalid command is set and the IOCMIEN is equal to 1, an Invalid Operation Command interrupt will be generated.

CMD [3:0]	Description
0x0	Idle - default
0x4	Word program
0x8	Page erase
0xA	Mass erase
Others	Reserved

Flash Operation Control Register - OPCR

This register is used for controlling the command commitment and checking the status of the FMC operations.

Offset: 0x010

Reset value: 0x0000 000C

	31	30	29	28	2	7	26	25	24
					Rese	erved			
Type/Reset		,							_
	23	22	21	20	1	9	18	17	16
					Rese	erved			
Type/Reset		,							_
	15	14	13	12	1	1	10	9	8
					Rese	erved			
Type/Reset		,							_
	7	6	5	4	;	3	2	1	0
		Reserved					OPM		Reserved
Type/Reset				RW	0 RW	1	RW 1	RW	0

Bits	Field	Descr	Descriptions				
	~						

[4:1] OPM Operation Mode

The following table shows the operation modes of the FMC. User can commit the command which is set by the OCMR register for the FMC according to the address alias setting in the TADR register. The contents of the TADR, WRDR and OCMR registers should be prepared before setting this register. After all the operations have been finished, the OPM field will be set as 0xE by the FMC hardware. The Idle mode can be set when all the operations have been finished for power saving purpose. Note that the operation status should be checked before the next operation is executed on the FMC. The content of the TADR, WRDR, OCMR and OPCR registers should not be changed until the previous operation has been finished.

OPM [3:0]	Description
0x6	Idle - default
0xA	Commit command to main Flash
0xE	All operation finished on main Flash
Others	Reserved

Flash Operation Interrupt Enable Register – OIER

This register is used to enable or disable the FMC interrupt function. The FMC generates interrupt to the controller when corresponding interrupt enable bits are set.

Offset: 0x014
Reset value: 0x0000_0000

	31	30	29	28		27		26	25	24
ĺ						Reser	ved			
Type/Reset										
_	23	22	21	20		19		18	17	16
						Reser	ved			
Type/Reset										
_	15	14	13	12		11		10	9	8
						Reser	ved			
Type/Reset										
_	7	6	5	4		3		2	1	0
		Reserved		OREIE	N	IOCM	IEN	OBEIEN	ITADIEN	ORFIEN
Type/Reset	·		·	RW	0	RW	0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[4]	OREIEN	Operation Error Interrupt Enable
		Operation error does not generate an interrupt Operation error generates an interrupt
[3]	IOCMIEN	Invalid Operation Command Interrupt Enable
		0: Invalid Operation Command does not generate an interrupt1: Invalid Operation Command generates an interrupt
[2]	OBEIEN	Option Byte Check Sum Error Interrupt Enable
		0: Option Byte Check Sum Error does not generate an interrupt1: Option Byte Check Sum Error generates an interrupt
[1]	ITADIEN	Invalid Target Address Interrupt Enable
		0: Invalid Target Address does not generate an interrupt1: Invalid Target Address generates an interrupt
[0]	ORFIEN	Operation Finished Interrupt Enable
		0: Operation Finish does not generate an interrupt
		1: Operation Finish generates an interrupt

Flash Operation Interrupt and Status Register – OISR

This register indicates the status which is used to check if an operation has been finished or an error occurs. The status bits, bit [4:0], are available when the corresponding bits in the OIER register are set.

Offset: 0x018
Reset value: 0x0001_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
_	23	22	21	20	19	18	17	16
				Reserved			PPEF	RORFF
Type/Reset							RO 0	RO 1
_	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								_
_	7	6	5	4	3	2	1	0
		Reserved		OREF	IOCMF	OBEF	ITADF	ORFF
Type/Reset				WC 0) WC 0	WC 0	WC 0	WC 0

Bits	Field	Descriptions
	PPEF	·
[17]	FFEF	Page Erase/Program Protected Error Flag 0: Page Erase/Program Protected Error does not occur
		Operation error occurs due to an invalid page erase/program operation being applied to a protected page
		This bit is reset by hardware once a new Flash operation command is committed.
[16]	RORFF	Raw Operation Finished Flag
		0: The last flash operation command is has not yet finished1: The last flash operation command has finished
		This bit is directly connected to the Flash memory for debugging purpose.
[4]	OREF	Operation Error Flag
		0: No flash operation error occurred 1: The last flash operation is failed
		This bit will be set when any Flash operation error such as an invalid command,
		program error and erase error, etc. occurs. The ORE interrupt occurs if the OREIEN bit in the OIER register is set. Reset this bit by writing 1.
[3]	IOCMF	Invalid Operation Command Flag
		0: No invalid flash operation command was set
		1: An invalid flash operation command is set into the OCMR register.
		The IOCM interrupt will be occurred if the IOCMIEN bit in the OIER register is set. Reset this bit by writing 1.
[2]	OBEF	Option Byte Check Sum Error Flag
[4]	OBLI	O: Check sum of Option Byte is correct 1: Check sum of Option Byte is incorrect
		The OBE interrupt will occur if the OBEIEN bit in the OIER register is set. However,
		the Option Byte Check Sum Error Flag has to wait until the interrupt condition is
		cleared, this bit will be reset by software writes 1, which means the Option Byte
		check sum value has been modified to correct one. Otherwise, the interrupt will
		be continually kept or the software disables the interrupt enable bit to release the interrupt request.

Bits	Field	Descriptions
[1]	ITADF	Invalid Target Address Flag 0: The target address is valid 1: The target address TADR is invalid The data in the TADR field must be within the range from 0x0000_0000 to 0x1FFF_ FFFF. The ITAD interrupt will be occurred if the ITADIEN bit in the OIER register is set. Reset this bit by writing 1.
[0]	ORFF	Operation Finished Flag 0: No operation finished interrupt occurred 1: Last flash operation command is finished The ORF interrupt will be occurred if the ORFIEN bit in the OIER register is set. Reset this bit by writing 1.

Flash Page Erase/Program Protection Status Register - PPSR

This register indicates the page erase/program protection status of the Flash memory.

Offset: 0x020 (0) ~ 0x02C (3) Reset value: 0xXXXX XXXX

	31	30	29	28	27	26	25	24
					PPSBi	n		,
Type/Reset	RO	X RO	X RO	X RO	X RO	X RO	X RO	X RO X
	23	22	21	20	19	18	17	16
					PPSBi	n		'
Type/Reset	RO	X RO	X RO	X RO	X RO	X RO	X RO	X RO X
	15	14	13	12	11	10	9	8
					PPSBi	n		'
Type/Reset	RO	X RO	X RO	X RO	X RO	X RO	X RO	X RO X
	_				_	_		_
	7	6	5	4	3	2	1	0
	7	6	5	4	PPSBi	2	1	0

Bits Field Descriptions

[127:0] PPSBn

Page Erase/Program Protection Status Bits (n = 0 \sim 127)

 $PPSB[n] = OB_PP[n]$

- 0: The corresponding pages are protected
- 1: The corresponding pages are not protected

The content of this register is not dynamically updated and will only be reloaded from the Option Byte when any kind of reset occurs. The erase or program function of the specific pages is not allowed when the corresponding bits of the PPSR registers are reset. The reset value of PPSR [127:0] is determined by the Option Byte OB_PP [127:0] bits. Since the maximum page number of the main flash is 256 KB in this device series. Therefore, each page erase/program protection status bit protect two pages. The other remained bits of OB_PP and PPSR registers are reserved.

Flash Security Protection Status Register – CPSR

This register indicates the Flash memory security protection status. The content of this register is not dynamically updated and will only be reloaded by the Option Byte loader which is active when any kind of reset occurs.

Offset: 0x030

Reset value: 0x0000_000X

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset							'	_
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset							,	_
	7	6	5	4	3	2	1	0
				Reserved			OBPSE	3 CPSB
Type/Reset							RO	X RO X

Bits	Field	Descriptions
[1]	OBPSB	Option Byte Page Erase/Program Protection Status Bit
		0: The Option Byte page is protected.
		1: The Option Byte page is not protected.
		The reset value of OPBSB is determined by the Option Byte OB_CP [1] bit.
[0]	CPSB	Flash Memory Security Protection Status Bit
		0: Flash Security protection is enabled
		1: Flash Security protection is not enabled
		The reset value of CPSB is determined by the Option Byte OB CP [0] bit.

Flash Vector Mapping Control Register - VMCR

This register is used to control the vector mapping. The reset value of the VMCR register is determined by the external booting pins, BOOT0 and BOOT1, during the power-on reset period.

Offset: 0x100
Reset value: 0x0000_000X

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								-
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset							"	-
	7	6	5	4	3	2	1	0
				Reserved				VMCB
Type/Reset							RW	X RW X

Bits Field Descriptions

[1:0] VMCB

Vector Mapping Control Bit

The VMCB bits are used to control the mapping source of first 4-word vector addressed from 0x0 to 0xC. The following table shows the vector mapping setting.

BOOT1	воото	VMCB [1:0]	Descriptions					
Low	Low	00	SRAM booting mode					
Low	Low	00	The vector mapping source is SBVT0~3.					
Low	High	High 01	Boot Loader mode					
Low			The vector mapping source is the boot loader area.					
High	Low	10	Main Flash mode					
High	High	11	The vector mapping source is the main Flash area.					

The reset value of the VMCB register is determined by the pins status of the external booting pins BOOT1 and BOOT0 during power on reset and system reset. The vector mapping setting can be changed temporarily by configuring the VMCB bits when the application is running.

Flash Manufacturer and Device ID Register – MDID

This register is used to store the manufacture ID and device part number information which can be used as the product identity.

Offset: 0x180

Reset value: 0x0376_XXXX

	31	30	29	28	27	26	25	24
					MFID			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO	1 RO 1
	23	22	21	20	19	18	17	16
					MFID			
Type/Reset	RO	0 RO	1 RO	1 RO	1 RO	0 RO	1 RO	1 RO 0
	15	14	13	12	11	10	9	8
					ChipID			
Type/Reset	RO	0 RO	0 RO	0 RO	1 RO	X RO	X RO	X RO X
	7	6	5	4	3	2	1	0
					ChipID			
Type/Reset	RO	0 RO	1 RO	0 RO	1 RO	0 RO	0 RO	1 RO 0

Bits	Field	Descriptions
[31:16]	MFID	Manufacturer ID
		Read as 0x0376
[15:0]	ChipID	Chip ID
		Read the last 4 digital code of the MCU device part number.

Flash Page Number Status Register - PNSR

This register is used to indicate the Flash memory page number.

Offset: 0x184

Reset value: 0x0000_00XX

	31	30	29	28	27	26	25	24
					PNSB			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO 0	RO 0	RO	0 RO 0
	23	22	21	20	19	18	17	16
					PNSB			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO 0	RO 0	RO	0 RO 0
	15	14	13	12	11	10	9	8
					PNSB			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO 0	RO 0	RO	0 RO 0
	7	6	5	4	3	2	1	0
					PNSB			
Type/Reset	RO	X RO	X RO	X RO	X RO X	RO X	RO	X RO X

Bits	Field	Descriptions

[31:0] PNSB Flash Page Number Status Bits

0x0000_0020: Totally 32 pages for the on-chip Flash memory device. 0x0000_0040: Totally 64 pages for the on-chip Flash memory device. 0x0000_0080: Totally 128 pages for the on-chip Flash memory device. 0x0000_00FF: Totally 255 pages for the on-chip Flash memory device.

They indicated the total pages of the on-chip Flash memory device.

Flash Page Size Status Register - PSSR

This register is used to indicate the page size in bytes.

Offset: 0x188 Reset value: 0x0000_0400

	31	30	29	28	27	26	25	24
					PSSB	3		
Type/Reset	RO	0 RO 0						
	23	22	21	20	19	18	17	16
					PSSB	3		
Type/Reset	RO	0 RO 0						
	15	14	13	12	11	10	9	8
					PSSB	3		
Type/Reset	RO	0 RO	1 RO	0 RO 0				
	7	6	5	4	3	2	1	0
					PSSB	3		
Type/Reset	RO	0 RO 0						

Bits Field **Descriptions**

[31:0] **PSSB** Flash Page Size Status Bits

0x200: That means the page size is 512 Byte per page. 0x400: That means the page size is 1 KB per page.

0x800: That means the page size is 2 KB per page.

Device ID Register - DID

This register is used to store the device part number information which can be used as the product identity.

Offset: 0x18C Reset value: 0x000X_XXXX

	31	30	29	28	27	26	25	24
					Reserv	/ed		
Type/Reset		'			'		,	
	23	22	21	20	19	18	17	16
			Reserv	red .			ChipID	
Type/Reset					RO	X RO	X RO	X RO X
	15	14	13	12	11	10	9	8
					Chipl	D		
Type/Reset	RO	X RO	X RO	X RO	X RO	X RO	X RO	X RO X
	7	6	5	4	3	2	1	0
					Chipl	D		
Type/Reset	RO	X RO	X RO	X RO	X RO	X RO	X RO	X RO X

Bits	Field	Descriptions
[19:0]	ChipID	Chip ID
		Read the complete 5 digital code of the MCU device part number.

Flash Pre-fetch Control Register – CFCR

This register is used for controlling the FMC cache and pre-fetch module.

Offset: 0x200 Reset value: 0x0000_1091

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset							'	_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
		Reserved		CE			Reserve	d
Type/Reset				RW 1				_
	7	6	5	4	3	2	1	0
	DCDB		Reserved	PFBE	Reserved		WAIT	
Type/Reset	RW 1			RW 1	0	RW	0 RW	0 RW 1

Bits	Field	Descriptions
[12]	CE	Branch Cache Enable Bit 0: Cache is disabled 1: Cache is enabled
[7]	DCDB	DCODE Data Cacheable Control Bit 0: DCODE Data Access is Cacheable 1: DCODE Data Access is Non-Cacheable
[4]	PFBE	Pre-fetch Buffer Enable Bit 0: Pre-fetch buffer is disabled 1: Pre-fetch buffer is enabled The pre-fetch buffer is enabled in default state. When the pre-fetch buffer is disabled, the instruction and Data are provided by the Flash memory directly.
[2:0]	WAIT	Flash Wait State Setting The WAIT [2:0] are used to set the HCLK wait clock during non-sequential address Flash access. The actual value of the wait clocks is given by (WAIT[2:0]

The WAIT [2:0] are used to set the HCLK wait clock during non-sequential address Flash access. The actual value of the wait clocks is given by (WAIT[2:0] - 1). Since a wide access interface with a pre-fetch buffer and branch cache is provided, the wait state of sequential Flash access is very close to zero.

WAIT [2:0]	Wait Status	Allowed HCLK Range
001	0	0 MHz < HCLK <= 24 MHz
010	1	24 MHz < HCLK <= 48 MHz
011	2	48 MHz < HCLK <= 72 MHz
Others	3	72 MHz < HCLK <= 96 MHz

SRAM Booting Vector Register n – SBVTn (n = $0 \sim 3$)

These registers specify the initial values of Stack Point, Program Counter, NMI Handler address and Hard Fault Handler address for the SRAM Booting mode.

Offset: $0x300(0) \sim 0x30C(3)$

Reset value: Various depending on the address offset

	31	30	29	28	27	26	25	24
					SBVTn			
Type/Reset	RW	X RW	X RW	X RW	X RW X	RW X	RW	X RW X
	23	22	21	20	19	18	17	16
					SBVTn			
Type/Reset	RW	X RW	X RW	X RW	X RW X	RW X	RW	X RW X
	15	14	13	12	11	10	9	8
					SBVTn			
Type/Reset	RW	X RW	X RW	X RW	X RW X	RW X	RW	X RW X
	7	6	5	4	3	2	1	0
					SBVTn			
Type/Reset	RW	X RW	X RW	X RW	X RW X	RW X	RW	X RW X

Bits Field Descriptions

[31:0] SBVTn

SRAM Booting Vector n ($n = 0 \sim 3$)

The SRAM Booting Vector 0 \sim 3 provide a SRAM booting capability for applications debugging. The contents of the SBVTn registers are re-mapped into addresses 0x0 \sim 0xC of the Flash memory CODE area under SRAM booting mode. Refer to the description of the VCMR register and BOOT1/BOOT0 boot pins. The following table shows the purpose and reset value of the SBVTn register. The reset value provides a fixed setting for program execution during the SRAM booting mode. Those registers can be modified by the debugging tool in order to change the program execution setting. The reset values of SBVTn will be reloaded only by a power-on reset. Other reset sources will have no effect.

Name	Address Offset	Purpose Descriptions	Reset Value	
			128 KB SRAM:	
SBVT0	0x300	Stack point	0x2002_0000	
		Stack point	64 KB SRAM:	
			0x2001_0000	
SBVT1	0x304	Program counter	0x2000_0159	
SBVT2	0x308	NMI handler address	0x0000_0000	
SBVT3	0x30C	Hard fault handler address	0x0000_0000	

This access width of the registers SBVT0 ~SBVT3 must be 32 bits (Word access). 8 or 16 bits (Byte or Half-Word) access is not allowed.

Custom ID Register n – CIDRn (n = $0 \sim 3$)

This register is used to store the custom ID information which can be used as the custom identity.

Offset: 0x310 (0) ~ 0x31C (3)

Reset value: Various depending on Flash Manufacture Privilege Information Block.

	31	30	29	28	27	26	25	24
					CID		,	
Type/Reset	RO	X RO	X RO	X RO	X RO	X RO	X RO	X RO X
	23	22	21	20	19	18	17	16
					CID			
Type/Reset	RO	X RO	X RO	X RO	X RO	X RO	X RO	X RO X
	15	14	13	12	11	10	9	8
					CID			
Type/Reset	RO	X RO	X RO	X RO	X RO	X RO	X RO	X RO X
Type/Reset	RO 7	X RO 6	X RO 5	X RO 4		X RO 2	X RO 1	X RO X
Type/Reset	RO 7		X RO 5	X RO 4		X RO 2	X RO 1	X RO X

Bits	Field	Descriptions
[31:0]	CIDn	Custom ID

Read as the CIDn[31:0] (n=0 \sim 3) field in the Custom ID registers in Flash Manufacture Privilege Block.

5 Power Control Unit (PWRCU)

Introduction

The power consumption can be regarded as one of the most important issues for many embedded system applications. Accordingly the Power Control Unit, PWRCU, provides many types of power saving modes such as Sleep, Deep-Sleep1, Deep-Sleep2 and Power-Down modes. These modes reduce the power consumption and allow the application to achieve the best trade-off between the conflicting demands of CPU operating time, speed and power consumption. The dash line in the Figure 11 indicates the power supply source of three digital power domains.

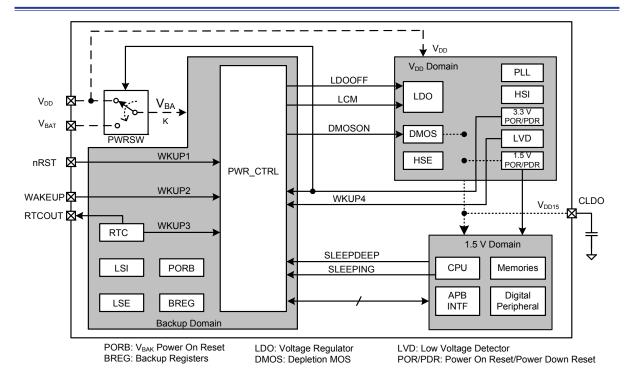


Figure 11. PWRCU Block Diagram

Features

- Three power domains: Backup, V_{DD} and 1.5 V power domains.
- Four power saving modes: Sleep, Deep-Sleep1, Deep-Sleep2 and Power-Down modes.
- Internal Voltage regulator supplies 1.5 V voltage source.
- Additional Depletion MOS supplies 1.5 V voltage source with low leakage and low operating current.
- A power reset is generated when one of the following events occurs:
 - Power-on / Power-down reset (POR / PDR reset).
 - When exiting Power-Down mode.
 - The control bits BODEN = 1, BODRIS=0 and the supply power $V_{DD} \le V_{BOD}$.
- Brown Out Detector can issue a system reset or an interrupt when V_{DD} power source is lower than the Brown Out Detector voltage V_{BOD}.
- Low Voltage Detector can issue an interrupt or wakeup event when V_{DD} is lower than a programmable threshold voltage V_{LVD} .
- Battery power (V_{BAT}) for backup domain when V_{DD} is lower than V_{PDR} voltage.
- 40 bytes of backup registers powered by V_{BAK} for data storage of user application data when in the Power-Down mode.

Functional Descriptions

Backup Domain

Power Switch

The Backup Domain is powered by the V_{DD} power source or the battery power source, V_{BAT} , which is selected by the power switch PWRSW. The operating voltage range of the Back Domain is from 2.0 V to 3.6 V. If V_{DD} is lower than V_{PDR} , then the power source of the Back Domain will be automatically switched from V_{DD} to V_{BAT} . Therefore, even if V_{DD} is powered down, all the circuitry in the backup domain can operate normally. This means that the backup register contents will be retained, the RTC circuitry will operate normally and the low speed oscillators can keep running.

Backup Domain Reset

The Backup Domain reset sources include the Backup Domain Power-On-Reset (PORB) and the Backup Domain software reset which is activated by setting the BAKRST bit in the BAKCR register. The PORB signal forces the device to stay in the reset mode until the V_{BAK} is greater than V_{PORB} . The application software can set the PORBDN bit in the BAKCR register to disable PORB circuit to save the current consumption in the Backup Domain. Also the application software can trigger Backup Domain software reset by setting the BAKRST bit in the BAKCR register. All registers of PWRCU and RTC will be reset only by the Backup Domain reset.

LSE, LSI and RTC

The Real Time Clock circuitry clock source can be derived from either the Low Speed Internal RC oscillator, LSI, or the Low Speed External Crystal oscillator, LSE. Before entering the power saving mode by executing WFI/WFE instruction, the MCU needs to setup the compare register with an expected wakeup time and enable the wakeup function to achieve the RTC timer wakeup event. After entering the power saving mode for a certain amount of time, the Compare Match flag, CMFLAG, will be asserted to wakeup the device when the compare match event occurs. The details of the RTC configuration for wakeup timer will be described in the RTC chapter.

Backup Registers and Isolation Cells

Ten 32-bit registers, up to 40 bytes, are located in the Backup Domain for user application data storage. These registers are powered by V_{BAK} which constantly supplies power when the 1.5 V core power is switched off. The Backup Registers are only reset by the Backup Domain power-on-reset, PORB, or the Backup Domain software reset, BAKRST. When the device resumes operation from the 1.5 V power, either by Hardware or Software, access to the Backup registers and the RTC registers are disabled by the isolation cells which protect these registers against possible parasitic write accesses. To resume access operations, users must disable these isolation cells by setting the BKISO bit to 1 in the LPCR register of the Clock Control Unit.

LDO Power Control

The LDO will be automatically switched off when one of the following conditions occurs:

- The Power-Down or Deep-Sleep 2 mode is entered.
- The control bits BODEN = 1, BODRIS=0 and the supply power $V_{DD} \le V_{BOD}$.
- The supply power $V_{DD} \le V_{PDR}$
- The LDO will be automatically switched on by hardware when the supply power $V_{DD} > V_{POR}$ if any of the following conditions occurs:
- Resume operation from the power saving mode RTC wakeup, LVD wakeup and WAKEUP pin rising edge.
- Detect a falling edge on the external reset pin (nRST).
- The control bit BODEN = 1 and the supply power $V_{DD} > V_{BOD}$.

To enter the Deep-Sleep1 mode, the PWRCU will request the LDO to operate in a low current mode, LCM. To enter the Deep-Sleep 2 mode, the PWRCU will turn off the LDO and turn on the DMOS to supply an alternative 1.5 V power.

V_{DD} Power Domain

Voltage Regulator

The voltage regulator, LDO, Depletion MOS, DMOS, Low voltage Detector, LVD and High Speed Internal oscillator, HSI are operated under the V_{DD} power domain. The LDO can be configured to operate in either normal mode (LDOOFF = 0, SLEEPDEEP = 0, I_{OUT} = High current mode) or low current mode (LDOOFF = 0, SLEEPDEEP = 1, I_{OUT} = Low current mode) to supply the 1.5 V power. An alternative 1.5 V power source is the output of the DMOS which has low static and driving current characteristics. It is controlled using the DMOSON bit in the BAKCR register. The DMOS output has weak output current and regulation capability and only operates in the Deep-Sleep 2 mode for data retention purposes in the V_{DDI5} power domain.

Power On Reset (POR) / Power Down Reset (PDR)

The device has an integrated POR/PDR circuitry that allows proper operation starting from/down to 2.0 V. The device remains in Power-Down mode when $V_{\rm DD}$ is below a specified threshold $V_{\rm PDR}$, without the need for an external reset circuit. For more details of the power on / power down reset threshold voltage, refer to the electrical characteristics of the corresponding datasheet.

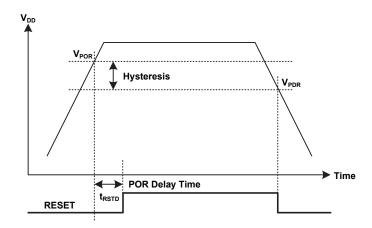


Figure 12. Power On Reset / Power Down Reset Waveform

Low Voltage Detector / Brown Out Detector

The Low Voltage Detector, LVD, can detect whether the supply voltage V_{DD} is lower than a programmable threshold voltage V_{LVD} . It is selected by the LVDS bits in the LVDCSR register. When a low voltage on the V_{DD} power pin is detected, the LVDF flag will be active and an interrupt will be generated and sent to the MCU core if the LVDEN and LVDIWEN bits in the LVDCSR register are set. For more details concerning the LVD programmable threshold voltage V_{LVD} , refer to the electrical characteristics of the corresponding datasheet.

The Brown Out Detector, BOD, is used to detect if the V_{DD} supply voltage is equal to or lower than V_{BOD} . When the BODEN bit in the LVDCSR register is set to 1 and the V_{DD} supply voltage is lower than V_{BOD} then the BODF flag is active. The PWRCU will regard this as a power down reset situation and then immediately disable the internal LDO regulator when the BODRIS bit is cleared to 0 or issue an interrupt to notify the CPU to execute a power down procedure when the BODRIS bit is set to 1. For more details concerning the Brown Out Detector voltage V_{BOD} , refer to the electrical characteristics of the corresponding datasheet.

High Speed Internal Oscillator

The High Speed Internal Oscillator, HSI, is located in the V_{DD} power domain. When exiting from the Deep-Sleep mode, the HSI clock will be configured as the system clock for a certain period by setting the PSRCEN bit to 1 This bit is located in the Global Clock Control Register, GCCR, in the Clock Control Unit, CKCU. The system clock will not be switched back to the original clock source used before entering the Deep-Sleep mode until the original clock source, which may be either sourced from the PLL or HSE stabilizes. Also the system will force the HSI oscillator to be the system clock after a wake up from Power-Down mode since a 1.5 V power on reset will occur.

High Speed External Oscillator

The High Speed External Oscillator, HSE, is located in the V_{DD} power domain. The HSE crystal oscillator can be switched on or off using the HSEEN bit in the Global Clock Control Register (GCCR). The HSE clock can then be used directly as the system clock source or be used as the PLL input clock.

1.5 V Power Domain

The main functions that include the APB interface for the backup domain, CPU core logic, AHB/APB peripherals and memories and so on are located in this power domain. Once the 1.5 V is powered up, the POR will generate a reset sequence (Refer to PORB) on 1.5 V power domain. Subsequently, to enter the expected power saving mode, the associated control bits including the LDOOFF, DMOSON and SLEEPDEEP bits must be configured. Then, once a WFI or WFE instruction is executed, the device will enter an expected power saving mode which will be discussed in the following section.

Operation Modes

Run Mode

In the Run mode, the system operates with full functions and all power domains are active. There are two ways to reduce the power consumption in this mode. The first is to slow down the system clock by setting the AHBPRE field in the CKCU AHBCFGR register, and the second is to turn off the unused peripherals clock by setting the APBCCR0 and APBCCR1 registers or slow down peripherals clock by setting the APBPCSR0 and APBPCSR1 registers to meet the application requirement. Reducing the system clock speed before entering the sleep mode will also help to minimize power consumption.

Additionally, there are several power saving modes to provide maximum optimization between device performance and power consumption.

Table 11. Operation Mode Definitions

Mode name	Hardware Action
Run	After system reset, CPU fetches instructions to execute.
Sleep	CPU clock will be stopped. Peripherals, Flash and SRAM clocks can be stopped by setting.
Deep-Sleep1 ~ 2	Stop all clocks in the 1.5 V power domain. Disable HSI, HSE, and PLL. Turning on the LDO low current mode or DMOS to reduce the 1.5 V power domain current.
Power-Down	Shut down the 1.5 V power domain

Sleep Mode

By default, only the CPU clock will be stopped in the Sleep mode. Clearing the FMCEN or SRAMEN bit in the CKCU AHBCCR register to 0 will have the effect of stopping the Flash clock or SRAM clock after the system enters the Sleep mode. If it is not necessary for the CPU to access the Flash memory and SRAM in the Sleep mode, it is recommended to clear the FMCEN and SRAMEN bits in the AHBCCR register to minimize power consumption. To enter the Sleep mode, it is only necessary to clear the SLEEPDEEP bit to 0 and execute a WFI or WFE instruction. The system will exit from the Sleep mode via any interrupt or event trigger. The accompanying table provides more information about the power saving modes.

Table 12. Enter/Exit Power Saving Modes

		Mode En				
Mode	CPU Instruction	- 1 DO		DMOSON	Mode Exit	
Sleep		0	X	X	WFI: Any interrupt WFE: Any wakeup event (1) or Any interrupt (NVIC on) or Any interrupt with SEVONPEND = 1 (NVIC off)	
Deep-Sleep1	WFI or WFE (Takes effect)	1	0	0	Any EXTI in event mode or RTC wakeup or CMP Wakeup or LVD wakeup (2) or WAKEUP pin rising edge or USB resume	
Deep-Sleep2		1	Х	1	RTC wakeup or LVD wakeup (2) or WAKEUP pin rising edge	
Power-Down		1	1	0	RTC wakeup or LVD wakeup (2) or WAKEUP pin rising edge or External reset (nRST)	

Notes: 1. Wakeup event means EXTI line in event mode, RTC, LVD and WAKEUP pin rising edge

2. If the system allows the LVD activity to wake it up after the system has entered the power saving mode, the LVDEWEN and LVDEN bits in the LVDCSR register must be set to 1 to make sure that the system can be waked up by an LVD event and then the LDO regulator can be turned on when system is woken up from the Deep-Sleep2 and Power-Down modes.

Deep-Sleep Mode

To enter Deep-Sleep mode, configure the registers as shown in the preceding table and execute the WFI or WFE instruction. In the Deep-Sleep mode, all clocks including PLL and high speed oscillator, known as HSI and HSE, will be stopped. In addition, Deep-Sleep1 turns the LDO into low current mode while Deep-Sleep2 turns off the LDO and uses a DMOS to keep 1.5 V power. Once the PWRCU receives a wakeup event or an interrupt as shown in the preceding Mode-Exiting table, the LDO will then operate in normal mode and the high speed oscillator will be enabled. Finally, the CPU will return to Run mode to handle the wakeup interrupt if required. A Low Voltage Detection also can be regarded as a wakeup event if the corresponding wakeup control bit LVDEWEN in the LVDCSR register is enabled. The last wakeup event is a transition from low to high on the external WAKEUP pin sent to the PWRCU to resume from Deep-Sleep mode. During the Deep-Sleep mode, retaining the register and memory contents will shorten the wakeup latency.

Power-Down Mode

The Power-Down mode is derived from the Deep-Sleep mode of the CPU together with the additional control bits LDOOFF and DMOSON. To enter the Power-Down mode, users can configure the registers shown in the preceding Mode-Entering table and execute the WFI or WFE instruction. An RTC wakeup trigger event, an LVD wakeup, a low to high transition on the external WAKEUP pin or an external reset (nRST) signal will force the MCU out of the Power-Down mode. In the Power-Down mode, the 1.5 V power supply will be turned off. The remaining active power supplies are the 3.3 V power ($V_{\rm DD}/V_{\rm DDA}$) and the Backup Domain power ($V_{\rm BAK}$).

After a system reset, the PORSTF bit in the RSTCU GRSR register, the PDF and BAKPORF bits in the BAKSR register should be checked by software to confirm if the device is being resumed from the Power-Down mode by a backup domain power on reset, an unexpected loss of the 1.5 V power or other reset events (nRST, WDT, ...). If the device has entered the Power-Down mode under the correct firmware procedure, then the PDF bit will be set. The System information could be saved in the Backup Registers and be retrieved when the 1.5 V power domain is powered on again. More information about the PDF and BAKPORF bits in the BAKSR register and PORSTF bit in the RSTCU GRSR register is shown in the following table.

Table 13. Power Status after System Reset

BAKPORF	PDF	PORSTF	Description
1	0	1	Power-up for the first time after the backup domain is reset: Power on reset when V _{BAK} is applied for the first time or executing software reset command on the backup domain.
0	0	1	Restart from unexpected loss of the 1.5 V power or other reset (nRST, WDT,)
0	1	1	Restart from the Power-Down mode.
1	1	Х	Reserved

Register Map

The following table shows the PWRCU registers and reset values. Note all the registers in this unit are located in the V_{BAK} backup power domain.

Table 14. PWRCU Register Map

Register	Offset	Description	Reset Value
BAKSR	0x100	Backup Domain Status Register	0x0000_0001
BAKCR	0x104	Backup Domain Control Register	0x0000_0000
BAKTEST	0x108	Backup Domain Test Register	0x0000_0027
LVDCSR	0x110	Low Voltage/Brown Out Detect Control and Status Register	0x0000_0000
BAKREG0	0x200	Backup Register 0	0x0000_0000
BAKREG1	0x204	Backup Register 1	0x0000_0000
BAKREG2	0x208	Backup Register 2	0x0000_0000
BAKREG3	0x20C	Backup Register 3	0x0000_0000
BAKREG4	0x210	Backup Register 4	0x0000_0000
BAKREG5	0x214	Backup Register 5	0x0000_0000
BAKREG6	0x218	Backup Register 6	0x0000_0000
BAKREG7	0x21C	Backup Register 7	0x0000_0000
BAKREG8	0x220	Backup Register 8	0x0000_0000
BAKREG9	0x224	Backup Register 9	0x0000_0000

Register Descriptions

Backup Domain Status Register – BAKSR

This register indicates backup domain status.

Offset:	0x100	

Reset value: 0x0000_0001 (Reset only by Backup Domain reset)

up.

_	31	30	29	28	27	26	25	24	
					Reserved				
Type/Reset									
	23	22	21	20	19	18	17	16	
					Reserved				
Type/Reset									
-	15	14	13	12	11	10	9	8	
				Reserved				WUP	F
Type/Reset							·	RC	0
_	7	6	5	4	3	2	1	0	
				Reserved			PDF	BAKPC	RF
Type/Reset							RC	0 RC	1

Bits	Field	Descriptions
[8]	WUPF	External WAKEUP Pin Flag 0: The Wakeup pin is not asserted 1: The Wakeup pin is asserted This bit is set by hardware when the WAKEUP pin asserts and is cleared by software read. Software should read this bit to clear it after a system wake up from the power saving mode.
[1]	PDF	Power Down Flag 0: Wakeup from abnormal V _{DD15} shutdown (Loss of V _{DD15} is unexpected) 1: Wakeup from Power-Down mode. The loss of V _{DD15} is under expectation. This bit is set by hardware when the system has successfully entered the Power-Down mode This bit is cleared by software read.
[0]	BAKPORF	Backup Domain Reset Flag 0: Backup Domain reset does not occur 1: Backup Domain reset occurs This bit is set by hardware when Backup Domain reset occurs, either a Backup Domain power on reset or Backup Domain software reset. The bit is cleared by software read. This bit must be cleared after the system is first powered, otherwise it will be impossible to detect when a Backup Domain reset has been triggered. When this bit is read as 1, a read software loop must be implemented until the bit returns again to 0. This software loop is necessary to confirm that the Backup Domain is ready for access. It must be implemented after the Backup Domain is first powered

Backup Domain Control Register – BAKCR

This register provides power control bits for the Deep-Sleep and Power-Down modes.

Offset: 0x104

Reset value: 0x0000_0000 (Reset only by Backup Domain reset)

	•							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
	DMOSSTS		Reserved	V15RDYSC		Reserved	WUPIEN	WUPEN
Type/Reset	RO 0			RW 0			RW 0	RW 0
	7	6	5	4	3	2	1	0
	DMOSON	Reserved		LDOFTRM	LDOOFF	LDOLCM	Reserved	BAKRST
Type/Reset	RW 0		RW 0	RW 0	RW 0	RW 0		WO 0

Bits	Field	Descriptions
[15]	DMOSSTS	Depletion MOS Status This bit is set to 1 if the DMOSON bit in this register has been set to 1. This bit is cleared to 0 if the DMOSON bit has been set to 0 or if a POR/PDR reset occurred.
[12]	V15RDYSC	VDD15 Ready Source Selection. 0: BKISO bit in the LPCR register located in the CKCU 1: VDD15 POR Setting this bit to determine what control signal of isolation cells is used to disable the isolation function of the V15 to VDD power domain level shifter.
[9]	WUPIEN	External WAKEUP Pin Interrupt Enable 0: Disable WAKEUP pin interrupt function 1: Enable WAKEUP pin interrupt function The software can set the WUPIEN bit to 1 to assert the LPWUP interrupt in the NVIC unit when both the WUPEN and WUPF bits are set to 1.

Bits	Field	Descriptions
[8]	WUPEN	External WAKEUP Pin Enable 0: Disable WAKEUP pin function. 1: Enable WAKEUP pin function. The Software can set the WUPEN bit as 1 to enable the WAKEUP pin function before entering the power saving mode. When WUPEN = 1, a rising edge on the WAKEUP pin wakes up the system from the power saving mode. As the WAKEUP pin is active high, this bit will set an input pull down mode when the bit is high. The corresponding register bits which should be properly setup are the PCPD [15] to 1 in the PCPDR register, the PCPU [15] to 0 in the PCPUR register and the PCCFG15 field to 0x01 in the GPCCFGHR register. Note: This bit is reset by a system reset or a Backup Domain reset. Because this bit is located in the Backup Domain, after reset activity there will be a delay until the bit is active. The bit will not be active until the system reset finished and the Backup Domain ISO signal has been disabled. This means that the bit can not be immediately set by software after a system reset finished and the Backup domain ISO signal disabled. The delay time needed is a minimum of three 32 kHz clock periods until the bit reset activity has finished.
[7]	DMOSON	DMOS Control 0: DMOS is OFF 1: DMOS is ON A DMOS is implemented to provide an alternative voltage source for the 1.5 V power domain when the CPU enters the Deep-Sleep mode (SLEEPDEEP = 1). The control bit DMOSON is set by software and cleared by software or PORB. If the DMOSON bit is set to 1, the LDO will automatically be turned off when the CPU enters the Deep-Sleep mode.
[5:4]	LDOFTRM	LDO Output Voltage Fine Trim 00: The LDO default output voltage. 01: The LDO default output voltage offset - 5 %. 10: The LDO default output voltage offset + 3 %. 11: The LDO default output voltage offset + 7 %. These bits will be clear to 0 when the LDO is power down or VDD power domain reset.
[3]	LDOOFF	 LDO Operating Mode Control 0: The LDO operates in a low current mode when CPU enters the Deep-Sleep mode (SLEEPDEEP = 1). The VDD15 power is available. 1: The LDO is turned off when the CPU enters the Deep-Sleep mode (SLEEPDEEP=1). The VDD15 power is not available. Note: This bit is only available when the DMOSON bit is cleared to 0.
[2]	LDOLCM	DO Low Current Mode 0: The LDO is operated in normal current mode. 1: The LDO is operated in low current mode. Note: This bit is only available when CPU is in the run mode. The LDO output current capability will be limited at 10 mA below and lower static current when the LDOLCM bit is set. It is suitable for CPU is operated at lower speed system clock to get a lower current consumption. This bit will be clear to 0 when the LDO is power down or VDD power domain reset.
[0]	BAKRST	Backup Domain Software Reset 0: No action 1: Backup Domain Software Reset is activated - includes all the related RTC and PWRCU registers.

Backup Domain Test Register – BAKTEST

This register specifies a read-only value for the software to recognize whether backup domain is ready for access.

Offset:	0x108		
Reset value:	0x0000	002	27

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset							,	_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					'			
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset							'	
	7	6	5	4	3	2	1	0
					BAKTEST			
Type/Reset	RO	0 RO	0 RO	1 RO	0 RO (RO	1 RO	1 RO 1

Bits	Field	Descriptions
[7:0]	BAKTEST	Backup Domain Test Bits
		A constant 0x27 will be read when the Backup Domain is ready for CPU access

Low Voltage / Brown Out Detect Control and Status Register – LVDCSR

This register specifies flags, enable bits and option bits for Low-voltage / Brown-out detector.

Offset: 0x110

Reset value: 0x0000_0000 (Reset only by Backup Domain reset)

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
	Reserved	LVDS [2]	LVDEWEN	LVDIWEN	LVDF	LVDS	S [1:0]	LVDEN
Type/Reset		RW 0	RW 0	RW 0	RO 0	RW 0	RW 0	RW 0
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved		BODF	Reserved	BODRIS	BODEN
Type/Reset		_			RO 0		RW 0	RW 0

Bits	Field	Descriptions
[21]	LVDEWEN	LVD Event Wakeup Enable 0: LVD event wakeup is disabled 1: LVD event wakeup is enabled Setting this bit to 1 will enable the LVD event wakeup function to wake up the system when a LVD condition occurs which result in the LVDF bit being asserted. If the system requires to be waked up from the Deep-Sleep or Power-Down mode by a LVD condition, this bit must be set to 1.
[20]	LVDIWEN	LVD Interrupt Wakeup Enable 0: LVD interrupt wakeup is disabled 1: LVD interrupt wakeup is enabled Setting this bit to 1 will enable the LVD interrupt function. When a LVD condition occurs and the LVDIWEN bit is set to 1, a LVD interrupt will be generated and sent to the CPU NVIC unit.
[19]	LVDF	Low Voltage Detect Status Flag 0: VDDA is higher than the specific voltage level 1: VDDA is equal to or lower than the specific voltage level When the LVD condition occurs, the LVDF flag will be asserted. When the LVDF flag is asserted, a LVD interrupt will be generated for CPU if the LVDIWEN bit is set to 1. However, if the LVDEWEN bit is set to 1 and the LVDIWEN bit is cleared to 0, only a LVD event will be generated rather than a LVD interrupt when the LVDF flag is asserted.
[22], [18:17]	LVDS [2:0]	Low Voltage Detect Level Selection For more details concerning the LVD programmable threshold voltage, refer to the electrical characteristics of the corresponding datasheet.

Bits	Field	Descriptions
[16]	LVDEN	Low Voltage Detect Enable 0: Disable Low Voltage Detect 1: Enable Low Voltage Detect Setting this bit to 1 will generate a LVD event when the VDDA power is lower than the voltage set by LVDS bits. Therefore when the LVD function is enabled before the system enters the Deep-Sleep2 (DMOS is turn on and LDO is power down) or Power-Down mode (DMOS and LDO is power down), the LVDEWEN bit has to be enabled to avoid the LDO does not activate in the meantime when the CPU is woken up by the low voltage detection activity.
[3]	BODF	Brow Out Detect Flag $0: V_{DD} > V_{BOD}$ $1: V_{DD} \le V_{BOD}$
[1]	BODRIS	BOD Reset or Interrupt Selection 0: Reset the whole chip 1: Generate Interrupt
[0]	BODEN	Brown Out Detector Enable 0: Disable Brown Out Detector 1: Enable Brown Out Detector

Backup Register n – BAKREGn (n = $0 \sim 9$)

This register specifies backup register n for storing data during the VDD15 power-off period.

Offset: 0x200 ~ 0x224

Reset value: 0x0000_0000 (Reset only by Backup Domain reset)

	31		30		29		28		27		26		:	25		24	
									BAKRE	Gn							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0
	23		22		21		20		19		18			17		16	
									BAKRE	Gn							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0
	15		14		13		12		11		10			9		8	
	15		14		13		12		11 BAKRE	Gn	10			9		8	
Type/Reset	15 RW	0	14	0	RW	0	12	0	BAKRE		RW	0	RW	9	0	8 RW	0
Type/Reset		0		0		0		0	BAKRE				RW	1	0		0
Type/Reset		0	RW	0		0		0	BAKRE	0			RW	1	0		0

Bits	Field	Descriptions
[31:0]	BAKREGn	Backup Register n (n = 0 ~ 9)
		These registers are used for data storage in general purpose. The contents of
		BAKREGn registers will remain even if the VDD15 power is lost.

6

Clock Control Unit (CKCU)

Introduction

The Clock Control unit (CKCU) provides functions of high speed internal RC oscillator (HSI), High speed external crystal oscillator (HSE), Low speed internal RC oscillator (LSI), Low speed external crystal oscillator (LSE), Phase Lock Loop (PLL), HSE clock monitor, clock prescaler, clock multiplexer and clock gating. The clock of AHB, APB, and CPU are derived from system clock (CK_SYS) which can come from HSI, HSE, LSI, LSE or PLL. Watchdog Timer and Real Time Clock (RTC) use either LSI or LSE as their clock source. The maximum operating frequency of system clock f_{CK} AHB can be up to 96 MHz.

A variety of internal clocks can also be wired out though CKOUT for debugging purpose. The clock monitor can be used to get clock failure detection of HSE. Once the clock of HSE does not function (could be broken down or removed or etc), CKCU will force to switch the system clock source to HSI clock to prevent system halt.

Rev. 1.10 84 of 680 November 22, 2018

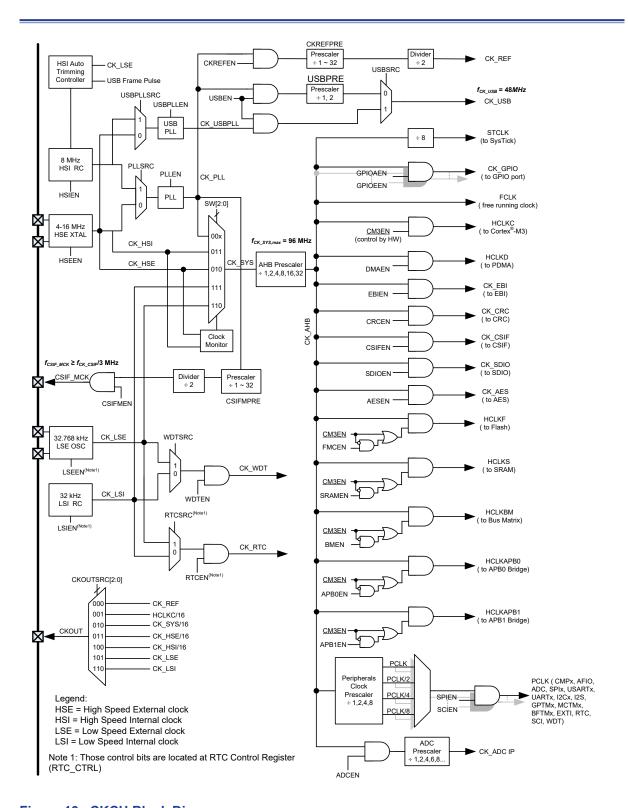


Figure 13. CKCU Block Diagram

Features

- 4 to 16 MHz external crystal oscillator HSE
- Internal 8 MHz RC oscillator (HSI) with configuration option calibration and custom trimming capability.
- PLL with selectable clock source, either from HSE or HSI, for system clock
- 32,768 Hz external crystal oscillator (LSE) for Watchdog Timer or RTC or system clock.
- Internal 32 kHz RC oscillator (LSI) for Watchdog Timer, RTC or system clock.
- HSE clock monitor

Function Descriptions

High Speed External Crystal Oscillator - HSE

The high speed external 4 to 16 MHz crystal oscillator (HSE) produces a highly accurate clock source to the system clock. The related hardware configuration is shown in the following figure. The crystal with specific frequency must be placed across the two HSE pins (XTALIN / XTALOUT) and the external components such as resistors and capacitors are necessary to make it oscillate properly.

The following guidelines are provided to improve the stability of the crystal circuit PCB layout.

- The crystal oscillator should be located as close as possible to the MCU so that the trace lengths are kept as short as possible to reduce any parasitic capacitances.
- Shield any lines in the vicinity of the crystal by using a ground plane to isolate signals and reduce noise.
- Keep frequently switching signal lines away from the crystal area to prevent crosstalk.

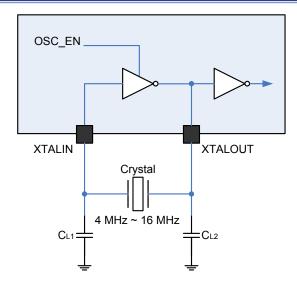


Figure 14. External Crystal, Ceramic and Resonators for HSE

The HSE crystal oscillator can be switched on or off using the HSEEN bit in the Global Clock Control Register (GCCR). The HSERDY flag in the Global Clock Status Register (GCSR) will indicate if the high-speed external crystal oscillator is stable. While switching on the HSE, the HSE clock will still not be released until this HSERDY bit is set by the hardware. The specific delay period is well-known as "Start-up time". As the HSE becomes stable, an interrupt will be generated if the related interrupt enable bit HSERDYIE in the Global Clock Interrupt Register (GCIR) is set. The HSE clock can then be used directly as the system clock source or be used as the PLL input clock.

High Speed Internal RC Oscillator - HSI

The high speed internal 8 MHz RC oscillator (HSI) is the default selection of clock source for the CPU when the device is powered up. The HSI RC oscillator provides a clock source in a lower cost because no external components are required. The HSI RC oscillator can be switched on or off using the HSIEN bit in the Global Clock Control Register (GCCR). The HSIRDY flag in the Global Clock Status Register (GCSR) will indicate if the internal RC oscillator is stable. The start-up time of HSI is shorter than the HSE crystal oscillator. An interrupt can be generated if the related interrupt enable bit HSIRDYIE in the Global Clock Interrupt Register (GCIR) is set as the HSI becomes stable. The HSI clock can also be used as the PLL input clock.

The accuracy of the frequency of the high speed internal RC oscillator HSI can be calibrated via the configuration options, but it is still less accurate than the HSE crystal oscillator. The applications, the environments and the cost will determine the use of the oscillators.

Software could configure the Power Saving Wakeup RC Clock Enable bit PSRCEN to 1 to force HSI clock to be system clock when the system initially wake-up. Subsequently, the system clock is back to the original clock source if the original clock source ready flag is asserted. This function can reduce the wakeup time when using HSE or PLL as system clock.

Auto Trimming of High Speed Internal RC Oscillator - HSI

The frequency accuracy of the high speed internal RC oscillator HSI can vary from one chip to another due to manufacturing process variations, this is why each device is factory calibrated for \pm 2 % accuracy at V_{DD} = 3.3 V and T_A = 25 °C. But the accuracy is not enough for some applications and environments requirement. Therefore, this device provides the trimming mechanism for HSI frequency calibration using more accurate external reference clock. The detail block diagram is shown as Figure 15.

After reset, the factory trimming value is loaded in the HSICOARSE[4:0] and HSIFINE[7:0] bits in the HSI Control Register (HSICR). The HSI frequency may be affected by voltage or temperature variations. If the application has to be driven by a more accurate HSI frequency, the HSI frequency can be manually trimmed using the HSIFINE[7:0] bits in the HSI Control Register (HSICR) or automatically adjusted via the Auto Trimming Controller (ATC) together with an external reference clock in the application. The reference clock can be provided from the following clock sources:

- 32,768 Hz low speed external crystal or ceramic resonator oscillator LSE output clock
- 1 kHz USB SOF package reception
- External pin (CKIN) with 1 kHz pulse

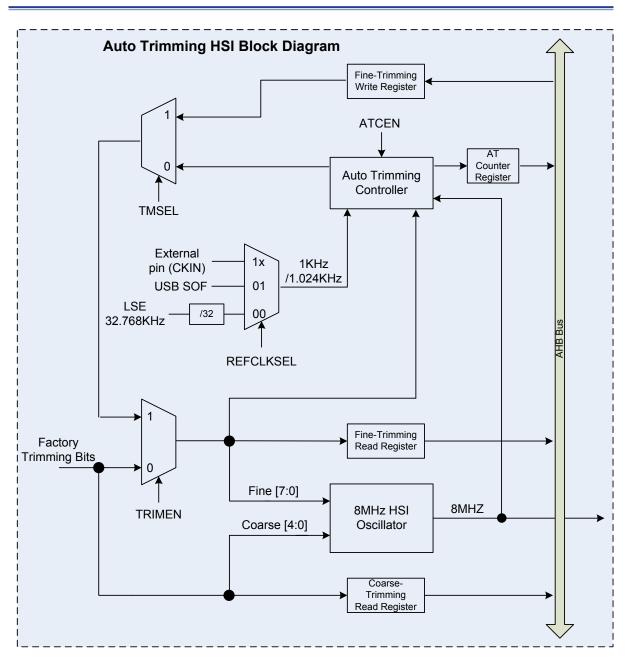


Figure 15. The Block Diagram of HSI Auto Trimming

Phase Locked Loop - PLL

This PLL can provide $8 \sim 96$ MHz clock output which is $2 \sim 24$ multiples of a fundamental reference frequency of $4 \sim 16$ MHz. The rationale of the clock synthesizer relies on the digital Phase Locked Loop (PLL) which includes a reference divider, a feedback divider, a digital phase frequency detector (PFD), a current-controlled charge pump, a built-in loop filter and a voltage-controlled oscillator (VCO) to achieve a stable phase-locked state.

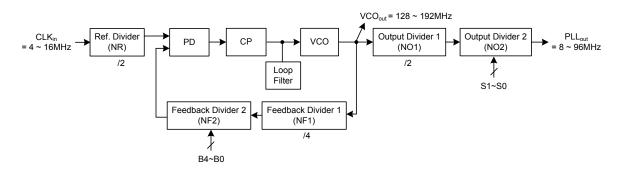


Figure 16. PLL block diagram

Frequency of the PLL output clock can be determined by the following formula:

$$PLL_{out} = CLK_{in} \times \frac{NF1 \times NF2}{NR \times NO1 \times NO2} = CLK_{in} \times \frac{4 \times NF2}{2 \times 2 \times NO2} = CLK_{in} \times \frac{NF2}{NO2}$$

where NR = Ref divider = 2, NF1 = Feedback Divider 1 = 4, NF2 = Feedback Divider 2 = $1 \sim 32$, NO1 = Output Divider 1 = 2, NO2 = Output Divider 2 = 1, 2, 4, or 8

Considering the duty cycle with 50%, both input frequency and output frequency is divided by 2. Assume that a given CLK_{in} frequency as the PLL input generates a specific PLL output frequency; it is recommended to load a larger value into the NF2 field to increase the PLL stability and reduce the jitter with the expense of the settling time. The output and feedback divider 2 setup value are described in Table 15 and Table 16. All the configuration bits (S1 \sim S0, B4 \sim B0) in Table 15 and Table 16 are defined in the PLL Configuration Register (PLLCFGR) and PLL Control Register (PLLCR) in the section of Register Definition. Note that VCO_{OUT} frequency should be in the range from 128 MHz to 192 MHz. If the selected configuration exceeds this range, the PLL output frequency cannot be guaranteed to match the above PLL_{OUT} formula.

The PLL can be switched on or off by using the PLLEN bit in the Global Clock Control Register (GCCR). The PLLRDY flag in the Global Clock Status Register (GCSR) will indicate if the PLL clock is stable. An interrupt can be generated if the related interrupt enable bit PLLRDYIE in the Global Clock Interrupt Register (GCIR) is set as the PLL becomes stable.

Table 15. Output Divider 2 Value Mapping

Output divider 2 setting S1 ~ S0 (POTD)	NO2 (Output divider 2 value)
00	1
01	2
10	4
11	8

Table 16. Feedback Divider 2 Value Mapping

Feedback divider 2 setting B4 ~ B0 (PFBD)	NF2 (Feedback divider 2 value)
00000	32
00001	1
00010	2
00011	3
00100	4
00101	5
00110	6
00111	7
01000	8
01001	9
01010	10
01011	11
!	!
!	į.
11110	30
11111	31

USB Phase Locked Loop – USB PLL

This USB PLL can provide 48 MHz clock output for USB peripheral which is $2 \sim 24$ multiples of a fundamental reference frequency of $4 \sim 16$ MHz. The rationale of the clock synthesizer relies on the digital Phase Locked Loop (PLL) which includes a reference divider, a feedback divider, a digital phase frequency detector (PFD), a current-controlled charge pump, a built-in loop filter and a voltage-controlled oscillator (VCO) to achieve a stable phase-locked state.

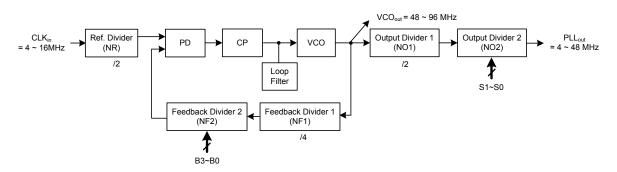


Figure 17. USB PLL Block Diagram

Frequency of the PLL output clock can be determined by the following formula:

$$PLL_{out} = CLK_{in} \times \frac{NF1 \times NF2}{NR \times NO1 \times NO2} = CLK_{in} \times \frac{4 \times NF2}{2 \times 2 \times NO2} = CLK_{in} \times \frac{NF2}{NO2} \times \frac{NF2}{NO2$$

where NR = Ref divider = 2, NF1 = Feedback Divider 1 = 4, NF2 = Feedback Divider 2 = $1 \sim 16$, NO1 = Output Divider 1 = 2, NO2 = Output Divider 2 = 1, 2, 4, or 8

Considering the duty cycle with 50%, both input frequency and output frequency is divided by 2. Assume that a given CLK_{in} frequency as USB PLL input generates a specific USB PLL output frequency; it is recommended to load a larger value into the NF2 field to increase the PLL stability and reduce the jitter with the expense of the settling time. The output and feedback divider 2 value are described in Table 17 and Table 18. All the configuration bits (S1 \sim S0, B3 \sim B0) in Table 17 and Table 18. are defined in the PLL Configuration Register (PLLCFGR) and PLL Control Register (PLLCR) in the section of Register Definition. Note that VCO_{OUT} is ranged from 48 MHz to 96 MHz. If your configurations exceed this range, the output frequency of USB PLL will not be promised to match the above PLL_{OUT} formula.

The USB PLL can be switched on or off by using the USBPLLEN bit in the Global Clock Control Register (GCCR). The USBPLLRDY flag in the Global Clock Status Register (GCSR) will indicate if the USB PLL clock is stable. An interrupt can be generated if the related interrupt enable bit USBPLLRDYIE in the Global Clock Interrupt Register (GCIR) is set as the USB PLL becomes stable.

Table 17. USB PLL Output Divider 2 Value Mapping

Output divider 2 setting S1 ~ S0 (USBPOTD)	NO2 (Output divider 2 value)
00	1
01	2
10	4
11	8

Table 18. USB PLL Feedback Divider 2 Value Mapping

Feedback divider 2 setting B3 ~ B0 (USBPFBD)	NF2 (Feedback divider 2 value)
0000	16
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
i i	
1111	15

Low Speed External Crystal Oscillator - LSE

The low speed external crystal or ceramic resonator oscillator with 32,768 Hz frequency produces a low power but highly accurate clock source for the circuits of Real-Time-Clock peripheral, Watchdog Timer or system clock. The associated hardware configuration is shown in the following figure. The crystal or ceramic resonator must be placed across the two LSE pins (X32KIN / X32KOUT) and the external components such as resistors and capacitors are necessary to make it oscillate properly. The LSE oscillator can be switched on or off by using the LSEEN bit in the RTC Control Register RTCCR. The LSERDY flag in the Global Clock Status Register (GCSR) will indicate if the LSE clock is stable. An interrupt can be generated if the related interrupt enable bit LSERDYIE in the Global Clock Interrupt Register (GCIR) is set as the LSE becomes stable.

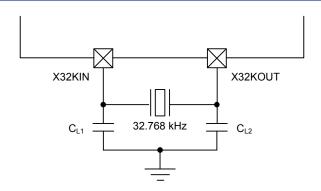


Figure 18. External Crystal, Ceramic and Resonators for LSE

Low Speed Internal RC Oscillator – LSI

The low speed internal RC oscillator with frequency of about 32 kHz produces a low power clock source for the circuits of Real-Time-Clock peripheral, Watchdog Timer or system clock. The LSI offers a low clock source because no external component is required to make it oscillates. The LSI RC oscillator can be switched on or off by using the LSIEN bit in the RTC Control Register RTCCR. The LSI frequency accuracy is shown in the Datasheet. The LSIRDY flag in the Global Clock Status Register (GCSR) will indicate if the LSI clock is stable. An interrupt can be generated if the related interrupt enable bit LSIRDYIE in the Global Clock Interrupt Register (GCIR) is set as the LSI becomes stable.

Clock Ready Flag

CKCU provides the corresponding clock ready flags for the HIS, HSE, PLL, LSI and LSE to indicate whether these clocks are stable. Before using them as system clock source or other purpose, it is necessary to confirm the specific clock ready flag is set. Software can check if the specific clock is ready or not by polling the individual clock ready status bits in GCSR register. Additionally, the CKCU can trigger an interrupt to notify specific clock is ready if the corresponding interrupt enable bit in the GCIR is set. Software should clear the interrupt status bit in the GCIR register by interrupt service routine.

System Clock (CK_SYS) Selection

After the system reset occurs, the high speed internal RC oscillator HSI is selected as the system clock (CK_SYS). The CK_SYS may come from the HSI, HSE, LSE, LSI or PLL output clock and it can be switched from one clock source to another via the System Clock Switch bits (SW) in the Global Clock Control Register (GCCR). The system will still run under the original clock until the destination clock gets ready when the SW value is changed. The corresponding clock ready status bits in the Global Clock Status Register (GCSR) will indicate whether the selected clock is ready to use or not. The CKCU also contains the clock source status bits in the Clock Source Status Register CKST to indicate which clock is currently used as system clock. If a clock source or the PLL output clock is used as system clock, it is not possible to stop it. More detail about function of clock enable is described in the following.

If any event in the following occurs, the HSI will be enabled.

- Enable PLL and configure its source clock to HSI. (PLLEN, PLLSRC)
- Enable Clock monitor. (CKMEN)
- Configure clock switch register to HSI. (SW)
- Configure HSI enable register to 1. (HSIEN)

If any event in the following occurs, the HSE will be enabled.

- Enable PLL and configure its source clock to HSE. (PLLEN, PLLSRC)
- Configure clock switch register to HSE. (SW)
- Configure HSE enable register to 1. (HSEEN)

If any event in the following occurs, the PLL will be enabled.

- Enable USB Enable register. (USBEN)
- Configure clock switch register to PLL (SW)
- Configure PLL enable register to 1. (PLLEN)

The system clock selection Programming guide is listed in the following.

- 1. Enable any source clock which will become system clock or PLL input clock.
- 2. Configuring the PLLSRC register after the ready flags of both HSI and HSE are asserted,
- 3. Configuring the SW register to change the system clock source will occur after the corresponding ready flag of the clock source is asserted. Note that the system clock will be forced to HSI if the clock monitor is enabled and the PLL output or HSE clock configured as system clock is stuck at 0/1.

HSE Clock Monitor

The HSE clock monitor function is enabled by the HSE Clock Monitor Enable bit CKMEN in the Global Clock Control Register (GCCR). This function should be enabled after the HSE start-up delay and be disabled when the HSE oscillator is stopped. Once the HSE failure is detected, the HSE will automatically be disabled. The HSE Clock Stuck Flag CKSF in the Global Clock Interrupt Register, GCIR, will be set and the HSE failure event will be generated if the Clock Fail Interrupt Enable bit CKSIE in the GCIR register is set. This failure interrupt is connected to the Non-Maskable Interrupt NMI. When the HSE oscillator failure occurs, the HSE will be turned off and the system clock will be switched to the HSI automatically by the hardware. If the HSE is used as the clock input of the PLL circuit whose output is used as the system clock, the PLL circuit will also be turned off as well as the HSE when the failure happens.

Clock Output Capability

The device has the clock output capability to allow the clocks to be output on the specific external output pin CKOUT. The configuration registers of the corresponding GPIO port must be well configured in the Alternate Function I/O section, AFIO, to output the selected clock signal. There are seven output clock signals to be selected via the device clock output source selection bits CKOUTSRC in the Global Clock Configuration Register GCFGR.

Table 19. CKOUT Clock Source

CKOUTSRC[2:0]	Clock Source
000	CK_REF = CK_PLL / (CKREFPRE + 1) / 2
001	HCLK / 16
010	CK_SYS / 16
011	CK_HSE / 16
100	CK_HSI / 16
101	CK_LSE
110	CK_LSI

Register Map

The following table shows the CKCU register and reset value.

Table 20. CKCU Register Map

Register	Offset	Description	Reset Value
GCFGR	0x000	Global Clock Configuration Register	0x0000_0302
GCCR	0x004	Global Clock Control Register	0x0000_0803
GCSR	0x008	Global Clock Status Register	0x0000_0028
GCIR	0x00C	Global Clock Interrupt Register	0x0000_0000
PLLCFGR	0x018	PLL Configuration Register	0x0000_0000
PLLCR	0x01C	PLL Control Register	0x0000_0000
AHBCFGR	0x020	AHB Configuration Register	0x0000_0000
AHBCCR	0x024	AHB Clock Control Register	0x0000_0005
APBCFGR	0x028	APB Configuration Register	0x0000_0000
APBCCR0	0x02C	APB Clock Control Register 0	0x0000_0000
APBCCR1	0x030	APB Clock Control Register 1	0x0000_0000
CKST	0x034	Clock Source Status Register	0x0100_0003
APBPCSR0	0x038	APB Peripheral Clock Selection Register 0	0x0000_0000
APBPCSR1	0x03C	APB Peripheral Clock Selection Register 1	0x0000_0000
HSICR	0x040	HSI Control Register	0xXXXX_0000 where X is undefined
HSIATCR	0x044	HSI Auto Trimming Counter Register	0x0000_0000
LPCR	0x300	Low Power Control Register	0x0000_0000
MCUDBGCR	0x304	MCU Debug Control Register	0x0000_0000

Register Descriptions

Global Clock Configuration Register – GCFGR

This register specifies the clock source for PLL/USART/Watchdog Timer/CKOUT.

Offset: 0x000

Reset value: 0x0000_0302

	31	30		29		28		27	2	26		25	24	
		LPMO	D						CSIF	MPRE				
Type/Reset	RO	0 RO	0 RO		0	RW	0 RW	C	RW	0	RW	0	RW	0
	23	22		21		20		19		18		17	16	
		USBPF	RE						Res	erved				
Type/Reset	RW	0 RW	0											
	15	14		13		12		11		10		9	8	
			CKI	REFF	PRE				USE	BSRC	USBF	PLLSRC	PLLSF	₹C
Type/Reset	RW	0 RW	0 RW		0	RW	0 RW	C	RW	0	RW	1	RW	1
	7	6		5		4		3		2		1	0	
	Reserved										CKO	UTSRC		
Type/Reset									RW	0	RW	1	RW	0

Bits	Field	Descriptions
[31:29]	LPMOD	Lower Power Mode Status 000: When Chip is in running mode 001: When Chip wants to enter Sleep mode 010: When Chip wants to enter Deep Sleep mode1 011: When Chip wants to enter Deep Sleep mode2 100: When Chip wants to enter Power Down mode Others: Reserved Set and reset by hardware.
[23:22]	USBPRE	USB Clock Prescaler Selection 00:CK_USB = CK_PLL 01:CK_USB = CK_PLL / 2 Others: Reserved Set and reset by software to control USB clock prescaler setting.
[15:11]	CKREFPRE	CK_REF Clock Prescaler Selection CK_REF = CK_PLL / (CKREFPRE + 1) / 2 00000:CK_REF = CK_PLL / 2 00001:CK_REF = CK_PLL / 4 11111:CK_REF = CK_PLL / 64
[10]	USBSRC	Set and reset by software to control CK_REF clock prescaler setting. USB Clock Source Selection 0: CK_PLL clock is selected 1: CK_USBPLL clock is selected Set and reset by software to control USB clock source.
[9]	USBPLLSRC	USB PLL Clock Source Selection 0: External 4 ~ 16 MHz crystal oscillator clock is selected (HSE) 1: Internal 8 MHz RC oscillator clock is selected (HSI) Set and reset by software to control USB PLL clock source.

Bits	Field	Descriptions
[8]	PLLSRC	PLL Clock Source Selection 0: External 4 ~ 16 MHz crystal oscillator clock is selected (HSE) 1: Internal 8 MHz RC oscillator clock is selected (HSI) Set and reset by software to control PLL clock source.
[2:0]	CKOUTSRC	CKOUT Clock Source Selection 000: CK_REF is selected – Where CK_REF = CK_PLL / (CKREFPRE + 1) / 2 001: (HCLKC / 16) is selected 010: (CK_SYS / 16) is selected 011: (CK_HSE / 16) is selected 100: (CK_HSI / 16) is selected 100: (CK_LSE is selected 111: Reserved
		Set and reset by software.

Global Clock Control Register – GCCR

This register specifies the clock enable bits.

Offset: 0x004 Reset value: 0x0000_0803

	31	30	29	28	27		26	25		24	
					Reserve	d					
Type/Reset											
	23	22	21	20	19		18	17		16	
				Reserved				PSRCE	N	CKM	ΞN
Type/Reset								RW	0	RW	0
	15	14	13	12	11		10	9		8	
			Reserved		HSIEN		HSEEN	PLLEN	1	HSEG.	AIN
Type/Reset					RW	1	RW 0	RW	0	RW	0
	7	6	5	4	3		2	1		0	
			Reserved		USBPLLE	ΞN		SW			
Type/Reset					RW	0	RW 0	RW	1	RW	1

Bits	Field	Descriptions
[17]	PSRCEN	Power Saving Wakeup RC Clock Enable 0: No action 1: Use Internal 8 MHz RC clock (HSI) as system clock after Deep Sleep 1/2 wakeup. The software can set the PSRCEN bit high before entering the Deep Sleep 1 or Deep Sleep 2 mode. In order to reduce the waiting time after a wakeup. When the PSRCEN bit is set to 1, the HSI will be used as the CK_SYS clock source after waking up from the Deep Sleep 1 or Deep Sleep 2 mode. This means that the
		instruction can be executed before the original CK_SYS source is stable since the HSI clock is provided to CPU. After the original clock source is ready, the CK_SYS

clock will automatically be switched back to the original.

Bits	Field	Descriptions
[16]	CKMEN	HSE Clock Monitor Enable 0: Disable External 4 ~ 16 MHz crystal oscillator clock monitor 1: Enable External 4 ~ 16 MHz crystal oscillator clock monitor When the hardware detects that the HSE clock stuck at a low or high state, the internal hardware will switch the system clock to the internal high speed HSI RC clock.
[11]	HSIEN	Internal High Speed Clock Enable 0: Internal 8 MHz RC oscillator clock is disabled 1: Internal 8 MHz RC oscillator clock is enabled Set and reset by software. This bit cannot be reset if HSI clock is used as system clock.
[10]	HSEEN	External High Speed Clock Enable 0: External 4 ~ 16 MHz crystal oscillator clock is disabled 1: External 4 ~ 16 MHz crystal oscillator clock is enabled Set and reset by software. This bit cannot be reset if the HSE clock is used as system clock or the PLL input clock.
[9]	PLLEN	PLL Enable 0: PLL is disabled 1: PLL is enabled Set and reset by software to enable PLL. This bit cannot be reset if the PLL clock is used as system clock.
[8]	HSEGAIN	External High Speed Clock Gain Selection 0: HSE is in low gain mode 1: HSE is in high gain mode
[3]	USBPLLEN	USB PLL Enable 0: USB PLL is disabled 1: USB PLL is enabled Set and reset by software to enable USB PLL. This bit cannot be reset if the PLL clock is used as system clock.
[2:0]	SW	System Clock Switch 00x: CK_PLL clock out as system clock 010: CK_HSE as system clock 011: CK_HSI as system clock 110: CK_LSE as system clock 111: CK_LSI as system clock Other: CK_HSI as system clock This bit field is set and reset by software to select the CK_SYS source. The HSI oscillator will be forced as the when the HSE oscillator clock failure is detected, where the HSE is used directly or indirectly as system clock, as the clock monitor is enabled. Note: When switching the system clock using the SW bit, the system clock will not be immediately switched and a certain delay is necessary. The system clock source selected by the SW bits can be indicated in the CKSWST bits in the clock source status register CKST to make sure which clock is currently used as the system clock.

Global Clock Status Register – GCSR

This register indicates the clock ready status.

Offset: 0x008

Reset value: 0x0000_0028

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
		Reserved	LSIRDY	LSERDY	HSIRDY	HSERDY	PLLRDY	USBPLLRDY
Type/Reset			RO 1	RO 0	RO 1	RO 0	RO 0	RO 0

Bits	Field	Descriptions
[5]	LSIRDY	Internal Low Speed Clock Ready Flag 0: Internal 32 kHz RC oscillator clock is not ready 1: Internal 32 kHz RC oscillator clock is ready Set by hardware to indicate whether the LSI is stable to be used.
[4]	LSERDY	External Low Speed Clock Ready Flag 0: External 32,768 Hz crystal oscillator clock is not ready 1: External 32,768 Hz crystal oscillator clock is ready Set by hardware to indicate whether the LSE is stable to be used.
[3]	HSIRDY	Internal High Speed Clock Ready Flag 0: Internal 8 MHz RC oscillator clock is not ready 1: Internal 8 MHz RC oscillator clock is ready Set by hardware to indicate whether the HSI is stable to be used.
[2]	HSERDY	External High Speed Clock Ready Flag 0: External 4 ~ 16 MHz crystal oscillator clock is not ready 1: External 4 ~ 16 MHz crystal oscillator clock is ready Set by hardware to indicate whether the HSE is stable to be used.
[1]	PLLRDY	PLL Clock Ready Flag 0: PLL is not ready 1: PLL is ready Set by hardware to indicate whether the PLL is stable to be used.
[0]	USBPLLRDY	USB PLL Clock Ready Flag 0: USB PLL is not ready 1: USB PLL is ready Set by hardware to indicate whether the USB PLL is stable to be used.

Global Clock Interrupt Register – GCIR

This register specifies interrupt enable and flag bits.

Offset: 0x00C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset			,					
	23	22	21	20	19	18	17	16
	Reserved	LSIRDYIE	LSERDYIE	HSIRDYIE	HSERDYIE	PLLRDYIE	USBPLLRDYIE	CKSIE
Type/Reset		RW 0	RW 0					
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset							,	
	7	6	5	4	3	2	1	0
	Reserved	LSIRDYF	LSERDYF	HSIRDYF	HSERDYF	PLLRDYF	USBPLLRDYF	CKSF
Type/Reset	<u> </u>	WC 0	WC 0					

Bits	Field	Descriptions
[22]	LSIRDYIE	LSI Ready Interrupt Enable
[22]	LOIKUTIE	0: Disable LSI stabilization interrupt
		1: Enable LSI stabilization interrupt
		Set and reset by software to enable/disable interrupt caused by LSI stabilization.
[21]	LSERDYIE	LSE Ready Interrupt Enable
		0: Disable LSE stabilization interrupt
		1: Enable LSE stabilization interrupt
		Set and reset by software to enable/disable interrupt caused by LSE stabilization.
[20]	HSIRDYIE	HSI Ready Interrupt Enable
		0: Disable HSI stabilization interrupt
		1: Enable HSI stabilization interrupt Set and reset by software to enable/disable interrupt caused by HSI stabilization.
[10]	HSERDYIE	
[19]	HOEKDTIE	HSE Ready Interrupt Enable 0: Disable HSE stabilization interrupt
		1: Enable HSE stabilization interrupt
		Set and reset by software to enable/disable interrupt caused by HSE stabilization.
[18]	PLLRDYIE	PLL Ready Interrupt Enable
		0: Disable PLL stabilization interrupt
		1: Enable PLL stabilization interrupt
		Set and reset by software to enable/disable interrupt caused by PLL stabilization.
[17]	USBPLLRDYIE	USB PLL Ready Interrupt Enable
		0: Disable USB PLL stabilization interrupt
		1: Enable USB PLL stabilization interrupt
		Set and reset by software to enable/disable interrupt caused by USB PLL stabilization.
[4.0]	OKOLE	
[16]	CKSIE	Clock Stuck Interrupt Enable 0: Disable clock failure interrupt
		1: Enable clock failure interrupt
		Set and reset by software to enable or disable the clock failure interrupt caused
		by clock monitor.
		•

Bits	Field	Descriptions
[6]	LSIRDYF	LSI Ready Interrupt Flag 0: No LSI stabilization clock ready interrupt event occurs 1: Clock ready interrupt caused by LSI stabilization Reset by software (Write 1 clear).Set by hardware when the Internal 32 kHz RC oscillator clock stabilization and LSIRDYDIE is set.
[5]	LSERDYF	LSE Ready Interrupt Flag 0: No clock ready interrupt caused by LSE stabilization 1: Clock ready interrupt caused by LSE stabilization Reset by software (Write 1 clear). Set by hardware when the External 32,768 Hz crystal oscillator clock stabilization and LSERDYDIE is set.
[4]	HSIRDYF	HSI Ready Interrupt Flag 0: No clock ready interrupt caused by HSI stabilization 1: Clock ready interrupt caused by HSI stabilization Reset by software (Write 1 clear). Set by hardware when the Internal 8 MHz RC oscillator clock stabilization and HSIRDYDIE is set.
[3]	HSERDYF	HSE Ready Interrupt Flag 0: No clock ready interrupt caused by HSE stabilization 1: Clock ready interrupt caused by HSE stabilization Reset by software (Write 1 clear). Set by hardware when the External 4 ~ 16 MHz crystal oscillator clock stabilization and HSERDYDIE is set.
[2]	PLLRDYF	PLL Ready Interrupt Flag 0: Clock not ready interrupt caused by PLL stabilization 1: Clock ready interrupt caused by PLL stabilization Reset by software (Write 1 clear). Set by hardware when the PLL stabilization and PLLRDYDIE is set.
[1]	USBPLLRDYF	USB PLL Ready Interrupt Flag 0: Clock not ready interrupt caused by USB PLL stabilization 1: Clock ready interrupt caused by USB PLL stabilization Reset by software (Write 1 clear). Set by hardware when the USB PLL stabilization and PLLRDYDIE is set.
[0]	CKSF	Clock Stuck Interrupt Flag 0: Clock works normally 1: HSE clock is stuck Reset by software (Write 1 clear). Set by hardware when HSE clock stuck and CKMEN is set.

PLL Configuration Register – PLLCFGR

This register specifies the PLL configurations.

Offset: 0x018
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24	
			Reserved			PFBD			
Type/Reset					RW 0	RW	0 RW	0 RW	0
	23	22	21	20	19	18	17	16	
	PFBD		POTD			Reserve	d		
Type/Reset	RW 0	RW	0 RW 0					,	-
	15	14	13	12	11	10	9	8	
			Reserved				USBPFE	3D	
Type/Reset						RW	0 RW	0 RW	0
	7	6	5	4	3	2	1	0	
	USBPFBD	US	BPOTD			Reserve	d		
Type/Reset	RW 0	RW	0 RW 0						

Bits	Field	Descriptions
[27:23]	PFBD	PLL VCO Output Clock Feedback Divider (B4 ~ B0)
		Feedback Divider divides the output clock from VCO of PLL.
[22:21]	POTD	PLL Output Clock Divider (S1 ~ S0)
[10:7]	USBPFBD	USB PLL VCO Output Clock Feedback Divider (B3 ~ B0)
		Feedback Divider divides the output clock from VCO of PLL.
[6:5]	USBPOTD	USB PLL Output Clock Divider (S1 ~ S0)

PLL Control Register – PLLCR

This register specifies the PLL Bypass mode.

Offset: 0x01C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
	PLLBPS				Reserved			
Type/Reset	RW 0							
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			·		Reserved			

Type/Reset

Bits	Field	Descriptions

[31] PLLBPS PLL Bypass Mode Enable

0: Disable PLL Bypass mode

1: Enable PLL Bypass mode which acts $F_{OUT} = F_{IN}$

AHB Configuration Register – AHBCFGR

This register specifies the system clock frequency.

Offset: 0x020
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
			-	-	Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset					,			,
	7	6	5	4	3	2	1	0
			Reserved				AHBPR	E
Type/Reset					·	RW	0 RW	0 RW 0

Bits	Field	Descriptions
[2:0]	AHBPRE	AHB Pre-scaler
		000: CK_AHB = CK_SYS
		001: CK_AHB = CK_SYS / 2
		010: CK_AHB = CK_SYS / 4
		011: CK_AHB = CK_SYS / 8
		100: CK_AHB = CK_SYS / 16
		101: CK_AHB = CK_SYS / 32
		110: CK_AHB = CK_SYS / 32
		111: CK_AHB = CK_SYS / 32
		Set and reset by software to control the division factor of the AHB clock.

AHB Clock Control Register – AHBCCR

This register specifies the AHB clock enable bits.

Offset: 0x024
Reset value: 0x0000_00E5

	31		30		29		28		27		26		25	5	24	
									Reserv	/ed						
Type/Reset																
	23		22		21		20		19		18		17	,	16	
			Reserve	ed			PEEN	1	PDE	N	PCE	N	PBE	N	PAE	N
Type/Reset						F	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
	AESEN		SDIOE	N	CRCEN		EBIEN	1	CKREF	EN	USBE	ΕN	CSIFN	ΛEΝ	CSIF	EN
Type/Reset	RW	0	RW	0	RW 0) F	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
	APB1EI	V	APB0E	N	BMEN		PDMAE	ΞN	Reser	/ed	SRAM	EN	Reser	ved	FMC	EN
Type/Reset	RW	1	RW	1	RW 1	F	RW	0			RW	1			RW	1

Bits	Field	Descriptions
[20]	PEEN	GPIO Port E Clock Enable 0: Port E clock is disabled 1: Port E clock is enabled Set and reset by software
[19]	PDEN	GPIO Port D Clock Enable 0: Port D clock is disabled 1: Port D clock is enabled Set and reset by software
[18]	PCEN	GPIO Port C Clock Enable 0: Port C clock is disabled 1: Port C clock is enabled Set and reset by software
[17]	PBEN	GPIO Port B Clock Enable 0: Port B clock is disabled 1: Port B clock is enabled Set and reset by software

Bits	Field	Descriptions
[16]	PAEN	GPIO Port A Clock Enable
		0: Port A clock is disabled
		1: Port A clock is enabled
[4.5]	AFOEN	Set and reset by software
[15]	AESEN	AES Module Clock Enable
		0: AES clock disable 1: AES clock enable
		Set and reset by software.
[14]	SDIOEN	SDIO Module Clock Enable
		0: SDIO clock disable
		1: SDIO clock enable
		Set and reset by software.
[13]	CRCEN	CRC Module Clock Enable
		0: CRC clock disable
		1: CRC clock enable Set and reset by software.
[12]	EBIEN	EBI Module Clock Enable
[12]	LDILIN	0: EBI clock disable
		1: EBI clock enable
		Set and reset by software.
[11]	CKREFEN	CK_REF Clock Enable
		0 : CK_REF clock is disabled
		1 : CK_REF clock is enabled
[40]	HODEN	Set and reset by software
[10]	USBEN	USB Clock Enable 0: USB clock disabled
		1: USB clock enabled
		Set and reset by software
[9]	CSIFMEN	CSIF_MCK Clock Enable
		0: CSIF_MCK clock disable
		1: CSIF_MCK clock enable
		Set and reset by software.
[8]	CSIFEN	CSIF Clock Enable
		0: CSIF clock disable 1: CSIF clock enable
		Set and reset by software.
[7]	APB1EN	APB1 bridge Clock Enable
1.1	7 2 . 2	0: APB1 bridge clock is automatically disabled by hardware during Sleep mode
		1: APB1 bridge clock is always enable during Sleep mode
		Set and reset by software. User can set the APB1EN bit to 0 to reduce the power
		consumption if the APB1 bridge is unused during Sleep mode.
[6]	APB0EN	APB0 bridge Clock Enable
		0: APB0 bridge clock is automatically disabled by hardware during Sleep mode
		1: APB0 bridge clock is always enable during Sleep mode Set and reset by software. User can set the APB0EN bit to 0 to reduce the power
		consumption if the APB0 bridge is unused during Sleep mode.
[5]	BMEN	Bus Matrix Clock Enable
r-1	_	Bus Matrix clock is automatically disabled by hardware during Sleep mode
		1: Bus Matrix clock is always enabled during Sleep mode
		Set and reset by software. User can set the BMEN bit to 0 to reduce the power
		consumption if the bus matrix is unused during Sleep mode.

Bits	Field	Descriptions
[4]	PDMAEN	Peripheral DMA Clock Enable 0: PDMA clock disable 1: PDMA clock enable Set and reset by software. Note: The PDMA can independently operate when the processor enters the Sleep mode. But the relative clock of AHB bus slave or peripherals has to be enabled.
[2]	SRAMEN	SRAM Clock Enable 0: SRAM clock is automatically disabled by hardware during Sleep mode 1: SRAM clock is always enabled during Sleep mode Set and reset by software. User can set the SRAMEN bit to 0 to reduce the power consumption if the SRAM is unused during Sleep mode.
[0]	FMCEN	Flash Memory Controller Clock Enable 0: FMC clock is automatically disabled by hardware during Sleep mode 1: FMC clock is always enabled during Sleep mode Set and reset by software. User can set FMCEN bit to 0 to reduce the power consumption if the Flash Memory is unused during Sleep mode.

APB Configuration Register – APBCFGR

This register specifies the ADC conversion clock frequency.

Offset: 0x028
Reset value: 0x0001_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset							'	,
	23	22	21	20	19	18	17	16
			Reserved				ADCDI'	V
Type/Reset						RW	0 RW	0 RW 1
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
		·			Reserved			

Type/Reset

Bits	Field	Descriptions
[18:16]	ADCDIV	ADC Clock Frequency Divide Selection
		000: CK_ADC = (CK_AHB / 1)
		001: CK_ADC = (CK_AHB / 2)
		010: CK_ADC = (CK_AHB / 4)
		011: CK_ADC = (CK_AHB / 8)
		100: CK_ADC = (CK_AHB / 16)
		101: CK_ADC = (CK_AHB / 32)
		110: CK_ADC = (CK_AHB / 64)
		111: CK_ADC = (CK_AHB / 6)
		Set and reset by software to control ADC conversion clock division factor.

APB Clock Control Register 0 – APBCCR0

This register specifies the APB peripherals clock enable bits.

Offset: 0x02C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
			Reserved		SCI1EN	Reserved	I2SEN	SCI0EN
Type/Reset					RW 0		RW 0	RW 0
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
	EXTIEN	AFIOEN		Reserved	UR1EN	UR0EN	USR1EN	USR0EN
Type/Reset	RW 0	RW 0			RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
		Reserved	SPI1EN	SPI0EN		Reserved	I2C1EN	I2C0EN
Type/Reset			RW 0	RW 0			RW 0	RW 0

Bits	Field	Descriptions
[27]	SCI1EN	Smart Card Interface 1 Clock Enable 0: SCI1 clock is disabled 1: SCI1 clock is enabled Set and reset by software
[25]	I2SEN	I ² S Interface Clock Enable 0: I ² S clock is disabled 1: I ² S clock is enabled Set and reset by software
[24]	SCI0EN	Smart Card Interface 0 Clock Enable 0: SCI0 clock is disabled 1: SCI0 clock is enabled Set and reset by software
[15]	EXTIEN	External Interrupt Clock Enable 0: EXTI clock is disabled 1: EXTI clock is enabled Set and reset by software.
[14]	AFIOEN	Alternate Function I/O Clock Enable 0: AFIO clock is disabled 1: AFIO clock is enabled Set and reset by software.
[11]	UR1EN	UART1 Clock Enable 0: UART1 clock is disabled 1: UART1 clock is enabled Set and reset by software.
[10]	UR0EN	UART0 Clock Enable 0: UART0 clock is disabled 1: UART0 clock is enabled Set and reset by software.

Bits	Field	Descriptions
[9]	USR1EN	USART1 Clock Enable 0: USART1 clock is disabled 1: USART1 clock is enabled Set and reset by software.
[8]	USR0EN	USART0 Clock Enable 0: USART0 clock is disabled 1: USART0 clock is enabled Set and reset by software.
[5]	SPI1EN	SPI1 Clock Enable 0: SPI1 clock is disabled 1: SPI1 clock is enabled Set and reset by software.
[4]	SPI0EN	SPI0 Clock Enable 0: SPI0 clock is disabled 1: SPI0 clock is enabled Set and reset by software.
[1]	I2C1EN	I ² C1 Clock Enable 0: I ² C1 clock is disabled 1: I ² C1 clock is enabled Set and reset by software.
[0]	I2C0EN	I ² C0 Clock Enable 0: I ² C0 clock is disabled 1: I ² C0 clock is enabled Set and reset by software.

APB Clock Control Register 1 – APBCCR1

This register specifies the APB peripherals clock enable bits.

Offset: 0x030 Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
				Reserved				ADCCEN
Type/Reset								RW 0
	23	22	21	20	19	18	17	16
	Reserved	CMPEN			Reserved		BFTM1EN	BFTM0EN
Type/Reset		RW 0					RW () RW 0
	15	14	13	12	11	10	9	8
				Reserved			GPTM1EN	GPTM0EN
Type/Reset							RW () RW 0
	7	6	5	4	3	2	1	0
	Reserved	BKPREN	Reserved	WDTREN		Reserved	MCTM1E	MCTM0EN
Type/Reset		RW 0		RW 0	<u> </u>		RW () RW 0

Bits	Field	Descriptions
[24]	ADCCEN	ADC Controller Clock Enable 0: ADC clock is disabled 1: ADC clock is enabled Set and reset by software.
[22]	CMPEN	CMP Clock Enable 0: CMP clock is disabled 1: CMP clock is enabled Set and reset by software.
[17]	BFTM1EN	BFTM1 Clock Enable 0: BFTM1 clock is disabled 1: BFTM1 clock is enabled Set and reset by software.
[16]	BFTM0EN	BFTM0 Clock Enable 0: BFTM0 clock is disabled 1: BFTM0 clock is enabled Set and reset by software.
[9]	GPTM1EN	GPTM1 Clock Enable 0: GPTM1 clock is disabled 1: GPTM1 clock is enabled Set and reset by software.
[8]	GPTM0EN	GPTM0 Clock Enable 0: GPTM0 clock is disabled 1: GPTM0 clock is enabled Set and reset by software.
[6]	BKPREN	Backup Domain Clock Enable for Registers Access 0: RTC clock is disabled 1: RTC clock is enabled Set and reset by software.
[4]	WDTREN	Watchdog Timer Clock Enable for Registers Access 0: Watchdog Timer clock is disabled 1: Watchdog Timer clock is enabled Set and reset by software.
[1]	MCTM1EN	MCTM1 Clock Enable 0: MCTM1 clock is disabled 1: MCTM1 clock is enabled Set and reset by software.
[0]	MCTM0EN	MCTM0 Clock Enable 0: MCTM0 clock is disabled 1: MCTM0 clock is enabled Set and reset by software.

Clock Source Status Register – CKST

This register specifies clock source status.

Offset: 0x034
Reset value: 0x0100_0003

	31	30	29	28	27		26		25	24	
			Reserved					H	HSIST		
Type/Reset					RO	0	RO	0 RO)	0 RO	1
	23	22	21	20	19		18		17	16	<u> </u>
				Reserved				Н	ISEST		
Type/Reset							RO	0 RO)	0 RO	0
	15	14	13	12	11		10		9	8	
			Reserved					F	PLLST		
Type/Reset					RO	0	RO	0 RO)	0 RO	0
	7	6	5	4	3		2		1	0	
		·	Reserved					Cł	(SWS	Т	
Type/Reset		·					RO	0 RO)	1 RO	1

Bits	Field	Descriptions
[27:24]	HSIST	Internal High Speed Clock Occupation Status (CK_HSI) xxx1: HSI is used by System Clock (CK_SYS) (SW = 0x03) xx1x: HSI is used by PLL x1xx: HSI is used by Clock Monitor 1xxx: HSI is used by USB PLL
[18:16]	HSEST	External High Speed Clock Occupation Status (CK_HSE) xx1: HSE is used by System Clock (CK_SYS) (SW = 0x02) x1x: HSE is used by PLL 1xx: HSE is used by USB PLL
[11:8]	PLLST	PLL Clock Occupation Status xxx1: PLL is used by System Clock (CK_SYS) xx1x: PLL is used by USART x1xx: PLL is used by USB 1xxx: PLL is used by CK_REF
[2:0]	CKSWST	Clock Switch Status 00x: CK_PLL clock out as system clock 010: CK_HSE as system clock 011: CK_HSI as system clock 110: CK_LSE as system clock 111: CK_LSI as system clock The fields are status to indicate which clock source is using as system clock currently.

APB Peripheral Clock Selection Register 0 – APBPCSR0

This register specifies the APB peripheral clock prescaler selection.

Offset: 0x038

Reset value: 0x0000_0000

	31		30	29		28	27		26	25		24
		UR	1PCLK		UR	0PCLK		USF	R1PCLK		US	R0PCLK
Type/Reset	RW	0 RW	0	RW	0 RW	0	RW	0 RW	0	RW	0 RW	0
	23		22	21		20	19		18	17		16
		GPT	M1PCLK		GPT	M0PCLK		MCT	M1PCLK		МС	TM0PCLK
Type/Reset	RW	0 RW	0	RW	0 RW	0	RW	0 RW	0	RW	0 RW	0
	15		14	13		12	11		10	9		8
		BFT	M1PCLK		BFTI	M0PCLK				Reserve	ed	
Type/Reset	RW	0 RW	0	RW	0 RW	0						
	7		6	5		4	3		2	1		0
		SP	I1PCLK		SPI	0PCLK		120	1PCLK		12	C0PCLK
Type/Reset	RW	0 RW	0	RW	0 RW	0	RW	0 RW	0	RW	0 RW	0

Bits	Field	Descriptions
[31:30]	UR1PCLK	UART1 Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[29:28]	UR0PCLK	UART0 Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[27:26]	USR1PCLK	USART1 Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[25:24]	USR0PCLK	USART0 Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[23:22]	GPTM1PCLK	GPTM1 Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock

Bits	Field	Descriptions
[21:20]	GPTM0PCLK	GPTM0 Peripheral Clock Selection
		00: PCLK = CK_AHB
		01: PCLK = CK_AHB / 2
		10: PCLK = CK_AHB / 4
		11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[40.40]	MOTMADOLK	
[19:18]	MCTM1PCLK	MCTM1 Peripheral Clock Selection
		00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2
		10: PCLK = CK_AHB / 4
		11: PCLK = CK_AHB / 8
		PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[17:16]	MCTM0PCLK	MCTM0 Peripheral Clock Selection
		00: PCLK = CK_AHB
		01: PCLK = CK_AHB / 2
		10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8
		PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[15:14]	BFTM1PCLK	BFTM1 Peripheral Clock Selection
[]		00: PCLK = CK AHB
		01: PCLK = CK_AHB / 2
		10: PCLK = CK_AHB / 4
		11: PCLK = CK_AHB / 8
[40,40]	DETMODOLIA	PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[13:12]	BFTM0PCLK	BFTM0 Peripheral Clock Selection
		00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2
		10: PCLK = CK_AHB / 4
		11: PCLK = CK_AHB / 8
		PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[7:6]	SPI1PCLK	SPI1 Peripheral Clock Selection
		00: PCLK = CK_AHB
		01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4
		11: PCLK = CK_AHB / 8
		PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[5:4]	SPI0PCLK	SPI0 Peripheral Clock Selection
		00: PCLK = CK_AHB
		01: PCLK = CK_AHB / 2
		10: PCLK = CK_AHB / 4
		11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[3:2]	I2C1PCLK	I ² C1 Peripheral Clock Selection
[0.2]	12011 0211	00: PCLK = CK AHB
		01: PCLK = CK_AHB / 2
		10: PCLK = CK_AHB / 4
		11: PCLK = CK_AHB / 8
[1:0]	ISCOBOL V	PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[1:0]	I2C0PCLK	I ² C0 Peripheral Clock Selection
		00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2
		10: PCLK = CK_AHB / 4
		11: PCLK = CK_AHB / 8
		PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock

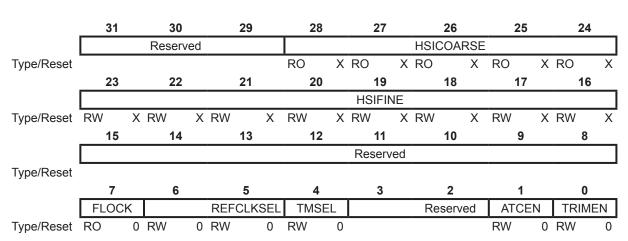
APB Peripheral Clock Selection Register 1 – APBPCSR1

This register specifies APB peripheral clock prescaler selection.

Offset: 0x03C Reset value: 0x0000_0000

	31	30	29	28	3	27	26	2	5	24	<u>, </u>
		'				Reserv	ed				
Type/Reset		'									
	23	22	21	20)	19	18	1	7	16	<u>; </u>
		Reserved		I2SP0	CLK		SCI1P	CLK		SCI0P	CLK
Type/Reset		'	RW	0 RW	0	RW	0 RW	0 RW	(0 RW	0
	15	14	13	12	2	11	10	9)	8	
		BKPRPCLK		WDTR	PCLK		Reser	ved		CMPP	CLK
Type/Reset	RW	0 RW 0	RW	0 RW	0			RW	(0 RW	0
	7	6	5	4		3	2	1		0	
		Reserved		ADCCF	PCLK		EXTIP	CLK		AFIOP	CLK
Type/Reset			RW	0 RW	0	RW	0 RW	0 RW	(0 RW	0

Bits	Field	Descriptions
[21:20]	I2SPCLK	I ² S Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[19:18]	SCI1PCLK	SCI1 Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[17:16]	SCI0PCLK	SCI1 Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[15:14]	BKPRCLK	Backup Domain Register Access Clock Selection 00: PCLK = CK_AHB / 4 01: PCLK = CK_AHB / 8 10: PCLK = CK_AHB / 16 11: PCLK = CK_AHB / 32 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[13:12]	WDTRPCLK	WDT Register Access Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock


Bits	Field	Descriptions
[9:8]	CMPPCLK	CMP Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[5:4]	ADCCPCLK	ADC Controller Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[3:2]	EXTIPCLK	EXTI Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[1:0]	AFIOPCLK	AFIO Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock: CK_AHB = AHB and CPU clock

HSI Control Register – HSICR

This register is used to control the frequency trimming of the HSI RC oscillation.

Offset: 0x040

Reset value: 0xXXXX_0000 where X is undefined

Bits	Field	Descriptions
[28:24]	HSICOARSE	HSI Clock Coarse Trimming Value
		These bits are initialized automatically at startup. They are adjusted by factory trimming
		and cannot be trimmed by program.

Bits	Field	Descriptions
[23:16]	HSIFINE	HSI Clock Fine Trimming Value
		These bits are initialized automatically at startup. They are also adjusted by factory
		trimming. But these bits provide an additional user-programmable trimming value that is
		added to the HSICOARSE[4:0] bits to get more accurate or compensate the variations
		in voltage and temperature that influence the HSI frequency. It can be programmed by
		software or Auto-Trimming Controller (ATC) with an external reference clock.
[7]	FLOCK	Frequency Lock
		HSI frequency is not trimmed into target range. HSI frequency is trimmed into target range.
[G:E]	REFCLKSEL	
[6:5]	REPULNOEL	00: Select 32.768 kHz external low speed clock source (LSE)
		01: Select 1 kHz USB frame pulse
		1x: Select external pin (CKIN) 1 kHz pulse
		This bit is selected the reference clock for the HSI Auto Trimming Controller.
[4]	TMSEL	Trimming Mode Selection
		0: Automatic by Auto Trimming Controller
		1: Manual by user program This bit is used to select the HSI RC oscillator trimming function by the ATC hardware or
		user program via the HSIFINE[7:0] bits in the HSI Control Register.
[1]	ATCEN	Auto Trimming Controller Enable
[1]	ALOLIV	0: Disable Auto Trimming Controller
		1: Enable Auto Trimming Controller
[0]	TRIMEN	Trimming Enable
		0: HSI Trimming is disable
		1: HSI Trimming is enable
		The bit enables the HSI RC oscillator trimming function by the ATC hardware or user
		program.

HSI Auto Trimming Counter Register – HSIATCR

This register contains the counter value of the HSI auto trimming controller

Offset: 0x044
Reset value: 0x0000_0000

	31	30	29		28	27		26		:	25		2	24	
						Reserv	/ed								
Type/Reset															
	23	22	21		20	19		18			17			16	
						Reserv	/ed								
Type/Reset						"									
	15	14	13		12	11		10			9			8	
		Reserved						ATCN	ΙΤ						
Type/Reset		'	RO	0 RO		0 RO	0 F	RO	0	RO		0	RO		0
	7	6	5		4	3		2			1			0	
						ATCN	1T								
Type/Reset	RO	0 RO 0	RO	0 RO		0 RO	0 F	80	0	RO		0	RO		0

Bits	Field	Descriptions
[13:0]	ATCNT	Auto Trimming Counter
		These bits contain the counter value of the HSI auto trimming controller.

Low Power Control Register – LPCR

This register specifies the low power control.

Offset: 0x300

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
				Reserved				USBSLEEP
Type/Reset								RW 0
	7	6	5	4	3	2	1	0
					Reserved			

Type/Reset

Bits Field Descriptions

[8] USBSLEEP USB Sleep Software Control Enable

0: Disable

1: Enable USB Software Sleeping

Set and reset by software. Refer to the Power Control Unit chapter for more information.

MCU Debug Control Register - MCUDBGCR

This register specifies the MCU debug control.

Offset: 0x304
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset		'						
	23	22	21	20	19	18	17	16
		Reserved	DBSCI1	DBTRACE	DBUR1	DBUR0	DBBFTM1	DBBFTM0
Type/Reset			RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
	15	14	13	12	11	10	9	8
	DBSCI0	DBDSLP2	DBI2C1	DBI2C0	DBSPI1	DBSPI0	DBUSR1	DBUSR0
Type/Reset	RW () RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
	DBGPTM	1 DBGPTM0	DBMCTM1	DBMCTM0	DBWDT	DBPD	DBDSLP1	DBSLP
Type/Reset	RW () RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
Bits	Field	Descript	ions					
[21]	DBSCI1	SCI1 Deb	ua Mode Ena	able				

21] DBSCI1 SCI1 Debug Mode Enable

0: Same behavior as in normal mode

1: SCI1 timeout is frozen when the core is halted

Set and reset by software.

Bits	Field	Descriptions
[20]	DBTRACE	TRACESWO Debug Mode Enable 0: Disable TRACESWO output. 1: Enable TRACESWO output. Set and reset by software.
[19]	DBUR1	UART1 Debug Mode Enable 0: Same behavior as in normal mode 1: UART1 FIFO timeout is frozen when the core is halted Set and reset by software.
[18]	DBUR0	UART0 Debug Mode Enable 0: Same behavior as in normal mode 1: UART0 FIFO timeout is frozen when the core is halted Set and reset by software.
[17]	DBBFTM1	BFTM1 Debug Mode Enable 0: BFTM1 counter continues to count even if the core is halted. 1: BFTM1 counter stops counting when the core is halted. Set and reset by software.
[16]	DBBFTM0	BFTM0 Debug Mode Enable 0: BFTM0 counter continues even if the core is halted. 1: BFTM0 counter is stopped when the core is halted. Set and reset by software.
[15]	DBSCI0	SCI0 Debug Mode Enable 0: Same behavior as in normal mode. 1: SCI0 timeout is frozen. Set and reset by software.
[14]	DBDSLP2	Debug Deep-Sleep2 0: LDO = Off (but turn on DMOS), FCLK = Off, and HCLK = Off in Deep-Sleep2. 1: LDO = On, FCLK = On, and HCLK = On in Deep-Sleep2. Set and reset by software.
[13]	DBI2C1	I ² C1 Debug Mode Enable 0: Same behavior as in normal mode 1: I ² C1 timeout is frozen when the core is halted Set and reset by software.
[12]	DBI2C0	I ² C0 Debug Mode Enable 0: Same behavior as in normal mode 1: I ² C0 timeout is frozen when the core is halted Set and reset by software.
[11]	DBSPI1	SPI1 Debug Mode Enable 0: Same behavior as in normal mode 1: SPI1 FIFO timeout is frozen when the core is halted Set and reset by software.
[10]	DBSPI0	SPI0 Debug Mode Enable 0: Same behavior as in normal mode 1: SPI0 FIFO timeout is frozen when the core is halted Set and reset by software.
[9]	DBUSR1	USART1 Debug Mode Enable 0: Same behavior as in normal mode 1: USART1 FIFO timeout is frozen when the core is halted Set and reset by software.
[8]	DBUSR0	USART0 Debug Mode Enable 0: Same behavior as in normal mode 1: USART0 FIFO timeout is frozen when the core is halted Set and reset by software.

Bits	Field	Descriptions
[7]	DBGPTM1	GPTM1 Debug Mode Enable 0: GPTM1 counter continues even if the core is halted 1: GPTM1 counter is stopped when the core is halted Set and reset by software.
[6]	DBGPTM0	GPTM0 Debug Mode Enable 0: GPTM0 counter continues even if the core is halted 1: GPTM0 counter is stopped when the core is halted Set and reset by software.
[5]	DBMCTM1	MCTM1 Debug Mode Enable 0: MCTM1 counter continues even if the core is halted 1: MCTM1 counter is stopped when the core is halted Set and reset by software.
[4]	DBMCTM0	MCTM0 Debug Mode Enable 0: MCTM0 counter continues even if the core is halted 1: MCTM0 counter is stopped when the core is halted Set and reset by software.
[3]	DBWDT	Watchdog Timer Debug Mode Enable 0: Watchdog Timer counter continues even if the core is halted 1: Watchdog Timer counter is stopped when the core is halted Set and reset by software.
[2]	DBPD	Debug Power-Down Mode 0: LDO = Off, FCLK = Off, and HCLK = Off in Power-Down mode 1: LDO = On, FCLK = On, and HCLK = On in Power-Down mode Set and reset by software.
[1]	DBDSLP1	Debug Deep-Sleep1 0: LDO = Low power mode, FCLK = Off, and HCLK = Off in Deep-Sleep1. 1: LDO = On, FCLK = On, and HCLK = On in Deep-Sleep1. Set and reset by software.
[0]	DBSLP	Debug Sleep Mode 0: LDO = On, FCLK = On, and HCLK = Off in Sleep mode. 1: LDO = On, FCLK = On, and HCLK = On in Sleep mode. Set and reset by software.

7 Reset Control Unit (RSTCU)

Introduction

The Reset Control Unit, RSTCU, has three kinds of reset, the power on reset, system reset and APB unit reset. The power on reset, known as a cold reset, resets the full system during a power up. A system reset resets the processor core and peripheral IP components with the exception of the debug port controller. The resets can be triggered by an external signal, internal events and the reset generators. More information about these resets will be described in the following section

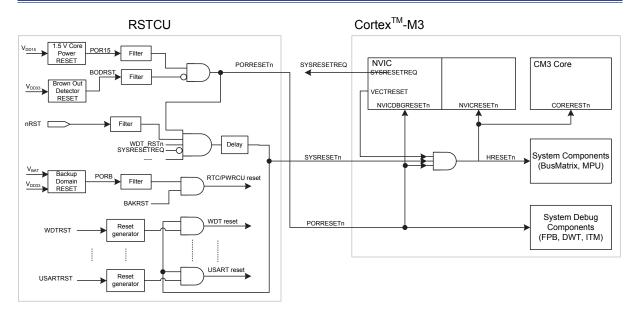


Figure 19. RSTCU Block Diagram

Functional Descriptions

Power On Reset

The Power on reset, POR, is generated by either an external reset or the internal reset generator. Both types have an internal filter to prevent glitches from causing erroneous reset operations. By referring to Figure 20, the POR15 active low signal will be de-asserted when the internal LDO voltage regulator is ready to provide 1.5 V power. In addition to the POR15 signal, the Power Control Unit, PWRCU, will assert the BODF signal as a Power Down Reset, PDR, when the BODEN bit in the LVDCSR register is set and the brown-out event occurs. For more details about the PWRCU function, refer to the PWRCU chapter.

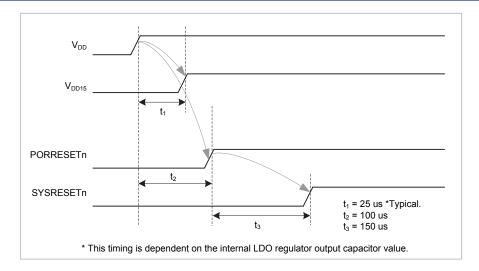


Figure 20. Power On Reset Sequence

System Reset

A system reset is generated by a power on reset (PORRESETn), a Watchdog Timer reset (WDT_RSTn), nRST pin or a software reset (SYSRESETREQ) event. For more information about SYSRESETREQ and VECTRESET events, refer to the related chapter in the CortexTM-M3 reference manual

AHB and APB Unit Reset

The AHB and APB unit reset can be divided into hardware and software resets. A hardware reset can be generated by either power on reset or system reset for all AHB and APB units. Each functional IP connected to the AHB and APB buses can be reset individually through the associated software reset bits in the RSTCU. For example, the application software can generate a USART0 reset via the USR0RST bit in the APBPRSTR0 register.

Register Map

The following table shows the RSTCU registers and reset values.

Table 21. RSTCU Register Map

Register	Offset	Description	Reset Value
GRSR	0x100	Global Reset Status Register	0x0000_0008
AHBPRSTR	0x104	AHB Peripheral Reset Register	0x0000_0000
APBPRSTR0	0x108	APB Peripheral Reset Register 0	0x0000_0000
APBPRSTR1	0x10C	APB Peripheral Reset Register 1	0x0000_0000

Register Descriptions

Global Reset Status Register - GRSR

This register specifies a variety of reset status conditions.

Offset: 0x100 Reset value: 0x0000_0008 30 29 28 27 26 25 31 24 Reserved Type/Reset 23 22 21 20 19 18 17 16 Reserved Type/Reset 15 14 13 12 11 10 9 Reserved Type/Reset 6 5 4 3 7 PORSTF WDTRSTF EXTRSTF Reserved SYSRSTF WC 1 WC 0 WC 0 WC Type/Reset

Bits	Field	Descriptions
[3]	PORSTF	Core Power On Reset Flag 0: No POR occurred 1: POR occurred This bit is set by hardware when a power on reset occurs and reset by writing 1 into it.
[2]	WDTRSTF	Watchdog Timer Reset Flag 0: No Watchdog Timer reset occurred 1: Watchdog Timer occurred This bit is set by hardware when a watchdog timer reset occurs and reset by writing 1 into it or by hardware when a power on reset occurs.
[1]	EXTRSTF	External Pin Reset Flag 0: No pin reset occurred 1: Pin reset occurred This bit is set by hardware when an external pin reset occurs and reset by writing 1 into it or by hardware when a power on reset occurs.
[0]	SYSRSTF	System Reset Flag 0: No NVIC asserting system reset occurred 1: NVIC asserting system reset occurred This bit is set by hardware when a system reset occurs and reset by writing 1 into it or by hardware when a power on reset occurs.

AHB Peripheral Reset Register – AHBPRSTR

This register specifies several AHB peripheral software reset control bits.

Offset: 0x104
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								-
	15	14	13	12	11	10	9	8
	AESRST	SDIORST	Reserved	PERST	PDRST	PCRST	PBRST	PARST
Type/Reset	RW 0	RW 0		RW 0	RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
	CRCRST	EBIRST	USBRST	CSIFRST		Reserved		DMARST
Type/Reset	RW 0	RW 0	RW 0	RW 0				RW 0

Bits	Field	Descriptions
[15]	AESRST	AES Reset Control 0: No reset 1: Reset AES This bit is set by software and cleared to 0 by hardware automatically.
[14]	SDIORST	SDIO Reset Control 0: No reset 1: Reset SDIO This bit is set by software and cleared to 0 by hardware automatically.
[12]	PERST	GPIO Port E Reset Control 0: No reset 1: Reset Port E This bit is set by software and cleared to 0 by hardware automatically.
[11]	PDRST	GPIO Port D Reset Control 0: No reset 1: Reset Port D This bit is set by software and cleared to 0 by hardware automatically.
[10]	PCRST	GPIO Port C Reset Control 0: No reset 1: Reset Port C This bit is set by software and cleared to 0 by hardware automatically.
[9]	PBRST	GPIO Port B Reset Control 0: No reset 1: Reset Port B This bit is set by software and cleared to 0 by hardware automatically.
[8]	PARST	GPIO Port A Reset Control 0: No reset 1: Reset Port A This bit is set by software and cleared to 0 by hardware automatically.

Bits	Field	Descriptions
[7]	CRCRST	CRC Reset Control 0: No reset 1: Reset USB This bit is set by software and cleared to 0 by hardware automatically.
[6]	EBIRST	EBI Reset Control 0: No reset 1: Reset USB This bit is set by software and cleared to 0 by hardware automatically.
[5]	USBRST	USB Reset Control 0: No reset 1: Reset USB This bit is set by software and cleared to 0 by hardware automatically.
[4]	CSIFRST	CSIF Reset Control 0: No reset 1: Reset CSIF This bit is set by software and cleared to 0 by hardware automatically.
[0]	DMARST	Peripheral DMA (PDMA) Reset Control 0: No reset 1: Reset Peripheral DMA (PDMA) This bit is set by software and cleared to 0 by hardware automatically.

APB Peripheral Reset Register 0 – APBPRSTR0

This register specifies several APB peripheral software reset control bits.

Offset: 0x108
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24	
			Reserved		SCI1RST	Reserved	I2SRST	SCI0RST	
Type/Reset					RW 0		RW 0	RW 0	
	23	22	21	20	19	18	17	16	
					Reserved				
Type/Reset								_	
	15	14	13	12	11	10	9	8	
	EXTIRST	AFIORST		Reserved	UR1RST	UR0RST	USR1RST	USR0RST	
Type/Reset	RW 0	RW 0			RW 0	RW 0	RW 0	RW 0	
	7	6	5	4	3	2	1	0	
		Reserved	SPI1RST	SPI0RST		Reserved	I2C1RST	I2C0RST	
Type/Reset			RW 0	RW 0			RW 0	RW 0	

Bits	Field	Descriptions
[27]	SCI1RST	Smart Card Interface 1 Reset Control 0: No reset 1: Reset Smart Card Interface 1
		This bit is set by software and cleared to 0 by hardware automatically.
[25]	I2SRST	I ² S Reset Control
		0: No reset
		1: Reset I ² S
		This bit is set by software and cleared to 0 by hardware automatically.
[24]	SCI0RST	Smart Card Interface 0 Reset Control 0: No reset 1: Reset Smart Card Interface 0
		This bit is set by software and cleared to 0 by hardware automatically.
[15]	EXTIRST	External Interrupt Controller Reset Control 0: No reset
		1: Reset EXTI
		This bit is set by software and cleared to 0 by hardware automatically.
[14]	AFIORST	Alternate Function I/O Reset Control
		0: No reset
		1: Reset Alternate Function I/O This bit is set by software and cleared to 0 by hardware automatically.
[11]	UR1RST	UART1 Reset Control
[11]	UKIKSI	0: No reset
		1: Reset UART1
		This bit is set by software and cleared to 0 by hardware automatically.
[10]	UR0RST	UART0 Reset Control
		0: No reset
		1: Reset UARTO This hit is not by coffware and cleared to 0 by bardware automatically.
[0]	LICD4DCT	This bit is set by software and cleared to 0 by hardware automatically. USART1 Reset Control
[9]	USR1RST	0: No reset 1: Reset USART1
		This bit is set by software and cleared to 0 by hardware automatically.
[8]	USR0RST	USART0 Reset Control 0: No reset
		1: Reset USART0
		This bit is set by software and cleared to 0 by hardware automatically.
[5]	SPI1RST	SPI1 Reset Control 0: No reset
		1: Reset SPI1 This bit is set by software and cleared to 0 by hardware automatically.
[4]	CDIADET	SPI0 Reset Control
[4]	SPI0RST	0: No reset
		1: Reset SPI0
		This bit is set by software and cleared to 0 by hardware automatically.
[1]	I2C1RST	I ² C1 Reset Control
		0: No reset
		1: Reset I ² C1
F01	1000507	This bit is set by software and cleared to 0 by hardware automatically.
[0]	I2C0RST	I ² C0 Reset Control 0: No reset
		1: Reset I ² C0
		This bit is set by software and cleared to 0 by hardware automatically.

APB Peripheral Reset Register 1 – APBPRSTR1

This register specifies several APB peripheral software reset control bits.

Offset: 0x10C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25		24	
				Reserved					ADCR	ST
Type/Reset						,			RW	0
	23	22	21	20	19	18	17		16	
	Reserved	CMPRST		Reser	ved		BFTM1R	ST	BFTM0	RST
Type/Reset		RW 0				,	RW	0	RW	0
	15	14	13	12	11	10	9		8	
				Reserved			GPTM1R	ST	GPTM0	RST
Type/Reset							RW	0	RW	0
	7	6	5	4	3	2	1		0	
		Reserved		WDTRST		Reserved	MCTM1R	ST	мстмо	RST
Type/Reset				RW 0	·		RW	0	RW	0

Bits	Field	Descriptions
[24]	ADCRST	A/D Converter Reset Control 0: No reset 1: Reset A/D Converter This bit is set by software and cleared to 0 by hardware automatically.
[22]	CMPRST	Comparator Controller Reset Control 0: No reset 1: Reset CMP This bit is set by software and cleared to 0 by hardware automatically.
[17]	BFTM1RST	BFTM1 Reset Control 0: No reset 1: Reset BFTM1 This bit is set by software and cleared to 0 by hardware automatically.
[16]	BFTM0RST	BFTM0 Reset Control 0: No reset 1: Reset BFTM0 This bit is set by software and cleared to 0 by hardware automatically.
[9]	GPTM1RST	GPTM1 Reset Control 0: No reset 1: Reset GPTM1 This bit is set by software and cleared to 0 by hardware automatically.
[8]	GPTM0RST	GPTM0 Reset Control 0: No reset 1: Reset GPTM0 This bit is set by software and cleared to 0 by hardware automatically.

Bits	Field	Descriptions
[4]	WDTRST	Watchdog Timer Reset Control 0: No reset 1: Reset Watchdog Timer This bit is set by software and cleared to 0 by hardware automatically.
[1]	MCTM1RST	MCTM1 Reset Control 0: No reset 1: Reset MCTM1 This bit is set by software and cleared to 0 by hardware automatically.
[0]	MCTM0RST	MCTM0 Reset Control 0: No reset 1: Reset MCTM0 This bit is set by software and cleared to 0 by hardware automatically.

General Purpose I/O (GPIO)

Introduction

There are up to 80 General Purpose I/O ports, GPIO, named PAO ~ PA15, PBO ~ PB15, PCO ~ PC15, PDO ~ PD15 and PEO ~ PE15 for the device to implement the logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirement of specific applications. The really available General Purpose I/O port numbers are dependent on the device specification and package type. Plase refer the device data sheet for detail information.

The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the AF input or output pins.

The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit (EXTI).

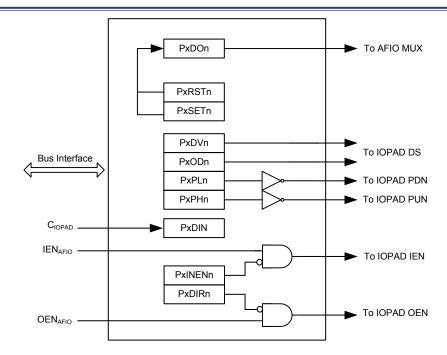


Figure 21. GPIO Block Diagram

Features

- Input/output direction control
- Input weak pull-up/pull-down control
- Output push-pull/open drain enable control
- Output set/reset control
- Output drive current selection
- External interrupt with programmable trigger edge using EXTI configuration registers
- Analog input/output configurations using AFIO configuration registers
- Alternate function input/output configurations using AFIO configuration registers
- Port configuration lock

Functional Descriptions

Default GPIO Pin Configuration

During or just after the reset period, the alternative functions are all inactive and the GPIO ports are configured into the input disable floating mode, i.e. input disabled without pull-up/pull-down resistors. Only the boot and Serial-Wired Debug pins which are pin-shared with the I/O pins are active after a device reset.

- BOOT0: Input enable with internal pull-up
- BOOT1: Input enable with internal pull-up
- JTCK/SWCLK: Input enable with internal pull-up
- JTMS/SWDIO: Input enable with internal pull-up
- JTDI: Input en8able with internal pull-up
- JTRST: Input enable with internal pull-up

General Purpose I/O – GPIO

The GPIO pins can be configured as inputs or outputs via the data direction control registers PxDIRCR (where $x = A \sim E$). When the GPIO pins are configured as input pins, the data on the external pads can be read if the enable bits in the input enable function register PxINER are set. The GPIO pull-up/pull-down registers PxPUR/PxPDR can be configured to fit specific applications. When the pull-up and pull-down functions are both enabled, the pull-up function has the higher priority while the pull-down function will be blocked until the pull-up function is released.

The GPIO pins can be configured as output pins where the output data is latched into the data register PxDOUTR. The output type can be setup to be either push-pull or open-drain by the open drain selection register PxODR. Only one or several specific bits of the output data will be set or reset by configuring the port output set and reset control register PxSRR or the port output reset control register PxRR without affecting the unselected bits. As the port output set and reset functions are both enabled, the port output set function has the higher priority and the port output reset function will be blocked. The output driving current of the GPIO pins can be selected by configuring the drive current selection register PxDRVR.

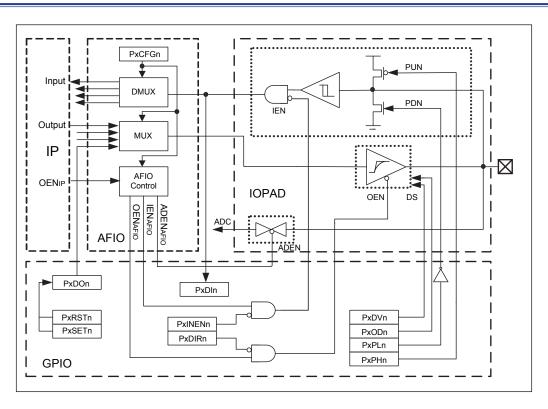


Figure 22. AFIO / GPIO Control Signal

 $PxDIn/PxDOn(x = A \sim E)$: Data Input/Data Output $PxRSTn/PxSETn(x = A \sim E)$: Reset/Set

 $PxDIRn(x = A \sim E)$: Direction $PxINENn(x = A \sim E)$: Input Enable

 $PxDVn(x = A \sim E)$: Output Drive $PXODn(x = A \sim E)$: Open Drain

 $PxPLn/PxPHn(x = A \sim E)$: Pull Low/High $PxCFGn(x = A \sim E)$: AFIO Configuration

Table 22. AFIO, GPIO and I/O Pad Control Signal True Table

Tyma		AFIO		C	SPIO	PAD			
Type	ADEN _{AFIO}	OENAFIO	IEN _{AFIO}	PxDIRn	PxINENn	ADEN	OEN	IEN	
GPIO Input (Note)	1	1	1	0	1	1	1	0	
GPIO Output (Note)	1	1	1	1	0 (1 if need)	1	0	1 (0)	
AFIO Input	1	1	0	0	Х	1	1	0	
AFIO Output	1	0	1	Х	0 (1 if need)	1	0	1 (0)	
ADC Input	0	1	1	0	0 (1 if need)	0	1	1 (0)	
OSC Output	0	1	1	0	0 (1 if need)	0	1	1 (0)	

Note: The signals, IEN and OEN, for I/O pads are derived from the GPIO register bits PxINENn and PxDIRn respectively when the associated pin is configured in the GPIO input/output mode.

GPIO Locking Mechanism

The GPIO also offers a lock function to lock the port until a reset event occurs. The PxLOCKR (x = $A \sim E$) registers are used to lock the port x and lock control options. The value 0x5FA0 is written into the PxLKEY field in the PxLOCKR registers to freeze the PxDIRCR, PxINER, PxPUR, PxPDR, PxODR, PxDRVR control and AFIO mode configuration (GPxCFGHR or GPxCFGLR, where x = $A \sim E$). If the value in the PxLOCKR is 0x5FA0_0001, it means that the Port x Lock function is enabled and the Port x pin 0 is frozen.

Register Map

The following table shows the GPIO registers and reset values of the Port A \sim E.

Table 23. GPIO Register Map

Register	Offset	Description	Reset Value
GPIO A Base	Address = 0	400B_0000	
PADIRCR	0x000	Port A Data Direction Control Register	0x0000_0000
PAINER	0x004	Port A Input Function Enable Control Register	0x0000_0300
PAPUR	0x008	Port A Pull-Up Selection Register	0x0000_F300
PAPDR	0x00C	Port A Pull-Down Selection Register	0x0000_0000
PAODR	0x010	Port A Open Drain Selection Register	0x0000_0000
PADRVR	0x014	Port A Drive Current Selection Register	0x0000_0000
PALOCKR	0x018	Port A Lock Register	0x0000_0000
PADINR	0x01C	Port A Data Input Register	0x0000_F300
PADOUTR	0x020	Port A Data Output Register	0x0000_0000
PASRR	0x024	Port A Output Set and Reset Control Register	0x0000_0000
PARR	0x028	Port A Output Reset Control Register	0x0000_0000
GPIO B Base	Address = 0	x400B_2000	
PBDIRCR	0x000	Port B Data Direction Control Register	0x0000_0000
PBINER	0x004	Port B Input Function Enable Control Register	0x0000_0000
PBPUR	0x008	Port B Pull-Up Selection Register	0x0000_0000
PBPDR	0x00C	Port B Pull-Down Selection Register	0x0000_0000
PBODR	0x010	Port B Open Drain Selection Register	0x0000_0000
PBDRVR	0x014	Port B Drive Current Selection Register	0x0000_0000
PBLOCKR	0x018	Port B Lock Register	0x0000_0000
PBDINR	0x01C	Port B Data Input Register	0x0000_0000
PBDOUTR	0x020	Port B Data Output Register	0x0000_0000
PBSRR	0x024	Port B Output Set and Reset Control Register	0x0000_0000
PBRR	0x028	Port B Output Reset Control Register	0x0000_0000
GPIO C Base	Address = 0	x400B_4000	·
PCDIRCR	0x000	Port C Data Direction Control Register	0x0000_0000
PCINER	0x004	Port C Input Function Enable Control Register	0x0000_0000
PCPUR	0x008	Port C Pull-Up Selection Register	0x0000_0000
PCPDR	0x00C	Port C Pull-Down Selection Register	0x0000_0000
PCODR	0x010	Port C Open Drain Selection Register	0x0000_0000
PCDRVR	0x014	Port C Drive Current Selection Register	0x0000_0000
PCLOCKR	0x018	Port C Lock Register	0x0000_0000
PCDINR	0x01C	Port C Data Input Register	0x0000_0000

Pogistor	Offset	Description	Reset Value
Register PCDOUTR	0x020	•	
		Port C Data Output Register	0x0000_0000
PCSRR	0x024 0x028	Port C Output Set and Reset Control Register Port C Output Reset Control Register	0x0000_0000
PCRR	0x0000_0000		
GPIO D Base		-	1
PDDIRCR	0x000	Port D Data Direction Control Register	0x0000_0000
PDINER	0x004	Port D Input Function Enable Control Register	0x0000_0000
PDPUR	0x008	Port D Pull-Up Selection Register	0x0000_0000
PDPDR	0x00C	Port D Pull-Down Selection Register	0x0000_0000
PDODR	0x010	Port D Open Drain Selection Register	0x0000_0000
PDDRVR	0x014	Port D Drive Current Selection Register	0x0000_0000
PDLOCKR	0x018	Port D Lock Register	0x0000_0000
PDDINR	0x01C	Port D Data Input Register	0x0000_0000
PDDOUTR	0x020	Port D Data Output Register	0x0000_0000
PDSRR	0x024	Port D Output Set and Reset Control Register	0x0000_0000
PDRR	0x028	Port D Output Reset Control Register	0x0000_0000
GPIO E Base A	Address = 0x	400B_8000	
PEDIRCR	0x000	Port E Data Direction Control Register	0x0000_0000
PEINER	0x004	Port E Input Function Enable Control Register	0x0000_0000
PEPUR	0x008	Port E Pull-Up Selection Register	0x0000_0000
PEPDR	0x00C	Port E Pull-Down Selection Register	0x0000_0000
PEODR	0x010	Port E Open Drain Selection Register	0x0000_0000
PEDRVR	0x014	Port E Drive Current Selection Register	0x0000_0000
PELOCKR	0x018	Port E Lock Register	0x0000_0000
PEDINR	0x01C	Port E Data Input Register	0x0000_0000
PEDOUTR	0x020	Port E Data Output Register	0x0000_0000
PESRR	0x024	Port E Output Set and Reset Control Register	0x0000_0000
PERR	0x028	Port E Output Reset Control Register	0x0000_0000

Register Descriptions

Port A Data Direction Control Register – PADIRCR

This register is used to control the direction of the GPIO Port A pin as input or output.

Offset:	0x000	
Reset value:	0x0000	0000

	31		30		2	9		28		27	,	26			25		24	
										Reser	ved							
Type/Reset																		
	23		22		2	1		20		19)	18			17		16	
										Reser	ved							
Type/Reset																		
	15		14		1	3		12		11		10			9		8	
										PAD	IR							
Type/Reset	RW	0 R	W	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0
	7		6		5	5		4		3		2			1		0	
										PAD	IR							
Type/Reset	RW	0 R	W	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0

Bits	Field	Descriptions
[15:0]	PADIRn	GPIO Port A pin n Direction Control Bits (n = 0 ~ 15)
		0. Pin n is input mode

1: Pin n is output mode

Port A Input Function Enable Control Register – PAINER

This register is used to enable or disable the GPIO Port A input function.

Offset: 0x004

Reset value: 0x0000_0300

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset					'		'	_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset			,		,			_
	15	14	13	12	11	10	9	8
					PAINEN			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	1 RW 1
	7	6	5	4	3	2	1	0
					PAINEN			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW (0 RW 0

Bits	Field	Descriptions

[15:0] PAINENn

GPIO Port A pin n Input Enable Control Bits (n = 0 ~ 15)

- 0: Pin n input function is disabled.
- 1: Pin n input function is enabled.

When the pin n input function is disabled, the input Schmitt trigger will be turned off and the Schmitt trigger output will remain at a zero state.

Rev. 1.10 134 of 680 November 22, 2018

Port A Pull-Up Selection Register - PAPUR

This register is used to enable or disable the GPIO Port A pull-up function.

Offset: 0x008

Reset value: 0x0000_F300

	31		30		29		28		27		26		25		24	
									Reserv	/ed						
Type/Reset																
	23		22		21		20		19		18		17		16	
									Reserv	/ed						
Type/Reset																
	15		14		13		12		11		10		9		8	
									PAPI	J						
Type/Reset	RW	1	RW	1	RW	1	RW	1	RW	0	RW	0	RW	1	RW	1
	7		6		5		4		3		2		1		0	
									PAP	J						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions

[15:0] PAPUn

GPIO Port A pin n Pull-Up Selection Control Bits (n = 0 ~ 15)

- 0: Pin n pull-up function is disabled
- 1: Pin n pull-up function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

Port A Pull-Down Selection Register - PAPDR

This register is used to enable or disable the GPIO Port A pull-down function.

Offset: 0x00C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset					'	'	'	
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					'	'		_
	15	14	13	12	11	10	9	8
					PAPD			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW (RW	0 RW	0 RW 0
	7	6	5	4	3	2	1	0
					PAPD			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW (RW	0 RW	0 RW 0

Bits	Field	Descriptions

[15:0] PAPDn

GPIO Port A pin n Pull-Down Selection Control Bits (n = 0 ~ 15)

- 0: Pin n pull-down function is disabled
- 1: Pin n pull-down function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

Port A Open Drain Selection Register - PAODR

This register is used to enable or disable the GPIO Port A open drain function.

Offset: 0x010 Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									Reserv	/ed						
Type/Reset																
	23		22		21		20		19		18		17		16	
									Reserv	/ed						
Type/Reset																
	15		14		13		12		11		10		9		8	
									PAO	D						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
									PAO	D						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[15:0]	PAODn	GPIO Port A pin n Open Drain Selection Control Bits (n = 0 ~ 15)

0: Pin n Open Drain output is disabled. (The output type is CMOS output)1: Pin n Open Drain output is enabled. (The output type is open-drain output)

Port A Output Current Drive Selection Register - PADRVR

This register specifies the GPIO Port A output driving current.

Offset: 0x014

Reset value: 0x0000_0000

	31		30		29		28		27		26		2	5	2	4
			PADV'	15			PADV	14			PADV ⁻	13			PAD	V12
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	C	RW	0
	23		22		21		20		19		18		1	7	10	6
			PADV	11			PADV	10			PADV	′9			PAD	8V0
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	C	RW	0
	15		14		13		12		11		10		9)	8	
	15		14 PADV	7	13		12 PAD\	/6	11		10 PADV	' 5	9)	PAC	
Type/Reset	15 RW	0			13 RW	0	PAD\	/6 0		0		′5 0	RW 9	C	PAC	
Type/Reset		0	PADV			0	PAD\	_		0	PADV				PAC)V4
Type/Reset		0	PADV RW	0	RW	0	PAD\	0		0	PADV	0			PAC	0

Bits Field Descriptions

[31:0] PADVn[1:0] GPIO Port A pin n Output Current Drive Selection Control Bits (n = 0 ~ 15)

00: 4 mA source / sink current

01: 8 mA source / sink current

10: 12 mA source / sink current

11: 16 mA source / sink current

Port A Lock Register - PALOCKR

This register specifies the GPIO Port A lock configuration.

Offset: 0x018

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									PALKE	Υ						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									PALKE	Υ						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
									PALOC	K						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
									PALOC	K						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits Field Descriptions

[31:16] PALKEY GI

GPIO Port A Lock Key 0x5FA0: Port A Lock function is enable Others: Port A Lock function is disable

To lock the Port A function, a value 0x5FA0 should be written into the PALKEY field in this register. To execute a successful write operation on this lock register, the value written into the PALKEY field must be 0x5FA0. If the value written into this field is not equal to 0x5FA0, any write operations on the PALOCKR register will be aborted. The result of a read operation on the PALKEY field returns the GPIO Port A Lock Status which indicates whether the GPIO Port A is locked or not. If the read value of the PALKEY field is 0, this indicates that the GPIO Port A Lock function is disabled. Otherwise, it indicates that the GPIO Port A Lock function is enabled as the read value is equal to 1.

[15:0] PALOCKn

GPIO Port A Pin n Lock Control Bits (n = 0 ~ 15)

0: Port A Pin n is not locked

1: Port A Pin n is locked

The PALOCKn bits are used to lock the configurations of corresponding GPIO Pins when the correct Lock Key is applied to the PALKEY field. The locked configurations including PADIRn, PAINENn, PAPUn, PAPDn, PAODn and PADVn setting in the related GPIO registers. Additionally, the GPACFGHR or GPACFGLR field which is used to configure the alternative function of the associated GPIO pin will also be locked. Note that the PALOCKR can only be written once which means that PALKEY and PALOCKn (lock control bit) should be written together and can not be changed until a system reset or GPIO Port A reset occurs.

Port A Data Input Register – PADINR

This register specifies the GPIO Port A input data.

Offset: 0x01C
Reset value: 0x0000_F300

	31	30	29)	28	27	26	25	24
						Reserv	ed ed		
Type/Reset			'	'		'	'	'	_
	23	22	21		20	19	18	17	16
						Reserv	ed ed		
Type/Reset			,					,	
	15	14	13	3	12	11	10	9	8
						PADII	N		
Type/Reset	RO	1 RO	1 RO	1 RO		1 RO	0 RO	0 RO	1 RO 1
	7	6	5		4	3	2	1	0
						PADII	N		
Type/Reset	RO	0 RO	0 RO	0 RO		0 RO	0 RO	0 RO	0 RO 0

Bits Field Descriptions

[15:0] PADINn GPIO Port A pin n Data Input Bits (n = $0 \sim 15$)

0: The input data of pin is 0 1: The input data of pin is 1

Port A Output Data Register – PADOUTR

This register specifies the GPIO Port A output data.

Offset: 0x020

Reset value: 0x0000_0000

	31	3	0	29		28		27		26			25		24	
								Reserv	ved							
Type/Reset																
	23	2	2	21		20		19		18			17		16	
								Reserv	ved							
Type/Reset																
	15	1	4	13		12		11		10			9		8	
								PADO	UT							
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0
	7	6	;	5		4		3		2			1		0	
								PADO	UT							
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0

Bits	Field	Descriptions
F4 = 01	DAROUT	ODIO D + 4 + 1 D + 0

[15:0] PADOUTn GPIO Port A pin n Data Output Bits (n = $0 \sim 15$)

0: Data to be output on pin n is 0 1: Data to be output on pin n is 1

Port A Output Set/Reset Control Register – PASRR

This register is used to set or reset the corresponding bit of the GPIO Port A output data.

Offset: 0x024

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									PARS	Т						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	23		22		21		20		19		18		17		16	
									PARS	Т						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	15		14		13		12		11		10		9		8	
									PASE*	Т						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	7		6		5		4		3		2		1		0	
									PASE*	Т						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0

Bits	Field	Descriptions
[31:16]	PARSTn	GPIO Port A pin n Output Reset Control Bits (n = 0 ~ 15) 0: No effect on the PADOUTn bit 1: Reset the PADOUTn bit
[15:0]	PASETn	GPIO Port A pin n Output Set Control Bits (n = 0 ~ 15) 0: No effect on the PADOUTn bit 1: Set the PADOUTn bit Note that the function enabled by the PASETn bit has the higher priority if both the PASETn and PARSTn bits are set at the same time.

Port A Output Reset Register - PARR

This register is used to reset the corresponding bit of the GPIO Port A output data.

Offset: 0x028

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved	d		
Type/Reset					,	,		_
	23	22	21	20	19	18	17	16
					Reserved	d		
Type/Reset					,			_
	15	14	13	12	11	10	9	8
					PARST			
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO 0
	7	6	5	4	3	2	1	0
					PARST			
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO 0

Bits Field Descriptions

[15:0] PARSTn GPIO Port A pin n Output Reset Bits (n = $0 \sim 15$)

0: No effect on the PADOUTn bit

1: Reset the PADOUTn bit

Port B Data Direction Control Register - PBDIRCR

This register is used to control the direction of GPIO Port B pin as input or output.

Offset: 0x000

Reset value: 0x0000_0000

	31	30	29		28		27		26		2	25		24	
							Reserv	ved							
Type/Reset															
	23	22	21		20		19		18		1	17		16	
							Reserv	ved							
Type/Reset															
	15	14	13		12		11		10			9		8	
							PBDI	R							
Type/Reset	RW	0 RW	0 RW	0	RW	0	RW	0	RW	0	RW		0	RW	0
	7	6	5		4		3		2			1		0	
							PBDI	R							
Type/Reset	RW	0 RW	0 RW	0	RW	0	RW	0	RW	0	RW		0	RW	0

Bits	Field	Descriptions
[15:0]	PBDIRn	GPIO Port B pin n Direction Control Bits (n = 0 ~ 15) 0: Pin n is input mode
		1: Pin n is output mode

Port B Input Function Enable Control Register – PBINER

This register is used to enable or disable the GPIO Port B input function.

Offset: 0x004

Reset value: 0x0000_0000

	31		30	29		2	8	2	7	26		2	25		24	
								Rese	erved							
Type/Reset																
	23		22	21		2	0	1	9	18		1	17		16	
								Rese	erved							
Type/Reset																
	15		14	13		1	2	1	1	10			9		8	
								PBII	NEN							
Type/Reset	RW	0 RW	(RW	0	RW	0	RW	0	RW	0	RW		0 RW		0
	7		6	5			ŀ	;	3	2			1		0	
								PBII	NEN							
Type/Reset	RW	0 RW	(RW	0	RW	0	RW	0	RW	0	RW		0 RW		0

Bits	Field	Descriptions

[15:0] PBINENn

GPIO Port B pin n Input Enable Control Bits (n = 0 ~ 15)

When the pin n input function is disabled, the input Schmitt trigger will be turned off and the Schmitt trigger output will remain at a zero state.

^{0:} Pin n input function is disabled.

^{1:} Pin n input function is enabled.

Port B Pull-Up Selection Register - PBPUR

This register is used to enable or disable the GPIO Port B pull-up function.

Offset: 0x008

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved	d		
Type/Reset			'	'	'			
	23	22	21	20	19	18	17	16
					Reserved	d		
Type/Reset					'			
	15	14	13	3 12	11	10	9	8
					PBPU			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW (0 RW () RW 0
	7	6	5	4	3	2	1	0
					PBPU			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW (0 RW () RW 0

Bits	Field	Descriptions

[15:0] PBPUn

GPIO Port B pin n Pull-Up Selection Control Bits (n = 0 ~ 15)

- 0: Pin n pull-up function is disabled
- 1: Pin n pull-up function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

Port B Pull-Down Selection Register - PBPDR

This register is used to enable or disable the GPIO Port B pull-down function.

Offset: 0x00C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset						'		_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					'			
	15	14	13	12	11	10	9	8
					PBPD			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0
	7	6	5	4	3	2	1	0
					PBPD			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0

Bits	Field	Descriptions
------	-------	--------------

[15:0] PBPDn

GPIO Port B pin n Pull-Down Selection Control Bits (n = 0 ~ 15)

0: Pin n pull-down function is disabled

1: Pin n pull-down function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

Port B Open Drain Selection Register – PBODR

This register is used to enable or disable the GPIO Port B open drain function.

Offset: 0x010 Reset value: 0x0000_0000

	31		30		29		28		27		26		2	25		24	
									Reser	ved							
Type/Reset																	
	23		22		21		20		19		18		1	7		16	
									Reser	ved							
Type/Reset																	'
	15		14		13		12		11		10			9		8	
									PBO	D							
Type/Reset	RW	0 RW		0 RW		0 F	RW	0	RW	0	RW	0	RW		0 RW	1	0
	7		6		5		4		3		2			1		0	
									PBO	D							
Type/Reset	RW	0 RW		0 RW		0 F	RW	0	RW	0	RW	0	RW		0 RW	/	0

Bits	Field	Descriptions
[15:0]	PBODn	GPIO Port B pin n Open Drain Selection Control Bits (n = 0 ~ 15)

0: Pin n Open Drain output is disabled. (The output type is CMOS output)1: Pin n Open Drain output is enabled. (The output type is open-drain output)

Port B Output Current Drive Selection Register – PBDRVR

This register specifies the GPIO Port B output driving current.

Offset: 0x014

Reset value: 0x0000_0000

	31		30		29		28		27		26		25	,	24	
			PBDV1	5			PBDV	14			PBDV'	13			PBD\	/12
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17	1	16	1
			PBDV1	1			PBDV	10			PBDV	9			PBD'	۷8
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
	15		14 PBDV7	7	13		12 PBDV	/6	11		10 PBDV	5	9		8 PBD	V4
Type/Reset	15 RW	0			13	0	PBDV	/6 0	11	0	_	5	9 RW	0	PBD'	V4 0
Type/Reset		0	PBDV7			0	PBDV			0	PBDV			0	PBD'	
Type/Reset		0	PBDV7 RW	0	RW	0	PBDV	0		0	PBDV	0		0	PBD'	0

Bits Field Descriptions

[31:0] PBDVn[1:0] GPIO Port B pin n Output Current Drive Selection Control Bits (n = 0 ~ 15)

00: 4 mA source / sink current

01: 8 mA source / sink current

10: 12 mA source / sink current

11: 16 mA source / sink current

Port B Lock Register – PBLOCKR

This register specifies the GPIO Port B lock configuration.

Offset: 0x018

Reset value: 0x0000 0000

	31		30		29		2	8		27		26		:	25		24	
									F	BLKE	ΞΥ							
Type/Reset	RW	0	RW	0	RW	0	RW	() R\	Ν	0	RW	0	RW		0	RW	0
	23		22		21		2	0		19		18			17		16	
									F	BLKE	ΞΥ							
Type/Reset	RW	0	RW	0	RW	0	RW	() R\	Ν	0	RW	0	RW		0	RW	0
	15		14		13		1:	2		11		10			9		8	
									F	BLO	CK							
Type/Reset	RW	0	DIM	$\overline{}$	DV4/	$\overline{}$	D147			Λ./	$\overline{}$	DIA	$\overline{}$	D\4/		$\overline{}$	RW	0
Type/Tteset	1 1 1 1	U	RW	0	RW	0	RW	') R	/V	0	RW	0	RW		0	1 1 1 1	U
турсическ	7	U	6	U	KW 5	U	RW 4		J K	,v 3	0	2 RW	U	RW	1	U	0	
турслюзос	7			0									0		1		0	

Bits Field Descriptions

[31:16] PBLKEY

GPIO Port Block Key

0x5FA0: Port Block function is enable Others: Port B Lock function is disable

To lock the Port B function, a value 0x5FA0 should be written into the PBLKEY field in this register. To execute a successful write operation on this lock register, the value written into the PBLKEY field must be 0x5FA0. If the value written into this field is not equal to 0x5FA0, any write operations on the PBLOCKR register will be aborted. The result of a read operation on the PBLKEY field returns the GPIO Port B Lock Status which indicates whether the GPIO Port B is locked or not. If the read value of the PBLKEY field is 0, this indicates that the GPIO Port B Lock function is disabled. Otherwise, it indicates that the GPIO Port B Lock function is enabled as the read value is equal to 1.

[15:0] PBLOCKn

GPIO Port B pin n Lock Control Bits (n = 0 ~ 15)

0: Port B pin n is not locked

1: Port B pin n is locked

The PBLOCKn bits are used to lock the configurations of corresponding GPIO Pins when the correct Lock Key is applied to the PBLKEY field. The locked configurations including PBDIRn, PBINENn, PBPUn, PBPDn and PBODn setting in the related GPIO registers. Additionally, the GPBCFGHR or GPBCFGLR field which is used to configure the alternative function of the associated GPIO pin will also be locked. Note that the PBLOCKR can only be written once which means that PBLKEY and PBLOCKn (lock control bit) should be written together and can not be changed until a system reset or GPIO Port B reset occurs.

Port B Data Input Register – PBDINR

This register specifies the GPIO Port B input data.

Offset: 0x01C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved	t		
Type/Reset					'	'	'	_
	23	22	21	20	19	18	17	16
					Reserved	b	'	
Type/Reset					'			
	15	14	13	12	11	10	9	8
					PBDIN			'
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO 0
	7	6	5	4	3	2	1	0
					PBDIN			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO 0

Bits Field **Descriptions** [15:0] **PBDINn** GPIO Port B pin n Data Input Bits (n = $0 \sim 15$)

0: The input data of corresponding pin is 0

1: The input data of corresponding pin is 1

Port B Output Data Register - PBDOUTR

This register specifies the GPIO Port B output data.

Offset: 0x020 Reset value: 0x0000_0000

	31		30		29			28		2	7		26			25		2	24	
										Rese	erved									
Type/Reset																				
	23		22		21			20		1	9		18			17		1	16	
										Rese	erved									
Type/Reset																				
	15		14		13			12		1	1		10			9			8	
										PBD	OUT									
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	C	RW		0	RW		0	RW		0
	7		6		5			4		3	3		2			1			0	
										PBD	OUT									
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	C	RW		0	RW		0	RW		0

Bits	Field	Descriptions
[15:0]	PBDOUTn	GPIO Port B pin n Data Output Bits (n = 0 ~ 15)
		0: Data to be output on pin n is 0
		1: Data to be output on pin n is 1

Port B Output Set/Reset Control Register – PBSRR

This register is used to set or reset the corresponding bit of the GPIO Port B output data.

Offset: 0x024
Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									PBRS ²	Т						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	23		22		21		20		19		18		17		16	
									PBRS	Т						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	15		14		13		12		11		10		9		8	
									PBSE [*]	Т						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	7		6		5		4		3		2		4		0	
			0		<u> </u>		4									
									PBSE	Т						

Bits	Field	Descriptions
[31:16]	PBRSTn	GPIO Port B pin n Output Reset Control Bits (n = 0 ~ 15)
		0: No effect on the PBDOUTn bit
		1: Reset the PBDOUTn bit
[15:0]	PBSETn	GPIO Port B pin n Output Set Control Bits (n = 0 ~ 15)
		0: No effect on the PBDOUTn bit
		1: Set the PBDOUTn bit
		Note that the function enabled by the PBSETn bit has the higher priority if both the
		PBSETn and PBRSTn bits are set at the same time.

Rev. 1.10 150 of 680 November 22, 2018

Port B Output Reset Register – PBRR

This register is used to reset the corresponding bit of the GPIO Port B output data.

Offset: 0x028
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserve	d		
Type/Reset				'	'	"	'	
	23	22	21	20	19	18	17	16
					Reserve	d		
Type/Reset				"	'	"		
	15	14	13	12	11	10	9	8
					PBRST			
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO 0
	7	6	5	4	3	2	1	0
					PBRST			
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO 0

Bits Field Descriptions

[15:0] PBRSTn GPIO Port B pin n Output Reset Bits (n = $0 \sim 15$)

0: No effect on the PBDOUTn bit

1: Reset the PBDOUTn bit

Port C Data Direction Control Register – PCDIRCR

This register is used to control the direction of GPIO Port C pin as input or output.

Offset: 0x000

Reset value: 0x0000_0000

	31	30		29		2	8	27	,	26		25		24	
								Rese	ved						
Type/Reset								'							
	23	22		21		2	0	19)	18		17		16	
								Rese	ved						
Type/Reset															
	15	14		13		1:	2	11		10		9		8	
								PCD	IR						
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7	6		5		4	ļ.	3		2		1		0	
								PCD	IR						
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[15:0]	PCDIRn	GPIO Port C pin n Direction Control Bits (n = 0 ~ 15)
		0: Pin n is input mode
		1: Pin n is output mode

Port C Input Function Enable Control Register – PCINER

This register is used to enable or disable the GPIO Port C input function.

Offset: 0x004

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset			'		'			
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset			'		'	'		
	15	14	13	12	11	10	9	8
					PCINEN			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0
	7	6	5	4	3	2	1	0
					PCINEN			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0

Bits	Field	Descriptions

[15:0] PCINENn

GPIO Port C pin n Input Enable Control Bits (n = 0 ~ 15)

0: Pin n input function is disabled.

1: Pin n input function is enabled.

When the pin n input function is disabled, the input Schmitt trigger will be turned off and the Schmitt trigger output will remain at a zero state.

Port C Pull-Up Selection Register – PCPUR

This register is used to enable or disable the GPIO Port C pull-up function.

Offset: 0x008

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset					'		'	_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					'			
	15	14	13	12	11	10	9	8
					PCPU			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW (0 RW 0
	7	6	5	4	3	2	1	0
					PCPU			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW (0 RW 0

Bits	Field	Descriptions
------	-------	--------------

[15:0] PCPUn

GPIO Port C pin n Pull-Up Selection Control Bits (n = 0 ~ 15)

0: Pin n pull-up function is disabled

1: Pin n pull-up function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

Port C Pull-Down Selection Register - PCPDR

This register is used to enable or disable the GPIO Port C pull-down function.

Offset: 0x00C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset			'		'			_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					'			-
	15	14	13	12	11	10	9	8
					PCPD			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0
	7	6	5	4	3	2	1	0
					PCPD			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0

Bits	Field	Descriptions
------	-------	--------------

[15:0] PCPDn

GPIO Port C pin n Pull-Down Selection Control Bits (n = 0 ~ 15)

0: Pin n pull-down function is disabled

1: Pin n pull-down function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

Port C Open Drain Selection Register - PCODR

This register is used to enable or disable the GPIO Port C open drain function.

Offset: 0x010

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									Reser	ved						
Type/Reset																
	23		22		21		20		19		18		17		16	
									Reser	ved						
Type/Reset																
	15		14		13		12		11		10		9		8	
									PCO	D						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
									PCO	D						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[15:0]	PCODn	GPIO Port C pin n Open Drain Selection Control Bits (n = 0 ~ 15)
		0: Pin n Open Drain output is disabled. (The output type is CMOS output)

1: Pin n Open Drain output is enabled. (The output type is open-drain output)

Port C Output Current Drive Selection Register - PCDRVR

This register specifies the GPIO Port C output driving current.

Offset: 0x014

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
			PCDV ⁻	15			PCDV	14			PCDV ⁻	13			PCD\	/12
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
			PCDV	11			PCDV	10			PCDV	9			PCD'	V8
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
	15		14 PCDV	7	13		12 PCD\	/6	11		10 PCDV	5	9		PCD'	V4
Type/Reset	15 RW	0			13	0	PCD\	/6 0		0		5	9 RW	0	PCD'	V4 0
Type/Reset		0	PCDV			0	PCD\			0	PCDV			0	PCD'	
Type/Reset		0	PCDV	0	RW	0	PCD\	0		0	PCDV	0		0	PCD'	0

Bits	Field	Descriptions
[0.1.0]	DCD\/p[1:0]	CDIO Dort C ni

[31:0] PCDVn[1:0] GPIO Port C pin n Output Current Drive Selection Control Bits (n = 0 ~ 15)

00: 4 mA source / sink current

01: 8 mA source / sink current

10: 12 mA source / sink current

11: 16 mA source / sink current

Becuase the PC13 \sim 15 are located at the Backup Domain. Therefore only the sink current capability can be set with PCDV[0] bit and don't care the PCDV[1] bit.

x0: 4 mA sink current

x1: 8 mA sink current

For the soruce current of this pins are always limited at 1mA.

Port C Lock Register – PCLOCKR

This register specifies the GPIO Port C lock configuration.

Offset: 0x018

Reset value: 0x0000 0000

	31	;	30	29		28		27		26		25		24	
								PCLKE	ΞΥ						
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22	21		20		19		18		17		16	
								PCLKE	ΞΥ						
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14	13		12		11		10		9		8	
								PCLO	CK						
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6	5		4		3		2		1		0	
								PCLO	CK						
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits Field Descriptions

[31:16] PCLKEY GPIO Port C lock Key

0x5FA0: Port C Lock function is enable Others: Port C Lock function is disable

To lock the Port C function, a value 0x5FA0 should be written into the PCLKEY field in this register. To execute a successful write operation on this lock register, the value written into the PCLKEY field must be 0x5FA0. If the value written into this field is not equal to 0x5FA0, any write operations on the PCLOCKR register will be aborted. The result of a read operation on the PCLKEY field returns the GPIO Port C Lock Status which indicates whether the GPIO Port C is locked or not. If the read value of the PCLKEY field is 0, this indicates that the GPIO Port C Lock function is disabled. Otherwise, it indicates that the GPIO Port C Lock function is enabled as the read value is equal to 1.

[15:0] PCLOCKn

GPIO Port C pin n Lock Control Bits (n = 0 ~ 15)

0: Port C pin n is not locked

1: Port C pin n is locked

The PCLOCKn bits are used to lock the configurations of corresponding GPIO Pins when the correct Lock Key is applied to the PCLKEY field. The locked configurations including PCDIRn, PCINENn, PCPUn, PCPDn and PCODn setting in the related GPIO registers. Additionally, the GPCCFGHR or GPCCFGLR field which is used to configure the alternative function of the associated GPIO pin will also be locked. Note that the PCLOCKR can only be written once which means that PCLKEY and PCLOCKn (lock control bit) should be written together and can not be changed until a system reset or GPIO Port C reset occurs.

Port C Data Input Register – PCDINR

This register specifies the GPIO Port C input data.

Offset: 0x01C
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserve	d		
Type/Reset			'	'				_
	23	22	21	20	19	18	17	16
					Reserve	d		
Type/Reset							,	_
	15	14	13	12	11	10	9	8
					PCDIN			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO 0
	7	6	5	4	3	2	1	0
					PCDIN			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO 0

Bits Field Descriptions

[15:0] PCDINn

GPIO Port C pin n Data Input Bits (n = $0 \sim 15$)

0: The input data of corresponding pin is 0

1: The input data of corresponding pin is 1

Port C Output Data Register – PCDOUTR

This register specifies the GPIO Port C output data.

Offset: 0x020 Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset			'	,				
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					,			
	15	14	13	12	11	10	9	8
					PCDOUT			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW (0 RW 0
	7	6	5	4	3	2	1	0
					PCDOUT			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW (0 RW 0

Bits	Field	Descriptions
[15:0]	PCDOUTn	GPIO Port C pin n Data Output Bits (n = 0 ~ 15)
		0: Data to be output on pin n is 0

1: Data to be output on pin n is 1

Port C Output Set/Reset Control Register – PCSRR

This register is used to set or reset the corresponding bit of the GPIO Port C output data.

Offset: 0x024

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									PCRS	Т						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	23		22		21		20		19		18		17		16	
									PCRS	Т						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	15		14		13		12		11		10		9		8	
									PCSE	Т						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	7		6		5		4		3		2		1		0	
									PCSE	Т						

Bits	Field	Descriptions
[31:16]	PCRSTn	GPIO Port C pin n Output Reset Control Bits (n = 0 ~ 15)
		0: No effect on the PCDOUTn bit 1: Reset the PCDOUTn bit
[15:0]	PCSETn	GPIO Port C pin n Output Set Control Bits (n = 0 ~ 15)
		0: No effect on the PCDOUTn bit
		1: Set the PCDOUTn bit
		Note that the function enabled by the PCSETn bit has the higher priority if both the
		PCSETn and PCRSTn bits are set at the same time.

Rev. 1.10 159 of 680 November 22, 2018

Port C Output Reset Register – PCRR

This register is used to reset the corresponding bit of the GPIO Port C output data.

Offset: 0x028

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24	
					Reserved				
Type/Reset					'				
	23	22	21	20	19	18	17	16	
					Reserved				
Type/Reset					'				
	15	14	13	12	11	10	9	8	
					PCRST				
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO 0	WO	0 WO	0 WO	0
	7	6	5	4	3	2	1	0	
					PCRST				
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO 0	WO	0 WO	0 WO	0

Bits Field Descriptions

[15:0] PCRSTn GPIO Port C pin n Output Reset Bits (n = $0 \sim 15$)

0: No effect on the PCDOUTn bit

1: Reset the PCDOUTn bit

Port D Data Direction Control Register – PDDIRCR

This register is used to control the direction of GPIO Port D pin as input or output.

Offset: 0x000

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					,			
	15	14	13	12	11	10	9	8
					PDDIR			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW (0 RW 0
	7	6	5	4	3	2	1	0
					PDDIR			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW (0 RW 0

Bits	Field	Descriptions
[15:0]	PDDIRn	GPIO Port D pin n Direction Control Bits (n = 0 ~ 15)
		0: Pin n is input mode
		1: Pin n is output mode

Port D Input Function Enable Control Register - PDINER

This register is used to enable or disable the GPIO Port D input function.

Offset: 0x004

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset			'	'	'			
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset				-	'			
	15	14	13	12	11	10	9	8
					PDINEN			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW () RW 0
	7	6	5	4	3	2	1	0
					PDINEN			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW () RW 0

Bits	Field	Descriptions
[15:0]	PDINENn	GPIO Port D pin n Input Enable Control Bits (n = 0 ~ 15)

0: Pin n input function is disabled.

When the pin n input function is disabled, the input Schmitt trigger will be turned off and the Schmitt trigger output will remain at a zero state.

Rev. 1.10 161 of 680 November 22, 2018

^{1:} Pin n input function is enabled.

Port D Pull-Up Selection Register - PDPUR

This register is used to enable or disable the GPIO Port D pull-up function.

Offset: 0x008

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset			'	'	'			_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					'			
	15	14	13	12	11	10	9	8
					PDPU			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0
	7	6	5	4	3	2	1	0
					PDPU			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0

Bits	Field	Descriptions

[15:0] PDPUn

GPIO Port D pin n Pull-Up Selection Control Bits (n = 0 ~ 15)

0: Pin n pull-up function is disabled

1: Pin n pull-up function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

Port D Pull-Down Selection Register - PDPDR

This register is used to enable or disable the GPIO Port D pull-down function.

Offset: 0x00C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset			'	'	'		'	_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					'			-
	15	14	13	12	11	10	9	8
					PDPD			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0
	7	6	5	4	3	2	1	0
					PDPD			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0

Bits	Field	Descriptions
------	-------	--------------

[15:0] PDPDn

GPIO Port D pin n Pull-Down Selection Control Bits (n = 0 ~ 15)

0: Pin n pull-down function is disabled

1: Pin n pull-down function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

Port D Open Drain Selection Register - PDODR

This register is used to enable or disable the GPIO Port D open drain function.

Offset: 0x010

Reset value: 0x0000_0000

	31	30		29		28	3	27		26		25		24	
								Reserv	ved						
Type/Reset															
	23	22		21		20)	19		18		17		16	
								Reserv	ved						
Type/Reset								'							
	15	14		13		12	2	11		10		9		8	
								PDO	D						
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7	6		5		4		3		2		1		0	
								PDO	D						
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions

[15:0] PDODn GPIO Port D pin n Open Drain Selection Control Bits (n = 0 ~ 15)

0: Pin n Open Drain output is disabled. (The output type is CMOS output)

1: Pin n Open Drain output is enabled. (The output type is open-drain output)

Port D Output Current Drive Selection Register – PDDRVR

This register specifies the GPIO Port D output driving current.

Offset: 0x014

Reset value: 0x0000_0000

	31		30		29		28		27		26			25		24	
			PDDV1	5			PDDV	14			PDDV'	13				PDDV	12
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0
	23		22		21		20		19		18			17		16	
			PDDV1	1			PDDV	10			PDDV	9				PDDV	8
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0
	15		14		13		12		11		10			9		8	
	15		14 PDDV7	7	13		12 PDDV	/6	11		10 PDDV	5		9		8 PDDV	4
Type/Reset	15 RW	0		7	13 RW	0		/6 0	11 RW	0		5	RW	9	0		0
Type/Reset		0	PDDV7			0	PDDV			0	PDDV		RW	1	0	PDDV	
Type/Reset		0	PDDV7 RW	0	RW	0	PDD\ RW	0	RW	0	PDDV	0	RW	1	0	PDDV	0

Bits	Field	Descriptions
[31:0]	PDDVn[1:0]	GPIO Port D pin n Output Current Drive Selection Control Bits (n = 0 ~ 15)
		00: 4 mA source / sink current
		01: 8 mA source / sink current
		10: 12 mA source / sink current
		11: 16 mA source / sink current

Port D Lock Register – PDLOCKR

This register specifies the GPIO Port D lock configuration.

Offset: 0x018

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									PDLKE'	Υ						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									PDLKE'	Υ						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
									PDLOC	K						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
	7		6		5		4		3 PDLOC	K	2		1		0	

Bits Field Descriptions

[31:16] PDLKEY GPIO Port D Lock Key

0x5FA0: Port D Lock function is enable Others: Port D Lock function is disable

To lock the Port D function, a value 0x5FA0 should be written into the PDLKEY field in this register. To execute a successful write operation on this lock register, the value written into the PDLKEY field must be 0x5FA0. If the value written into this field is not equal to 0x5FA0, any write operations on the PDLOCKR register will be aborted. The result of a read operation on the PDLKEY field returns the GPIO Port D Lock Status which indicates whether the GPIO Port D is locked or not. If the read value of the PDLKEY field is 0, this indicates that the GPIO Port D Lock function is disabled. Otherwise, it indicates that the GPIO Port D Lock function is enabled as the read value is equal to 1.

[15:0] PDLOCKn

GPIO Port D pin n Lock Control Bits (n = $0 \sim 15$)

0: Port D pin n is not locked

1: Port D pin n is locked

The PDLOCKn bits are used to lock the configurations of corresponding GPIO Pins when the correct Lock Key is applied to the PDLKEY field. The locked configurations including PDDIRn, PDINENn, PDPUn, PDPDn and PDODn setting in the related GPIO registers. Additionally, the GPDCFGHR or GPDCFGLR field which is used to configure the alternative function of the associated GPIO pin will also be locked. Note that the PDLOCKR can only be written once which means that PDLKEY and PDLOCKn (lock control bit) should be written together and can not be changed until a system reset or GPIO Port D reset occurs.

Port D Data Input Register – PDDINR

This register specifies the GPIO Port D input data.

Offset: 0x01C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserv	ed		
Type/Reset			'		,	,		-
	23	22	21	20	19	18	17	16
					Reserv	ed		
Type/Reset					,	'		
	15	14	13	12	11	10	9	8
					PDDII	N		
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO 0
	7	6	5	4	3	2	1	0
					PDDII	N		
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO 0

Bits Field Descriptions [15:0] PDDIND GPIO Port Dain

[15:0] PDDINn GPIO Port D pin n Data Input Bits (n = $0 \sim 15$)

0: The input data of corresponding pin is 0

1: The input data of corresponding pin is 1

Port D Output Data Register - PDDOUTR

This register specifies the GPIO Port D output data.

Offset: 0x020
Reset value: 0x0000_0000

	31		30		29			28		27	7	2	6		25		2	4
										Rese	rved							
Type/Reset																		
	23		22		21			20		19)	1	8		17		10	6
										Rese	rved							
Type/Reset																		
	15		14		13			12		11		1	0		9		8	3
										PDD0	TUC							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0
	7		6		5			4		3			2		1		0)
										PDD0	TUC							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0

Bits	Field	Descriptions
[15:0]	PDDOUTn	GPIO Port D pin n Data Output Bits (n = 0 ~ 15)
		0: Data to be output on pin n is 0
		1: Data to be output on pin n is 1

Port D Output Set/Reset Control Register – PDSRR

This register is used to set or reset the corresponding bit of the GPIO Port D output data.

Offset: 0x024

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									PDRS	Т						
Type/Reset	WO	0 WC)	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	23		22		21		20		19		18		17		16	
									PDRS	T						
Type/Reset	WO	0 WC)	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	15		14		13		12		11		10		9		8	
									PDSE	T						
Type/Reset	WO	0 WC)	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	_								_							
	7		6		5		4		3		2		1		0	
	7		6		5		4		PDSE	Т	2		1		0	

Bits	Field	Descriptions
[31:16]	PDRSTn	GPIO Port D pin n Output Reset Control Bits (n = 0 ~ 15) 0: No effect on the PDDOUTn bit 1: Reset the PDDOUTn bit
[15:0]	PDSETn	GPIO Port D pin n Output Set Control Bits (n = 0 ~ 15) 0: No effect on the PDDOUTn bit 1: Set the PDDOUTn bit Note that the function enabled by the PDSETn bit has the higher priority if both the PDSETn and PDRSTn bits are set at the same time.

Port D Output Reset Register - PDRR

This register is used to reset the corresponding bit of the GPIO Port D output data.

Offset: 0x028

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved	I		
Type/Reset		,			,			
	23	22	21	20	19	18	17	16
					Reserved	I		
Type/Reset		'			,	'		
	15	14	13	12	11	10	9	8
					PDRST			
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO () WO	0 WO	0 WO 0
	7	6	5	4	3	2	1	0
					PDRST			
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO 0) WO	0 WO	0 WO 0

Bits	Field	Descriptions

[15:0] PDRSTn GPIO Port D pin n Output Reset Bits (n = $0 \sim 15$)

0: No effect on the PDDOUTn bit

1: Reset the PDDOUTn bit

Port E Data Direction Control Register – PEDIRCR

This register is used to control the direction of GPIO Port E pin as input or output.

Offset: 0x000

Reset value: 0x0000_0000

	31		30		29			28		2	7		26			25		2	24	
										Rese	erved									
Type/Reset																				
	23		22		21			20		1	9		18			17		1	6	
										Rese	erved									
Type/Reset																				
	15		14		13			12		1	1		10			9			8	
										PE	DIR									
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW		0	RW		0	RW		0
	7		6		5			4			3		2			1			0	
										PE	DIR									
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW		0	RW		0	RW		0

Bits	Field	Descriptions
[15:0]	PEDIRn	GPIO Port E pin n Direction Control Bits (n = 0 ~ 15)
		0: Pin n is input mode
		1: Pin n is output mode

Port E Input Function Enable Control Register – PEINER

This register is used to enable or disable the GPIO Port B input function.

Offset: 0x004

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset				'	'			
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset				"	'			
	15	14	13	12	11	10	9	8
					PEINEN			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW () RW 0
	7	6	5	4	3	2	1	0
					PEINEN			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW 0) RW 0

Bits	Field	Descriptions

[15:0] PEINENn

GPIO Port E pin n Input Enable Control Bits (n = 0 ~ 15)

- 0: Pin n input function is disabled.
- 1: Pin n input function is enabled.

When the pin n input function is disabled, the input Schmitt trigger will be turned off and the Schmitt trigger output will remain at a zero state.

Port E Pull-Up Selection Register – PEPUR

This register is used to enable or disable the GPIO Port E pull-up function.

Offset: 0x008

Reset value: 0x0000_0000

	31	30	29	2	8 2	27 26	25	24
					Res	erved	'	
Type/Reset					'	'	'	_
	23	22	21	2	0 '	19 18	17	16
					Res	erved		
Type/Reset				'	'	'	'	
	15	14	13	1:	2	l1 10	9	8
					PE	PU		
Type/Reset	RW	0 RW	0 RW	0 RW 0				
	7	6	5	4		3 2	1	0
					PE	PU		
Type/Reset	RW	0 RW	0 RW	0 RW 0				

I	3its	Field	Descriptions
ī	15:0]	PEPUn	GPIO Port E pin n Pull-Up Selection Control Bits (n = 0 ~ 15)

0: Pin n pull-up function is disabled

1: Pin n pull-up function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

Port E Pull-Down Selection Register - PEPDR

This register is used to enable or disable the GPIO Port E pull-down function.

Offset: 0x00C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset					,			
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset				'			,	
	15	14	13	12	11	10	9	8
					PEPD			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
					PBPD			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[15:0]	PEPDn	GPIO Port E pin n Pull-Down Selection Control Bits (n = 0 ~ 15)

0: Pin n pull-down function is disabled

1: Pin n pull-down function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

Rev. 1.10 172 of 680 November 22, 2018

Port E Open Drain Selection Register - PEODR

This register is used to enable or disable the GPIO Port E open drain function.

Offset: 0x010

Reset value: 0x0000_0000

	31		30		2	29			28			27		2	26		:	25			24	
											Res	erve	d									
Type/Reset																						
	23		22		2	21			20		•	19		1	8			17			16	
											Res	erve	d									
Type/Reset																						
	15		14		1	13			12		•	11		1	0			9			8	
											PE	OD										
Type/Reset	RW	0 R	N	0	RW		0	RW		0	RW		0	RW	(0	RW		0	RW		0
	7		6			5			4			3			2			1			0	
											PE	OD			, and the second							
Type/Reset	RW	0 R	N	0	RW		0	RW		0	RW		0	RW	(0	RW		0	RW		0

Bits	Field	Descriptions
[15:0]	PEODn	GPIO Port E pin n Open Drain Selection Control Bits (n = 0 ~ 15)

^{0:} Pin n Open Drain output is disabled. (The output type is CMOS output)

^{1:} Pin n Open Drain output is enabled. (The output type is open-drain output)

Port E Output Current Drive Selection Register – PEDRVR

This register specifies the GPIO Port E output driving current.

Offset: 0x014

Reset value: 0x0000_0000

	31		30		29		28		27		26			25		24	
			PEDV1	5			PEDV	14			PEDV1	3				PEDV	12
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0
	23		22		21		20		19		18			17		16	
			PEDV1	1			PEDV	10			PEDV9	9				PEDV	/8
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0
	15		14		13		12		11		10			9		8	
	15		14 PEDV	7	13		12 PEDV	/6	11		10 PEDV	5		9		8 PEDV	′ 4
Type/Reset	15 RW	0		7	13	0		/6 0	11 RW	0		5	RW	9	0		/4 0
Type/Reset		0	PEDV			0	PEDV			0	PEDV		RW	9	0	PEDV	
Type/Reset		0	PEDV7	0	RW	0	PEDV RW	0	RW	0	PEDV:	0	RW	1	0	PEDV	0

Bits	Field	Descriptions
[31:0]	PEDVn[1:0]	GPIO Port E pin n Output Current Drive Selection Control Bits (n = 0 ~ 15)
		00: 4 mA source / sink current
		01: 8 mA source / sink current
		10: 12 mA source / sink current
		11: 16 mA source / sink current

Port E Lock Register – PELOCKR

This register specifies the GPIO Port E lock configuration.

Offset: 0x018

Reset value: 0x0000 0000

	31	30	29		28		27	26		25		24	
						F	PELKEY						
Type/Reset	RW	0 RW	0 RW	0 F	RW.	0 R\	W 0	RW	0	RW	0	RW	0
	23	22	21		20		19	18		17		16	
						F	PELKEY						
Type/Reset	RW	0 RW	0 RW	0 F	₹W	0 R\	W 0	RW	0	RW	0	RW	0
	15	14	13		12		11	10		9		8	
						F	PELOCK						
Type/Reset	RW	0 RW	0 RW	0 F	₹W	0 R\	W 0	RW	0	RW	0	RW	0
	7	6	5		4		3	2		1		0	
						F	PELOCK						
Type/Reset	RW	0 RW	0 RW	0 F	₹W	0 R\	W 0	RW	0	RW	0	RW	0

Bits Field Descriptions

[31:16] PELKEY

GPIO Port Block Key
0x5FA0: Port Block function is enable
Others: Port E Lock function is disable

To lock the Port E function, a value 0x5FA0 should be written into the PELKEY field in this register. To execute a successful write operation on this lock register, the value written into the PELKEY field must be 0x5FA0. If the value written into this field is not equal to 0x5FA0, any write operations on the PELOCKR register will be aborted. The result of a read operation on the PELKEY field returns the GPIO Port E Lock Status which indicates whether the GPIO Port E is locked or not. If the read value of the PELKEY field is 0, this indicates that the GPIO Port E Lock function is disabled. Otherwise, it indicates that the GPIO Port E Lock function is enabled as the read value is equal to 1.

[15:0] PELOCKn

GPIO Port E pin n Lock Control Bits (n = 0 ~ 15)

0: Port E pin n is not locked

1: Port E pin n is locked

The PELOCKn bits are used to lock the configurations of corresponding GPIO Pins when the correct Lock Key is applied to the PELKEY field. The locked configurations including PEDIRn, PEINENn, PEPUn, PEPDn and PEODn setting in the related GPIO registers. Additionally, the GPECFGHR or GPECFGLR field which is used to configure the alternative function of the associated GPIO pin will also be locked. Note that the PELOCKR can only be written once which means that PELKEY and PELOCKn (lock control bit) should be written together and can not be changed until a system reset or GPIO Port E reset occurs.

Rev. 1.10 175 of 680 November 22, 2018

Port E Data Input Register – PEDINR

This register specifies the GPIO Port E input data.

Offset: 0x01C
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserve	ed		
Type/Reset					'	'		
	23	22	21	20	19	18	17	16
					Reserve	ed		
Type/Reset						,		_
	15	14	13	12	11	10	9	8
					PEDIN			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO 0
	7	6	5	4	3	2	1	0
					PEDIN			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO 0

Bits Field Descriptions

[15:0] PEDINn

GPIO Port E pin n Data Input Bits (n = $0 \sim 15$)

0: The input data of corresponding pin is 0

1: The input data of corresponding pin is 1

Port E Output Data Register – PEDOUTR

This register specifies the GPIO Port E output data.

Offset: 0x020 Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset				,				
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					,			
	15	14	13	12	11	10	9	8
					PEDOUT			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW (0 RW 0
	7	6	5	4	3	2	1	0
					PEDOUT			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW (0 RW 0

DILS	rieia	Descriptions
[15:0]	PEDOUTn	GPIO Port E pin n Data Output Bits (n = 0 ~ 15)

0: Data to be output on pin n is 0

1: Data to be output on pin n is 1

Port E Output Set/Reset Control Register – PESRR

This register is used to set or reset the corresponding bit of the GPIO Port E output data.

Offset: 0x024
Reset value: 0x0000_0000

	31		30	29		28		27		26		25		24	
								PERS	Т						
Type/Reset	WO	0 WC) (O WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	23		22	21		20		19		18		17		16	
								PERS	Т						
Type/Reset	WO	0 WC) (O WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	15		14	13		12		11		10		9		8	
								PESE	Т						
Type/Reset	WO	0 WC) () WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	7		6	5		4		3		2		1		0	
								PESE	Т						
Type/Reset															

Bits	Field	Descriptions
[31:16]	PERSTn	GPIO Port B pin n Output Reset Control Bits (n = 0 ~ 15) 0: No effect on the PBDOUTn bit 1: Reset the PBDOUTn bit
[15:0]	PESETn	GPIO Port E pin n Output Set Control Bits (n = 0 ~ 15) 0: No effect on the PEDOUTn bit 1: Set the PEDOUTn bit Note that the function enabled by the PESETn bit has the higher priority if both the PESETn and PERSTn bits are set at the same time.

Port E Output Reset Register – PERR

This register is used to reset the corresponding bit of the GPIO Port E output data.

Offset: 0x028

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset				'	'		'	
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					,		,	
	15	14	13	12	11	10	9	8
					PERST			
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO 0	WO	0 WO	0 WO 0
	7	6	5	4	3	2	1	0
					PERST			
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO 0	WO	0 WO	0 WO 0

Bits	Field	Descriptions

[15:0] PERSTn

GPIO Port B pin n Output Reset Bits (n = 0 ~ 15)

0: No effect on the PEDOUTn bit


1: Reset the PEDOUTn bit

9 Alternate Function Input/Output Control Unit (AFIO)

Introduction

In order to expand the flexibility of the GPIO or the usage of peripheral functions, each IO pin can be configured to have up to sixteen different functions such as GPIO or IP functions by setting the GPxCFGLR or GPxCFGHR register where x is the different port name. According to the usage of the IP resource and application requirements, suitable pin-out locations can be selected by using the peripheral IO remapping mechanism. Additionally, various GPIO pins can be selected to be the EXTI interrupt line by setting the EXTInPIN [3:0] field in the ESSRn register to trigger an interrupt or event. Refer to the EXTI section for more details.

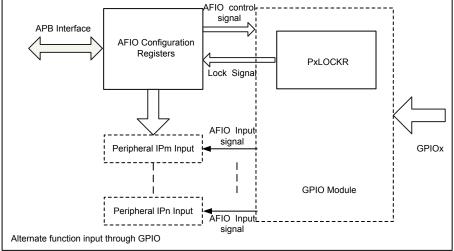


Figure 23. AFIO Block Diagram

Features

- APB slave interface for register access
- EXTI source selection
- Configurable pin function for each GPIO, up to four alternative functions on each pin
- AFIO lock mechanism

Functional Descriptions

External Interrupt Pin Selection

The GPIO pins are connected to the 16 EXTI lines as shown in the accompanying figure. For example, the user can set the EXTIOPIN [3:0] field in the ESSR0 register to b0000 to select the GPIO PA0 pin as EXTI line 0 input. Since not all the pins of the Port A \sim E pins are available in all package types, refer to the pin assignment section for detailed pin information. The setting of the EXTINPIN [3:0] field is invalid when the corresponding pin is not available.

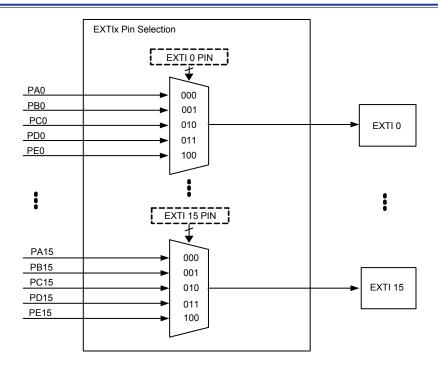


Figure 24. EXTI Channel Input Selection

Alternate Function

Up to sixteen alternative functions can be chosen for each I/O pad by setting the PxCFGn [3:0] field in the GPxCFGLR or GPxCFGHR (n = $0\sim15$, x = $A\sim$ E) registers. Refer to the "Alternate function mapping" table in the device datasheet for the detailed mapping of the alternate function I/O pins. In addition to this flexible I/O multiplexing architecture, each peripheral has alternate functions mapped onto different I/O pins to optimize the number of peripherals available in smaller packages. The following description shows the setting of the PxCFGn [3:0] field. Note that if the Comparator is active, then pins PB [8:6] or PB [11:9] can not be set as other AFIO functional pins simultaneously.

- \blacksquare PxCFGn [3:0] = 0000: The default alternated function (after reset, AF0)
- \blacksquare PxCFGn [3:0] = 0001: Alternate Function 1 (AF1)
- \blacksquare PxCFGn [3:0] = 0010: Alternate Function 2 (AF2)
-
- PxCFGn [3:0] = 1110: Alternate Function 14 (AF14)
- \blacksquare PxCFGn [3:0] = 1111: Alternate Function 15 (AF15)

Table 24. AFIO Selection for Peripheral Map Example

AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
System Default	GPIO	ADC	CMP	MCTM /GPTM	SPI	USART /UART	I ² C	SCI	EBI	I ² S	SDIO	CSIF	N/A	N/A	System Other

Lock Mechanism

The GPIO PxLOCKR (i.e. $x = A \sim E$) also offer lock key 0x5FA0 to lock AFIO input and output status until Reset.

Register Map

The following table shows the AFIO registers and reset value.

Table 25. AFIO Register Map

Register	Offset	Description	Reset Value
ESSR0	0x000	EXTI Source Selection Register 0	0x0000_0000
ESSR1	0x004	EXTI Source Selection Register 1	0x0000_0000
GPACFGLR	0x020	GPIO Port A Configuration Register 0	0x0000_0000
GPACFGHR	0x024	GPIO Port A Configuration Register 1	0x0000_0000
GPBCFGLR	0x028	GPIO Port B Configuration Register 0	0x0000_0000
GPBCFGHR	0x02C	GPIO Port B Configuration Register 1	0x0000_0000
GPCCFGLR	0x030	GPIO Port C Configuration Register 0	0x0000_0000
GPCCFGHR	0x034	GPIO Port C Configuration Register 1	0x0000_0000
GPDCFGLR	0x038	GPIO Port D Configuration Register 0	0x0000_0000
GPDCFGHR	0x03C	GPIO Port D Configuration Register 1	0x0000_0000
GPECFGLR	0x040	GPIO Port E Configuration Register 0	0x0000_0000
GPECFGHR	0x044	GPIO Port E Configuration Register 1	0x0000_0000

Register Descriptions

EXTI Source Selection Register 0 – ESSR0

This register specifies the IO selection of EXTI0 ~ EXTI7.

Offset: 0x000

Reset value: 0x0000 0000

	31		30		29		28		27		26		25		24	
					EXTI7F	NI							EXTI6P	'IN		
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
					EXTI5F	NI							EXTI4P	'IN		
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
					EXTI3F	PIN							EXTI2P	'IN		
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
					EVELLE								EVTIOD	IAI		
					EXTI1F	'IIN							EXTI0P	'IIN		

Bits	Field	Descriptions

[31:0] EXTInPIN[3:0] EXTIn Pin Selection (n = $0 \sim 7$)

0000: PA Bit n is selected as EXTIn source signal 0001: PB Bit n is selected as EXTIn source signal 0010: PC Bit n is selected as EXTIn source signal 0011: PD Bit n is selected as EXTIn source signal 0100: PE Bit n is selected as EXTIn source signal

Others: Reserved

Note: Since not all GPIO pins are available in all products and package types, refer to the pin assignment section for detailed pin information. The EXTInPIN [3:0] field setting is invalid when the corresponding pin is not available.

Rev. 1.10 182 of 680 November 22, 2018

EXTI Source Selection Register 1 – ESSR1

This register specifies the IO selection of EXTI8~EXTI15.

Offset: 0x004

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
					EXTI15	PIN							EXTI14I	PIN		
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
					EXTI13I	PIN							EXTI12I	PIN		
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
	15		14		13 EXTI11	PIN	12		11		10		9 EXTI10I	PIN	8	
Type/Reset	15 RW	0	14	0			12	0		0		0		PIN 0		0
Type/Reset		0		0	EXTI11I			0		0		0	EXTI10I			0
Type/Reset		0	RW	0	EXTI11I RW	0	RW	0	RW	0		0	EXTI10I	0	RW	0

Bits Field Descriptions

[31:0] EXTInPIN[3:0] EXTIn Pin Selection (n = $8 \sim 15$)

0000: PA Bit n is selected as EXTIn source signal 0001: PB Bit n is selected as EXTIn source signal 0010: PC Bit n is selected as EXTIn source signal 0011: PD Bit n is selected as EXTIn source signal 0100: PE Bit n is selected as EXTIn source signal

Others: Reserved

Note: Since not all GPIO pins are available in all products and package types, refer to the pin assignment section for detailed pin information. The EXTInPIN [3:0] field setting is invalid when the corresponding pin is not available.

GPIO x Configuration Low Register – **GPxCFGLR** (x = A, B, C, D, E)

This low register specifies the alternate function of GPIO Port x. x = A, B, C, D, E

Offset: 0x020, 0x028, 0x030, 0x038, 0x040

Reset value: 0x0000 0000

	31		30		29		28		27		26		25		24	
			PxCFG	7							PxCFG	6				
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
			PxCFG	5							PxCFG	64				
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
			PxCFG	3							PxCFG	32				
Type/Reset	RW	0	PxCFG RW	_	RW	0	RW	0	RW	0	PxCFG RW		RW	0	RW	0
Type/Reset	RW 7	0		_	RW 5	0	RW 4	0	RW 3	0			RW 1	0	RW 0	0
Type/Reset	RW 7	0	RW	0		0	RW 4	0	RW 3	0		0	RW 1	0	RW 0	0

Bits Field Descriptions

[31:0] PxCFGn[3:0] Alternate function selection for port x pin n (n = $0\sim7$)

0000: Port x pin n is selected as AF0

0001: Port x pin n is selected as AF1

:

1110: Port x pin n is selected as AF14

1111: Port x pin n is selected as AF15

Refer to the "Alternate function mapping" table in the device datasheet for the detailed mapping of the alternate function I/O pins.

GPIO x Configuration High Register – **GPxCFGHR** (x = A, B, C, D, E)

This high register specifies the alternate function of GPIO Port x. x = A, B, C, D, E

0x024, 0x02C, 0x034, 0x03C, 0x044

Reset value: 0x0000_0000

	31		30		29			28		27		26			25		24	
			PxCFG	15								PxCFG	314					
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0
	23		22		21			20		19		18			17		16	
			PxCFG	13								PxCFG	12					
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0
	15		14		13			12		11		10			9		8	
			PxCFG	11								PxCFG	10					
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0
	7		6		5			4		3		2			1		0	
			PxCFG	9								PxCF	G8					

Bits	Field	Descriptions

[31:0] PxCFGn[3:0] Alternate function selection for port x pin n (n = $8\sim15$)

0000: Port x pin n is selected as AF0

0001: Port x pin n is selected as AF1

1110: Port x pin n is selected as AF14

1111: Port x pin n is selected as AF15

Refer to the "Alternate function mapping" table in the device datasheet for the detailed mapping of the alternate function I/O pins.

10 Nested Vectored Interrupt Controller (NVIC)

Introduction

In order to reduce the latency and increase the interrupt processing efficiency, a tightly coupled integrated section, which is named as Nested Vectored Interrupt Controller (NVIC) is provided by the CortexTM-M3. The NVIC controls the system exceptions and the peripheral interrupt which include functions such as the enable/disable control, priority, clear-pending, active status report, software trigger and vector table remapping. Refer to the Technical Reference Manual of Cortex-M3 for more details.

Additionally, an integrated simple, 24-bit down count timer (SysTick) is provided by the CortexTM-M3 to be used as a tick timer for the Real Timer Operation System (RTOS) or as a simple counter. The SysTick counts down from the reloaded value and generates a system interrupt when it reached zero.

The accompanying table lists the 16 system exceptions types and a variety of peripheral interrupts.

Table 26. Exception types

Exception Type	Priority	Interrupt Number	Exception Number	Vector Address	Description
	_	_	0	0x000	Initial Stack Point value
Reset	-3 (Highest)	_	1	0x004	Reset
NMI	-2	_	2	0x008	Non-Maskable Interrupt. The clock stuck interrupt signal (clock monitor function provided by Clock Control Unit) is connected to the NMI input
Hard Fault	-1	_	3	0x00C	All fault classes
Memory Management	Configurable ⁽¹⁾	_	4	0x010	Memory Protection Unit (MPU) mismatch, including access violation and no match
Bus Fault	Configurable ⁽¹⁾	_	5	0x014	Pre-fetch fault, memory access fault, and other address/memory related
Usage Fault	Configurable ⁽¹⁾	_	6	0x018	Usage fault, such as undefined executed instruction or illegal attempt of state transition
_		_	7	0x01C	Reserved
_	_	_	8	0x020	Reserved
	_	_	9	0x024	Reserved
	_	_	10	0x028	Reserved
SVCCall	Configurable ⁽¹⁾	_	11	0x02C	SVC instruction System service call
Debug Monitor	Configurable ⁽¹⁾	_	12	0x030	Debug monitor, when not halted
_	Configurable ⁽¹⁾	_	13	0x034	Reserved
PendSV	Configurable ⁽¹⁾	_	14	0x038	System Service Pendable request
SySTick	Configurable ⁽¹⁾	_	15	0x03C	SysTick timer decremented to zero
CKRDY	Configurable ⁽²⁾	0	16	0x040	Clock ready interrupt (HSE, HSI, LSE, LSI or PLL)
LVD	Configurable ⁽²⁾	1	17	0x044	Low voltage detection interrupt
BOD	Configurable ⁽²⁾	2	18	0x048	Brown-out detection interrupt
	_	3	19	0x04C	Reserved

Exception	Priority	Interrupt		Vector	Description
Type		Number	Number	Address	·
RTC	Configurable ⁽²⁾	4	20	0x050	RTC global interrupt
FMC	Configurable ⁽²⁾	5	21	0x054	FMC global interrupt
EVWUP	Configurable ⁽²⁾	6	22	0x058	EXTI event wakeup interrupt
LPWUP	Configurable ⁽²⁾	7	23	0x05C	WAKEUP pin interrupt
EXTI0	Configurable ⁽²⁾	8	24	0x060	EXTI Line 0 interrupt
EXTI1	Configurable ⁽²⁾	9	25	0x064	EXTI Line 1 interrupt
EXTI2	Configurable ⁽²⁾	10	26	0x068	EXTI Line 2 interrupt
EXTI3	Configurable ⁽²⁾	11	27	0x06C	EXTI Line 3 interrupt
EXTI4	Configurable ⁽²⁾	12	28	0x070	EXTI Line 4 interrupt
EXTI5	Configurable ⁽²⁾	13	29	0x074	EXTI Line 5 interrupt
EXTI6	Configurable ⁽²⁾	14	30	0x078	EXTI Line 6 interrupt
EXTI7	Configurable ⁽²⁾	15	31	0x07C	EXTI Line 7 interrupt
EXTI8	Configurable ⁽²⁾	16	32	0x080	EXTI Line 8 interrupt
EXTI9	Configurable ⁽²⁾	17	33	0x084	EXTI Line 9 interrupt
EXTI10	Configurable ⁽²⁾	18	34	0x088	EXTI Line 10 interrupt
EXTI11	Configurable ⁽²⁾	19	35	0x08C	EXTI Line 11 interrupt
EXTI12	Configurable ⁽²⁾	20	36	0x090	EXTI Line 12 interrupt
EXTI13	Configurable ⁽²⁾	21	37	0x094	EXTI Line 13 interrupt
EXTI14	Configurable ⁽²⁾	22	38	0x098	EXTI Line 14 interrupt
EXTI15	Configurable ⁽²⁾	23	39	0x09C	EXTI Line 15 interrupt
COMP	Configurable ⁽²⁾	24	40	0x0A0	Comparator global interrupt
ADC	Configurable ⁽²⁾	25	41	0x0A4	ADC global interrupt
	-	26	42	0x0A8	Reserved
MCTM0_BRK	Configurable ⁽²⁾	27	43	0x0AC	MCTM0 break interrupt
MCTM0_UP	Configurable ⁽²⁾	28	44	0x0B0	MCTM0 update interrupt
MCTM0_TR_ UP2	Configurable ⁽²⁾	29	45	0x0B4	MCTM0 trigger/update event 2 interrupt
MCTM0_CC	Configurable ⁽²⁾	30	46	0x0B8	MCTM0 capture/compare interrupt
MCTM1_BRK	Configurable ⁽²⁾	31	47	0x0BC	MCTM1 break interrupt
MCTM1_UP	Configurable ⁽²⁾	32	48	0x0C0	MCTM1 update interrupt
MCTM1_TR_ UP2	Configurable ⁽²⁾	33	49	0x0C4	MCTM1 trigger/update event 2 interrupt
MCTM1_CC	Configurable ⁽²⁾	34	50	0x0C8	MCTM1 capture/compare interrupt
GPTM0	Configurable ⁽²⁾	35	51	0x0CC	GPTM0 global interrupt
GPTM1	Configurable ⁽²⁾	36	52	0x0D0	GPTM1 global interrupt
_	_	37	53	0x0D4	Reserved
_	_	38	54	0x0D8	Reserved
_	_	39	55	0x0DC	Reserved
_	_	40	56	0x0E0	Reserved
BFTM0	Configurable ⁽²⁾	41	57	0x0E4	BFTM0 global interrupt
BFTM1	Configurable ⁽²⁾	42	58	0x0E8	BFTM1 global interrupt
I ² C0	Configurable ⁽²⁾	43	59	0x0EC	I ² C0 global interrupt
I ² C1	Configurable ⁽²⁾	44	60	0x0F0	I ² C1 global interrupt
SPI0	Configurable ⁽²⁾	45	61	0x0F4	SPI0 global interrupt

Exception Type	Priority	Interrupt Number	Exception Number	Vector Address	Description
SPI1	Configurable ⁽²⁾	46	62	0x0F8	SPI1 global interrupt
USART0	Configurable ⁽²⁾	47	63	0x0FC	USART0 global interrupt
USART1	Configurable ⁽²⁾	48	64	0x100	USART1 global interrupt
UART0	Configurable ⁽²⁾	49	65	0x104	UART0 global interrupt
UART1	Configurable ⁽²⁾	50	66	0x108	UART1 global interrupt
SCI	Configurable ⁽²⁾	51	67	0x10C	SCI0 & SCI1 global interrupt
I ² S	Configurable ⁽²⁾	52	68	0x110	I ² S global interrupt
USB	Configurable ⁽²⁾	53	69	0x114	USB global interrupt
SDIO	Configurable ⁽²⁾	54	70	0x118	SDIO global interrupt
PDMA_CH0	Configurable ⁽²⁾	55	71	0x11C	PDMA channel 0 global interrupt
PDMA_CH1	Configurable ⁽²⁾	56	72	0x120	PDMA channel 1 global interrupt
PDMA_CH2	Configurable ⁽²⁾	57	73	0x124	PDMA channel 2 global interrupt
PDMA_CH3	Configurable ⁽²⁾	58	74	0x128	PDMA channel 3 global interrupt
PDMA_CH4	Configurable ⁽²⁾	59	75	0x12C	PDMA channel 4 global interrupt
PDMA_CH5	Configurable ⁽²⁾	60	76	0x130	PDMA channel 5 global interrupt
PDMA_CH6	Configurable ⁽²⁾	61	77	0x134	PDMA channel 6 global interrupt
PDMA_CH7	Configurable ⁽²⁾	62	78	0x138	PDMA channel 7 global interrupt
PDMA_CH8	Configurable ⁽²⁾	63	79	0x13C	PDMA channel 8 global interrupt
PDMA_CH9	Configurable ⁽²⁾	64	80	0x140	PDMA channel 9 global interrupt
PDMA_CH10	Configurable ⁽²⁾	65	81	0x144	PDMA channel 10 global interrupt
PDMA_CH11	Configurable ⁽²⁾	66	82	0x148	PDMA channel 11 global interrupt
CSIF	Configurable ⁽²⁾	67	83	0x14C	CSIF global interrupt
EBI	Configurable ⁽²⁾	68	84	0x150	EBI global interrupt
AES	Configurable ⁽²⁾	69	85	0x154	AES global interrupt

Notes: 1. The exception priority can be changed using the NVIC System Handler Priority Registers. For more information, refer to the Arm[®] "Technical Reference Manual of Cortex[®]-M3" document.

2. The interrupt priority can be changed using the NVIC Interrupt Priority Registers. For more information, refer to the Arm® "Technical Reference Manual of Cortex®-M3" document.

Features

- 16 system Cortex®-M3 exceptions
- Up to 64 Maskable peripheral interrupts
- 16 programmable priority levels (4 bits for interrupt priority setting)
- Non-Maskable interrupt
- Low-latency exception and interrupt handling
- Vector table remapping capability
 - Integrated simple, 24-bit system timer, SYSTICK
 - 24-bit down counter
 - Auto-reloading capability
 - Maskable system interrupt generation when counter decrements to 0
 - SysTick clock source derived from the HCLK or AHB clock divided by 8

Function Descriptions

SysTick Calibration

The SysTick Calibration Value Register (SCALIB) is provided by the NVIC to give a reference time base of 1ms for the RTOS tick timer or other purpose. The TENMS field in the SCALIB register has a fixed value of 12000 which is the counter reload value to indicate 1 ms when the clock source comes from the SysTick reference input clock STCLK with a frequency of 12 MHz (96 MHz divide by 8).

Register Map

The following table shows the NVIC registers and reset values.

Table 27. NVIC Register Map

Register	Offset	Description	Reset Value
NVIC Base Ad	ddress = 0xE	000_E000	
ICTR	0x004	Interrupt Control Type Register	0x0000_0001
SCTRL	0x010	SysTick Control and Status Register	0x0000_0000
SLOAD	0x014	SysTick Reload Value Register	Unpredictable
SVAL	0x018	SysTick Current Value Register	Unpredictable
SCALIB	0x01C	SysTick Calibration Value Register	0X4000_2EE0
ISER0_31	0x100	Irq 0 to 31 Set Enable Register	0x0000_0000
ISER32_63	0x104	Irq 32 to 63 Set Enable Register	0x0000_0000
ISER64_95	0x108	Irq 64 to 95 Set Enable Register	0x0000_0000
ICER0_31	0x180	Irq 0 to 31 Clear Enable Register	0x0000_0000
ICER32_63	0x184	Irq 32 to 63 Clear Enable Register	0x0000_0000
ICER64_95	0x188	Irq 64 to 95 Clear Enable Register	0x0000_0000
ISPR0_31	0x200	Irq 0 to 31 Set Pending Register	0x0000_0000
ISPR32_63	0x204	Irq 32 to 63 Set Pending Register	0x0000_0000
ISPR64_95	0x208	Irq 64 to 95 Set Pending Register	0x0000_0000
ICPR0_31	0x280	Irq 0 to 31 Clear Pending Register	0x0000_0000
ICPR32_63	0x284	Irq 32 to 63 Clear Pending Register	0x0000_0000
ICPR64_95	0x288	Irq 64 to 95 Clear Pending Register	0x0000_0000
IABR0_31	0x300	Irq 0 to 31 Active Bit Register	0x0000_0000
IABR32_63	0x304	Irq 32 to 63 Active Bit Register	0x0000_0000
IABR64_95	0x308	Irq 64 to 95 Active Bit Register	0x0000_0000
IRQ0_3	0x400	Irq 0 to 3 Priority Register	0x0000_0000
IRQ4_7	0x404	Irq 4 to 7 Priority Register	0x0000_0000
IRQ8_11	0x408	Irq 8 to 11 Priority Register	0x0000_0000
IRQ12_15	0x40C	Irq 12 to 15 Priority Register	0x0000_0000
IRQ16_19	0x410	Irq 16 to 19 Priority Register	0x0000_0000
IRQ20_23	0x414	Irq 20 to 23 Priority Register	0x0000_0000
IRQ24_27	0x418	Irq 24 to 27 Priority Register	0x0000_0000
IRQ28_31	0x41C	Irq 28 to 31 Priority Register	0x0000_0000
IRQ32_35	0x420	Irq 32 to 35 Priority Register	0x0000_0000
IRQ36_39	0x424	0x0000_0000	
IRQ40_43	0x428	Irq 40 to 43 Priority Register	0x0000_0000

Register	Offset	Description	Reset Value
IRQ44_47	0x42C	Irq 44 to 47 Priority Register	0x0000_0000
IRQ48_51	0x430	Irq 48 to 51 Priority Register	0x0000_0000
IRQ52_55	0x434	Irq 52 to 55 Priority Register	0x0000_0000
IRQ56_59	0x438	Irq 56 to 59 Priority Register	0x0000_0000
IRQ60_63	0x43C	Irq 60 to 63 Priority Register	0x0000_0000
IRQ64_67	0x440	Irq 64 to 67 Priority Register	0x0000_0000
ICSR	0xD04	Interrupt Control State Register	0x0000_0000
VTOR	0xD08	Vector Table Offset Register	0x0000_0000
AIRCR	0xD0C	Application Interrupt/Reset Control Register	0xFA05_0000
SCR	0xD10	System Control Register	0x0000_0000
CCR	0xD14	Configuration Control Register	0x0000_0000
SHPR4-7	0xD18	System Handlers 4-7 Priority Register	0x0000_0000
SHPR8_11	0xD1C	System Handlers 8-11 Priority Register	0x0000_0000
SHPR12_15	0xD20	System Handlers 12-15 Priority Register	0x0000_0000
SHCSR	0xD24	System Handler Control and State Register	0x0000_0000
CFSR	0xD28	Configurable Fault Status Registers	0x0000_0000
HFSR	0xD2C	Hard Fault Status Register	0x0000_0000
DFSR	0xD30	Debug Fault Status Register	0x0000_0000
MMFAR	0xD34	Mem Manage Address Register	Unpredictable
BFAR	0xD38	Bus Fault Address Register	Unpredictable
AFSR	0xD3C	Auxiliary Fault Status Register	0x0000_0000
STIR	0xF00	Software Trigger Interrupt Register	0x0000_0000

Note: For more information of the above detail register descriptions, please refer to the "Technical Reference Manual of Cortex®-M3" document from Arm®.

11 External Interrupt/Event Controller (EXTI)

Introduction

The External Interrupt/Event Controller, EXTI, comprises 16 edge detectors which can generate a wake-up event or interrupt requests independently. In interrupt mode there are five trigger types which can be selected as the external interrupt trigger type, low level, high level, negative edge, positive edge and both edges, selectable using the SRCnTYPE field in the EXTICFGRn (n = 0 \sim 15) register. In the wake-up event mode, the wake-up event polarity can be configured by setting the EXTINWPOL (n = 0 \sim 15) field in the EXTIWAKUPPOLR register. If the EVWUPIEN bit in the EXTIWAKUPCR Register is set, the EVWUP interrupt can be generated when the associated wake-up event occurs and the corresponding EXTI wake-up enable bit is set. Each EXTI line can also be masked independently.

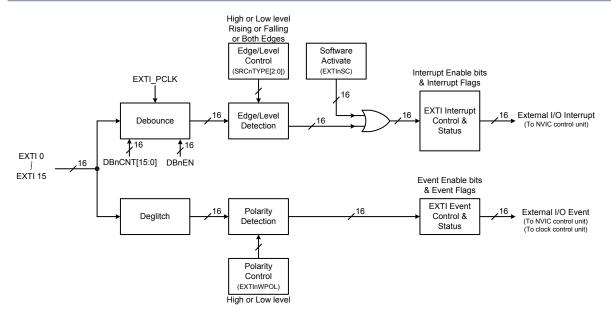


Figure 25. EXTI Block Diagram

Features

- Up to 16 EXTI lines with configurable trigger source and type
 - All GPIO pins can be selected as EXTI trigger source
 - Source trigger type includes high level, low level, negative edge, positive edge or both edge
- Individual interrupt enable, wakeup enable and status bits for each EXTI line
- Software interrupt trigger mode for each EXTI line
- Integrated deglitch filter for short pulse blocking

Functional Descriptions

Wakeup Event Management

In order to wakeup the system from the power saving mode, the EXTI controller provides a function which can monitor external events and send them to the CPU core and the Clock Control Unit, CKCU. These external events include EXTI events, Low Voltage Detection, WAKEUP input pin, Comparator, USB and RTC wakeup functions. By configuring the wakeup event enable bit in the corresponding peripheral, the wakeup signal will be sent to the CPU and the CKCU via the EXTI controller when the corresponding wakeup event occurs. Additionally, the software can enable the event wakeup interrupt function by setting the EVWUPIEN bit in the EXTIWAKUPCR register and the EXTI controller will then assert an interrupt when the wakeup event occurs

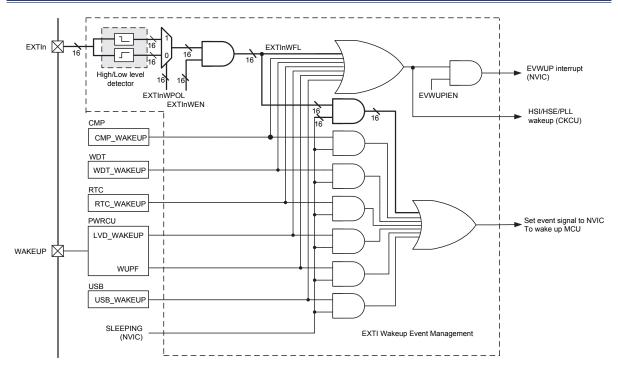


Figure 26. EXTI Wake-up Event Management

External Interrupt/Event Line Mapping

All GPIO pins can be selected as EXTI trigger sources by configuring the EXTInPIN [3:0] field in the AFIO ESSRn (n= $0 \sim 1$) register to trigger an interrupt or event. Refer to the AFIO section for more details.

Interrupt and Debounce

The application software can set the DBnEN bit in the EXTIn Interrupt Configuration Register EXTICFGRn ($n=0\sim15$) to enable the corresponding pin de-bounce function and configure the DBnCNT field in the EXTICFGRn so as to select an appropriate de-bounce time for specific applications. The interrupt signal will however be delayed due to the de-bounce function. When the device is woken up from the power saving mode by an external interrupt, an interrupt request will be generated by the EXTI wakeup flag. After the device has been woken up and the clock has recovered, the EXTI wake-up flag that was triggered by the EXTI line must be read and then cleared by application software. The accompanying diagram shows the relationship between the EXTI input signal and the EXTI interrupt/event request signal.

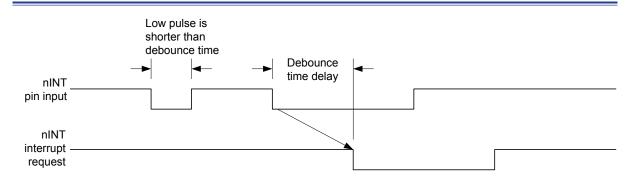


Figure 27. EXTI Interrupt Debounce Function

Register Map

The following table shows the EXTI registers and reset values.

Table 28. EXTI Register Map

Register	Offset	Description	Reset Value
EXTICFGR0	0x000	EXTI Interrupt 0 Configuration Register	0x0000_0000
EXTICFGR1	0x004	EXTI Interrupt 1 Configuration Register	0x0000_0000
EXTICFGR2	0x008	EXTI Interrupt 2 Configuration Register	0x0000_0000
EXTICFGR3	0x00C	EXTI Interrupt 3 Configuration Register	0x0000_0000
EXTICFGR4	0x010	EXTI Interrupt 4 Configuration Register	0x0000_0000
EXTICFGR5	0x014	EXTI Interrupt 5 Configuration Register	0x0000_0000
EXTICFGR6	0x018	EXTI Interrupt 6 Configuration Register	0x0000_0000
EXTICFGR7	0x01C	EXTI Interrupt 7 Configuration Register	0x0000_0000
EXTICFGR8	0x020	EXTI Interrupt 8 Configuration Register	0x0000_0000
EXTICFGR9	0x024	EXTI Interrupt 9 Configuration Register	0x0000_0000
EXTICFGR10	0x028	EXTI Interrupt 10 Configuration Register	0x0000_0000
EXTICFGR11	0x02C	EXTI Interrupt 11 Configuration Register	0x0000_0000
EXTICFGR12	0x030	EXTI Interrupt 12 Configuration Register	0x0000_0000
EXTICFGR13	0x034	EXTI Interrupt 13 Configuration Register	0x0000_0000
EXTICFGR14	0x038	EXTI Interrupt 14 Configuration Register	0x0000_0000
EXTICFGR15	0x03C	EXTI Interrupt 15 Configuration Register	0x0000_0000
EXTICR	0x040	EXTI Interrupt Control Register	0x0000_0000
EXTIEDGEFLGR	0x044	EXTI Interrupt Edge Flag Register	0x0000_0000
EXTIEDGESR	0x048	EXTI Interrupt Edge Status Register	0x0000_0000
EXTISSCR	0x04C	EXTI Interrupt Software Set Command Register	0x0000_0000
EXTIWAKUPCR	0x050	EXTI Interrupt Wakeup Control Register	0x0000_0000
EXTIWAKUPPOLR	0x054	EXTI Interrupt Wakeup Polarity Register	0x0000_0000
EXTIWAKUPFLG	0x058	EXTI Interrupt Wakeup Flag Register	0x0000_0000

Register Descriptions

EXTI Interrupt Configuration Register n – EXTICFGRn (n = $0 \sim 15$)

This register is used to specify the debounce function and select the trigger type.

Offset: 0x000 (0) ~ 0x03C (15)

Reset value: 0x0000_0000

	31		30	1		29			28		27		;	26			25		24	
	DBnEN	1			SRC	nTY	PΕ									Res	serv	ed		
Type/Reset	RW	0	RW	0	RW		0	RW	()										
	23		22			21			20		19			18			17		16	
										Re	serve	ed								
Type/Reset																				
	15		14			13			12		11			10			9		8	
										DI	3nCN	IT								
Type/Reset	RW	0	RW	0	RW		0	RW	(RW	/	0	RW		0	RW		0	RW	0
	7		6			5			4		3			2			1		0	
										DI	3nCN	ΙΤ								
Type/Reset	RW	0	RW	0	RW		0	RW	(RW	1	0	RW		0	RW		0	RW	0

Bits	Field	Descri	ptions								
[31]	DBnEN	EXTIn D	(TIn De-bounce Circuit Enable Bit (n = 0 ~ 15)								
			De-bounce circuit is disabled De-bounce circuit is enabled								
[30:28]	SRCnTYPE	EXTIn Ir	TIn Interrupt Source Trigger Type (n = 0 ~ 15)								
		SRC	SRCnTYPE [2:0] Interrupt Source Type								
		0	0	0	Low-level Sensitive						
		0	0	1	High-level Sensitive						
		0	1	0	Negative-edge Triggered						
		0	1	1	Positive-edge Triggered						
		1	X	X	Both-edge Triggered						
[15:0]	DBnCNT	EXTIn D	e-bound	ce Count	rer (n = 0 ~ 15)						

The de-bounce time is calculated with DBnCNT x APB clock (EXTI_PCLK) period and should be long enough to take effect on the input signal.

Rev. 1.10 195 of 680 November 22, 2018

EXTI Interrupt Control Register – EXTICR

This register is used to control the EXTI interrupt.

Offset: 0x040

Reset value: 0x0000 0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
	EXTI15EN	EXTI14EN	EXTI13EN	EXTI12EN	EXTI11EN	EXTI10EN	EXTI9EN	EXTI8EN
Type/Reset	RW 0	RW 0	RW 0					
	7	6	5	4	3	2	1	0
	EXTI7EN	EXTI6EN	EXTI5EN	EXTI4EN	EXTI3EN	EXTI2EN	EXTI1EN	EXTI0EN
Type/Reset	RW 0	RW 0	RW 0					

Bits Field Descriptions

[15:0] EXTInEN EXTIn Interrupt Enable Bit (n = $0 \sim 15$)

0: EXTI line n interrupt is disabled

1: EXTI line n interrupt is enabled

EXTI Interrupt Edge Flag Register – EXTIEDGEFLGR

This register is used to indicate if an EXTI edge has been detected.

Offset: 0x044

Reset value: 0x0000_0000

	31		30		2	29	2	8		27		26		25	2	4
									Res	erved						
Type/Reset																
	23		22		2	21	2	0		19		18		17	1	6
									Res	erved						
Type/Reset																
	15		14		1	13	1	2		11		10		9	8	3
	EXTI15E	DF	EXTI14	EDF	EXTI ²	13EDF	EXTI1	2EDF	EXTI	11EDF	EXTI	10EDF	EXT	19EDF	EXTI	BEDF
Type/Reset	WC	0	WC	0	WC	0	WC	0	WC	0	WC	0	WC	0	WC	0
	7		6			5	4	4		3		2		1	()
	EXTI7E	DF	EXTI6E	DF	EXTI	I5EDF	EXTI	4EDF	EXT	13EDF	EXT	2EDF	EXT	I1EDF	EXTI	DEDF
Type/Reset	WC	0	WC	0	WC	0	WC	0	WC	0	WC	0	WC	0	WC	0

Bits Field Descriptions

[15:0] EXTInEDF EXTIn Both Edge Detection Flag (n = 0 ~ 15)

0: No edge is detected

1: Positive or negative edge is detected

This bit is set by the hardware circuitry when a positive or negative edge is detected on the corresponding EXTI line. Software should write 1 to clear it.

EXTI Interrupt Edge Status Register – EXTIEDGESR

This register indicates the polarity of a detected EXTI edge.

Offset: 0x048 Reset value: 0x0000_0000

	_							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
	EXTI15ED	S EXTI14ED	S EXTI13EDS	EXTI12EDS	EXTI11EDS	EXTI10EDS	EXTI9EDS	EXTI8EDS
Type/Reset	WC	0 WC	0 WC 0	WC 0	WC 0	WC 0	WC 0	WC 0
	7	6	5	4	3	2	1	0
	EXTI7ED	S EXTIGED:	S EXTI5EDS	EXTI4EDS	EXTI3EDS	EXTI2EDS	EXTI1EDS	EXTI0EDS
Type/Reset	WC	0 WC	0 WC 0	WC 0	WC 0	WC 0	WC 0	WC 0

Bits Field Descriptions

[15:0] EXTINEDS EXTIN Both Edge Detection Status (n = 0 ~ 15)

0: Negative edge is detected
1: Positive edge is detected
Software should write 1 to clear it.

EXTI Interrupt Software Set Command Register – EXTISSCR

This register is used to activate the EXTI interrupt.

Offset: 0x04C
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
	EXTI15SC	EXTI14SC	EXTI13SC	EXTI12SC	EXTI11SC	EXTI10SC	EXTI9SC	EXTI8SC
Type/Reset	RW 0	RW 0	RW 0					
	7	6	5	4	3	2	1	0
	EXTI7SC	EXTI6SC	EXTI5SC	EXTI4SC	EXTI3SC	EXTI2SC	EXTI1SC	EXTI0SC
Type/Reset	RW 0	RW 0	RW 0					

Bits	Field	Descriptions
[15:0]	EXTInSC	EXTIn Software Set Command (n = 0 ~ 15)
		0: Deactivates the corresponding EXTI interrupt
		1: Activates the corresponding EXTI interrupt

EXTI Interrupt Wakeup Control Register – EXTIWAKUPCR

This register is used to control the EXTI interrupt and wakeup function.

Offset: 0x050

Reset value: 0x0000_0000

	_															
	31		30		:	29	28			27		26	:	25	2	24
	EVWUPI	ΕN							Res	served						
Type/Reset	RW	0														
	23		22			21	20			19		18		17	1	6
									Res	served						
Type/Reset																
	15		14			13	12			11		10		9		8
	EXTI15W	/EN	EXTI14	WEN	EXTI	13WEN	EXTI12	WEN	EXTI	11WEN	EXT	10WEN	EXT	19WEN	EXTI	8WEN
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6			5	4			3		2		1		0
	EXTI7W	EN	EXTI6\	VEN.	EXT	I5WEN	EXTI4V	VEN.	EXT	I3WEN	EXT	12WEN	EXT	11WEN	EXTI	OWEN
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[31]	EVWUPIEN	EXTI Event Wakeup Interrupt Enable Bit
		Disable EVWUP interrupt Enable EVWUP interrupt
[15:0]	EXTINWEN	EXTIn Wakeup Enable Bit (n = 0 ~ 15) 0: Power saving mode wakeup is disabled 1: Power saving mode wakeup is enabled

EXTI Interrupt Wakeup Polarity Register – EXTIWAKUPPOLR

This register is used to select the EXTI line interrupt wakeup polarity.

Offset: 0x054 Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset				,		,		
	15	14	13	12	11	10	9	8
	EXTI15WPOL	EXTI14WPOL	EXTI13WPOL	EXTI12WPOL	EXTI11WPOL	EXTI10WPOL	EXTI9WPOL	EXTI8WPOL
Type/Reset	RW 0	RW 0	RW 0					
	7	6	5	4	3	2	1	0
	EXTI7WPOL	EXTI6WPOL	EXTI5WPOL	EXTI4WPOL	EXTI3WPOL	EXTI2WPOL	EXTI1WPOL	EXTI0WPOL
Type/Reset	RW 0	RW 0	RW 0					

Bits	Field	Descriptions
[15:0]	EXTInWPOL	EXTIn Wakeup Polarity (n = 0 ~ 15)
		0: EXTIn wakeup is high level active
		1: EXTIn wakeup is low level active

EXTI Interrupt Wakeup Flag Register – EXTIWAKUPFLG

This register is the EXTI interrupt wake flag register.

Offset: 0x058

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								-
	15	14	13	12	11	10	9	8
	EXTI15WFL	EXTI14WFL	EXTI13WFL	EXTI12WFL	EXTI11WFL	EXTI10WFL	EXTI9WFL	EXIT8WFL
Type/Reset	WC 0	WC 0	WC 0					
	7	6	5	4	3	2	1	0
	EXTI7WFL	EXTI6WFL	EXTI5WFL	EXTI4WFL	EXTI3WFL	EXTI2WFL	EXTI1WFL	EXTI0WFL
Type/Reset	WC 0	WC 0	WC 0					

Bits	Field	Descriptions

[15:0] EXTINWFL EXTIN Wakeup Flag (n = $0 \sim 15$)

0: No wakeup occurs

1: System is waken up by EXTIn Software should write 1 to clear it.

12 Analog to Digital Converter (ADC)

Introduction

A 12-bit multi-channel Analog to Digital Converter is integrated in the device. There are a total of 18 multiplexed channels including 16 external channels on which the external analog signal can be supplied and 2 internal channels. If the input voltage is required to remain within a specific threshold window, the Analog Watchdog function will monitor and detect the signal. An interrupt will then be generated to inform that the input voltage is higher or lower than the set thresholds. There are three conversion modes to convert an analog signal to digital data. The A/D conversion can be operated in one shot, continuous and discontinuous conversion mode. A left-aligned or right-aligned 16-bit data register is provided to store the data after conversion.

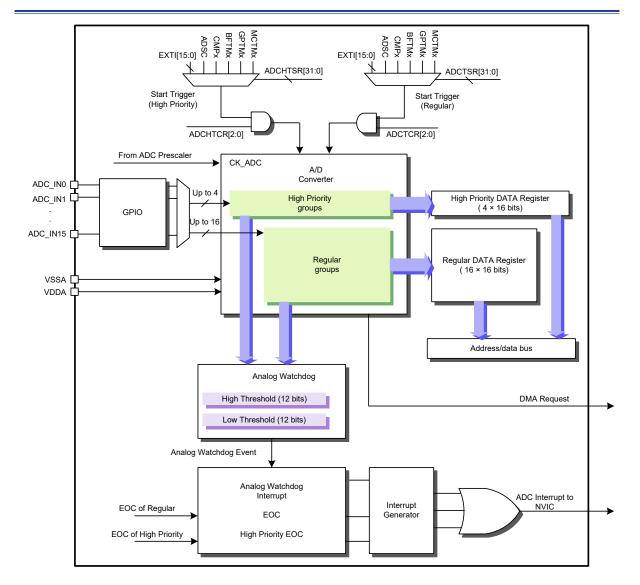


Figure 28. ADC Block Diagram

Features

- 12-bit SAR ADC engine
- Up to 1 MSPS conversion rate
 - 1 μs at 84 MHz, 1.17μs at 96 MHz
- 16 external analog input channels
- 2 internal analog input channels for reference voltage detection
- Separately programmable sampling time for each channel
- Three conversion mode
 - One shot conversion mode
 - Continuous conversion mode
 - Discontinuous conversion mode
- Two level conversion priority
 - Regular Could be interrupted by a high priority conversion
 - High priority
- Up to 16 dedicated sequencer and data registers for regular conversion
- Up to 4 dedicated sequencer and data registers for high priority conversion
- Data alignment adjustment and offset cancellation
 - Right/left alignment
 - Signed/unsigned
 - 16 offset registers for each channel
- Analog watchdog for predefined voltage range monitor
 - Lower/upper threshold register
 - Interrupt generation
- Various trigger start source for both regular and high priority conversion modes
 - Software trigger
 - EXTI External interrupt input pin
 - GPTM0 / GPTM1 trigger
 - MCTM0 / MCTM1 trigger
 - BFTM0 / BFTM1 trigger
 - CMP0 / CMP1 trigger
- Multiple generated interrupts
 - End of single conversion
 - End of subgroup conversion
 - End of cycle conversion
 - Analog Watchdog
 - Data register overwriting
- PDMA request when end of conversion occurred

Function Descriptions

ADC Clock Setup

The ADC clock, CK_ADC is provided by the Clock Controller which is synchronous with the AHB clock known as HCLK. Refer to the Clock Control Unit chapter for more details. Notes that ADC peripheral needs keeping at least two ADC clock cycles to switch between power-on and power off stage (ADEN bit = '0').

Regular and High Priority Channel Selection

The A/D converter supports 16 multiplexed channels and organizes the conversion results into two groups: regular group and high priority group. A regular group can organize a conversion sequence which can be implemented arranged in a specific conversion sequence length from 1 to 16. For example, conversion can be carried out with the following channel sequence: CH2, CH4, CH7, CH5, CH6, CH3, CH1 and CH0 one after another.

A regular group is composed of up to 16 conversions. The selected channels of the regular group conversion can be specified in the ADCLST0~ADCLST3 registers. The total conversion sequence length is setup using the ADSEQL[3:0] bits in the ADCCONV register.

A high priority group is composed of at most 4 conversions. The sequence length and the selected channels of the high priority conversion can be set in the ADCHLST register. The total conversion length of high priority group can be set in the ADHSEQL[1:0] bits in the ADCHCONV register.

Modifying the ADCCONV or ADCHCONV register during a conversion process will reset the current conversion, after which a new start pulse is required to restart a new conversion.

Conversion Modes

The A/D has three operating conversion modes. The conversion modes are One Shot Conversion Mode, Continuous Conversion Mode, and Discontinuous Conversion mode. Details are provided later.

One Shot Conversion Mode

In one shot conversion mode, the ADC will perform conversion cycles on the channels specified in the A/D conversion list registers ADCLSTn or ADCHLST with a specific sequence when an A/D converter event occurs. When the A/D conversion mode field ADMODE [1:0] or ADHMODE [1:0] is set to 0x0, the A/D converter will operate in the One Shot Conversion Mode. This mode can be started by a software trigger, a comparator transition event, an external EXTI event or a TM event determined by the Trigger Control Register ADCTCR or ADCHTCR, and the Trigger Source Register ADCTSR or ADCHTSR.

Regular Conversion:

- The converted data will be stored in the 16-bit ADCDRy ($y = 0 \sim 15$) registers.
- The ADC regular single sample end of conversion event raw status flag, ADIRAWS, in the ADCIRAW register will be set when the single sample conversion is finished.
- An interrupt will be generated after a single sample end of conversion if the ADIES bit in the ADCIER register is enabled.
- An interrupt will be generated after a regular group cycle end of conversion if the ADIEC bit in the ADCIER register is enabled.

High Priority Conversion:

- The converted data will be stored in the 16-bit ADCHDRy ($y = 0 \sim 3$) registers.
- The ADC high priority single sample end of conversion event raw status flag, ADIRAWHS, in the ADCIRAW register will be set when the conversion is finished.
- An interrupt will be generated after a high priority single sample end of conversion if the ADIEHS bit in the ADCIER register is enabled.
- An interrupt will be produced after a high priority group cycle end of conversion if the ADIEHC bit in the ADCIER register is enabled.

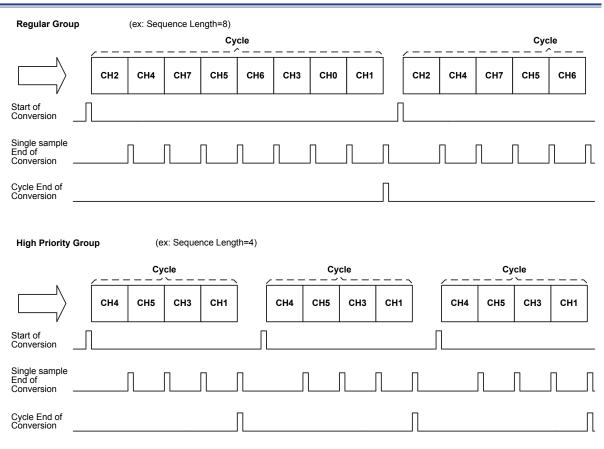


Figure 29. One Shot Conversion Mode

Continuous Conversion Mode

In Continuous Conversion Mode, repeated conversion cycle will start automatically without requiring additional A/D start trigger signals after a channel group conversion has completed. When the A/D conversion mode field ADMODE[1:0] or ADHMODE[1:0] is set to 0x2, the A/D converter will operate in the Continuous Conversion Mode which can be started by a software trigger, a comparator transition event, an external EXTI event or a TM event determined by the Trigger Control Register ADCTCR or ADCHTCR and the Trigger Source Register ADCTSR or ADCHTSR

After each conversion:

- The converted data will be stored in the 16-bit ADCDRy ($y = 0\sim15$) or ADCHDRy ($y = 0\sim3$) registers.
- The ADC regular group and high priority group cycle end of conversion event raw status flag, ADIRAWC, in the ADCIRAW register will be set when the conversion cycle is finished.
- An interrupt will be generated after a regular or high priority group cycle end of conversion if the ADIEC or ADIHEC bit in the ADCIER register is enabled.

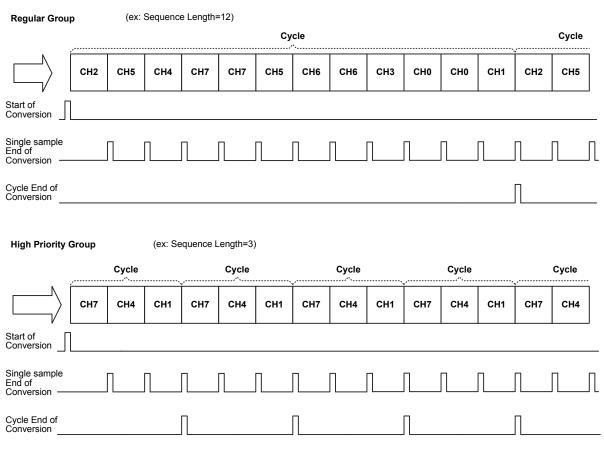


Figure 30. Continuous Conversion Mode

Discontinuous Conversion Mode

Regular group

The A/D converter will operate in the Discontinuous Conversion Mode for regular groups when the A/D conversion mode bit field ADMODE [1:0] in the ADCCONV register is set to 0x3. The regular group to be converted can have up to 16 channels and can be arranged in a specific sequence by configuring the ADCLSTn registers where n ranges from 0 to 3. This mode is provided to convert data for the regular group with a short sequence, named as the A/D regular conversion subgroup, each time a trigger event occurs. The subgroup length is defined in the ADSUBL [3:0] field to specify the subgroup length. In the Discontinuous Conversion Mode the A/D converter can be started by a software trigger, a comparator transition event, an external EXTI event or a TM event for regular groups determined by the Trigger Control Register ADCTCR and the Trigger Source Register ADCTSR.

In the Discontinuous Conversion Mode, the A/D Converter will start to convert the next n conversions where the number n is the subgroup length defined by the ADSUBL field. When a trigger event occurs, the channels to be converted with a specific sequence are specified in the ADCLSTn registers. After n conversions have completed, the regular subgroup EOC interrupt raw flag ADIRAWG in the ADCIRAW register will be asserted. The A/D converter will now not continue to perform the next n conversions until the next trigger event occurs. The conversion cycle will end after all the regular group channels, of which the total number is defined by the ADSEQL[3:0] bits in the ADCCONV register, have finished their conversion, at which point the regular cycle EOC interrupt raw flag ADIRAWC in the ADCIRAW register will be asserted. If a new trigger event occurs after all the subgroup channels have all been converted, i.e., a complete conversion cycle has been finished, the conversion will restart from the first subgroup.

Example:

A/D subgroup length = 3 (ADSUBL=2) and sequence length = 8 (ADSEQL=7), channels to be converted = 2, 4, 7, 5, 6, 3, 0 and 1 - specific converting sequence as defined in the ADCLSTn registers,

- Trigger 1: subgroup channels to be converted are CH2, CH4 and CH7 with the ADIRAWG flag being asserted after subgroup EOC.
- Trigger 2: subgroup channels to be converted are CH5, CH6 and CH3 with the ADIRAWG flag being asserted after subgroup EOC.
- Trigger 3: subgroup channels to be converted are CH0 and CH1 with the ADIRAWG flag being asserted after subgroup EOC. Also a Cycle end of conversion (EOC) interrupt raw flag ADIRAWC will be asserted.
- Trigger 4: subgroup channels to be converted are CH2, CH4 and CH7 with the ADIRAWG flag being asserted conversion sequence restarts from the beginning.

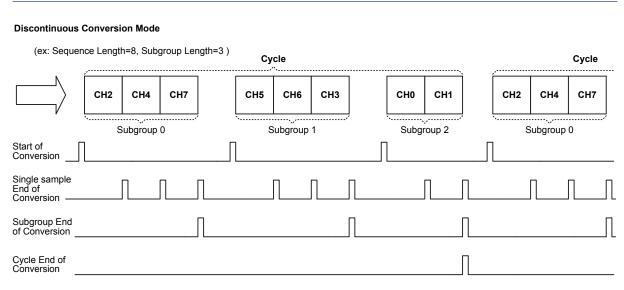


Figure 31. Regular Group Discontinuous Conversion Mode

High priority group

The A/D converter will operate in the Discontinuous Conversion Mode for the high priority group when the A/D high priority conversion mode bit field ADHMODE [1:0] in the ADCHCONV register is set to 0x3. The high priority group to be converted can be up to 4 channels and can be arranged in a specific sequence by configuring the ADCHLST register. This mode is provided to convert data for the high priority group with a short sequence, named as the A/D high priority conversion subgroup, each time a trigger event occurs. The subgroup length is defined in the ADHSUBL [1:0] field to specify the high priority subgroup length. In the Discontinuous Conversion Mode the A/D converter can be started by a software trigger, a comparator transition event, an external EXTI event or a GPTM functional event for high priority group determined by the high priority Trigger Control Register ADCHTCR and the high priority Trigger Source Register ADCHTSR.

In the Discontinuous Conversion Mode, the A/D Converter will start to convert the next n conversions when a trigger event occurs. Here the number n is the subgroup length defined by the ADHSUBL field. The channels to be converted with a specific sequence are specified in the ADCHLST register. After n conversions have finished, the high priority subgroup EOC interrupt raw flag ADIRAWHG in the ADCIRAW register will be asserted. The A/D converter will then not continue to perform the next n conversions until the next trigger event occurs. The conversion cycle will finish after all the high priority group channels of which the total number is defined by the ADHSEQL[3:0] bits in the ADCHCONV register have finished conversion and the high priority cycle EOC interrupt raw flag ADIRAWHC in the ADCIRAW register will be asserted. If a new trigger event occurs after all the subgroup channels have been converted, i.e., a complete conversion cycle has been finished, the conversion will restart from the first subgroup.

Example:

A/D subgroup length = 2 (ADHSUBL=1) and sequence length = 3 (ADHSEQL=2), channels to be converted = 4, 7 and 1 - specific converting sequence as defined in the ADCHLST register,

- Trigger 1: subgroup channels to be converted are CH4 and CH7 with the ADIRAWHG flag being asserted after subgroup EOC.
- Trigger 2: subgroup channel to be converted is CH1 with the ADIRAWHG flag being asserted after subgroup EOC. Also a Cycle end of conversion (EOC) interrupt raw flag ADIRAWHC will be asserted.
- Trigger 5: subgroup channels to be converted are CH4 and CH7 with the ADIRAWHG flag being asserted after subgroup EOC conversion sequence restarts from the beginning.

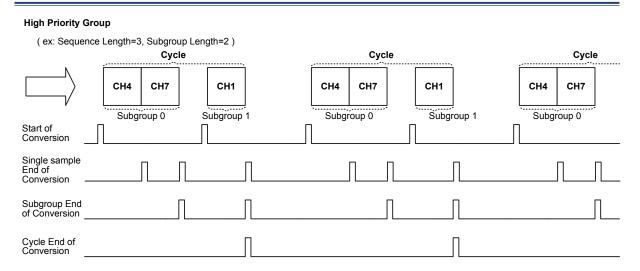


Figure 32. High Priority Group Discontinuous Conversion Mode

Start Conversion on External Event

Data conversion can be initiated by a software trigger, a comparator transition event, a General-Purpose Timer Module (GPTM) event, a Motor Control Timer Module (MCTM) event, a Basic Function Timer Module (BFTM) event or an external trigger. Each trigger source can be enabled by setting the corresponding enable control bit in the ADCTCR or ADCHTCR register and then selected by configuring the associated selection bits in the ADCTSR and ADCHTSR register to start a group channel conversion.

An A/D converter conversion can be started by setting the software trigger bit, ADSC, in the ADCTSR or ADCHTSR register for the regular or high priority group channel when the software trigger enable bit, ADSW or ADHSW, in the ADCTCR or ADCHTCR register is set to 1. After the A/D converter starts converting the analog data, the corresponding enable bit, ADSC or ADHSC, will be cleared to 0 automatically.

The A/D converter can also be triggered to start a regular or high priority channel conversion by a TM event. The TM events include a GPTM or MCTM master trigger output MTO, four GPTM or MCTM channel outputs CH0~CH3 and a BFTM trigger output. If the corresponding TM trigger enable bit is set to 1 and the trigger output or the TM channel event is selected via the relevant TM event selection bits, the A/D converter will start a conversion when a rising edge of the selected trigger event occurs.

In addition to the internal trigger sources, the A/D converter can be triggered to start a conversion by an external trigger event. The external trigger event is derived from the external lines EXTIn. If the external trigger enable bit, ADEXTI or ADHEXTI, is set to 1 and the corresponding EXTI line is selected by configuring the ADEXTIS or ADHEXTIS bit for regular group or high priority group, the A/D converter will start a conversion when an EXTI line active edge occurs.

High Priority Group Management

The high priority channels have a higher priority than the regular A/D conversion channels. If, during a regular conversion process, a high priority channel trigger event occurs, then the current regular channel conversion will be aborted and the high priority channel conversion will be initiated.

The high priority channel length to be converted depends upon the high priority group conversion mode as the high priority start trigger occurs. When a high priority start trigger occurs, the high priority channel length to be converted is the high priority conversion sequence length defined by the ADHSEQL field for the one shot conversion mode. For the discontinuous conversion mode, the length to be converted is the high priority subgroup length defined by ADHSUBL field. If the high priority group is configured to be operated in the continuous conversion mode, the high priority conversion will keep converting each channel in the high priority group repeatedly after a high priority start trigger occurs unless the high priority conversion mode has been changed.

When the high priority conversion has finished, the regular group conversion will then restart from the aborted channel location. Note that no matter what conversion mode the regular group operates in, the high priority conversion will always interrupt the current regular group conversion when a high priority start trigger occurs regardless of the high priority group conversion mode.

- ♠ Regular Group : Sequence Length=5, Subgroup Length=3, discontinuous conversion mode
 ♠ High Priority Group : Sequence Length=3, one shot conversion mode
- **Regular Group Cycle Regular Group Cycle** Conversion CH2 CH4 CH0 CH7 CH5 CH1 CH2 CH4 CH7 **Aborted High Priority Group** Restar Regular Group Start of Conversion Regular Group Subgroup End of Conversion Regular Group Cycle End of Conversion High Priority Group Start of Conversion High Priority Group End of Conversion
- ♦ Regular Group : Sequence Length=5, Subgroup Length=3, discontinuous conversion mode
- → High Priority Group: Sequence Length=3, Subgroup Length=2, discontinuous conversion mode

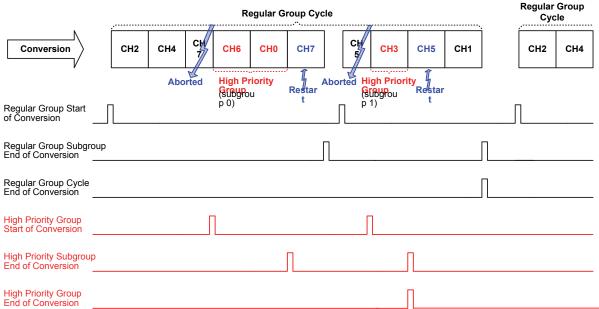


Figure 33. High Priority Group Management

Sampling Time Setting

The conversion channel sampling time can be programmed according to the input resistance of the input voltage source. This sampling time must be enough for the input voltage source to charge the internal sample and hold capacitor of the converter to the input voltage level. Each conversion channel can be sampled with a different sampling time. By modifying the ADSTn[7:0] bits in the ADCSTRn ($n = 0 \sim 15$) registers, the sampling time of the analog input signal can be determined.

The total conversion time (T_{conv}) is calculated using the following formula:

$$T_{conv} = T_{Sampling} + T_{Latency}$$

Where the minimum sampling time $T_{Sampling} = 1.5$ cycles (when ADST[7:0] = 0) and the minimum channel conversion latency $T_{Latency} = 12.5$ cycles.

Example:

With the A/D Converter clock CK ADC = 14 MHz and a sampling time = 1.5 cycles:

$$T_{conv} = 1.5 + 12.5 = 14 \text{ cycles} = 1 \text{ us}$$

Data Format and Alignment

The A/D Conversion result can have different output data format, selected by configuring the ADOFE and ADAL bits in the ADCOFRn ($n = 0 \sim 15$) registers, which is shown as following Table 29.

Each channel has a dedicated offset subtraction function whose offset value can be defined by user and written in the ADCOFRn (n = $0\sim15$) registers. The original A/D conversion data written in the data register will always be an unsigned number between 0x0FFF and 0x0000 in which only twelve bits are significant. If the ADOFEn bit in the ADCOFRn (n = $0\sim15$) register is set to 1 then the offset subtraction is enabled. The significant conversion data in ADCDRy or ADCHDRy (y= $0\sim15$) registers has a thirteen bits format and the most significant bit (MSB) of the data stream is the sign bit

Table 29. Data Format in ADCDRy[15:0] ($y = 0\sim15$) and ADCHDRy[15:0] ($y = 0\sim3$)

ADOFE	ADAL	Description	Data Format
0	0	Right aligned and unsigned	"0_0_0_0_d11_d10_d9_d8_d7_d6_d5_d4_d3_ d2_d1_d0"
0	1	Left aligned and unsigned	"d11_d10_d9_d8_d7_d6_d5_d4_d3_d2_d1_ d0_0_0_0"
1	0	Right aligned and signed after offset subtraction	"0_0_0_Sign bit_d11_d10_d9_d8_d7_d6_d5_d4_d3_d2_d1_d0"
1	1	Left aligned and signed after offset subtraction	"Sign bit_d11_d10_d9_d8_d7_d6_d5_d4_d3_d2_d1_d0_0_0_0"

Analog Watchdog

The A/D converter includes a watchdog function to monitor the converted data. There are two kinds of thresholds for the watchdog monitor function, known as the watchdog upper threshold and watchdog lower threshold, which are specified in the Watchdog Upper and Lower Threshold Registers respectively. The watchdog monitor function is enabled by setting the watchdog upper and lower threshold monitor function enable bits, ADWUE and ADWLE, in the watchdog control register ADCWCR. The channel to be monitored can be specified by configuring the ADWCH and ADWALL bits. When the converted data is less or higher than the lower or upper threshold, as defined in the ADCLTR or ADCUTR registers respectively, the watchdog lower or upper threshold interrupt raw flags, ADIRAWL or ADIRAWU in the ADCIRAW register, will be asserted if the watchdog lower or upper threshold monitor function is enabled. If the lower or upper threshold interrupt raw flag is asserted and the corresponding interrupt is enabled by setting the ADIEL or ADIEU bit in the ADCIER register, the A/D watchdog lower or upper threshold interrupt will be generated.

Interrupts

When an A/D conversion is completed, an End of Conversion EOC event will occur. There are three kinds of EOC events which are known as single sample EOC, subgroup EOC and cycle EOC for A/D conversion. A single sample EOC event will occur and the single sample EOC interrupt raw flag, ADIRAWS or ADIRAWHS bit in the ADCIRAW register, will be asserted when a single channel conversion has completed. A subgroup EOC event will occur and the subgroup EOC interrupt raw flag, ADIRAWG or ADIRAWHG bit in the ADCIRAW register, will be asserted when a subgroup conversion has completed. A cycle EOC event will occur and the cycle EOC interrupt raw flag, ADIRAWC or ADIRAWHC bit in the ADCIRAW register, will be asserted when a cycle conversion is finished. When a single sample EOC, a subgroup EOC or a cycle EOC raw flag is asserted and the corresponding interrupt enable bits, ADIEHC, ADIEHG, ADIEHS, ADIEC, ADIEG or ADIES in the ADCIER register, is set to 1, the associated interrupt will be generated.

After a conversion has completed, the 12-bit digital data will be stored in the associated ADCDRy or ADCHDRy register and the value of the data valid flag, named as ADVLDy or ADHVLDy, will be changed from low to high. The converted data should be read by the application program, after which the data valid flag ADVLDy or ADHVLDy will be automatically changed from high to low. Otherwise, a data overwrite event will occur and the data overwrite interrupt raw flag ADIRAWO or ADIRAWHO bit in the ADCIRAW register will be asserted. When the related data overwrite raw flag is asserted, the data overwrite interrupt will be generated if the interrupt enable bit, ADIEO or ADIEHO in the ADCIER register is set to 1.

If the A/D watchdog monitor function is enabled and the data after a channel conversion is less than the lower threshold or higher than the upper threshold, the watchdog lower or upper threshold interrupt raw flag ADIRAWL or ADIRAWU in the ADCIRAW register will be asserted. When the ADIRAWL or ADIRAWU flag is asserted and the corresponding interrupt enable bit, ADIEL or ADIEU in the ADCIER register, is set a watchdog lower or upper threshold interrupt will be generated.

The A/D Converter interrupt clear bits are used to clear the associated A/D converter interrupt raw and interrupt status bits. Writing a 1 into the specific A/D converter interrupt clear bit in the A/D converter interrupt clear register ADCICLR will clear the corresponding A/D converter interrupt raw and interrupt status bits. These bits are automatically cleared to 0 by hardware after being set to 1.

PDMA Request

The converted channel value will be stored in the corresponding data register. The A/D Converter can inform the CPU using the A/D Converter EOC interrupt if a new conversion data is already stored in the ADCDRy or ADCHDRy register. Users also can determine the PDMA request is asserted by setting the ADDMAC, ADDMAG, ADDMAS, ADDMAHC, ADDMAHG or ADDMAHS bit in the ADCDMAR register. A PDMA request will be automatically generated at the end of each A/D conversion. The detail description will be introduced in the ADCDMAR register description.

Register Map

The following table shows the A/D Converter registers and reset values.

Table 30. A/D Converter Register Map

Register	Offset	Description	Reset Value
ADCRST	0x004	ADC Reset Register	0x0000_0000
ADCCONV	0x008	ADC Regular Conversion Mode Register	0x0000_0000
ADCHCONV	0x00C	ADC High Priority Conversion Mode Register	0x0000_0000
ADCLST0	0x010	ADC Regular Conversion List Register 0	0x0000_0000
ADCLST1	0x014	ADC Regular Conversion List Register 1	0x0000_0000
ADCLST2	0x018	ADC Regular Conversion List Register 2	0x0000_0000
ADCLST3	0x01C	ADC Regular Conversion List Register 3	0x0000_0000
ADCHLST	0x020	ADC High Priority Conversion List Register	0x0000_0000
ADCOFR0	0x030	ADC Input 0 Offset Register	0x0000_0000
ADCOFR1	0x034	ADC Input 1 Offset Register	0x0000_0000
ADCOFR2	0x038	ADC Input 2 Offset Register	0x0000_0000
ADCOFR3	0x03C	ADC Input 3 Offset Register	0x0000_0000
ADCOFR4	0x040	ADC Input 4 Offset Register	0x0000_0000
ADCOFR5	0x044	ADC Input 5 Offset Register	0x0000_0000
ADCOFR6	0x048	ADC Input 6 Offset Register	0x0000_0000
ADCOFR7	0x04C	ADC Input 7 Offset Register	0x0000_0000
ADCOFR8	0x050	ADC Input 8 Offset Register	0x0000_0000
ADCOFR9	0x054	ADC Input 9 Offset Register	0x0000_0000
ADCOFR10	0x058	ADC Input 10 Offset Register	0x0000_0000
ADCOFR11	0x05C	ADC Input 11 Offset Register	0x0000_0000
ADCOFR12	0x060	ADC Input 12 Offset Register	0x0000_0000
ADCOFR13	0x064	ADC Input 13 Offset Register	0x0000_0000
ADCOFR14	0x068	ADC Input 14 Offset Register	0x0000_0000
ADCOFR15	0x06C	ADC Input 15 Offset Register	0x0000_0000
ADCSTR0	0x070	ADC Input 0 Sampling Time Register	0x0000_0000
ADCSTR1	0x074	ADC Input 1 Sampling Time Register	0x0000_0000
ADCSTR2	0x078	ADC Input 2 Sampling Time Register	0x0000_0000
ADCSTR3	0x07C	ADC Input 3 Sampling Time Register	0x0000_0000
ADCSTR4	0x080	ADC Input 4 Sampling Time Register	0x0000_0000
ADCSTR5	0x084	ADC Input 5 Sampling Time Register	0x0000_0000
ADCSTR6	0x088	ADC Input 6 Sampling Time Register	0x0000_0000
ADCSTR7	0x08C	ADC Input 7 Sampling Time Register	0x0000_0000

Register	Offset	Description	Reset Value
ADCSTR8	0x090	ADC Input 8 Sampling Time Register	0x0000_0000
ADCSTR9	0x094	ADC Input 9 Sampling Time Register	0x0000_0000
ADCSTR10	0x098	ADC Input 10 Sampling Time Register	0x0000_0000
ADCSTR11	0x09C	ADC Input 11 Sampling Time Register	0x0000_0000
ADCSTR12	0x0A0	ADC Input 12 Sampling Time Register	0x0000_0000
ADCSTR13	0x0A4	ADC Input 13 Sampling Time Register	0x0000_0000
ADCSTR14	0x0A8	ADC Input 14 Sampling Time Register	0x0000_0000
ADCSTR15	0x0AC	ADC Input 15 Sampling Time Register	0x0000_0000
ADCDR0	0x0B0	ADC Regular Conversion Data Register 0	0x0000_0000
ADCDR1	0x0B4	ADC Regular Conversion Data Register 1	0x0000_0000
ADCDR2	0x0B8	ADC Regular Conversion Data Register 2	0x0000_0000
ADCDR3	0x0BC	ADC Regular Conversion Data Register 3	0x0000_0000
ADCDR4	0x0C0	ADC Regular Conversion Data Register 4	0x0000_0000
ADCDR5	0x0C4	ADC Regular Conversion Data Register 5	0x0000_0000
ADCDR6	0x0C8	ADC Regular Conversion Data Register 6	0x0000_0000
ADCDR7	0x0CC	ADC Regular Conversion Data Register 7	0x0000_0000
ADCDR8	0x0D0	ADC Regular Conversion Data Register 8	0x0000_0000
ADCDR9	0x0D4	ADC Regular Conversion Data Register 9	0x0000_0000
ADCDR10	0x0D8	ADC Regular Conversion Data Register 10	0x0000_0000
ADCDR11	0x0DC	ADC Regular Conversion Data Register 11	0x0000_0000
ADCDR12	0x0E0	ADC Regular Conversion Data Register 12	0x0000_0000
ADCDR13	0x0E4	ADC Regular Conversion Data Register 13	0x0000_0000
ADCDR14	0x0E8	ADC Regular Conversion Data Register 14	0x0000_0000
ADCDR15	0x0EC	ADC Regular Conversion Data Register 15	0x0000_0000
ADCHDR0	0x0F0	ADC High Priority Conversion Data Register 0	0x0000_0000
ADCHDR1	0x0F4	ADC High Priority Conversion Data Register 1	0x0000_0000
ADCHDR2	0x0F8	ADC High Priority Conversion Data Register 2	0x0000_0000
ADCHDR3	0x0FC	ADC High Priority Conversion Data Register 3	0x0000_0000
ADCTCR	0x100	ADC Regular Trigger Control Register	0x0000_0000
ADCTSR	0x104	ADC Regular Trigger Source Register	0x0000_0000
ADCHTCR	0x110	ADC High Priority Trigger Control Register	0x0000_0000
ADCHTSR	0x114	ADC High Priority Trigger Source Register	0x0000_0000
ADCWCR	0x120	ADC Watchdog Control Register	0x0000_0000
ADCLTR	0x124	ADC Watchdog Lower Threshold Register	0x0000_0000
ADCUTR	0x128	ADC Watchdog Upper Threshold Register	0x0000_0000
ADCIMR	0x130	ADC Interrupt Enable register	0x0000_0000
ADCIRAW	0x134	ADC Interrupt Raw Status Register	0x0000_0000
ADCISR	0x138	ADC Interrupt Status Register	0x0000_0000
ADCICLR	0x13C	ADC Interrupt Clear Register	0x0000_0000
ADCDMAR	0x140	ADC DMA Request Register	0x0000_0000

Register Descriptions

ADC Reset Register - ADCRST

ADC software reset register.

Offset: 0x004

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
				1	Reserved			
Type/Reset					1			-
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
				Reserved				ADRST
Type/Reset		<u> </u>						RW 0

Bits	Fleid	Descriptions				
[0]	ADRST	ADC Software Rese				

0: No effect

^{1:} Reset A/D converter except for the A/D Converter controller

ADC Regular Conversion Mode Register – ADCCONV

This register specifies the mode setting, queue length, and subgroup length of ADC regular conversion mode. Note that once the content of ADCCONV is changed, the regular conversion in progress will be aborted and ADC will be reset. Firmware has to wait for at least one ADCLK before issuing the next command.

Offset: 0x008
Reset value: 0x0000_0000

	31	30	29	28	27		26		25		24	
					Reserv	ed						
Type/Reset												
	23	22	21	20	19		18		17		16	
			Reserved						ADSU	BL		
Type/Reset					RW	0	RW	0	RW	0	RW	0
	15	14	13	12	11		10		9		8	
			Reserved						ADSE	QL		
Type/Reset					RW	0	RW	0	RW	0	RW	0
	7	6	5	4	3		2		1		0	
	ADCEN			Reserved							ADMO	DE
Type/Reset	RW 0			·			_		RW	0	RW	0

Bits	Field	Descriptions
[19:16]	ADSUBL	ADC Regular Conversion Subgroup Length ADSUBL specifies the conversion channel length of each subgroup for regular discontinuous mode. Length of each subgroup = ADSUBL [3:0] + 1. If (ADSEQL [3:0] + 1) is not a multiple of (ADSUBL [3:0] + 1), the last subgroup will be shorter than others.
[11:8]	ADSEQL	ADC Regular Conversion Length 0x00: Implement a conversion on the specified channel only (specified by ADSEQ0 in ADCLST0 register). Others: Length of list queue = ADSEQL [3:0] + 1.
[7]	ADCEN	ADC Enable 0: ADC disable 1: ADC enable
[1:0]	ADMODE	ADC Regular Conversion Mode

ADMODE [1:0]	Mode	Descriptions
00	One shot mode	After a start trigger, the conversion will be executed on the specific channels for the whole conversion sequence once.
01	Reserved	
10	Continuous mode	After a start trigger, the conversion will be executed on the specific channels for the whole sequence continuously until conversion mode is changed.
11	Discontinuous mode	After a start trigger, the conversion will be executed on the current subgroup. When the last subgroup is finished, the conversion will restart from the first subgroup if another start trigger occurs

ADC High Priority Conversion Mode Register – ADCHCONV

This register specifies the mode setting, queue length, and subgroup length of ADC high priority conversion mode. Note that once the content of ADCHCONV is changed, the high priority conversion in progress will be aborted and ADC will be reset. Firmware has to wait for at least one ADCLK before issuing the next command.

Offset: 0x00C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24		
					Reserved					
Type/Reset										
	23	22	21	20	19	18	17	16	<u> </u>	
				Reserved				ADHS	UBL	
Type/Reset							RW	0 RW	0	
	15	14	13	12	11	10	9	8		
				Reserved				ADHSEQL		
Type/Reset							RW	0 RW	0	
	7	6	5	4	3	2	1	0		
				Reserved				ADHM	ODE	
Type/Reset							RW	0 RW	0	

Bits	Field	Descriptions	
[17:16]	ADHSUBL	ADC High Priority Conversion Subgroup Length	
		ADHSUBL specifies the conversion channel length of each subgroup for high priority	
		discontinuous mode. Length of each subgroup = ADHSUBL [1:0] + 1. If (ADHSEQL	
		[1:0] + 1) is not a multiple of (ADHSUBL [1:0] + 1), the last subgroup will be shorter	
		than others.	
[9:8]	ADHSEQL	ADC High Priority Conversion Length	
		0x00: Implement a conversion on the specified channel only (specified by ADHSEQ0	
		in ADCHLST).	
		Others: Length of list queue = ADHSEQL [1:0] + 1.	
[1:0]	ADHMODE	ADC High Priority Conversion Mode	

ADC High Priority Conversion Mode [1:0]

ADHMODE [1:0]	Mode	Descriptions
00	One shot mode	
		conversion sequence once.
01	Reserved	
10	Continuous mode	After a start trigger, the conversion will be executed on the specific channels for the whole sequence continuously until conversion mode is changed.
11	Discontinuous mode	After a start trigger, the conversion will be executed on the current subgroup. When the last subgroup is finished, the conversion will restart from the first subgroup if another start trigger occurs

ADC Regular Conversion List Register 0 – ADCLST0

This register specifies the conversion sequence order No.0 \sim No.3 of the ADC regular group.

Offset: 0x010

Reset value: 0x0000_0000

	31	30	29	28		27		26		25		24	
		Reserved						ADSE	Q3				
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0
	23	22	21	20		19		18		17		16	
		Reserved						ADSE	Q2				
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0
	15	14	13	12		11		10		9		8	
		Reserved						ADSE	Q1				
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0
	7	6	5	4		3		2		1		0	
		Reserved						ADSE	Q0				
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[28:24]	ADSEQ3	ADC Regular Conversion Sequence Select 3
-		Select the ADC input channel of 3rd sequence in ADC regular conversion mode.
		0x0: ADC IN0
		0x1: ADC IN1
		0x2: ADC IN2
		0x3: ADC IN3
		0x4: ADC IN4
		0x5: ADC IN5
		0x6: ADC_IN6
		0x7: ADC_IN7
		0x8: ADC_IN8
		0x9: ADC_IN9
		0xA: ADC_IN10
		0xB: ADC_IN11
		0xC: ADC_IN12
		0xD: ADC_IN13
		0xE: ADC_IN14
		0xF: ADC_IN15
		0x10: Analog ground, AVSS (V _{REF-})
		0x11: Analog power, AVDD (V _{REF+})
		0x12 ~ 0x1F: Invalid setting. These values must not be selected as it may cause the ADC abnormal operations.
[20:16]	ADSEQ2	ADC Regular Conversion Sequence Select 2
[12:8]	ADSEQ1	ADC Regular Conversion Sequence Select 1
[4:0]	ADSEQ0	ADC Regular Conversion Sequence Select 0

ADC Regular Conversion List Register 1 – ADCLST1

This register specifies the conversion sequence order No.4 \sim No.7 of the ADC regular group.

Offset: 0x014

Reset value: 0x0000_0000

	31	30	29	28		27		26		2	5	24	
		Reserved						ADSE	Q7				
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0
	23	22	21	20		19		18		1	7	16	3
		Reserved						ADSE	Q6				
Type/Reset		,		RW	0	RW	0	RW	0	RW	0	RW	0
	15	14	13	12		11		10		9	9	8	
		Reserved						ADSE	Q5				
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0
	7	6	5	4		3		2		•	1	0	
		Reserved						ADSE	Q4				
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[28:24]	ADSEQ7	ADC Regular Conversion Sequence Select 7
-		Select ADC input channel of 7th sequence in ADC regular conversion mode.
		0x0: ADC IN0
		0x1: ADC IN1
		0x2: ADC IN2
		0x3: ADC IN3
		0x4: ADC_IN4
		0x5: ADC_IN5
		0x6: ADC_IN6
		0x7: ADC_IN7
		0x8: ADC_IN8
		0x9: ADC_IN9
		0xA: ADC_IN10
		0xB: ADC_IN11
		0xC: ADC_IN12
		0xD: ADC_IN13
		0xE: ADC_IN14
		0xF: ADC_IN15
		0x10: Analog ground, AVSS (VREF-)
		0x11: Analog power, AVDD (VREF+)
		0x12 ~ 0x1F: Invalid setting. These values must not be selected as it may cause the ADC abnormal operations.
[20:16]	ADSEQ6	ADC Regular Conversion Sequence Select 6
[12:8]	ADSEQ5	ADC Regular Conversion Sequence Select 5
[4:0]	ADSEQ4	ADC Regular Conversion Sequence Select 4

ADC Regular Conversion List Register 2 – ADCLST2

This register specifies the conversion sequence order No.8 \sim No.11 of the ADC regular group.

Offset: 0x018

Reset value: 0x0000 0000

	31	30	29	28		27		26		25		24	
		Reserved						ADSEC	211				
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0
	23	22	21	20		19		18		17		16	
		Reserved						ADSEC	10				
Type/Reset		,		RW	0	RW	0	RW	0	RW	0	RW	0
	15	14	13	12		11		10		9		8	
		Reserved						ADSE	Q 9				
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0
	7	6	5	4		3		2		1		0	
		Reserved						ADSE	Q8				
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[28:24]	ADSEQ11	ADC Regular Conversion Sequence Select 11
-		Select ADC input channel of 11th sequence in ADC regular conversion mode.
		0x0: ADC IN0
		0x1: ADC IN1
		0x2: ADC IN2
		0x3: ADC_IN3
		0x4: ADC_IN4
		0x5: ADC_IN5
		0x6: ADC_IN6
		0x7: ADC_IN7
		0x8: ADC_IN8
		0x9: ADC_IN9
		0xA: ADC_IN10
		0xB: ADC_IN11
		0xC: ADC_IN12
		0xD: ADC_IN13
		0xE: ADC_IN14
		0xF: ADC_IN15
		0x10: Analog ground, AVSS (VREF-)
		0x11: Analog power, AVDD (VREF+)
		0x12 ~ 0x1F: Invalid setting. These values must not be selected as it may cause the ADC abnormal operations.
[20:16]	ADSEQ10	ADC Regular Conversion Sequence Select 10
[12:8]	ADSEQ9	ADC Regular Conversion Sequence Select 9
[4:0]	ADSEQ8	ADC Regular Conversion Sequence Select 8

ADC Regular Conversion List Register 3 – ADCLST3

This register specifies the conversion sequence order No.12 \sim No.15 of the ADC regular group.

Offset: 0x01C

Reset value: 0x0000_0000

	31	30	29	28		27		26		25		24	
		Reserved						ADSEQ	15				
Type/Reset		'		RW	0	RW	0	RW	0	RW	0	RW	0
	23	22	21	20		19		18		17		16	
		Reserved						ADSEQ	14				
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0
	15	14	13	12		11		10		9		8	
		Reserved						ADSEQ	13				
Type/Reset		Reserved		RW	0	RW	0	ADSEQ RW	13 0	RW	0	RW	0
Type/Reset	7	Reserved 6	5	RW 4	0	RW 3	0			RW 1	0	RW 0	0
Type/Reset	7		5		0		0	RW	0	RW 1	0	_	0

Bits	Field	Descriptions
[28:24]	ADSEQ15	ADC Regular Conversion Sequence Select 15
-		Select ADC input channel of 15th sequence in ADC regular conversion mode.
		0x0: ADC IN0
		0x1: ADC IN1
		0x2: ADC IN2
		0x3: ADC IN3
		0x4: ADC_IN4
		0x5: ADC_IN5
		0x6: ADC_IN6
		0x7: ADC_IN7
		0x8: ADC_IN8
		0x9: ADC_IN9
		0xA: ADC_IN10
		0xB: ADC_IN11
		0xC: ADC_IN12
		0xD: ADC_IN13
		0xE: ADC_IN14
		0xF: ADC_IN15
		0x10: Analog ground, AVSS (VREF-)
		0x11: Analog power, AVDD (VREF+)
		0x12 ~ 0x1F: Invalid setting. These values must not be selected as it may cause the ADC abnormal operations.
[20:16]	ADSEQ14	ADC Regular Conversion Sequence Select 14
[12:8]	ADSEQ13	ADC Regular Conversion Sequence Select 13
[4:0]	ADSEQ12	ADC Regular Conversion Sequence Select 12

ADC High Priority Conversion List Register – ADCHLST

This register specifies the conversion sequence order No.0 \sim No.3 of the ADC high priority group.

Offset: 0x020

Reset value: 0x0000_0000

	31	30	29	28		27		26			25		24	
		Reserved						ADHSE	Q3					
Type/Reset				RW	0	RW	0	RW	0	RW		0 RW	'	0
	23	22	21	20		19		18		•	17		16	
		Reserved						ADHSE	Q2					
Type/Reset				RW	0	RW	0	RW	0	RW		0 RW	'	0
	15	14	13	12		11		10			9		8	
		Reserved						ADHSE	Q1					
Type/Reset				RW	0	RW	0	RW	0	RW		0 RW	'	0
	7	6	5	4		3		2			1		0	
		Reserved						ADHSE	Q0					
Type/Reset				RW	0	RW	0	RW	0	RW		0 RW	'	0

Bits	Field	Descriptions
[28:24]	ADHSEQ3	ADC High Priority Conversion Sequence Select 3
		Select ADC input channel of 3rd sequence in ADC high priority conversion mode.
		0x0: ADC IN0
		0x1: ADC IN1
		0x2: ADC_IN2
		0x3: ADC_IN3
		0x4: ADC_IN4
		0x5: ADC_IN5
		0x6: ADC_IN6
		0x7: ADC_IN7
		0x8: ADC_IN8
		0x9: ADC_IN9
		0xA: ADC_IN10
		0xB: ADC_IN11
		0xC: ADC_IN12
		0xD: ADC_IN13
		0xE: ADC_IN14
		0xF: ADC_IN15
		0x10: Analog ground, AVSS (VREF-)
		0x11: Analog power, AVDD (VREF+)
		0x12 ~ 0x1F: Invalid setting. These values must not be selected as it may cause the ADC abnormal operations.
[20:16]	ADHSEQ2	ADC High Priority Conversion Sequence Select 2
[12:8]	ADHSEQ1	ADC High Priority Conversion Sequence Select 1
[4:0]	ADHSEQ0	ADC High Priority Conversion Sequence Select 0

ADC Input Offset Register n – ADCOFRn (n = 0 ~ 15)

This register specifies the ADC input channel n offset together with the offset cancellation function enable control.

Offset: 0x030 ~ 0x06C Reset value: 0x0000_0000

	31	30		29	2	8	27		26		2	25	2	4
							Reserv	ed						
Type/Reset														
	23	22		21	2	0	19		18		1	7	1	6
							Reserv	ed						
Type/Reset														
	15	14		13	1	2	11		10		!	9	8	3
	ADOFEn	ADALn	ı		Rese	erved					AD	OFn		
Type/Reset	RW (RW	0				RW	0	RW	0	RW	0	RW	0
	7	6		5	4	4	3		2			1)
							ADOF	n						
Type/Reset	RW (RW	0 RW	(RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[15]	ADOFEn	ADC Input Channel n Offset Cancellation Enable (n = 0 ~ 15) 0: ADC_INn offset cancellation is disabled. 1: ADC_INn offset cancellation is enabled.
[14]	ADALn	ADC Input Channel n Data Alignment (n = 0 ~ 15) 0: Right aligned 1: Left aligned
[11:0]	ADOFn	ADC Input Channel n Offset Value (n = $0 \sim 15$) The data values read from ADC data registers (ADCDR) which are the raw data from ADC conversion engine minus this offset on Channel n (ADC_INn) after format transfer.

ADC Input Sampling Time Register n – ADCSTRn (n = $0 \sim 15$)

This register specifies the sampling time of ADC channel n.

Offset: 0x070 ~ 0x0AC Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset							'	
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset							'	
	7	6	5	4	3	2	1	0
					ADSTn			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0

Bits	Field	Descriptions
[7:0]	ADSTn	ADC Input Channel n Sampling Time (n = 0 ~ 15)
		Sampling time = (STn [7:0] + 1.5) ADC clocks.

ADC Regular Conversion Data Register y – ADCDRy (y = 0 ~ 15)

This register specifies the regular conversion data of ADC sequence order ADSEQy in the ADCLSTn (n=0 \sim 3) registers.

Offset: 0x0B0 ~ 0x0EC Reset value: 0x0000_0000

	31		30		29		28		27			26			25		:	24	
	ADVLD	у							Reser	ved									
Type/Reset	RC	0																	
	23		22		21		20		19			18			17			16	
									Reser	ved									
Type/Reset																			
	15		14		13		12		11			10			9			8	
									ADE	Эу									
Type/Reset	RO	0 RC)	0	RO	0 R	0	0	RO	0	RO		0	RO		0	RO		0
	7		6		5		4		3			2			1			0	
									ADE	Эу									
Type/Reset	RO	0 RC)	0	RO	0 R	0	0	RO	0	RO		0	RO		0	RO		0

Bits	Field	Descriptions
[31]	ADVLDy	ADC Regular Conversion Data of Sequence Order Valid Bit (y = 0 ~ 15) 0: Data are invalid or have been read 1: New data are valid
[15:0]	ADDy	ADC Regular Conversion Data of Sequence Order (y = $0 \sim 15$) The regular conversion result of sequence order in ADCLSTn registers (n= $0 \sim 3$)

ADC High Priority Conversion Data Register y – ADCHDRy (y = $0 \sim 3$)

This register specifies the high priority conversion data of ADC sequence order ADHSEQy in the ADCHLST register.

Offset: 0x0F0 ~ 0x0FC Reset value: 0x0000_0000

	31		3	0		29			28			27			26			25			24	
	ADHVL	Dy									Res	serv	ed									
Type/Reset	RC	0																				
	23		2	2		21			20			19			18			17			16	
											Res	serv	ed									
Type/Reset																						
	15		1	4		13			12			11			10			9			8	
											ΑĽ	DHD	у									
Type/Reset	RO	0	RO		0 RC		0	RO		0	RO		0	RO		0	RO		0	RO		0
	7		(6		5			4			3			2			1			0	
											ΑĽ	DHD	у									
Type/Reset	RO	0	RO		0 RC		0	RO		0	RO		0	RO		0	RO		0	RO		0

Bits	Field	Descriptions
[31]	ADHVLDy	ADC High Priority Conversion Data of Sequence Order Valid Bit (y = 0 ~ 3)
		0: Data are invalid or have been read 1: New data are valid
[15:0]	ADHDy	ADC High Priority Conversion Data of Sequence Order (y = 0 ~ 3)
		The regular conversion result of sequence order in ADCHLST register.

ADC Regular Trigger Control Register – ADCTCR

This register contains the ADC start conversion trigger enable bits of the regular conversion.

Offset: 0x100 Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
		Reserved		CMP	BFTM	TM	ADEXTI	ADSW
Type/Reset	_			RW 0	RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[4]	CMP	ADC Regular Conversion Trigger by CMP Event 0: Disable regular conversion trigger by CMP function 1: Enable regular conversion trigger by CMP function
[3]	BFTM	ADC Regular Conversion Trigger by BFTM Event
		Disable regular conversion trigger by BFTM function Enable regular conversion trigger by BFTM function
[2]	TM	ADC Regular Conversion Trigger by GPTM or MCTM Event 0: Disable regular conversion trigger by GPTM or MCTM function 1: Enable regular conversion trigger by GPTM or MCTM function
[1]	ADEXTI	ADC Regular Conversion Trigger by EXTI Event 0: Disable regular conversion trigger by EXTI function 1: Enable regular conversion trigger by EXTI function
[0]	ADSW	ADC Regular Conversion Trigger by Software 0: Disable regular conversion trigger by software function 1: Enable regular conversion trigger by software function

ADC Regular Trigger Source Register – ADCTSR

This register contains the trigger source selection and the software trigger bit of the regular conversion.

Offset: 0x104
Reset value: 0x0000_0000

	31	30	29	28		27		26		25		2	1
			Reserved							TME	Ξ		
Type/Reset								RW	0	RW	0	RW	0
	23	22	21	20		19		18		17		1	3
		Reserved		CMPS		BFTM	S			TMS	3		
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0
	15	14	13	12		11		10		9		8	
			Reserved							ADEX.	TIS		
Type/Reset						RW	0	RW	0	RW	0	RW	0
	7	6	5	4		3		2		1		0	
				Reserve	d							AD:	SC
Type/Reset												RW	0

Bits	Field	Descriptions
[26:24]	TME	GPTM or MCTM Trigger Event Selection of ADC Regular Conversion 000: GPTM or MCTM MTO event 001: GPTM or MCTM CH0O event 010: GPTM or MCTM CH1O event 011: GPTM or MCTM CH2O event 100: GPTM or MCTM CH3O event Others: Reserved – Should not be used to avoid unpredictable results.
[20]	CMPS	CMP Trigger Timer Selection of ADC Regular Conversion 0: CMP0 1: CMP1
[19]	BFTMS	BFTM Trigger Timer Selection of ADC Regular Conversion 0: BFTM0 1: BFTM1
[18:16]	TMS	GPTM or MCTM Trigger Timer Selection of ADC Regular Conversion 000: MCTM0 001: MCTM1 010: GPTM0 011: GPTM1 Others: Reserved –Should not be used to avoid unpredictable results.
[11:8]	ADEXTIS	EXTI Trigger Source Selection of ADC Regular Conversion 0x00: EXTI line 0 0x01: EXTI line 1 0x0F: EXTI line 15
[0]	ADSC	ADC Regular Conversion Software Trigger Bit 0: Reset 1: Start regular conversion immediately Set by software to start regular conversion manually. Clear by hardware after conversion started.

ADC High Priority Trigger Control Register – ADCHTCR

This register contains the ADC start conversion trigger enable bits of the high priority conversion.

Offset: 0x110

Reset value: 0x0000 0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
		Reserved		HCMP	HBFTM	HTM	ADHEXTI	ADHSW
Type/Reset		_		RW 0	RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[4]	HCMP	ADC High Priority Conversion Trigger by CMP Event
		0: Disable high priority conversion trigger by CMP function1: Enable high priority conversion trigger by CMP function
[3]	HBFTM	ADC High Priority Conversion Trigger by BFTM Event
		0: Disable high priority conversion trigger by BFTM function1: Enable high priority conversion trigger by BFTM function
[2]	HTM	ADC High Priority Conversion Trigger by GPTM or MCTM Event
		0: Disable high priority conversion trigger by GPTM or MCTM function1: Enable high priority conversion trigger by GPTM or MCTM function
[1]	ADHEXTI	ADC High Priority Conversion Trigger by EXTI Event
		0: Disable high priority conversion trigger by EXTI function1: Enable high priority conversion trigger by EXTI function
[0]	ADHSW	ADC High Priority Conversion Trigger by Software
		0: Disable high priority conversion trigger by software function
		Enable high priority conversion trigger by software function

ADC High Priority Trigger Source Register – ADCHTSR

This register contains the trigger source selection and the software trigger bit of the high priority conversion.

Offset: 0x114
Reset value: 0x0000_0000

	31	30	29	28		27		26		25	5	2	4
			Reserved							HTN	ИE		
Type/Reset								RW	0	RW	0	RW	0
	23	22	21	20		19		18		17	7	10	6
		Reserved		HCMPS	3	HBFTM	IS			HTN	ИS		
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0
	15	14	13	12		11		10		9		8	
			Reserved					P	νDΗΙ	EXTIS			
Type/Reset						RW	0	RW	0	RW	0	RW	0
	7	6	5	4		3		2		1		0	1
				Reserve	d							ADH	ISC
Type/Reset				<u> </u>								RW	0

Bits	Field	Descriptions
[26:24]	HTME	GPTM or MCTM Trigger Event Selection of ADC High Priority Conversion 000: GPTM or MCTM MTO event 001: GPTM or MCTM CH0O event 010: GPTM or MCTM CH1O event 011: GPTM or MCTM CH2O event 100: GPTM or MCTM CH3O event Chers: Reserved – Should not be used to avoid unpredictable results.
[20]	HCMPS	CMP Trigger Timer Selection of ADC High Priority Conversion 0: CMP0 1: CMP1
[19]	HBFTMS	BFTM Trigger Timer Selection of ADC High Priority Conversion 0: BFTM0 1: BFTM1
[18:16]	HTMS	GPTM or MCTM Trigger Timer Selection of ADC High Priority Conversion 000: MCTM0 001: MCTM1 010: GPTM0 011: GPTM1 Others: Reserved – Should not be used to avoid unpredictable results
[11:9]	ADHEXTIS	EXTI Trigger Source Selection of ADC High Priority Conversion 0x00: EXTI line 0 0x01: EXTI line 1 0x0F: EXTI line 15
[0]	ADHSC	ADC High Priority Conversion Software Trigger Bit 0: Reset 1: Start high priority conversion immediately Set by software to start high priority conversion manually. Clear by hardware after conversion started.

ADC Watchdog Control Register – ADCWCR

This register provides the control bits and status of the ADC watchdog function.

Offset: 0x120
Reset value: 0x0000_0000

	31	30	29	28	27		26		25		24	
			Reserved						ADUC	Н		
Type/Reset					RO	0	RO	0	RO	0	RO	0
	23	22	21	20	19		18		17		16	
			Reserved						ADLC	Н		
Type/Reset					RO	0	RO	0	RO	0	RO	0
	15	14	13	12	11		10		9		8	
			Reserved						ADWC	Н		
Type/Reset					RW	0	RW	0	RW	0	RW	0
	7	6	5	4	3		2		1		0	
			Reserved				ADWAI	LL	ADWL	JΕ	ADWI	_E
Type/Reset							RW	0	RW	0	RW	0

Bits	Field	Descriptions
[27:24]	ADUCH	Upper Threshold Channel Status 0000: ADC_IN0 converted data is higher than the upper threshold 0001: ADC_IN1 converted data is higher than the upper threshold
		1111: ADC_IN15 converted data is higher than the upper threshold Others: Reserved
[19:16]	ADLCH	Lower Threshold Channel Status 0000: ADC_IN0 converted data is lower than the lower threshold 0001: ADC_IN1 converted data is lower than the lower threshold
		1111: ADC_IN15 converted data is lower than the lower threshold Others: Reserved
[11:8]	ADWCH	ADC Watchdog Specific Channel Selection 0000: ADC_IN0 is monitored 0001: ADC_IN1 is monitored
		1111: ADC_IN15 is monitored Others: Reserved
[2]	ADWALL	ADC Watchdog Specific/All Channel Setting 0: Only the channel which specified by the ASWCH field is monitored 1: All channels are monitored
[1]	ADWUE	ADC Watchdog Upper Threshold Enable Bit 0: Disable upper threshold function 1: Enable upper threshold function
[0]	ADWLE	ADC Watchdog Lower Threshold Enable Bit 0: Disable lower threshold function 1: Enable lower threshold function

ADC Watchdog Lower Threshold Register – ADCLTR

This register specifies the lower threshold of the ADC watchdog function.

Offset: 0x124
Reset value: 0x0000_0000

	31		30		29		28	}	27		26		25		24	ļ
									Reserv	/ed						
Type/Reset													'			
	23		22		21		20)	19		18		17		16	<u> </u>
									Reserv	/ed						
Type/Reset																
	15		14		13		12	2	11		10		9		8	
					Reserv	ed							ADL	Т		
Type/Reset									RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
									ADL	Γ						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[11:0]	ADLT	ADC Watchdog Lower Threshold Value
		Specify the lower threshold for the ADC watchdog monitor function

ADC Watchdog Upper Threshold Register – ADCUTR

This register specifies the upper threshold of the ADC watchdog function.

Offset: 0x128
Reset value: 0x0000_0000

	31	3	0	29		28		27		26	6		25		24	
								Reserv	/ed							
Type/Reset																
	23	2	2	21		20		19		18	3		17		16	
								Reserv	/ed							
Type/Reset																
	15	1	4	13		12		11		10)		9		8	
				Reserv	ved							ΑI	TUC			
Type/Reset								RW	0	RW	0	RW		0 RW	1	0
	7		5	5		4		3		2			1		0	
								ADU	Т							
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW		0 RW	1	0

Bits	Field	Descriptions
[11:0]	ADUT.	ADC Watchdog Upper Threshold Value
		Specify the upper threshold for the ADC watchdog monitor function.

ADC Interrupt Enable Register – ADCIER

This register contains the ADC interrupt enable bits.

Offset: 0x130
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
				Reserved			ADIEHO	ADIEO
Type/Reset							RW 0	RW 0
	23	22	21	20	19	18	17	16
				Reserved			ADIEU	ADIEL
Type/Reset							RW 0	RW 0
	15	14	13	12	11	10	9	8
			Reserved			ADIEHC	ADIEHG	ADIEHS
Type/Reset						RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
			Reserved			ADIEC	ADIEG	ADIES
Type/Reset						RW 0	RW 0	RW 0

Bits	Field	Descriptions
[25]	ADIEHO	ADC High Priority Data Register Overwrite Interrupt enable 0: ADC high priority data register overwrite interrupt is disabled 1: ADC high priority data register overwrite interrupt is enabled
[24]	ADIEO	ADC Regular Data Register Overwrite Interrupt enable 0: ADC regular data register overwrite interrupt is disabled 1: ADC regular data register overwrite interrupt is enabled
[17]	ADIEU	ADC Watchdog Upper Threshold Interrupt enable 0: ADC watchdog upper threshold interrupt is disabled 1: ADC watchdog upper threshold interrupt is enabled
[16]	ADIEL	ADC Watchdog Lower Threshold Interrupt enable 0: ADC watchdog lower threshold interrupt is disabled 1: ADC watchdog lower threshold interrupt is enabled
[10]	ADIEHC	ADC High Priority Cycle EOC Interrupt enable 0: ADC high priority cycle end of conversion interrupt is disabled 1: ADC high priority cycle end of conversion interrupt is enabled
[9]	ADIEHG	ADC High Priority Subgroup EOC Interrupt enable 0: ADC high priority subgroup end of conversion interrupt is disabled 1: ADC high priority subgroup end of conversion interrupt is enabled
[8]	ADIEHS	ADC High Priority Single EOC Interrupt enable 0: ADC high priority single end of conversion interrupt is disabled 1: ADC high priority single end of conversion interrupt is enabled
[2]	ADIEC	ADC Regular Cycle EOC Interrupt enable 0: ADC regular cycle end of conversion interrupt is disabled 1: ADC regular cycle end of conversion interrupt is enabled
[1]	ADIEG	ADC Regular Subgroup EOC Interrupt enable 0: ADC regular subgroup end of conversion interrupt is disabled 1: ADC regular subgroup end of conversion interrupt is enabled
[0]	ADIES	ADC Regular Single EOC Interrupt enable 0: ADC regular single end of conversion interrupt is disabled 1: ADC regular single end of conversion interrupt is enabled

ADC Interrupt Raw Status Register – ADCIRAW

This register contains the ADC interrupt raw status bits.

Offset: 0x134

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
				Reserved			ADIRAWHO	ADIRAWO
Type/Reset							RO 0	RO 0
	23	22	21	20	19	18	17	16
				Reserved			ADIRAWU	ADIRAWL
Type/Reset							RO 0	RO 0
	15	14	13	12	11	10	9	8
			Reserved			ADIRAWHO	ADIRAWHG	ADIRAWHS
Type/Reset						RO 0	RO 0	RO 0
	7	6	5	4	3	2	1	0
		·	Reserved		·	ADIRAWC	ADIRAWG	ADIRAWS
Type/Reset						RO 0	RO 0	RO 0

Bits	Field	Descriptions
[25]	ADIRAWHO	ADC High Priority Data Register Overwrite Interrupt Raw Status
		0: ADC high priority data register overwrite interrupt does not occur1: ADC high priority data register overwrite interrupt occurs
[24]	ADIRAWO	ADC Regular Data Register Overwrite Interrupt Raw Status
		O: ADC regular data register overwrite interrupt does not occur ADC regular data register overwrite interrupt occurs
[17]	ADIRAWU	ADC Watchdog Upper Threshold Interrupt Raw Status
		0: ADC watchdog upper threshold interrupt does not occur1: ADC watchdog upper threshold interrupt occurs
[16]	ADIRAWL	ADC Watchdog Lower Threshold Interrupt Raw Status
		O: ADC watchdog lower threshold interrupt does not occur ADC watchdog lower threshold interrupt occurs
[10]	ADIRAWHC	ADC High Priority Cycle EOC Interrupt Raw Status
		0: ADC high priority cycle end of conversion interrupt does not occur1: ADC high priority cycle end of conversion interrupt occurs
[9]	ADIRAWHG	ADC High Priority Subgroup EOC Interrupt Raw Status
		0: ADC high priority subgroup end of conversion interrupt does not occur1: ADC high priority subgroup end of conversion interrupt occurs
[8]	ADIRAWHS	ADC High Priority Single EOC Interrupt Raw Status
		0: ADC high priority single end of conversion interrupt does not occur1: ADC high priority single end of conversion interrupt occurs
[2]	ADIRAWC	ADC Regular Cycle EOC Interrupt Raw Status
		0: ADC regular cycle end of conversion interrupt does not occur1: ADC regular cycle end of conversion interrupt occurs
[1]	ADIRAWG	ADC Regular Subgroup EOC Interrupt Raw Status
		0: ADC regular subgroup end of conversion interrupt does not occur1: ADC regular subgroup end of conversion interrupt occurs
[0]	ADIRAWS	ADC Regular Single EOC Interrupt Raw Status
		0: ADC regular single end of conversion interrupt does not occur
		1: ADC regular single end of conversion interrupt occurs

ADC Interrupt Status Register – ADCISR

This register contains the ADC interrupt status bits. The corresponding interrupt status will be set to 1 if the associated interrupt event occurs and the related enable bit is set to 1.

Offset: 0x138

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
				Reserved			ADISRHO	ADISRO
Type/Reset							RO 0	RO 0
	23	22	21	20	19	18	17	16
				Reserved			ADISRU	ADISRL
Type/Reset							RO 0	RO 0
	15	14	13	12	11	10	9	8
			Reserved			ADISRHC	ADISRHG	ADISRHS
Type/Reset						RO 0	RO 0	RO 0
	7	6	5	4	3	2	1	0
			Reserved			ADISRC	ADISRG	ADISRS
Type/Reset						RO 0	RO 0	RO 0

Bits	Field	Descriptions
[25]	ADISRHO	 ADC High Priority Data Register Overwrite Interrupt Status 0: ADC high priority data register overwrite interrupt is not occurred or high priority data register overwrite interrupt is disabled. 1: ADC high priority data register overwrite interrupt is occurred and high priority data register overwrite interrupt is enabled.
[24]	ADISRO	 ADC Regular Data Register Overwrite Interrupt Status 0: ADC regular data register overwrite interrupt is not occurred or regular data register overwrite interrupt is disabled. 1: ADC regular data register overwrite interrupt is occurred and regular data register overwrite interrupt is enabled.
[17]	ADISRU	 ADC Watchdog Upper Threshold Interrupt Status 0: ADC watchdog upper threshold interrupt is not occurred or watchdog upper threshold interrupt is disabled. 1: ADC watchdog upper threshold interrupt is occurred and watchdog upper threshold interrupt is enabled.
[16]	ADISRL	 ADC Watchdog Lower Threshold Interrupt Status 0: ADC watchdog lower threshold interrupt is not occurred or watchdog lower threshold interrupt is disabled. 1: ADC watchdog lower threshold interrupt is occurred and watchdog lower threshold interrupt is enabled.
[10]	ADISRHC	 ADC High Priority Cycle EOC Interrupt Status 0: ADC high priority cycle end of conversion interrupt is not occurred or high priority cycle end of conversion interrupt is disabled. 1: ADC high priority cycle end of conversion interrupt is occurred and high priority cycle end of conversion interrupt is enabled.
[9]	ADISRHG	 ADC High Priority Subgroup EOC Interrupt Status 0: ADC high priority subgroup end of conversion interrupt is not occurred or high priority subgroup end of conversion interrupt is disabled. 1: ADC high priority subgroup end of conversion interrupt is occurred and high priority subgroup end of conversion interrupt is enabled.

Bits	Field	Descriptions
[8]	ADISRHS	 ADC High Priority Single EOC Interrupt Status 0: ADC high priority single end of conversion interrupt is not occurred or high priority single end of conversion interrupt is disabled. 1: ADC high priority single end of conversion interrupt is occurred and high priority single end of conversion interrupt is enabled.
[2]	ADISRC	 ADC Regular Cycle EOC Interrupt Status 0: ADC regular cycle end of conversion interrupt is not occurred or regular cycle end of conversion interrupt is disabled. 1: ADC regular cycle end of conversion interrupt is occurred and regular cycle end of conversion interrupt is enabled.
[1]	ADISRG	 ADC Regular Subgroup EOC Interrupt Status 0: ADC regular subgroup end of conversion interrupt is not occurred or regular subgroup end of conversion interrupt is disabled. 1: ADC regular subgroup end of conversion interrupt is occurred and regular subgroup end of conversion interrupt is enabled.
[0]	ADISRS	 ADC Regular Single EOC Interrupt Status 0: ADC regular single end of conversion interrupt is not occurred or regular single end of conversion interrupt is disabled. 1: ADC regular single end of conversion interrupt is occurred and regular single end of conversion interrupt is enabled.

ADC Interrupt Clear Register – ADCICLR

This register provides the clear bits used to clear the interrupt raw and interrupt status of the ADC. These bits are set to 1 by software to clear the interrupt status and automatically cleared to 0 by hardware after being set to 1.

Offset: 0x13C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
				Reserved			ADICLRHO	ADICLRO
Type/Reset							WO 0	WO 0
	23	22	21	20	19	18	17	16
				Reserved			ADICLRU	ADICLRL
Type/Reset							WO 0	WO 0
	15	14	13	12	11	10	9	8
			Reserved			ADICLRHC	ADICLRHG	ADICLRHS
Type/Reset						WO 0	WO 0	WO 0
	7	6	5	4	3	2	1	0
			Reserved			ADICLRC	ADICLRG	ADICLRS
Type/Reset						WO 0	WO 0	WO 0

Bits	Field	Descriptions
[25]	ADICLRHO	ADC High Priority Data Register Overwrite Interrupt Status Clear Bit 0: No effect 1: Clear ADIEHO
[24]	ADICLRO	ADC Regular Data Register Overwrite Interrupt Status Clear Bit 0: No effect 1: Clear ADIEO
[17]	ADICLRU	ADC Watchdog Upper Threshold Interrupt Status Clear Bit 0: No effect 1: Clear ADIEU
[16]	ADICLRL	ADC Watchdog Lower Threshold Interrupt Status Clear Bit 0: No effect 1: Clear ADIEL
[10]	ADICLRHC	ADC High Priority Cycle EOC Interrupt Status Clear Bit 0: No effect 1: Clear ADIEHC
[9]	ADICLRHG	ADC High Priority Subgroup EOC Interrupt Status Clear Bit 0: No effect 1: Clear ADIEHG
[8]	ADICLRHS	ADC High Priority Single EOC Interrupt Status Clear Bit 0: No effect 1: Clear ADIEHS
[2]	ADICLRC	ADC Regular Cycle EOC Interrupt Status Clear Bit 0: No effect 1: Clear ADIEC
[1]	ADICLRG	ADC Regular Subgroup EOC Interrupt Status Clear Bit 0: No effect 1: Clear ADIEG
[0]	ADICLRS	ADC Regular Single EOC Interrupt Status Clear Bit 0: No effect 1: Clear ADIES

ADC DMA Request Register – ADCDMAR

This register contains the ADC DMA request enable bits.

Offset: 0x140
Reset value: 0x0000_0000

Neset value.	0x0000_0000							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset			,			,		
	15	14	13	12	11	10	9	8
			Reserved			ADDMAHC	ADDMAHG	ADDMAHS
Type/Reset			,			RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
			Reserved			ADDMAC	ADDMAG	ADDMAS
Type/Reset			_	·		RW 0	RW 0	RW 0

Bits	Field	Descriptions
[10]	ADDMAHC	ADC High Priority Cycle EOC DMA Request Enable Bit 0: ADC high priority cycle end of conversion DMA request is disabled 1: ADC high priority cycle end of conversion DMA request is enabled
[9]	ADDMAHG	ADC High Priority Subgroup EOC DMA Request Enable Bit 0: ADC high priority subgroup end of conversion DMA request is disabled 1: ADC high priority subgroup end of conversion DMA request is enabled
[8]	ADDMAHS	ADC High Priority Single EOC DMA Request Enable Bit 0: ADC high priority single end of conversion DMA request is disabled 1: ADC high priority single end of conversion DMA request is enabled
[2]	ADDMAC	ADC Regular Cycle EOC DMA Request Enable Bit 0: ADC regular cycle end of conversion DMA request is disabled 1: ADC regular cycle end of conversion DMA request is enabled
[1]	ADDMAG	ADC Regular Subgroup EOC DMA Request Enable Bit 0: ADC regular subgroup end of conversion DMA request is disabled 1: ADC regular subgroup end of conversion DMA request is enabled
[0]	ADDMAS	ADC Regular Single EOC DMA Request Enable Bit 0: ADC regular single end of conversion DMA request is disabled 1: ADC regular single end of conversion DMA request is enabled

13 Comparator (CMP)

Introduction

Two general purpose comparators, CMP, are implemented within the devices. They can be configured either as standalone comparators or combined with the different kinds of peripheral IP. Each comparator is capable of asserting interrupts to the NVIC or wake up the CPU from the Sleep or Deep Sleep mode through EXTI wakeup event management unit.

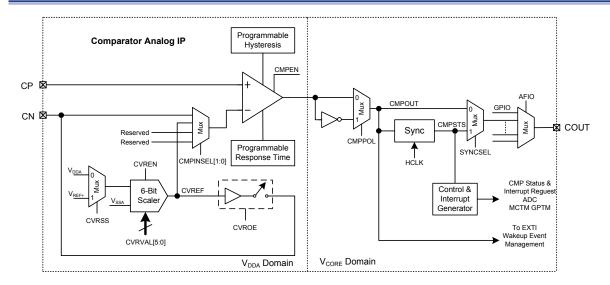


Figure 34. CMP with Digital I/O Block Diagram

Features

- Rail-to-rail comparator
- Each comparator has configurable negative inputs used for flexible voltage selection
 - Dedicated I/O pin
 - Internal voltage reference provided by 6-bit scaler.
- Programmable hysteresis
- Programming speed and consumption
- Comparator output can be output to I/O or to multiple timer or ADC trigger inputs
- 6-bit Scaler can be configurable to dedicated I/O for voltage reference.
- Comparator has interrupt generation capability with wakeup from Sleep or Deep Sleep modes through the EXTI controller.

Function Descriptions

Comparator Inputs and Output

The I/O pins used as comparator inputs or output must be configured in the AFIO controller registers. The detail comparator I/Os information will be referred in pin assignment table in the datasheet. The output can also be internally connected to a variety of timer or ADC for trigger purpose. The comparator output can be used for both internal and external functions simultaneously.

Comparator Voltage Reference

The comparator voltage reference is a 64-tap resistor ladder network that provides a selectable reference voltage. It also has a power-down function to conserve power when the reference is not used. The comparator voltage reference provides 64 distinct levels. The equation used to calculate the comparator voltage reference is as follows:

$$CVREF = CVRVAL \times (V_{DDA} - V_{SSA}) / 63$$
,

If the CVR reference voltage source is selected the V_{DDA}.

The comparator voltage reference source voltage can come from either V_{DDA} or the external $V_{\text{REF+}}$ pin. The voltage source is selected by the CVRSS bit in the Comparator Control Register CMPCR. The primary purpose of the CVREF output is to provide a reference voltage for the analog comparator; it may also be used independently of them and configured output to CN pin by setting the CVROE bit in the Comparator Control Register CMPCR. The settling time of the comparator voltage reference must be considered when changing the CVREF output.

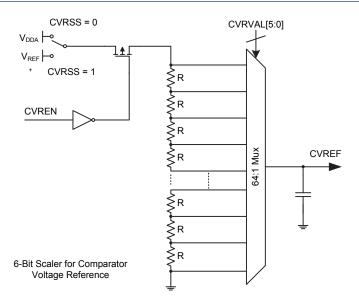


Figure 35. 6-Bit Scaler for Comparator Voltage Reference Block Diagram

Interrupts and Wakeup

The comparator can generate an interrupt when its output waveform generates a rising or falling edge and its corresponding interrupt enables control bit is also set.

For example, when a comparator output rising edge occurs, the comparator rising edge flag bit CMPRF in the Comparator Transition Flag Register CMPTFR will be set. If the comparator output rising edge interrupt enable control bit CMPRIEN in the Comparator Interrupt Enable Register CMPIER is enabled, an interrupt will then be generated and sent to the NVIC unit. Writing "1" into the comparator rising edge flag bit CMPRF in the Comparator Transition Flag Register CMPTFR will clear the CMPRF bit. The comparator output falling edge interrupt also has the same corresponding interrupt setting. A block diagram of interrupt signal for comparators is shown in Figure 36.

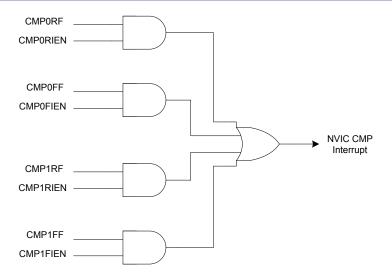


Figure 36. Interrupt Signals of Comparators

The comparator outputs are also internally connected to the EXTI Wake-up Event Management unit. The comparator output rising transition is used to wake up the MCU from the Deep Sleep 1 or 2 modes when the comparator wake-up enable bit CMPWPEN is set in the Comparator Control Register CMPCR. A block diagram of wakeup signal for comparators is shown in Figure 37.

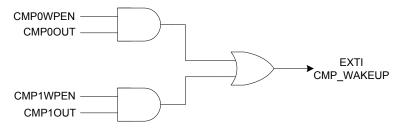


Figure 37. Wakeup Signals of Comparators

Power Mode and Hysteresis

The comparator response time can be programmed to meet the trade-off between the power consumption and application requirement. The bit CMPSM in CMPCR register can be programmed as "0" to get the comparator in the low speed mode and low power consumption.

The comparator also has a four hysteresis level selection to avoid spurious output transitions in case of noisy signals. The bit CMPHM[1:0] in CMPCR register can be programmed to get the different hysteresis level for comparator.

Comparator Write-Protected mechanism

As the comparator can be used for safety purposes, it is necessary to insure that the comparator programming cannot be altered in case of spurious register access or program counter corruption. For this purpose, the write protection is provided by writing a specific value into the PROTECT field in the Comparator Control Register CMPCR. The write protection is enabled in default. Before configuring the bits [15:0] in the Comparator Control Register CMPCR, the register protection bits [31:16] of CMPCR register has to be written into with the 0x9C3A pattern first. Then the write protection mode is disabled and the CMPCR register becomes programmable. As the same reason, the comparator input and output also can be locked with the corresponding configuration lock bit of Port n Lock Register PnLOCKR (n = $A \sim E$) in the GPIO unit.

Register Map

The following table shows the CMP registers and reset values.

Table 31. CMP Register Map

Register	Offset	Description	Reset Value								
CMPCR0	0x000	Comparator Control Register 0	0x0001_0000								
CVRVALR0	0x004	Comparator Voltage Reference Value Register 0	0x0000_0000								
CMPIER0	0x008	Comparator Interrupt Enable Register 0	0x0000_0000								
CMPTFR0	0x00C	Comparator Transition Flag Register 0	0x0000_0000								
CMPCR1	0x100	Comparator Control Register 1	0x0001_0000								
CVRVALR1	0x104	Comparator Voltage Reference Value Register 1	0x0000_0000								
CMPIER1	0x108	Comparator Interrupt Enable Register 1	0x0000_0000								
CMPTFR1	0x10C	Comparator Transition Flag Register 1	0x0000_0000								

Register Descriptions

Comparator Control Register n – CMPCRn (n = 0 or 1)

This register contains the comparator and comparator voltage reference control bits.

Offset: 0x000 (n = 0), 0x100 (n = 1)

Reset value: 0x0001_0000

	31		30		29		28	3	27		26		25		24	
									PROTE	ECT						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20	0	19		18		17		16	
									PROTE	ECT						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	1
	15		14		13		12	2	11		10		9		8	
	CMPS	TS	CMPWF	PEN			CMPC	SEL			CVRS	S	CVRC	E	CVRE	N
Type/Reset	R	0	RW/R	0	RW/R	0	RW/R	0	RW/R	0	RW/R	0	RW/R	0	RW/R	0
	7		6		5		4		3		2		1		0	
	SYNCS	SEL	CMPP	OL			CMPI	NSEL			CMPH	М	CMPS	M	СМРЕ	N
Type/Reset	RW/R	0	RW/R	0	RW/R	0	RW/R	0	RW/R	0	RW/R	0	RW/R	0	RW/R	0

Bits	Field	Descriptions
[31:16]	PROTECT	Register Protection
		For write operation:
		0x9C3A: Disable the CMPCR register write protection
		Others values: Enable the CMPCR register write protection
		For read operation:
		0x0000: CMPCR register write protection is disabled 0x0001: CMPCR register write protection is enabled
		These bits are used to enable or disable the write protection of the filed [14:0] of
		the CMPCR register. Enabling the write protection will make the filed [14:0] of the
		CMPCR register become read-only to prevent any unexpected write operation. The
		value read from this field will indicate if the write protection is enabled or not.
[15]	CMPSTS	Comparator Output Status
		0: Output is low
		1: Output is high
		This read-only bit is a copy of the comparator output status after the polarity
		selection.
[14]	CMPWPEN	Comparator Wakeup Enable
		Disable comparator wakeup. Enable comparator wakeup.
		This bit is enabled to wake up the MCU from the Sleep or Deep-Sleep mode when
		the comparator output polarity selection changes state from low to high.

Bits	Field	Descriptions
[13:11]	CMPOSEL	Comparator 0 Output Selection 000: No selection 001: GPTM0 capture channel 3 010: MCTM0 capture channel 3 011: MCTM0 break input 1 100: ADC trigger input Other: Reserved Comparator 1 Output Selection 000: No selection 001: GPTM1 capture channel 3 010: MCTM1 capture channel 3 011: MCTM1 break input 1 100: ADC trigger input Other: Reserved These bits select the destination after the polarity selection of comparator output.
[10]	CVRSS	Comparator Voltage Reference Source Selection 0: 6-bit scaler reference voltage source comes from V _{DDA} 1: 6-bit scaler reference voltage source comes from V _{REF+}
[9]	CVROE	Comparator Voltage Reference Output Enable 0: Disable 6-bit scaler output to CN pin 1: Enable 6-bit scaler output to CN pin
[8]	CVREN	Comparator Voltage Reference Enable 0: Disable 6-bit scaler for comparator voltage reference 1: Enable 6-bit scaler for comparator voltage reference
[7]	SYNSEL	Synchronization Selection 0: Asynchronous signal of comparator output is selected 1: Synchronous signal of comparator output is selected The synchronization comparator output should be selected before being passed to AFIO unit.
[6]	CMPPOL	Comparator Output Polarity Selection 0: Comparator output is not inverted 1: Comparator output is inverted
[5:4]	CMPINSEL	Comparator Inverted Input Selection 00: Comparator external CN pin is selected 01: Comparator internal 6-bit reference voltage scaler output is selected 1x: Reserved These bits are used to select the comparator inverted input source.
[3:2]	СМРНМ	Comparator Hysteresis Mode Selection 00: No hysteresis 01: Low hysteresis mode 10: Middle hysteresis mode 11: High hysteresis mode
[1]	CMPSM	Comparator Speed Mode Selection 0: Low speed mode 1: High speed mode
[0]	CMPEN	Comparator Enable 0: Disable Comparator – Entering the power down mode 1: Enable Comparator

Comparator Voltage Reference Value Register n – CVRVALRn (n = 0 or 1)

The register is used to set the level of comparator voltage reference.

Offset: 0x004 (n = 0), 0x104 (n = 1)

Reset value: 0x0000 0000

	31	30	29		28		27		26		25	2	24
							Reserv	ved					
Type/Reset													
	23	22	21		20		19		18		17	1	6
							Reserv	ved					
Type/Reset													
	15	14	13		12		11		10		9		8
							Reserv	ved					
Type/Reset													
	7	6	5		4		3		2		1		0
		Reserved			·		·		CVRVAL				
Type/Reset			RW	0	RW	0	RW	0	RW (RW	(0 RW	0

Bits Field Descriptions

[5:0] CVRVAL

Comparator Voltage Reference Value

There are 64 levels of the comparator voltage reference which is set using the CVRVAL bits. The relationship between the CVRVAL register value and the comparator voltage reference CVREF is giver by the following equation:

CVREF = CVRVAL * $(V_{DDA} - V_{SSA})$ / 63, if the CVR reference voltage source is selected the V_{DDA} .

Comparator Interrupt Enable Register n – CMPIERn (n = 0 or 1)

The register is used to enable the comparator n interrupt when the comparator output transition event occurs.

Offset: 0x008 (n = 0), 0x108 (n = 1)

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved		1	
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset							,	_
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset							,	
	7	6	5	4	3	2	1	0
				Reserved			CMPRIEN	CMPFIEN
Type/Reset	·		·				RW 0	RW 0

Bits	Field	Descriptions
[1]	CMPRIEN	Comparator Output Rising Edge Interrupt Enable 0: Comparator output rising edge interrupt is disabled 1: Comparator output rising edge interrupt is enabled
[0]	CMPFIEN	Comparator Output Falling Edge Interrupt Enable 0: Comparator output falling edge interrupt is disabled 1: Comparator output falling edge interrupt is enabled

Comparator Transition Flag Register n – CMPTFRn (n = 0 or 1)

This register contains the comparator n transition detection enable and flag.

Offset: 0x00C (n = 0), 0x10C (n = 1)

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
				Reserved			CMPRDE	N CMPFDEN
Type/Reset							R/W (R/W 0
	7	6	5	4	3	2	1	0
				Reserved			CMPRF	CMPFF
Type/Reset							WC () WC 0

Bits	Field	Descriptions
[9]	CMPRDEN	Comparator Output Rising Edge Detection Enable 0: Disable comparator output rising edge detection 1: Enable comparator output rising edge detection Note: The detected comparator transition signal is a copy of the comparator output state after the polarity selection and is synchronized by HCLK clock.
[8]	CMPFDEN	Comparator Output Falling Edge Detection Enable 0: Disable comparator output falling edge detection 1: Enable comparator output falling edge detection Note: The detected comparator transition signal is a copy of the comparator output state after the polarity selection and is synchronized by HCLK clock.
[1]	CMPRF	Comparator Output Rising Edge Flag 0: No comparator output rising edge occurs 1: Comparator output rising edge occurs This flag is available when the comparator output rising edge detection is enabled. This bit is set to 1 by hardware and cleared by software written a "1" into it.
[0]	CMPFF	Comparator Output Falling Edge Flag 0: No Comparator output falling edge occurs 1: Comparator output falling edge occurs This flag is available when the comparator output rising edge detection is enabled. This bit is set to 1 by hardware and cleared by software written a "1" into it.

14 General-Purpose Timer (GPTM)

Introduction

The General-Purpose Timer consists of one 16-bit up/down-counter, four 16-bit Capture/Compare Registers (CCRs), one 16-bit Counter-Reload Register (CRR) and several control/status registers. It can be used for a variety of purposes including general timer, input signal pulse width measurement or output waveform generation such as single pulse generation or PWM output. The GPTM supports an encoder interface using a quadrature decoder with two inputs.

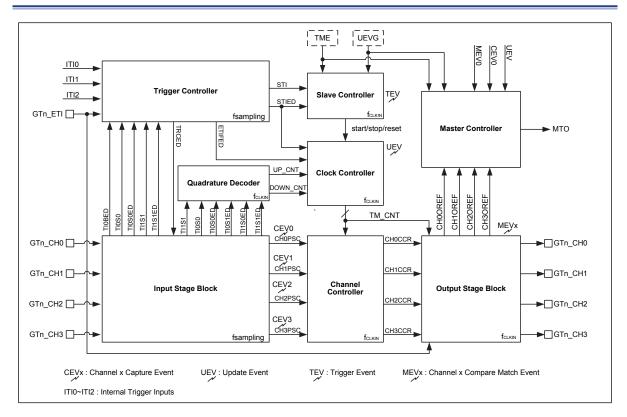


Figure 38. GPTM Block Diagram

Features

- 16-bit up / down auto-reload counter
- 16-bit programmable prescaler that allows division of the counter clock frequency by any factor between 1 and 65536
- Up to 4 independent channels for:
 - Input Capture function
 - Compare Match Output
 - Generation of PWM waveform Edge and Center-aligned Mode
 - Single Pulse Mode Output
- Encoder interface controller with two inputs using quadrature decoder
- Synchronization circuit to control the timer with external signals and to interconnect several timers together
- Interrupt / PDMA generation with the following events:
 - Update event
 - Trigger event
 - Input capture event
 - Output compare match event
- GPTM Master/Slave mode controller

Functional Descriptions

Counter Mode

Up-Counting

In this mode the counter counts continuously from 0 to the counter-reload value, which is defined in the CRR register, in a count-up direction. Once the counter reaches the counter-reload value, the Timer Module generates an overflow event and the counter restarts to count once again from 0. This action will continue repeatedly. The counting direction bit DIR in the CNTCFR register should be set to 0 for the up-counting mode.

When the update event is generated by setting the UEVG bit in the EVGR register, the counter value will be initialized to 0.

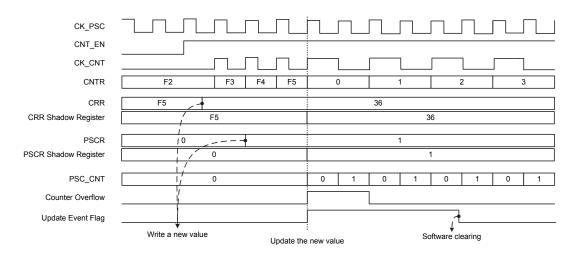


Figure 39. Up-counting Example

Down-Counting

In this mode the counter counts continuously from the counter-reload value, which is defined in the CRR register, to 0 in a count-down direction. Once the counter reaches 0, the Timer module generates an underflow event and the counter restarts to count once again from the counter-reload value. This action will continue repeatedly. The counting direction bit DIR in the CNTCFR register should be set to 1 for the down-counting mode.

When the update event is generated by setting the UEVG bit in the EVGR register, the counter value will be initialized to the counter-reload value.

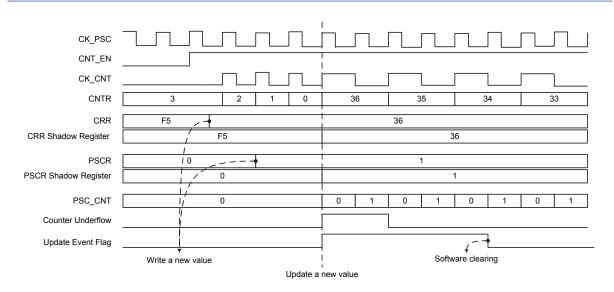


Figure 40. Down-counting Example

Center-Align Counting

In the center-aligned counting mode, the counter counts up from 0 to the counter-reload value and then counts down to 0 alternatively. The Timer module generates an overflow event when the counter counts to the counter-reload value in the up-counting mode and generates an underflow event when the counter counts to 0 in the down-counting mode. The counting direction bit DIR in the CNTCFR register is read-only and indicates the counting direction when in the center-align mode. The counting direction is updated by hardware automatically.

Setting the UEVG bit in the EVGR register will initialize the counter value to 0 irrespective of whether the counter is counting up or down in the center-align counting mode.

The UEVIF bit in the INTSR register can be set to 1 when an overflow or underflow event or both of them occur according to the CMSEL field setting in the CNTCFR register.

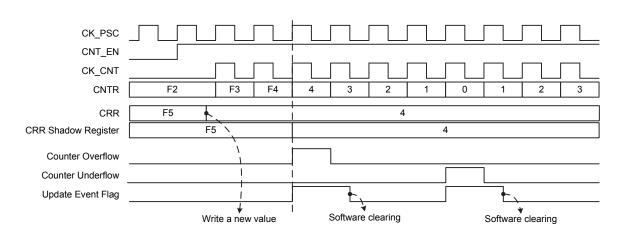


Figure 41. Center-aligned Counting Example

Clock Controller

The following describes the Timer Module clock controller which determines the clock source of the internal prescaler counter.

■ Internal APB clock f_{CLKIN}:

The default internal clock source is the APB clock f_{CLKIN} used to drive the counter prescaler when the slave mode is disabled. If the slave mode controller is enabled by setting SMSEL field in the MDCFR register to an available value including 0x1, 0x2, 0x3 and 0x7, the prescaler is clocked by other clock sources selected by the TRSEL field in the TRCFR register and described as follows. When the slave mode selection bits SMSEL are set to 0x4, 0x5 or 0x6, the internal APB clock f_{CLKIN} is the counter prescaler driving clock source.

Quadrature Decoder:

To select Quadrature Decoder mode the SMSEL field should be set to 0x1, 0x2 or 0x3 in the MDCFR register. The Quadrature Decoder function uses two input states of the GTn_CH0 and GTn_CH1 pins to generate the clock pulse to drive the counter prescaler. The counting direction bit DIR is modified by hardware automatically at each transition on the input source signal. The input source signal can be derived from the GTn_CH0 pin only, the GTn_CH1 pin only or both GTn_CH0 and GTn_CH1 pins.

■ STIED:

The counter prescaler can count during each rising edge of the STI signal. This mode can be selected by setting the SMSEL field to 0x7 in the MDCFR register, here the counter will act as an event counter. The input event, known as STI here, can be selected by setting the TRSEL field to an available value except the value of 0x0. When the STI signal is selected as the clock source, the internal edge detection circuitry will generate a clock pulse during each STI signal rising edge to drive the counter prescaler. It is important to note that if the TRSEL field is set to 0x0 to select the software UEVG bit as the trigger source, then when the SMSEL field is set to 0x7, the counter will be updated instead of counting.

ETIFED:

The counter prescaler can be driven to count during each rising edge on the external pin GTn_ETI. This mode can be selected by setting the ECME bit in the TRCFR register to 1. The other way to select the ETIF signal as the clock source is to set the SMSEL field to 0x7 and the TRSEL field to 0x3 respectively. Note that the ETIF signal is derived from the GTn_ETI pin sampled by a digital filter. When the clock source is selected to come from the ETIF signal, the Trigger Controller including the edge detection circuitry will generate a clock pulse during each ETIF signal rising edge to clock the counter prescaler.

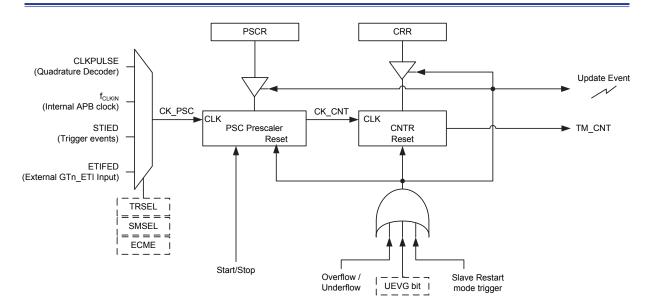


Figure 42. GPTM Clock Selection Source

Trigger Controller

The trigger controller is used to select the trigger source and setup the trigger level or edge trigger condition. The active polarity of the external trigger input signal GTn_ETI can be configured by the External Trigger Polarity control bit ETIPOL in the GPTM Trigger Configuration Register TRCFR. The frequency of the external trigger input can be divided by configuring the related bits, named as External Trigger Prescaler control bits ETIPSC, in the TRCFR register. The trigger signal can also be filtered by configuring the External Trigger Filter ETF selection bits in the TRCFR register if a filtered signal is necessary for specific applications. For the internal trigger input, it can be selected by the Trigger Selection bits TRSEL in the TRCFR register. For all the trigger sources except the UEVG bit software trigger, the internal edge detection circuitry will generate a clock pulse at each trigger signal rising edge to stimulate some GPTM functions which are triggered by a trigger signal rising edge.

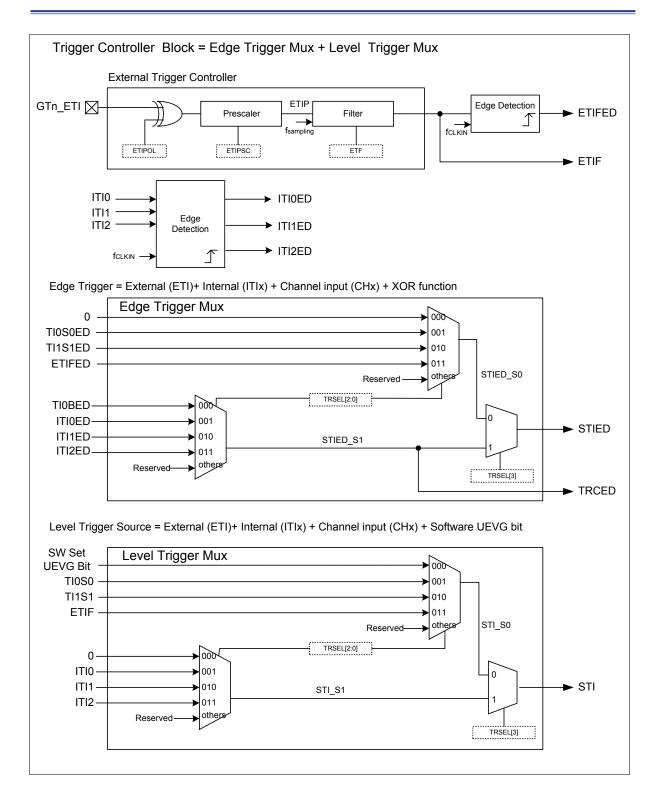


Figure 43. Trigger Control Block

Slave Controller

The GPTM can be synchronized with an external trigger in several modes including the Restart mode, the Pause mode and the Trigger mode which is selected by the SMSEL field in the MDCFR register. The trigger input of these modes comes from the STI signal which is selected by the TRSEL field in the TRCFR register. The operation modes in the Slave Controller are described in the accompanying sections.

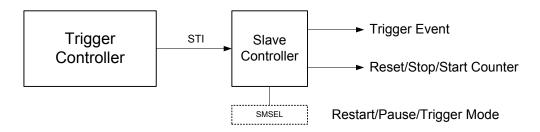


Figure 44. Slave Controller Diagram

Restart Mode

The counter and its prescaler can be reinitialized in response to a rising edge of the STI signal. When a STI rising edge occurs, the update event software generation bit named UEVG will automatically be asserted by hardware and the trigger event flag will also be set. Then the counter and prescaler will be reinitialized. Although the UEVG bit is set to 1 by hardware, the update event does not really occur. It depends upon whether the update event disable control bit UEVDIS is set to 1 or not. If the UEVDIS is set to 1 to disable the update event to occur, there will no update event will be generated, however the counter and prescaler are still reinitialized when the STI rising edge occurs. If the UEVDIS bit in the CNTCFR register is cleared to enable the update event to occur, an update event will be generated together with the STI rising edge, then all the preloaded registers will be updated.

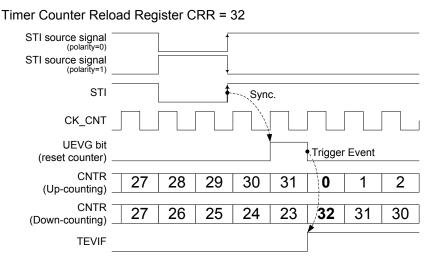


Figure 45. GPTM in Restart Mode

Pause Mode

In the Pause Mode, the selected STI input signal level is used to control the counter start/stop operation. The counter starts to count when the selected STI signal is at a high level and stops counting when the STI signal is changed to a low level, here the counter will maintain its present value and will not be reset. Since the Pause function depends upon the STI level to control the counter stop/ start operation, the selected STI trigger signal cannot be derived from the TI0BED signal.

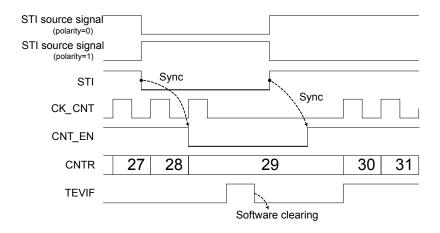


Figure 46. GPTM in Pause Mode

Trigger Mode

After the counter is disabled to count, the counter can resume counting when a STI rising edge signal occurs. When an STI rising edge occurs, the counter will start to count from the current value in the counter. Note that if the STI signal is selected to be derived from the UEVG bit software trigger, the counter will not resume counting. When software triggering using the UEVG bit is selected as the STI source signal, there will be no clock pulse generated which can be used to make the counter resume counting. Note that the STI signal is only used to enable the counter to resume counting and has no effect on controlling the counter to stop counting.

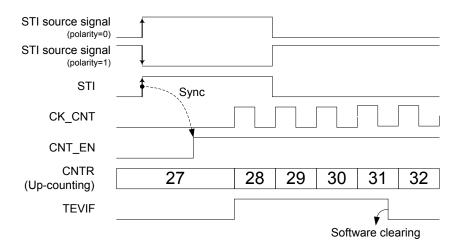


Figure 47. GPTM in Trigger Mode

Master Controller

The GPTMs and MCTMs can be linked together internally for timer synchronization or chaining. When one GPTM is configured to be in the Master Mode, the GPTM Master Controller will generate a Master Trigger Output (MTO) signal which includes a reset, a start, a stop signal or a clock source, selected by the MMSEL field in the MDCFR register, to trigger or drive another GPTM or MCTM which is configured in the Slave Mode.

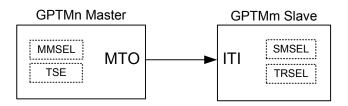


Figure 48. Master GPTMn and Slave GPTMm Connection

The Master Mode Selection bits, MMSEL, in the MDCFR register are used to select the MTO source for synchronizing another slave GPTM or MCTM.

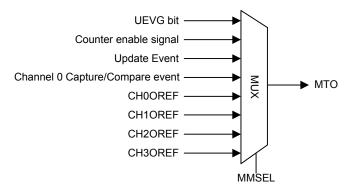


Figure 49. MTO Selection

For example, set the MMSEL field to 0x5 is to select the CH1OREF signal as the MTO signal to synchronize another slave GPTM or MCTM. For a more detailed description, refer to the related MMSEL field definitions in the MDCFR register.

Channel Controller

The GPTM has four independent channels which can be used as capture inputs or compare match outputs. Each capture input or compare match output channel is composed of a preload register and a shadow register. Data access of the APB bus is always through the read/write preload register.

When used in the input capture mode, the counter value is captured into the CHxCCR shadow register first and then transferred into the CHxCCR preload register when the capture event occurs.

When used in the compare match output mode, the contents of the CHxCCR preload register is copied into the associated shadow register; the counter value is then compared with the register value.

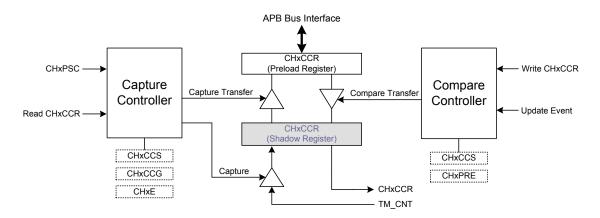


Figure 50. Capture/Compare Block Diagram

Capture Counter Value to CHxCCR

When the channel is used as a capture input, the counter value is captured into the Channel Capture/Compare Register (CHxCCR) when an effective input signal transition occurs. Once the capture event occurs, the CHxCCIF flag in the INTSR register is set accordingly. If the CHxCCIF bit is already set, i.e., the flag has not yet been cleared by software, and another capture event on this channel occurs, the corresponding channel Over-Capture flag, named CHxOCF, will be set.

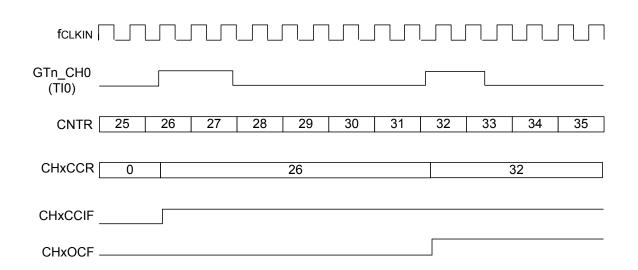


Figure 51. Input Capture Mode

Pulse Width Measurement

The input capture mode can be also used for pulse width measurement from signals on the GTn_CHx pins (TIx). The following example shows how to configure the GPTM operated in the input capture mode to measure the high pulse width and the input period on the GTn_CH0 pin using channel 0 and channel 1. The basic steps are shown as follows.

- Configure the capture channel 0 (CH0CCS = 0x1) to select the TI0 signal as the capture input.
- Configure the CH0P bit to 0 to choose the rising edge of the TI0 input as the active polarity.
- Configure the capture channel 1 (CH1CCS = 0x2) to select the TIO signal as the capture input.
- Configure the CH1P bit to 1 to choose the falling edge of the TI0 input as the active polarity.
- Configure the TRSEL bits to 0x0001 to select TI0S0 as the trigger input.
- Configure the Slave controller to operate in the Restart mode by setting the SMSEL field in the MDCFR register to 0x4
- Enable the input capture mode by setting the CH0E and CH1E bits in the CHCTR register to 1.

As the following diagram shows, the high pulse width on the GTn_CH0 pin will be captured into the CH1CCR register while the input period will be captured into the CH0CCR register after input capture operation.

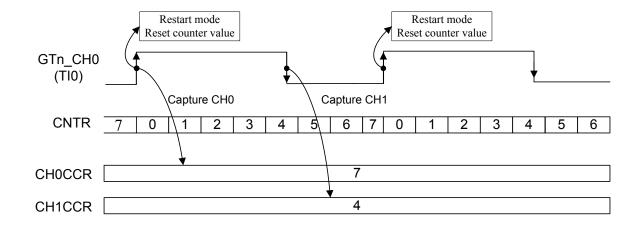


Figure 52. PWM Pulse Width Measurement Example

Input Stage

The input stage consists of a digital filter, a channel polarity selection, edge detection and a channel prescaler. The channel 0 input signal (TI0) can be chosen to come from the GTn_CH0 signal or the Excusive-OR function of the GTn_CH0, GTn_CH1 and GTn_CH2 signals. The channel input signal (TIx) is sampled by a digital filter to generate a filtered input signal TIxF. Then the channel polarity and the edge detection block can generate a TIxS0ED or TIxS1ED signal for the input capture function. The effective input event number can be set by the channel input prescaler register (CHxPSC).

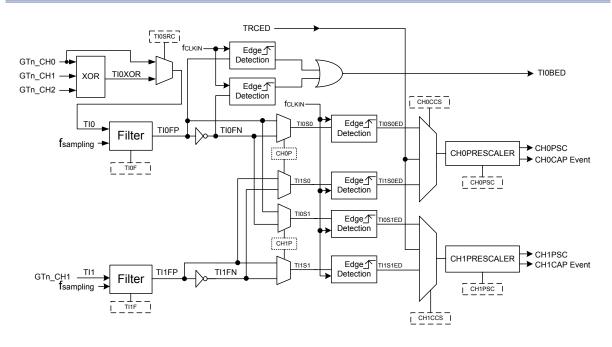


Figure 53. Channel 0 and Channel 1 Input Stage

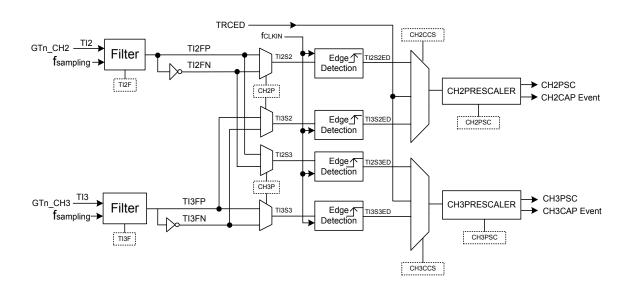


Figure 54. Channel 2 and Channel 3 Input Stage

Output Stage

The GPTM has four channels for compare match, single pulse or PWM output function. The channel output GTn_CHx is controlled by the REFxCE, CHxOM, CHxP and CHxE bits in the corresponding CHxOCFR, CHPOLR and CHCTR registers.

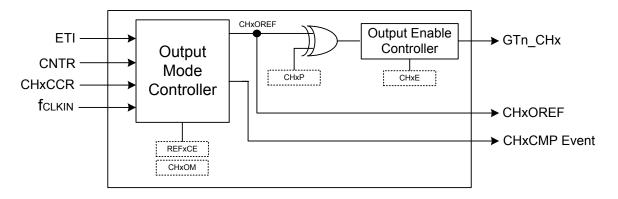


Figure 55. Output Stage Block Diagram

Channel Output Reference Signal

When the GPTM is used in the compare match output mode, the CHxOREF signal (Channel x Output Reference signal) is defined by setting the CHxOM bits. The CHxOREF signal has several types of output function. These include, keeping the original level by setting the CHxOM field to 0x00, set to 0 by setting the CHxOM field to 0x01, set to 1 by setting the CHxOM field to 0x02 or signal toggle by setting the CHxOM field to 0x03 when the counter value matches the content of the CHxCCR register.

The PWM mode 1 and PWM mode 2 outputs are also another kind of CHxOREF output which is setup by setting the CHxOM field to 0x06/0x07. In these modes, the CHxOREF signal level is changed according to the counting direction and the relationship between the counter value and the CHxCCR content. With regard to a more detailed description refer to the relative bit definition.

Another special function of the CHxOREF signal is a forced output which can be achieved by setting the CHxOM field to 0x04/0x05. Here the output can be forced to an inactive/active level irrespective of the comparison condition between the counter and the CHxCCR values.

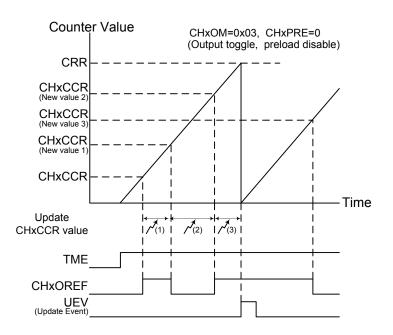


Figure 56. Toggle Mode Channel Output Reference Signal (CHxPRE = 0)

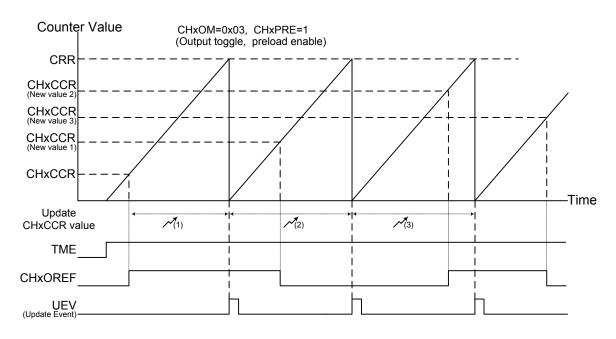


Figure 57. Toggle Mode Channel Output Reference Signal (CHxPRE = 1)

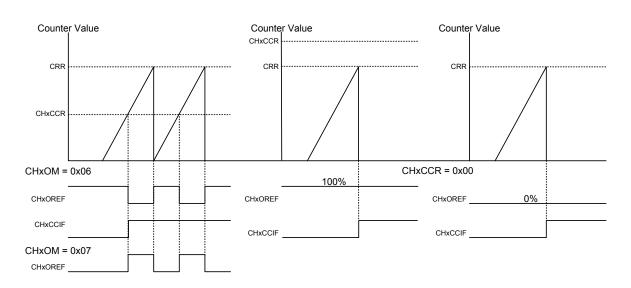


Figure 58. PWM Mode Channel Output Reference Signal and Counter in Up-counting Mode

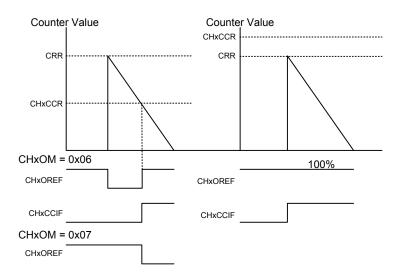


Figure 59. PWM Mode Channel Output Reference Signal and Counter in Down-counting Mode

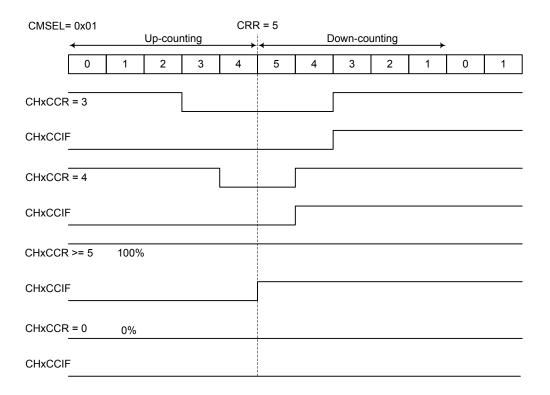
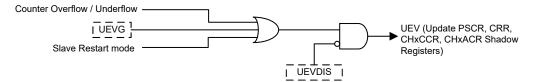


Figure 60. PWM Mode Channel Output Reference Signal and Counter in Centre-align Mode



Update Management

The Update event is used to update the CRR, the PSCR, the CHxACR and the CHxCCR values from the actual registers to the corresponding shadow registers. An update event is generated when counter overflow or underflow, the software update control bit is triggered or an update event from the slave controller is generated.

The UEVDIS bit in the CNTCFR register can determine whether the update event occurs or not. When the update event occurs, the corresponding update event interrupt will be generated depending upon whether the update event interrupt generation function is enabled or not by configuring the UGDIS bit in the CNTCFR register. For more detail description, refer to the UEVDIS and UGDIS bit definition in the CNTCFR register.

Update Event Management

Update Event Interrupt Management

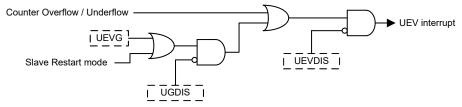


Figure 61. Update Event Setting Diagram

Quadrature Decoder

The Quadrature Decoder function uses two quadrantal inputs TI0 and TI1 derived from the GTn_CH0 and GTn_CH1 pins respectively to interact to generate the counter value. The DIR bit is modified by hardware automatically during each input source transition. The input source can be either TI0 only, TI1 only or both TI0 and TI1, selected by setting the SMSEL field to 0x01, 0x02 or 0x03. The mechanism for changing the counter direction is shown in the following table. The Quadrature decoder can be regarded as an external clock with a directional selection. This means that the counter counts continuously in the interval between 0 and the counter-reload value. Therefore, users must configure the CRR register before the counter starts to count.

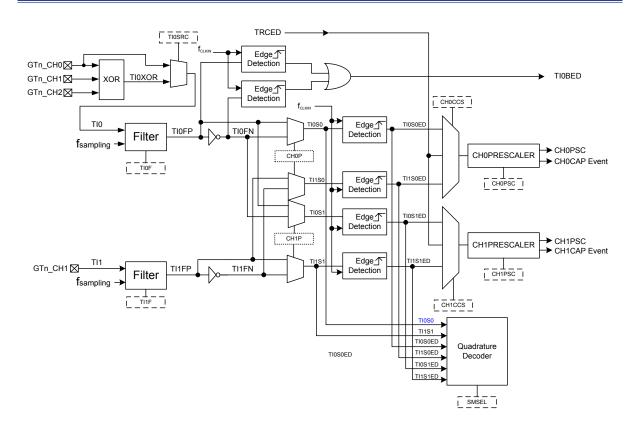


Figure 62. Input Stage and Quadrature Decoder Block Diagram

Table 32. Counting Direction and Encoding Signals

Counting mode	Level	TIO	S0	TI1S1			
Counting mode	Level	Rising	Falling	Rising	Falling		
Counting on TI0 only	TI1S1 = High	Down	Up	_	_		
(SMSEL = 0x01)	TI1S1 = Low	Up	Down	_	_		
Counting on TI1 only	TI0S0 = High	_	_	Up	Down		
(SMSEL = 0x02)	TI0S0 = Low	_	_	Down	Up		
	TI1S1 = High	Down	Up	X	X		
Counting on TI0 and TI1	TI1S1 = Low	Up	Down	X	X		
(SMSEL = 0x03)	TI0S0 = High	X	X	Up	Down		
	TI0S0 = Low	Х	Х	Down	Up		

Note: "—" \rightarrow means "no counting", "X" \rightarrow impossible

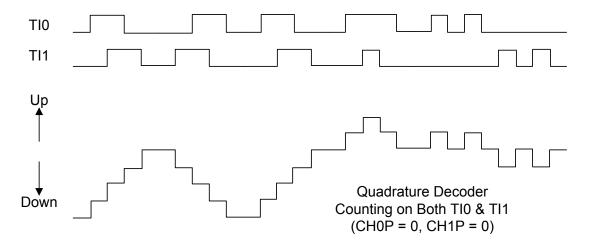


Figure 63. Both TI0 and TI1 Quadrature Decoder Counting.

Digital Filter

The digital filters are embedded in the input stage and clock controller block for the $GTn_CH0 \sim GTn_CH3$ and GTn_ETI pins respectively. The digital filter in the GPTM is an N-event counter where N refers to how many valid transitions are necessary to output a filtered signal. The N value can be 0, 2, 4, 5, 6 or 8 according to the user selection for each filter.

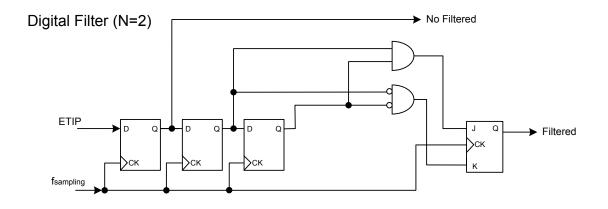


Figure 64. GTn_ETI Pin Digital Filter Diagram with N = 2

Clearing the CHxOREF when ETIF is high

The CHxOREF signal can be forced to 0 when the ETIF signal is derived from the external GTn_ETI pin and when it is set to a high level by setting the REFxCE bit to 1 in the CHxOCFR register. The CHxOREF signal will not return to its active level until the next update event occurs.

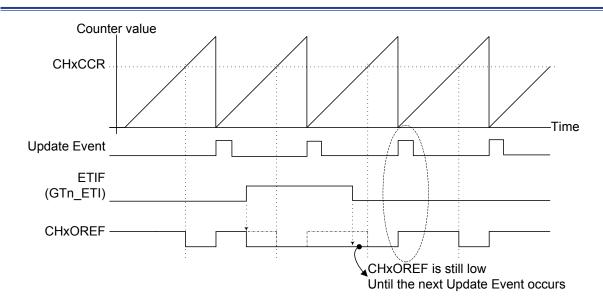


Figure 65. Clearing CHOxREF by ETIF

Single Pulse Mode

Once the timer is set to operate in the single pulse mode, it is not necessary to set the timer enable bit TME in the CTR register to 1 to enable the counter. The trigger to generate a pulse can be sourced from the STI signal rising edge or by setting the TME bit to 1 using software. Setting the TME bit to 1 or a trigger from the STI signal rising edge can generate a pulse and then keep the TME bit at a high state until the update event occurs or the TME bit is written to 0 by software. If the TME bit is cleared to 0 using software, the counter will be stopped and its value held. If the TME bit is automatically cleared to 0 by a hardware update event, the counter will be reinitialized.

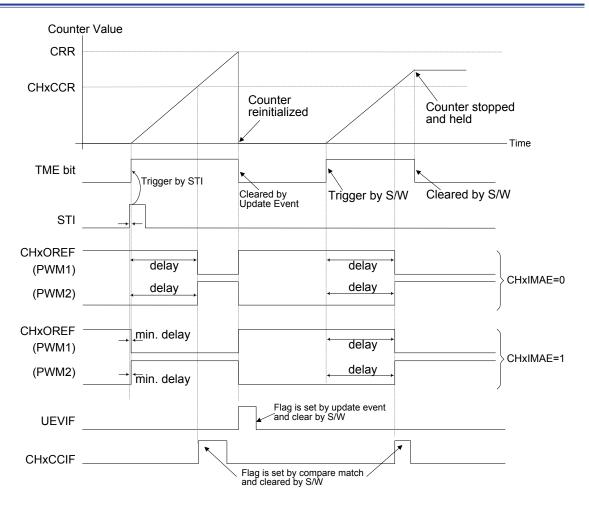


Figure 66. Single Pulse Mode

In the Single Pulse mode, the STI active edge which sets the TME bit to 1 will enable the counter. However, there exist several clock delays to perform the comparison result between the counter value and the CHxCCR value. In order to reduce the delay to a minimum value, the user can set the CHxIMAE bit in each CHxOCFR register. After a STI rising edge trigger occurs in the single pulse mode, the CHxOREF signal will immediately be forced to the state which the CHxOREF signal will change to as the compare match event occurs without taking the comparison result into account. The CHxIMAE bit is available only when the output channel is configured to operate in the PWM1 or PWM2 output mode and the trigger source is derived from the STI signal.

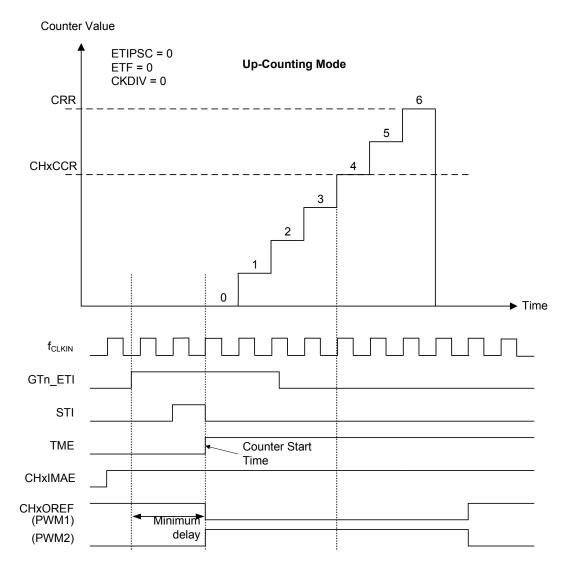


Figure 67. Immediate Active Mode Minimum Delay

Asymmetric PWM Mode

Asymmetric PWM mode allows two center-aligned PWM signals to be generated with a programmable phase shift. While the PWM frequency is determined by the value of the CRR register, the duty cycle and the phase-shift are determined by the CHxCCR and CHxACR register. When the counter is counting up, the PWM using the value in CHxCCR as up-count compare value. When the counter is into counting down stage, the PWM using the value in CHxACR as down-count compare value. The Figure 68 is shown as an example for asymmetric PWM mode in center-aligned counting mode.

Note: Asymmetric PWM mode can only be operated in center-aligned counting mode.

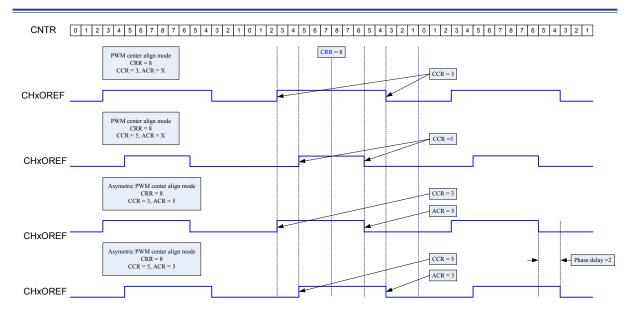


Figure 68. Asymmetric PWM Mode versus Center-aligned Counting Mode

Time Interconnection

The timers can be internally connected together for timer chaining or synchronization. This can be implemented by configuring one timer to operate in the Master mode while configuring another timer to be in the Slave mode. The following figures present several examples of trigger selection for the master and slave modes.

Using one timer to enable/disable another timer start or stop counting

- Configure GPTM0 as the master mode to send its channel 0 Output Reference signal CH0OREF as a trigger output (MMSEL = 0x04).
- Configure GPTM0 CH0OREF waveform.
- Configure GPTM1 to receive its input trigger source from the GPTM0 trigger output (TRSEL = 0x09).
- \blacksquare Configure GPTM1 to operate in the pause mode (SMSEL = 0x05).
- Enable GPTM1 by writing '1' to the TME bit.
- Enable GPTM0 by writing '1' to the TME bit.

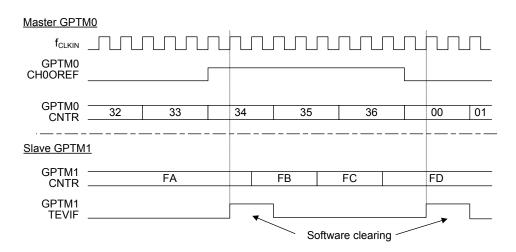


Figure 69. Pausing GPTM1 using the GPTM0 CH0OREF Signal

Using one timer to trigger another timer start counting

- Configure GPTM0 to operate in the master mode to send its Update Event UEV as the trigger output (MMSEL = 0x02).
- Configure the GPTM0 period by setting the CRR register.
- \blacksquare Configure GPTM1 to get the input trigger source from the GPTM0 trigger output (TRSEL = 0x09).
- \blacksquare Configure GPTM1 to be in the slave trigger mode (SMSEL = 0x06).
- Start GPTM0 by writing '1' to the TME bit.

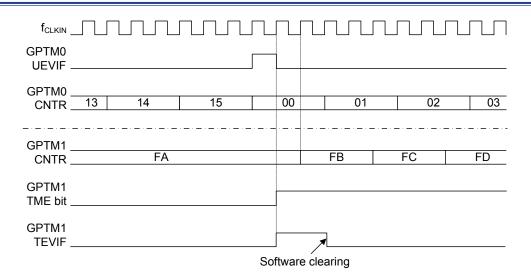


Figure 70. Triggering GPTM1 with GPTM0 Update Event

Starting two timers synchronously in response to an external trigger

- \blacksquare Configure GPTM0 to operate in the master mode to send its enable signal as a trigger output (MMSEL = 0x01).
- Configure GPTM0 slave mode to receive its input trigger source from GTn CH0 pin (TRSEL = 0x01).
- \blacksquare Configure GPTM0 to be in the slave trigger mode (SMSEL = 0x06).
- Enable the GPTM0 master timer synchronization function by setting the TSE bit in the MDCFR register to 1 to synchronize the slave timer.
- \blacksquare Configure GPTM1 to receive its input trigger source from the GPTM0 trigger output (TRSEL = 0x09).
- Configure GPTM1 to be in the slave trigger mode (SMSEL = 0x06).

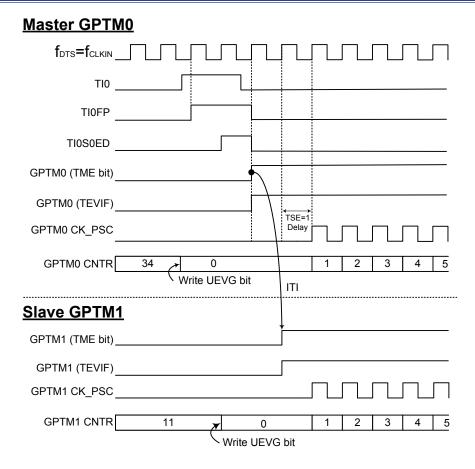


Figure 71. Trigger GPTM0 and GPTM1 with the GPTM0 CH0 Input

Rev. 1.10 271 of 680 November 22, 2018

Trigger ADC Start

To interconnect with the Analog-to-digital Converter, the GPTM can output the MTO signal or the channel output GTn_CHx ($x = 0 \sim 3$) signal to be used as the Analog-to-Digital Converter input trigger signal.

PDMA Request

The GPTM supports the interface for PDMA data transfer. There are certain events which can generate the PDMA requests if the corresponding enable control bits are set to 1 to enable the PDMA access. These events are the GPTM update events, trigger event and channel capture/compare events. When the PDMA request is generated from the GPTM channel, it can be derived from the channel capture/compare event or the GPTM update event selected by the channel PDMA selection bit, CHCCDS, for all channels. For more detailed PDMA configuring information, refer to the corresponding section in the PDMA chapter.

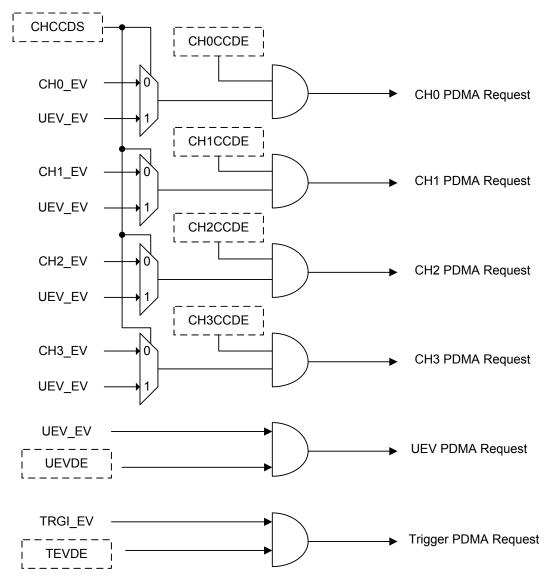


Figure 72. GPTM PDMA Mapping Diagram

Register Map

The following table shows the GPTM registers and reset values.

Table 33. Register Map of GPTM

Register	Offset	Description	Reset Value		
CNTCFR	0x000	Timer Counter Configuration Register	0x0000_0000		
MDCFR	0x004	Timer Mode Configuration Register	0x0000_0000		
TRCFR	0x008	Timer Trigger Configuration Register	0x0000_0000		
CTR	0x010	Timer Control Register	0x0000_0000		
CH0ICFR	0x020	Channel 0 Input Configuration Register	0x0000_0000		
CH1ICFR	0x024	Channel 1 Input Configuration Register	0x0000_0000		
CH2ICFR	0x028	Channel 2 Input Configuration Register	0x0000_0000		
CH3ICFR	0x02C	Channel 3 Input Configuration Register	0x0000_0000		
CH0OCFR	0x040	Channel 0 Output Configuration Register	0x0000_0000		
CH10CFR	0x044	Channel 1 Output Configuration Register	0x0000_0000		
CH2OCFR	0x048	Channel 2 Output Configuration Register	0x0000_0000		
CH3OCFR	0x04C	Channel 3 Output Configuration Register	0x0000_0000		
CHCTR	0x050	Channel Control Register	0x0000_0000		
CHPOLR	0x054	Channel Polarity Configuration Register	0x0000_0000		
DICTR	0x074	Timer PDMA / Interrupt Control Register	0x0000_0000		
EVGR	0x078	Timer Event Generator Register	0x0000_0000		
INTSR	0x07C	Timer Interrupt Status Register	0x0000_0000		
CNTR	0x080	Timer Counter Register	0x0000_0000		
PSCR	0x084	Timer Prescaler Register	0x0000_0000		
CRR	0x088	Timer Counter Reload Register	0x0000_FFFF		
CH0CCR	0x090	Channel 0 Capture / Compare Register	0x0000_0000		
CH1CCR	0x094	Channel 1 Capture / Compare Register	0x0000_0000		
CH2CCR	0x098	Channel 2 Capture / Compare Register	0x0000_0000		
CH3CCR	0x09C	Channel 3 Capture / Compare Register	0x0000_0000		
CH0ACR	0x0A0	Channel 0 Asymmetric Compare Register 0x0000_0			
CH1ACR	0x0A4	Channel 1 Asymmetric Compare Register 0x0000_000			
CH2ACR	0x0A8	Channel 2 Asymmetric Compare Register 0x0000_0000			
CH3ACR	0x0AC	Channel 3 Asymmetric Compare Register 0x0000_000			

Register Descriptions

Timer Counter Configuration Register – CNTCFR

This register specifies the GPTM counter configuration.

Offset: 0x000

Reset value: 0x0000_0000

_	31	30	29	28	27	26	25		24	
				Reserved					DIR	
Type/Reset									RW	0
_	23	22	21	20	19	18	17		16	
				Reserved			1		CMSE	EL
Type/Reset							RW	0	RW	0
_	15	14	13	12	11	10	9		8	
				Reserved					CKDI	IV
Type/Reset							RW	0	RW	0
_	7	6	5	4	3	2	1		0	
				Reserved			UGDI	s	UEVD	IS
Type/Reset							RW	0	RW	0

Bits	Field	Descriptions
[24]	DIR	Counting Direction 0: Count-up 1: Count-down Note: This bit is read only when the Timer is configured to be in the Center-aligned mode or when used as a Quadrature decoder
[17:16]	CMSEL	Counter Mode Selection 00: Edge aligned mode. Normal up-counting and down-counting available for this mode. Counting direction is defined by the DIR bit. 01: Center aligned mode 1. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-down period. 10: Center aligned mode 2. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-up period. 11: Center aligned mode 3. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-up and count-down period.
[9:8]	CKDIV	Clock Division $00: f_{DTS} = _{fCLKIN}$ $01: f_{DTS} = _{fCLKIN} / 2$ $10: f_{DTS} = _{fCLKIN} / 4$ 11: Reserved These two bits define the frequency ratio between the timer clock (f_{CLKIN}) and dead-time clock (f_{DTS}). The dead-time clock is also used for digital filter sampling clock.
[1]	UGDIS	Update event interrupt generation disable control 0: Any of the following events will generate an update PDMA request or interrupt - Counter overflow/underflow - Setting the UEVG bit - Update generation through the slave mode 1: Only counter overflow/underflow generates an update PDMA request or interrupt

Bits	Field	Descriptions
[0]	UEVDIS	Update event Disable control 0: Enable the update event request by one of following events: - Counter overflow/underflow - Setting the UEVG bit - Update generation through the slave mode 1: Disable the update event (However the counter and the prescaler are reinitialized if the UEVG bit is set or if a hardware restart is received from the slave mode)

Timer Mode Configuration Register – MDCFR

This register specifies the GPTM master and slave mode selection and single pulse mode.

Offset: 0x004
Reset value: 0x0000_0000

	31	30	29	28	27	26		25		24	
				Reserved						SPMSI	ΞT
Type/Reset	,									RW	0
	23	22	21	20	19	18		17		16	
			Reserved					MMSE	L		
Type/Reset						RW	0 R	W	0	RW	0
	15	14	13	12	11	10		9		8	
			Reserved					SMSE	L		
Type/Reset						RW	0 R	W	0	RW	0
	7	6	5	4	3	2		1		0	
				Reserved						TSE	
Type/Reset										RW	0

Bits	Field	Descriptions
[24]	SPMSET	Single Pulse Mode Setting
		Counter counts normally irrespective of whether the update event occurred or not

1: Counter stops counting at the next update event and then the TME bit is cleared by hardware

Bits Field Descriptions

[18:16] MMSEL

Master Mode Selection

Master mode selection is used to select the MTO signal source which is used to synchronize the other slave timer.

MMSEL [2:0]	Mode	Descriptions
000	Reset Mode	The MTO in the Reset mode is an output derived from one of the following cases: 1. Software setting UEVG bit 2. The STI trigger input signal which will be output on the MTO signal line when the Timer is used in the slave Restart mode
001	Enable Mode	The Counter Enable signal is used as the trigger output.
010	Update Mode	The update event is used as the trigger output according to one of the following cases when the UEVDIS bit is cleared to 0: 1. Counter overflow / underflow 2. Software setting UEVG 3. Slave trigger input when used in slave restart mode
011	Capture / Compare Mode	When a Channel 0 capture or compare match event occurs, it will generate a positive pulse used as the master trigger output.
100	Compare Mode 1	The Channel 0 Output reference signal named CH0OREF is used as the trigger output.
101	Compare Mode 2	The Channel 1 Output reference signal named CH1OREF is used as the trigger output.
110	Compare Mode 3	The Channel 2 Output reference signal named CH2OREF is used as the trigger output.
111	Compare Mode 4	The Channel 3 Output reference signal named CH3OREF is used as the trigger output.

Bits Field Descriptions

[10:8] SMSEL Slave Mode Selection

Slave Mode Sele	ection	
SMSEL [2:0]	Mode	Descriptions
000	Disable mode	The prescaler is clocked directly by the internal clock.
001	Quadrature Decoder mode 1	The counter uses the clock pulse generated from the interaction between the TI0 and TI1 signals to drive the counter prescaler. A transition of the TI0 edge is used in this mode depending upon the TI1 level.
010	Quadrature Decoder mode 2	The counter uses the clock pulse generated from the interaction between the TI0 and TI1 signals to drive the counter. A transition of the TI1 edge is used in this mode depending upon the TI0 level.
011	Quadrature Decoder mode 3	The counter uses the clock pulse generated from the interaction between the TIO and TI1 signals to drive the counter. A transition of one channel edge is used in the quadrature decoder mode 3 depending upon the other channel level.
100	Restart Mode	The counter value restarts from 0 or the CRR shadow register value depending upon the counter mode on the rising edge of the STI signal. The registers will also be updated.
101	Pause Mode	The counter starts to count when the selected trigger input STI is high. The counter stops counting on the instant, not being reset, when the STI signal changes its state to a low level. Both the counter start and stop control are determined by the STI signal.
110	Trigger Mode	The counter starts to count from the original value in the counter on the rising edge of the selected trigger input STI. Only the counter start control is determined by the STI signal.
111	STIED	The rising edge of the selected trigger signal STI will clock the counter.

[0] TSE

Timer Synchronization Enable

- 0: No action
- 1: Master timer (current timer) will generate a delay to synchronize its slave timer through the MTO signal.

Timer Trigger Configuration Register – TRCFR

This register specifies the GPTM external clock setting and the trigger source selection.

Offset: 0x008
Reset value: 0x0000_0000

	31	30	29		28		27	,	26		25		24	
					Reserv	ed/							ECM	IE
Type/Reset													RW	0
	23	22	21		20		19)	18		17		16	
					Reserv	ed/							ETIP	OL
Type/Reset													RW	0
	15	14	13		12		11		10		9		8	
		Reserved			ETIPS	SC					ETF			
Type/Reset			RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7	6	5		4		3		2		1		0	
			Reserv	ed							TRSE	L		
Type/Reset	·	-					RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[24]	ECME	External Clock Mode Enable 0: External clock mode is disabled 1: External clock mode is enabled Setting the ECME bit has the same effect as configuring STI trigger slave mode in which the trigger source is derived from the GTn_ETI pin, the external clock input on the GTn_ETI pin is used.
[16]	ETIPOL	External Trigger Polarity 0: GTn_ETI active at high level or rising edge 1: GTn_ETI active at low level or falling edge
[13:12]	ETIPSC	External Trigger Prescaler A prescaler can be enabled to reduce the ETIP frequency. 00: Prescaler OFF 01: ETIP frequency divided by 2 10: ETIP frequency divided by 4 11: ETIP frequency divided by 8

Bits	Field	Descriptions
[11:8]	ETF	External Trigger Filter These bits define the frequency divided ratio that is used to sample the GTn_ETI signal. The digital filter in the GPTM is an N-event counter where N means how many valid transitions are necessary to output a filtered signal. 0000: No filter, sampling is done at fDTS 0001: $f_{SAMPLING} = f_{CLKIN}$, N = 2 0010: $f_{SAMPLING} = f_{CLKIN}$, N = 8 0100: $f_{SAMPLING} = f_{DTS} / 2$, N = 8 0100: $f_{SAMPLING} = f_{DTS} / 2$, N = 8 0110: $f_{SAMPLING} = f_{DTS} / 4$, N = 8 1000: $f_{SAMPLING} = f_{DTS} / 4$, N = 8 1000: $f_{SAMPLING} = f_{DTS} / 8$, N = 8 1010: $f_{SAMPLING} = f_{DTS} / 8$, N = 8 1010: $f_{SAMPLING} = f_{DTS} / 16$, N = 5 1011: $f_{SAMPLING} = f_{DTS} / 16$, N = 8 1101: $f_{SAMPLING} = f_{DTS} / 16$, N = 8 1101: $f_{SAMPLING} = f_{DTS} / 16$, N = 8 1101: $f_{SAMPLING} = f_{DTS} / 16$, N = 8 1111: $f_{SAMPLING} = f_{DTS} / 32$, N = 6 1111: $f_{SAMPLING} = f_{DTS} / 32$, N = 6
[3:0]	TRSEL	Trigger Source Selection These bits are used to select the trigger input (STI) for counter synchronizing. 0000: Software Trigger by setting UEVG bit 0001: Filtered input of channel 0 (TI0S0) 0010: Filtered input of channel 1 (TI1S1) 0011: External Trigger input (ETIF) 1000: Channel 0 Edge Detector (TI0BED) 1001: Internal Timing Module Trigger (ITI0) 1010: Internal Timing Module Trigger (ITI1) 1011: Internal Timing Module Trigger (ITI2) Others: Default 0 Note: These bits must be updated only when they are not in use, i.e. the slave mode

Note: These bits must be updated only when they are not in use, i.e. the slave mode is disabled by setting the SMSEL field to 0x00.

Table 34. GPTM internal Trigger Connection

Slave Timing Module	ITI0	ITI1	ITI2		
GPTM0	GPTM1	MCTM0	MCTM1		
GPTM1	GPTM0	MCTM0	MCTM1		

Timer Counter Register – CTR

This register specifies the timer enable bit (TME), CRR buffer enable bit (CRBE) and Channel PDMA selection bit (CHCCDS).

Offset: 0x010
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved		,	
Type/Reset								
	23	22	21	20	19	18	17	16
				Reserved				CHCCDS
Type/Reset								RW 0
	15	14	13	12	11	10	9	8
					Reserved		,	
Type/Reset							'	
	7	6	5	4	3	2	1	0
				Reserved			CRBE	TME
Type/Reset							RW 0	RW 0

Bits	Field	Descriptions
[16]	CHCCDS	Channel PDMA event selection 0: Send CHx PDMA request when channel capture/compare event occurs. 1: Send CHx PDMA request when Update event occurs.
[1]	CRBE	Counter-Reload register Buffer Enable 0: Counter reload register can be updated immediately 1: Counter reload register can not be updated until the update event occurs
[0]	TME	Timer Enable bit 0: GPTM off 1: GPTM on – GPTM functions normally When the TME bit is cleared to 0, the counter is stopped and the GPTM consumes no power in any operation mode except for the single pulse mode and the slave trigger mode. In these two modes the TME bit can automatically be set to 1 by hardware which permits all the GPTM registers to function normally.

Channel 0 Input Configuration Register – CH0ICFR

This register specifies the channel 0 input mode configuration.

Offset: 0x020
Reset value: 0x0000_0000

	31	30	29	28	27		26	25	;	24
	TI0SRC				Reserv	ed				
Type/Reset	RW 0									
	23	22	21	20	19		18	17		16
			Reserved				CH0PSC		CH	occs
Type/Reset					RW	0	RW 0	RW	0 RW	0
	15	14	13	12	11		10	9		8
					Reserv	ed				
Type/Reset										
	7	6	5	4	3		2	1		0
			Reserved					TIOF		
Type/Reset					RW	0	RW 0	RW	0 RW	0

Bits	Field	Descriptions
[31]	TIOSRC	Channel 0 Input Source TI0 Selection 0: The GTn_CH0 pin is connected to channel 0 input TI0 1: The XOR operation output of the GTn_CH0, GTn_CH1, and GTn_CH2 pins are connected to the channel 0 input TI0
[19:18]	CH0PSC	Channel 0 Capture Input Source Prescaler Setting These bits define the effective events of the channel 0 capture input. Note that the prescaler is reset once the Channel 0 Capture/Compare Enable bit, CH0E, in the Channel Control register named CHCTR is cleared to 0. 00: No prescaler, channel 0 capture input signal is chosen for each active event 01: Channel 0 Capture input signal is chosen for every 2 events 10: Channel 0 Capture input signal is chosen for every 4 events 11: Channel 0 Capture input signal is chosen for every 8 events
[17:16]	CH0CCS	Channel 0 Capture/Compare Selection 00: Channel 0 is configured as an output 01: Channel 0 is configured as an input derived from the TI0 signal 10: Channel 0 is configured as an input derived from the TI1 signal 11: Channel 0 is configured as an input which comes from the TRCED signal derived from the Trigger Controller Note: The CH0CCS field can be accessed only when the CH0E bit is cleared to 0.

Rev. 1.10 281 of 680 November 22, 2018

Bits	Field	Descriptions
[3:0]	TIOF	Channel 0 Input Source TI0 Filter Setting These bits define the frequency divided ratio used to sample the TI0 signal. The Digital filter in the GPTM is an N-event counter where N is defined as how many valid transitions are necessary to output a filtered signal 0000: No filter, sampling is done at f_{DTS} 0001: $f_{SAMPLING} = f_{CLKIN}$, N = 2 0010: $f_{SAMPLING} = f_{CLKIN}$, N = 4 0011: $f_{SAMPLING} = f_{CLKIN}$, N = 8 0100: $f_{SAMPLING} = f_{DTS} / 2$, N = 6
		0101: $f_{SAMPLING} = f_{DTS} / 2$, $N = 8$ 0110: $f_{SAMPLING} = f_{DTS} / 4$, $N = 6$ 0111: $f_{SAMPLING} = f_{DTS} / 4$, $N = 8$ 1000: $f_{SAMPLING} = f_{DTS} / 8$, $N = 6$ 1001: $f_{SAMPLING} = f_{DTS} / 8$, $N = 8$ 1010: $f_{SAMPLING} = f_{DTS} / 16$, $N = 5$ 1011: $f_{SAMPLING} = f_{DTS} / 16$, $N = 6$ 1100: $f_{SAMPLING} = f_{DTS} / 16$, $N = 8$ 1101: $f_{SAMPLING} = f_{DTS} / 32$, $N = 5$ 1110: $f_{SAMPLING} = f_{DTS} / 32$, $N = 6$ 1111: $f_{SAMPLING} = f_{DTS} / 32$, $N = 8$

Channel 1 Input Configuration Register – CH1ICFR

This register specifies the channel 1 input mode configuration.

Offset: 0x024 Reset value: 0x0000_0000

	31	30	29	28	27	26	25		24	
					Reserv	ed				
Type/Reset										
	23	22	21	20	19	18	17		16	
			Reserved			CH1PS	SC		CH1C	cs
Type/Reset					RW	0 RW	0 RW	0	RW	0
_	15	14	13	12	11	10	9		8	
					Reserv	ed				
Type/Reset					"					
_	7	6	5	4	3	2	1		0	
			Reserved				TI1F			
Type/Reset					RW	0 RW	0 RW	0	RW	0

Bits	Field	Descriptions
[19:18]	CH1PSC	Channel 1 Capture Input Source Prescaler Setting These bits define the effective events of the channel 1 capture input. Note that the prescaler is reset once the Channel 1 Capture/Compare Enable bit, CH1E, in the Channel Control register named CHCTR is cleared to 0. 00: No prescaler, channel 1 capture input signal is chosen for each active event 01: Channel 1 Capture input signal is chosen for every 2 events 10: Channel 1 Capture input signal is chosen for every 4 events 11: Channel 1 Capture input signal is chosen for every 8 events
[17:16]	CH1CCS	Channel 1 Capture/Compare Selection 00: Channel 1 is configured as an output 01: Channel 1 is configured as an input derived from the TI1 signal 10: Channel 1 is configured as an input derived from the TI0 signal 11: Channel 1 is configured as an input which comes from the TRCED signal derived from the Trigger Controller Note: The CH1CCS field can be accessed only when the CH1E bit is cleared to 0
[3:0]	TI1F	Channel 1 Input Source TI1 Filter Setting These bits define the frequency divided ratio used to sample the TI1 signal. The Digital filter in the GPTM is an N-event counter where N is defined as how many valid transitions are necessary to output a filtered signal. 0000: No filter, sampling is done at f_{DTS} 0001: $f_{SAMPLING} = f_{CLKIN}$, N = 2 0010: $f_{SAMPLING} = f_{CLKIN}$, N = 4 0011: $f_{SAMPLING} = f_{CLKIN}$, N = 8 0100: $f_{SAMPLING} = f_{DTS}$ / 2, N = 6 0101: $f_{SAMPLING} = f_{DTS}$ / 3, N = 8 0110: $f_{SAMPLING} = f_{DTS}$ / 4, N = 8 1000: $f_{SAMPLING} = f_{DTS}$ / 4, N = 8 1001: $f_{SAMPLING} = f_{DTS}$ / 8, N = 8 1001: $f_{SAMPLING} = f_{DTS}$ / 16, N = 5 1011: $f_{SAMPLING} = f_{DTS}$ / 16, N = 6 1100: $f_{SAMPLING} = f_{DTS}$ / 16, N = 8 1101: $f_{SAMPLING} = f_{DTS}$ / 16, N = 8 1101: $f_{SAMPLING} = f_{DTS}$ / 32, N = 5 1110: $f_{SAMPLING} = f_{DTS}$ / 32, N = 6 1111: $f_{SAMPLING} = f_{DTS}$ / 32, N = 6

Channel 2 Input Configuration Register – CH2ICFR

This register specifies the channel 2 input mode configuration.

Offset: 0x028

Reset value: 0x0000_0000

	31	30	29	28	27		26	25	24
					Reserv	ed			"
Type/Reset									"
	23	22	21	20	19		18	17	16
			Reserved				CH2PSC		CH2CCS
Type/Reset					RW	0	RW 0	RW	0 RW 0
	15	14	13	12	11		10	9	8
					Reserv	ed			
Type/Reset									,
	7	6	5	4	3		2	1	0
			Reserved					TI2F	
Type/Reset					RW	0	RW 0	RW	0 RW 0

Bits	Field	Descriptions
[19:18]	CH2PSC	Channel 2 Capture Input Source Prescaler Setting
		These bits define the effective events of the channel 2 capture input. Note that the
		prescaler is reset once the Channel 2 Capture/Compare Enable bit, CH2E, in the
		Channel Control register named CHCTR is cleared to 0.
		 00: No prescaler, channel 2 capture input signal is chosen for each active event 01: Channel 2 Capture input signal is chosen for every 2 events 10: Channel 2 Capture input signal is chosen for every 4 events 11: Channel 2 Capture input signal is chosen for every 8 events
[17:16]	CH2CCS	Channel 2 Capture/Compare Selection
		00: Channel 2 is configured as an output
		01: Channel 2 is configured as an input derived from the TI2 signal
		10: Channel 2 is configured as an input derived from the TI3 signal
		11: Channel 2 is configured as an input which comes from the TRCED signal
		derived from the Trigger Controller

Note: The CH2CCS field can be accessed only when the CH2E bit is cleared to 0

Bits	Field	Descriptions
[3:0]	TI2F	Channel 2 Input Source TI2 Filter Setting
		These bits define the frequency divided ratio used to sample the TI2 signal. The
		Digital filter in the GPTM is an N-event counter where N is defined as how many
		valid transitions are necessary to output a filtered signal.
		0000: No filter, sampling is done at f _{DTS}
		0001: $f_{SAMPLING} = f_{CLKIN}$, $N = 2$
		0010: $f_{SAMPLING} = f_{CLKIN}$, $N = 4$
		$0011: f_{SAMPLING} = f_{CLKIN}, N = 8$
		0100: $f_{SAMPLING} = f_{DTS} / 2$, N = 6
		0101: $f_{SAMPLING} = f_{DTS} / 2$, N = 8
		0110: $f_{SAMPLING} = f_{DTS} / 4$, N = 6
		0111: $f_{SAMPLING} = f_{DTS} / 4$, N = 8
		1000: $f_{SAMPLING} = f_{DTS} / 8$, N = 6
		1001: $f_{SAMPLING} = f_{DTS} / 8$, N = 8
		1010: $f_{SAMPLING} = f_{DTS} / 16$, N = 5
		1011: $f_{SAMPLING} = f_{DTS} / 16$, N = 6
		1100: $f_{SAMPLING} = f_{DTS} / 16$, N = 8
		1101: $f_{SAMPLING} = f_{DTS} / 32$, N = 5
		1110: $f_{SAMPLING} = f_{DTS} / 32$, N = 6
		1111: $f_{SAMPLING} = f_{DTS} / 32$, N = 8

Channel 3 Input Configuration Register – CH3ICFR

29

This register specifies the channel 3 input mode configuration.

30

Offset: 0x02C Reset value: 0x0000_0000

31

					Reserv	⁄ed						
Type/Reset												
	23	22	21	20	19		18		17		16	
			Reserved				CH3PS	SC			CH3C	CS
Type/Reset					RW	0	RW	0	RW	0	RW	0
	15	14	13	12	11		10		9		8	
					Reserv	/ed						
Type/Reset	,											
	7	6	5	4	3		2		1		0	
			Reserved						TI3F			
Type/Reset					RW	0	RW	0	RW	0	RW	0

28

27

26

25

24

Bits	Field	Descriptions
[19:18]	CH3PSC	Channel 3 Capture Input Source Prescaler Setting
		These bits define the effective events of the channel 3 capture input. Note that the prescaler is reset once the Channel 3 Capture/Compare Enable bit, CH3E, in the
		Channel Control register named CHCTR is cleared to 0.
		 00: No prescaler, channel 3 capture input signal is chosen for each active event 01: Channel 3 Capture input signal is chosen for every 2 events 10: Channel 3 Capture input signal is chosen for every 4 events 11: Channel 3 Capture input signal is chosen for every 8 events
[17:16]	CH3CCS	Channel 3 Capture/Compare Selection
[17.10]	0110000	00: Channel 3 is configured as an output
		01: Channel 3 is configured as an input derived from the TI3 signal
		10: Channel 3 is configured as an input derived from the TI2 signal
		11: Channel 3 is configured as an input which comes from the TRCED signal
		derived from the Trigger Controller Note: The CH3CCS field can be accessed only when the CH3E bit is cleared to 0
[2.0]	TI3F	
[3:0]	ПЭГ	Channel 3 Input Source TI3 Filter Setting These bits define the frequency divided ratio used to sample the TI3 signal. The
		Digital filter in the GPTM is an N-event counter where N is defined as how many
		valid transitions are nevessary to output a filtered signal.
		0000: No filter, sampling is done at f _{DTS} .
		0001 : $f_{SAMPLING} = f_{CLKIN}$, $N = 2$
		0010: $f_{SAMPLING} = f_{CLKIN}$, $N = 4$
		0011: $f_{SAMPLING} = f_{CLKIN}$, N = 8
		0100: $f_{SAMPLING} = f_{DTS} / 2$, N = 6
		0101: $f_{SAMPLING} = f_{DTS} / 2$, N = 8 0110: $f_{SAMPLING} = f_{DTS} / 4$, N = 6
		0111: $f_{SAMPLING} = f_{DTS} / 4$, $N = 8$
		1000: $f_{SAMPLING} = f_{DTS} / 8$, N = 6
		1001: $f_{SAMPLING} = f_{DTS} / 8$, N = 8
		1010: $f_{SAMPLING} = f_{DTS} / 16$, N = 5
		1011: $f_{SAMPLING} = f_{DTS} / 16$, N = 6
		1100: f _{SAMPLING} = f _{DTS} / 16, N = 8
		1101: $f_{SAMPLING} = f_{DTS} / 32$, N = 5 1110: $f_{SAMPLING} = f_{DTS} / 32$, N = 6
		1111: f _{SAMPLING} = f _{DTS} / 32, N = 8

Channel 0 Output Configuration Register – CH0OCFR

This register specifies the channel 0 output mode configuration.

Offset: 0x040
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
				Reserved				CH0OM[3]
Type/Reset								
	7	6	5	4	3	2	1	0
		Reserved	CH0IMAE	CH0PRE	REF0CE		CH0OM[2:0]	
Type/Reset			RW 0	RW 0	RW 0	RW	0 RW 0	RW 0

Bits	Field	Descriptions
[5]	CH0IMAE	Channel 0 Immediate Active Enable 0: No action 1: Single pulse Immediate Active Mode is enabled The CH0OREF will be forced to the compare matched level immediately after an available trigger event occurs irrespective of the result of the comparison between the CNTR and the CH0CCR values. The effective duration ends automatically at the next overflow or underflow event. Note: The CH0IMAE bit is available only if the channel 0 is configured to be operated in the PWM mode 1 or the PWM mode 2.
[4]	CH0PRE	Channel 0 Capture/Compare Register (CH0CCR) Preload Enable 0: CH0CCR preload function is disabled. The CH0CCR register can be immediately assigned a new value when the CH0PRE bit is cleared to 0 and the updated CH0CCR value is used immediately. 1: CH0CCR preload function is enabled. The new CH0CCR value will not be transferred to its shadow register until the update event occurs.
[3]	REF0CE	Channel 0 Reference Output Clear Enable 0: CH0OREF performed normally and is not affected by the ETIF signal 1: CH0OREF is forced to 0 on the high level of the ETIF signal derived from the GTn_ETI pin

Bits	Field	Descriptions
[8][2:0]	CH0OM[3:0]	Channel 0 Output Mode Setting
		These bits define the functional types of the output reference signal CH0OREF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH0OREF is forced to 0
		0101: Force active – CH0OREF is forced to 1
		0110: PWM mode 1
		- During up-counting, channel 0 has an active level when CNTR <
		CH0CCR or otherwise has an inactive level.
		- During down-counting, channel 0 has an inactive level when CNTR >
		CH0CCR or otherwise has an active level.
		0111: PWM mode 2
		- During up-counting, channel 0 is has an inactive level when CNTR <
		CH0CCR or otherwise has an active level.
		- During down-counting, channel 0 has an active level when CNTR >
		CH0CCR or otherwise has an inactive level.
		1110: Asymmetric PWM mode 1
		- During up-counting, channel 0 has an active level when CNTR <
		CH0CCR or otherwise has an inactive level.
		- During down-counting, channel 0 has an inactive level when CNTR >
		CH0ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		D. C. C. L. LOL C. C. L. C. L. C.

- During up-counting, channel 0 has an inactive level when CNTR < CH0CCR or otherwise has an active level.
- During down-counting, channel 0 has an active level when CNTR > CH0ACR or otherwise has an inactive level

Note: When channel 0 is used as asymmetric PWM output mode, the Counter Mode Selection bit in Counter Configuration Register must be configured as center align mode (CMSEL = 01/02/03).

Channel 1 Output Configuration Register – CH1OCFR

This register specifies the channel 1 output mode configuration.

Offset: 0x044

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
				Reserved				CH1OM[3]
Type/Reset								
	7	6	5	4	3	2	1	0
		Reserved	CH1IMAE	CH1PRE	REF1CE		CH1OM[2:0]	
Type/Reset		_	RW 0	RW 0	RW 0	RW	0 RW 0	RW 0

Bits	Field	Descriptions
[5]	CH1IMAE	Channel 1 Immediate Active Enable 0: No action 1: Single pulse Immediate Active Mode is enabled The CH1OREF will be forced to the compare matched level immediately after an available trigger event occurs irrespective of the result of the comparison between the CNTR and the CH1CCR values. The effective duration ends automatically at the next overflow or underflow event. Note: The CH1IMAE bit is available only if the channel 1 is configured to be operated in the PWM mode 1 or the PWM mode 2.
[4]	CH1PRE	Channel 1 Capture/Compare Register (CH1CCR) Preload Enable 0: CH1CCR preload function is disabled The CH1CCR register can be immediately assigned a new value when the CH1PRE bit is cleared to 0 and the updated CH1CCR value is used immediately. 1: CH1CCR preload function is enabled The new CH1CCR value will not be transferred to its shadow register until the update event occurs.
[3]	REF1CE	Channel 1 Reference Output Clear Enable 0: CH1OREF performed normally and is not affected by the ETIF signal 1: CH1OREF is forced to 0 on the high level of the ETIF signal derived from the GTn_ETI pin

Bits	Field	Descriptions
[8][2:0]	CH1OM[3:0]	Channel 1 Output Mode Setting
		These bits define the functional types of the output reference signal CH10REF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH10REF is forced to 0
		0101: Force active – CH1OREF is forced to 1
		0110: PWM mode 1
		- During up-counting, channel 1 has an active level when CNTR <
		CH1CCR or otherwise has an inactive level.
		- During down-counting, channel 1 has an inactive level when CNTR >
		CH1CCR or otherwise has an active level.
		0111: PWM mode 2
		- During up-counting, channel 1 has an inactive level when CNTR <
		CH1CCR or otherwise has an active level.
		- During down-counting, channel 1 has an active level when CNTR >
		CH1CCR or otherwise has an inactive level.
		1110: Asymmetric PWM mode 1
		- During up-counting, channel 1 has an active level when CNTR <
		CH1CCR or otherwise has an inactive level.
		- During down-counting, channel 1 has an inactive level when CNTR >
		CH1ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		- During up-counting, channel 1 has an inactive level when CNTR <

Note: When channel 1 is used as asymmetric PWM output mode, the Counter Mode Selection bit in Counter Configuration Register must be configured as center align mode (CMSEL = 01/02/03).

- During down-counting, channel 1 has an active level when CNTR >

CH1CCR or otherwise has an active level.

CH1ACR or otherwise has an inactive level

Channel 2 Output Configuration Register – CH2OCFR

This register specifies the channel 2 output mode configuration.

Offset: 0x048
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
	31							
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
				Reserved				CH2OM[3]
Type/Reset								
	7	6	5	4	3	2	1	0
		Reserved	CH2IMAE	CH2PRE	REF2CE		CH2OM[2:0]	
Type/Reset			RW 0	RW 0	RW 0	RW	0 RW 0	RW 0

Bits	Field	Descriptions
[5]	CH2IMAE	Channel 2 Immediate Active Enable 0: No action 1: Single pulse Immediate Active Mode is enabled The CH2OREF will be forced to the compare matched level immediately after an available trigger event occurs irrespective of the result of the comparison between the CNTR and the CH2CCR values. The effective duration ends automatically at the next overflow or underflow event. Note: The CH2IMAE bit is available only if the channel 2 is configured to be operated in the PWM mode 1 or the PWM mode 2.
[4]	CH2PRE	Channel 2 Capture/Compare Register (CH2CCR) Preload Enable 0: CH2CCR preload function is disabled The CH2CCR register can be immediately assigned a new value when the CH2PRE bit is cleared to 0 and the updated CH2CCR value is used immediately. 1: CH2CCR preload function is enabled The new CH2CCR value will not be transferred to its shadow register until the update event occurs.
[3]	REF2CE	Channel 2 Reference Output Clear Enable 0: CH2OREF performed normally and is not affected by the ETIF signal 1: CH2OREF is forced to 0 on the high level of the ETIF signal derived from the GTn_ETI pin

Bits	Field	Descriptions
[8][2:0]	CH2OM[3:0]	Channel 2 Output Mode Setting These bits define the functional types of the output reference signal CH2OREF. 0000: No Change 0001: Output 0 on compare match 0010: Output 1 on compare match 0011: Output toggles on compare match 0100: Force inactive – CH2OREF is forced to 0
		 0101: Force active – CH2OREF is forced to 1 0110: PWM mode 1 - During up-counting, channel 2 has an active level when CNTR < CH2CCR or otherwise has an inactive level. - During down-counting, channel 2 has an inactive level when CNTR > CH2CCR or otherwise has an active level.
		0111: PWM mode 2 - During up-counting, channel 2 has an inactive level when CNTR < CH2CCR or otherwise has an active level. - During down-counting, channel 2 has an active level when CNTR > CH2CCR or otherwise has an inactive level.
		 1110: Asymmetric PWM mode 1 - During up-counting, channel 2 has an active level when CNTR < CH2CCR or otherwise has an inactive level. - During down-counting, channel 2 has an inactive level when CNTR > CH2ACR or otherwise has an active level. 1111: Asymmetric PWM mode 2 - During up-counting, channel 2 has an inactive level when CNTR < CH2CCR or otherwise has an active level.

Note: When channel 2 is used as asymmetric PWM output mode, the Counter Mode Selection bit in Counter Configuration Register must be configured as center align mode (CMSEL = 01/02/03).

CH2ACR or otherwise has an inactive level

- During down-counting, channel 2 has an active level when CNTR >

Channel 3 Output Configuration Register – CH3OCFR

This register specifies the channel 3 output mode configuration.

Offset: 0x04C Reset value: 0x0000_0000

Reset value.	0x0000_0000	J						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								_
	15	14	13	12	11	10	9	8
				Reserved				CH3OM[3]
Type/Reset								
	7	6	5	4	3	2	1	0
		Reserved	CH3IMAE	CH3PRE	REF3CE		CH3OM[2:0]
Type/Reset			RW 0	RW 0	RW 0	RW (0 RW 0	RW 0

Bits	Field	Descriptions
[5]	CH3IMAE	Channel 3 Immediate Active Enable 0: No action 1: Single pulse Immediate Active Mode is enabled The CH3OREF will be forced to the compare matched level immediately after an available trigger event occurs irrespective of the result of the comparison between the CNTR and the CH3CCR values. The effective duration ends automatically at the next overflow or underflow event. Note: The CH3IMAE bit is available only if the channel 3 is configured to be operated in the PWM mode 1 or the PWM mode 2.
[4]	CH3PRE	Channel 3 Capture/Compare Register (CH3CCR) Preload Enable 0: CH3CCR preload function is disabled. The CH3CCR register can be immediately assigned a new value when the CH3PRE bit is cleared to 0 and the updated CH3CCR value is used immediately. 1: CH3CCR preload function is enabled The new CH3CCR value will not be transferred to its shadow register until the update event occurs.
[3]	REF3CE	Channel 3 Reference Output Clear Enable 0: CH3OREF performed normally and is not affected by the ETIF signal 1: CH3OREF is forced to 0 on the high level of the ETIF signal derived from the GTn_ETI pin

Rev. 1.10 293 of 680 November 22, 2018

Bits	Field	Descriptions
[8][2:0]	CH3OM[3:0]	Channel 3 Output Mode Setting These bits define the functional types of the output reference signal CH3OREF 0000: No Change 0001: Output 0 on compare match 0010: Output 1 on compare match 0011: Output toggles on compare match 0100: Force inactive – CH3OREF is forced to 0 0101: Force active – CH3OREF is forced to 1 0110: PWM mode 1 - During up-counting, channel 3 has an active level when CNTR < CH3CCR or otherwise has an inactive level. - During down-counting, channel 3 has an inactive level when CNTR > CH3CCR or otherwise has an active level.
		 0111: PWM mode 2 During up-counting, channel 3 has an inactive level when CNTR < CH3CCR or otherwise has an active level. During down-counting, channel 3 has an active level when CNTR > CH3CCR or otherwise has an inactive level 1110: Asymmetric PWM mode 1
		 During up-counting, channel 3 has an active level when CNTR < CH3CCR or otherwise has an inactive level. During down-counting, channel 3 has an inactive level when CNTR > CH3ACR or otherwise has an active level. 1111: Asymmetric PWM mode 2 During up-counting, channel 3 has an inactive level when CNTR < CH3CCR or otherwise has an active level.

Note: When channel 3 is used as asymmetric PWM output mode, the Counter Mode Selection bit in Counter Configuration Register must be configured as center align mode (CMSEL = 01/02/03).

CH3ACR or otherwise has an inactive level

- During down-counting, channel 3 has an active level when CNTR >

Channel Control Register – CHCTR

This register contains the channel capture input or compare output function enable control bits.

Offset: 0x050
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	Reserved	CH3E	Reserved	CH2E	Reserved	CH1E	Reserved	CH0E
Type/Reset	<u> </u>	RW 0		RW 0		RW 0		RW 0

Bits	Field	Descriptions
[6]	CH3E	Channel 3 Capture/Compare Enable - Channel 3 is configured as an input (CH3CCS = 0x01/0x02/0x03) 0: Input Capture Mode is disabled 1: Input Capture Mode is enabled - Channel 3 is configured as an output (CH3CCS = 0x00) 0: Off – CH3O is not active 1: On – CH3O signal is output on the corresponding output pin
[4]	CH2E	Channel 2 Capture/Compare Enable - Channel 2 is configured as an input (CH2CCS = 0x01/0x02/0x03) 0: Input Capture Mode is disabled 1: Input Capture Mode is enabled - Channel 2 is configured as an output (CH2CCS = 0x00) 0: Off – CH2O is not active 1: On – CH2O signal is output on the corresponding output pin
[2]	CH1E	Channel 1 Capture/Compare Enable - Channel 1 is configured as an input (CH1CCS = 0x01/0x02/0x03) 0: Input Capture Mode is disabled 1: Input Capture Mode is enabled - Channel 1 is configured as an output (CH1CCS = 0x00) 0: Off – CH1O is not active 1: On – CH1O signal is output on the corresponding output pin
[0]	CH0E	Channel 0 Capture/Compare Enable - Channel 0 is configured as an input (CH0CCS = 0x01/0x02/0x03) 0: Input Capture Mode is disabled 1: Input Capture Mode is enabled - Channel 0 is configured as an output (CH0CCS = 0x00) 0: Off – CH0O is not active 1: On – CH0O signal is output on the corresponding output pin

Channel Polarity Configuration Register – CHPOLR

This register contains the channel capture input or compare output polarity control.

Offset: 0x054
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	Reserved	CH3P	Reserved	CH2P	Reserved	CH1P	Reserved	CH0P
Type/Reset	<u> </u>	RW 0		RW 0		RW 0		RW 0

Bits	Field	Descriptions
[6]	СНЗР	Channel 3 Capture/Compare Polarity - When Channel 3 is configured as an input (CH3CCS = 0x01/0x02/0x03) 0: capture event occurs on a Channel 3 rising edge 1: capture event occurs on a Channel 3 falling edge - When Channel 3 is configured as an output (CH3CCS = 0x00) 0: Channel 3 Output is active high 1: Channel 3 Output is active low
[4]	CH2P	Channel 2 Capture/Compare Polarity - When Channel 2 is configured as an input (CH2CCS = 0x01/0x02/0x03) 0: capture event occurs on a Channel 2 rising edge 1: capture event occurs on a Channel 2 falling edge - When Channel 2 is configured as an output (CH2CCS = 0x00) 0: Channel 2 Output is active high 1: Channel 2 Output is active low
[2]	CH1P	Channel 1 Capture/Compare Polarity - When Channel 1 is configured as an input (CH1CCS = 0x01/0x02/0x03) 0: capture event occurs on a Channel 1 rising edge 1: capture event occurs on a Channel 1 falling edge - Channel 1 is configured as an output (CH1CCS = 0x00) 0: Channel 1 Output is active high 1: Channel 1 Output is active low
[0]	CH0P	Channel 0 Capture/Compare Polarity - When Channel 0 is configured as an input (CH0CCS = 0x01/0x02/0x03) 0: capture event occurs on a Channel 0 rising edge 1: capture event occurs on a Channel 0 falling edge of CH0 - When Channel 0 is configured as an output (CH0CCS = 0x00) 0: Channel 0 Output is active high 1: Channel 0 Output is active low

Timer PDMA/Interrupt Control Register – DICTR

This register contains the timer PDMA and interrupt enable control bits.

Offset: 0x074
Reset value: 0x0000_0000

	31	30	29	28	27		26	25	24
			Reserved				TEVDE	Reserved	UEVDE
Type/Reset							RW 0		RW 0
	23	22	21	20	19		18	17	16
			Reserved		CH3CCE	DΕ	CH2CCDE	CH1CCDE	CH0CCDE
Type/Reset					RW	0	RW 0	RW 0	RW 0
	15	14	13	12	11		10	9	8
			Reserved				TEVIE	Reserved	UEVIE
Type/Reset							RW 0		RW 0
	7	6	5	4	3		2	1	0
			Reserved		CH3CCI	Ε	CH2CCIE	CH1CCIE	CH0CCIE

Bits	Field	Descriptions
[26]	TEVDE	Trigger event PDMA Request Enable 0: Trigger PDMA request is disabled 1: Trigger PDMA request is enabled
[24]	UEVDE	Update event PDMA Request Enable 0: Update event PDMA request is disabled 1: Update event PDMA request is enabled
[19]	CH3CCDE	Channel 3 Capture/Compare PDMA Request Enable 0: Channel 3 PDMA request is disabled 1: Channel 3 PDMA request is enabled
[18]	CH2CCDE	Channel 2 Capture/Compare PDMA Request Enable 0: Channel 2 PDMA request is disabled 1: Channel 2 PDMA request is enabled
[17]	CH1CCDE	Channel 1 Capture/Compare PDMA Request Enable 0: Channel 1 PDMA request is disabled 1: Channel 1 PDMA request is enabled
[16]	CH0CCDE	Channel 0 Capture/Compare PDMA Request Enable 0: Channel 0 PDMA request is disabled 1: Channel 0 PDMA request is enabled
[10]	TEVIE	Trigger event Interrupt Enable 0: Trigger interrupt is disabled 1: Trigger interrupt is enabled
[8]	UEVIE	Update event Interrupt Enable 0: Update event interrupt is disabled 1: Update event interrupt is enabled
[3]	CH3CCIE	Channel 3 Capture/Compare Interrupt Enable 0: Channel 3 interrupt is disabled 1: Channel 3 interrupt is enabled

Bits	Field	Descriptions
[2]	CH2CCIE	Channel 2 Capture/Compare Interrupt Enable 0: Channel 2 interrupt is disabled 1: Channel 2 interrupt is enabled
[1]	CH1CCIE	Channel 1 Capture/Compare Interrupt Enable 0: Channel 1 interrupt is disabled 1: Channel 1 interrupt is enabled
[0]	CH0CCIE	Channel 0 Capture/Compare Interrupt Enable 0: Channel 0 interrupt is disabled 1: Channel 0 interrupt is enabled

Timer Event Generator Register – EVGR

This register contains the software event generation bits.

Offset: 0x078 Reset value: 0x0000_0000

	31	30	29	28	27		26	25	24	
					Reserv	ed				
Type/Reset										
	23	22	21	20	19		18	17	16	
					Reserv	ed				
Type/Reset										
	15	14	13	12	11		10	9	8	
			Reserved				TEVG	Reserved	UEV	'G
Type/Reset			,				WO)	WO	0
	7	6	5	4	3		2	1	0	
			Reserved		CH3CC	CG	CH2CCG	CH1CCG	CH0C	CG
Type/Reset					WO	0	WO	0 WO	WO	0

Bits	Field	Descriptions
[10]	TEVG	Trigger Event Generation The trigger event TEV can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: TEVIF flag is set
[8]	UEVG	Update Event Generation The update event UEV can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Reinitialize the counter The counter value returns to 0 or the CRR preload value, depending on the counter mode in which the current timer is being used. An update operation of any related registers will also be performed. For more detail descriptions, refer to the corresponding section.

	Descriptions
CH3CCG	Channel 3 Capture/Compare Generation A Channel 3 capture/compare event can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Capture/compare event is generated on channel 3 If Channel 3 is configured as an input, the counter value is captured into the CH3CCR register and then the CH3CCIF bit is set. If Channel 3 is configured as an output, the CH3CCIF bit is set.
CH2CCG	Channel 2 Capture/Compare Generation A Channel 2 capture/compare event can be generated by setting this bit. It is cleared by hardware automatically. 0: No action
	1: Capture/compare event is generated on channel 2 If Channel 2 is configured as an input, the counter value is captured into the CH2CCR register and then the CH2CCIF bit is set. If Channel 2 is configured as an output, the CH2CCIF bit is set.
CH1CCG	Channel 1 Capture/Compare Generation A Channel 1 capture/compare event can be generated by setting this bit. It is cleared by hardware automatically. 0: No action
	1: Capture/compare event is generated on channel 1 If Channel 1 is configured as an input, the counter value is captured into the CH1CCR register and then the CH1CCIF bit is set. If Channel 1 is configured as an output, the CH1CCIF bit is set.
CH0CCG	Channel 0 Capture/Compare Generation A Channel 0 capture/compare event can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Capture/compare event is generated on channel 0 If Channel 0 is configured as an input, the counter value is captured into the CH0CCR register and then the CH0CCIF bit is set. If Channel 0 is configured as an
	CH2CCG

Timer Interrupt Status Register – INTSR

This register stores the timer interrupt status.

Offset: 0x07C Reset value: 0x0000_0000

	31		30		29)	28	}	27		26		25		24	
									Reser	ved						
Type/Reset																
	23		22		21		20)	19		18		17	1	16	
									Reser	ved						
Type/Reset																
	15		14		13	3	12	2	11		10		9		8	
				Reserved							TEVI	F	Reser	ved	UEV	IF
Type/Reset											W0C	0			W0C	0
	7		6		5		4		3		2		1		0	
	CH3O	CF	CH2O	CF	CH1C	CF	CH0OCF		CH3CCIF		CH2CCIF		CH1CCIF		CH0CCIF	
Type/Reset	W0C	0	W0C	0	W0C	0	W0C	0	W0C	0	W0C	0	W0C	0	W0C	0

Bits	Field	Descriptions
[10]	TEVIF	Trigger Event Interrupt Flag This flag is set by hardware on a trigger event and is cleared by software. 0: No trigger event occurs 1: Trigger event occurs
[8]	UEVIF	Update Event Interrupt Flag. This bit is set by hardware on an update event and is cleared by software. 0: No update event occurs 1: Update event occurs Note: The update event is derived from the following conditions: - The counter overflows or underflows - The UEVG bit is asserted - A restart trigger event occurs from the slave trigger input
[7]	CH3OCF	Channel 3 Over-Capture Flag This flag is set by hardware and cleared by software writing a '0'. 0: No over-capture event is detected 1: Capture event occurs again when the CH3CCIF bit is already set and it is not yet cleared by software
[6]	CH2OCF	Channel 2 Over-Capture Flag This flag is set by hardware and cleared by software writing a '0'. 0: No over-capture event is detected 1: Capture event occurs again when the CH2CCIF bit is already set and it is not cleared yet by software
[5]	CH1OCF	Channel 1 Over-Capture Flag This flag is set by hardware and cleared by software writing a '0'. 0: No over-capture event is detected 1: Capture event occurs again when the CH1CCIF bit is already set and it is not cleared yet by software.

Bits	Field	Descriptions
[4]	CH0OCF	Channel 0 Over-Capture Flag This flag is set by hardware and cleared by software writing a '0'. 0: No over-capture event is detected 1: Capture event occurs again when the CH0CCIFbit is already set and it is not yet cleared by software.
[3]	CH3CCIF	Channel 3 Capture/Compare Interrupt Flag - Channel 3 is configured as an output: 0: No match event occurs 1: The contents of the counter CNTR have matched the contents of the CH3CCR register. This flag is set by hardware when the counter value matches the CH3CCR value except in the center-aligned mode. It is cleared by software. - Channel 3 is configured as an input: 0: No input capture occurs 1: Input capture occurs This bit is set by hardware on a capture event. It is cleared by software or by reading
[2]	CH2CCIF	the CH3CCR register. Channel 2 Capture/Compare Interrupt Flag - Channel 2 is configured as an output: 0: No match event occurs 1: The contents of the counter CNTR have matched the contents of the CH2CCR register This flag is set by hardware when the counter value matches the CH2CCR value except in the center-aligned mode. It is cleared by software. - Channel 2 is configured as an input: 0: No input capture occurs 1: Input capture occurs. This bit is set by hardware on a capture event. It is cleared by software or by reading the CH2CCR register.
[1]	CH1CCIF	Channel 1 Capture/Compare Interrupt Flag Channel 1 is configured as an output: 0: No match event occurs 1: The contents of the counter CNTR have matched the contents of the CH1CCR register This flag is set by hardware when the counter value matches the CH1CCR value except in the center-aligned mode. It is cleared by software. - Channel 1 is configured as an input: 0: No input capture occurs 1: Input capture occurs This bit is set by hardware on a capture event. It is cleared by software or by reading the CH1CCR register.

Bits	Field	Descriptions
[0]	CH0CCIF	Channel 0 Capture/Compare Interrupt Flag
		- Channel 0 is configured as an output:
		0: No match event occurs
		 The contents of the counter CNTR have matched the content of the CH0CCR register
		This flag is set by hardware when the counter value matches the CH0CCR value
		except in the center-aligned mode. It is cleared by software.
		- Channel 0 is configured as an input:
		0: No input capture occurs
		1: Input capture occurs
		This bit is set by hardware on a capture event. It is cleared by software or by reading
		the CH0CCR register.

Timer Counter Register – CNTR

This register stores the timer counter value.

Offset: 0x080

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24	
					Reserved	1			\Box
Type/Reset									
	23	22	21	20	19	18	17	16	
					Reserved	l			
Type/Reset									
	15	14	13	12	11	10	9	8	
					CNTV				
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW (RW	0 RW	0 RW (0
	7	6	5	4	3	2	1	0	
					CNTV				
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW (RW	0 RW	0 RW (0

٠	Bits	Fleia	Descriptions
	[15:0]	CNTV	Counter Value.

Timer Prescaler Register – PSCR

This register specifies the timer prescaler value to generate the counter clock.

Offset:	0x084
Reset value:	0x0000_0000

												_									
	31		30			29			28		2	27		26			25			24	
											Rese	erved									
Type/Reset																					
	23		22			21			20		1	9		18			17			16	
											Rese	erved									
Type/Reset																					
	15		14			13			12		1	1		10			9			8	
											PS	CV									
Type/Reset	RW	0 F	RW	0	RW		0	RW		0	RW	() RV	V	0	RW		0	RW		0
	7		6			5			4			3		2			1			0	
											PS	CV									
Type/Reset	RW	0 F	RW	0	RW		0	RW		0	RW	() RV	V	0	RW		0	RW		0

Bits	Field	Descriptions
[15:0]	PSCV	Prescaler Value
		These bits are used to specify the prescaler value to generate the counter clock frequency CK_CNT.
		$f_{CK_CNT} = \frac{f_{CK_PSC}}{PSCV[15:0]+1}$, where the f_{CK_PSC} is the prescaler clock source.

Timer Counter Reload Register – CRR

This register specifies the timer counter reload value.

Offset: 0x088
Reset value: 0x0000_FFFF

	31		30			29			28		27	•	26			25			24	
											Reser	ved								
Type/Reset																				
	23		22			21			20		19)	18			17			16	
											Reser	ved								
Type/Reset																				
	15		14			13			12		11		10			9			8	
											CR'	V								
Type/Reset	RW	1	RW	1	RW		1	RW		1	RW	1	RW	1	RW		1	RW		1
	7		6			5			4		3		2			1			0	
											CR'	V								
Type/Reset	RW	1	RW	1	RW		1	RW		1	RW	1	RW	1	RW		1	RW		1

Bits	Field	Descriptions
[15:0]	CRV	Counter Reload Value
		The CRV is the reload value which is loaded into the actual counter register.

Channel 0 Capture/Compare Register - CH0CCR

This register specifies the timer channel 1 capture/compare value.

capture event.

Offset: 0x090

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	<u>. </u>
									Reser	ved						
Type/Reset																
	23		22		21		20		19		18		17		16	i
									Reser	ved						
Type/Reset																
	15		14		13		12		11		10		9		8	
									CH0C	CV						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
									CH0C	CV						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[15:0]	CH0CCV	Channel 0 Capture/Compare Value
		- When Channel 0 is configured as an output
		The CH0CCR value is compared with the counter value and the comparison result is
		used to trigger the CH0OREF output signal.
		- When Channel 0 is configured as an input
		The CH0CCR register stores the counter value captured by the last channel 0

Rev. 1.10 304 of 680 November 22, 2018

Channel 1 Capture/Compare Register - CH1CCR

This register specifies the timer channel 1 capture/compare value.

Offset: 0x094

Reset value: 0x0000_0000

	31	30) 29	28	27	26	25	24
					Reserved			
Type/Reset				'	'			
	23	22	2 21	1 20	19	18	17	16
					Reserved			
Type/Reset					'			
	15	14	13	3 12	11	10	9	8
					CH1CCV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW	0 RW 0
	7	6	5	4	3	2	1	0
					CH1CCV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW	0 RW 0

Bits Field Descriptions

[15:0] CH1CCV

Channel 1 Capture/Compare Value

- When Channel 1 is configured as an output

The CH1CCR value is compared with the counter value and the comparison result is used to trigger the CH1OREF output signal.

- When Channel 1 is configured as an input

The CH1CCR register stores the counter value captured by the last channel 1 capture event.

Channel 2 Capture/Compare Register – CH2CCR

This register specifies the timer channel 2 capture/compare value.

Offset: 0x098

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									Reser	ved						
Type/Reset																
	23		22		21		20		19		18		17		16	<u> </u>
									Reser	ved						
Type/Reset																
	15		14		13		12		11		10		9		8	
									CH2C	CV						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
									CH2C	CV						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[15:0]	CH2CCV	Channel 2 Capture/Compare Value
		- When Channel 2 is configured as an output
		The CH2CCR value is compared with the counter value and the comparison result is
		used to trigger the CH2OREF output signal.
		- When Channel 2 is configured as an input
		The OLICOOD assistant states the assistant value continued by the last shared O

The CH2CCR register stores the counter value captured by the last channel 2 capture event.

Channel 3 Capture/Compare Register - CH3CCR

This register specifies the timer channel 3 capture/compare value.

Offset: 0x09C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset				'	'			
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					,			
	15	14	13	12	11	10	9	8
					CH3CCV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW	0 RW 0
	7	6	5	4	3	2	1	0
					CH3CCV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW	0 RW 0

Bits Field Descriptions

[15:0] CH3CCV

Channel 3 Capture/Compare Value

- When Channel 3 is configured as an output

The CH3CCR value is compared with the counter value and the comparison result is used to trigger the CH3OREF output signal.

- When Channel 3 is configured as an input

The CH3CCR register stores the counter value captured by the last channel 3 capture event.

Channel 0 Asymmetric Compare Register – CH0ACR

This register specifies the timer channel 0 asymmetric compare value.

Offset: 0x0A0

Reset value: 0x0000_0000

	31	30	2	.9	28	27	26	25	24	
						Reserve	d			
Type/Reset						'	"	'		
	23	22	2	21	20	19	18	17	16	
						Reserve	d			
Type/Reset							'			
	15	14	1	3	12	11	10	9	8	
						CH0AC\	/			
Type/Reset	RW	0 RW	0 RW	0 F	RW	0 RW	0 RW	0 RW	0 RW	0
	7	6	,	5	4	3	2	1	0	
						CH0AC\	/			
Type/Reset	RW	0 RW	0 RW	0 F	RW	0 RW	0 RW	0 RW	0 RW	0

Bits Field Descriptions

[15:0] CH0ACV

Channel 0 Asymmetric Compare Value

When channel 0 is configured as asymmetric PWM mode and the counter is counting down, the value written is this register will be compared to the counter.

Channel 1 Asymmetric Compare Register – CH1ACR

This register specifies the timer channel 1 asymmetric compare value.

Offset: 0x0A4

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset				'	,			
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					CH1ACV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW C	RW (0 RW 0
	7	6	5	4	3	2	1	0
					CH1ACV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW C	RW (0 RW 0

Bits	Field	Descriptions
[15:0]	CH1ACV	Channel 1 Asymmetric Compare Value
		When channel 1 is configured as asymmetric PWM mode and the counter is
		counting down, the value written is this register will be compared to the counter.

Channel 2 Asymmetric Compare Register – CH2ACR

This register specifies the timer channel 2 asymmetric compare value.

Offset: 0x0A8

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset			'		'		'	_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					'			_
	15	14	13	12	11	10	9	8
					CH2ACV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0
	7	6	5	4	3	2	1	0
					CH2ACV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0

Bits Field Descriptions

[15:0] CH2ACV Ch

Channel 2 Asymmetric Compare Value

When channel 2 is configured as asymmetric PWM mode and the counter is counting down, the value written is this register will be compared to the counter.

Channel 3 Asymmetric Compare Register – CH3ACR

This register specifies the timer channel 3 asymmetric compare value.

Offset: 0x0AC
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset							,	_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset							'	_
	15	14	13	12	11	10	9	8
					CH3ACV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (RW (0 RW 0
	7	6	5	4	3	2	1	0
					CH3ACV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (RW (0 RW 0

Bits	Field	Descriptions
[15:0]	CH3ACV	Channel 3 Asymmetric Compare Value
		When channel 3 is configured as asymmetric PWM mode and the counter is
		counting down, the value written is this register will be compared to the counter.

15 Basic Function Timer (BFTM)

Introduction

The Basic Function Timer Module, BFTM, is a 32-bit up-counting counter designed to measure time intervals, generate one shot pulses or generate repetitive interrupts. The BFTM can operate in two modes which are repetitive and one shot modes. The repetitive mode restarts the counter at each compare match event which is generated by the internal comparator. The BFTM also supports a one shot mode which will force the counter to stop counting when a compare match event occurs.

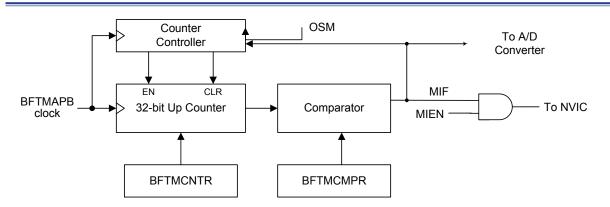


Figure 73. BFTM Block Diagram

Features

- 32-bit up-counting counter
- Compare Match function
- Includes debug mode
- Clock source: BFTM APB clock
- Counter value can be R/W on the fly
- One shot mode: counter stops counting when compare match occurs
- Repetitive mode: counter restarts when compare match occurs
- Compare Match interrupt enable/disable control

Functional Description

The BFTM is a 32-bit up-counting counter which is driven by the BFTM APB clock, PCLK. The counter value can be changed or read at any time even when the timer is counting. The BFTM supports two operating modes known as the repetitive mode and one shot mode allowing the measurement of time intervals or the generation of periodic time durations.

Repetitive Mode

The BFTM counts up from zero to a specific compare value which is pre-defined by the BFTMCMPR register. When the BFTM operates in the repetitive mode and the counter reaches a value equal to the specific compare value in the BFTMCMPR register, the timer will generate a compare match event signal, MIF. When this occurs, the counter will be reset to 0 and resume its counting operation. When the MIF signal is generated, a BFTM compare match interrupt will also be generated periodically if the compare match interrupt is enabled by setting the corresponding interrupt control bit, MIEN, to 1. The counter value will remain unchanged and the counter will stop counting if it is disabled by clearing the CEN bit to 0.

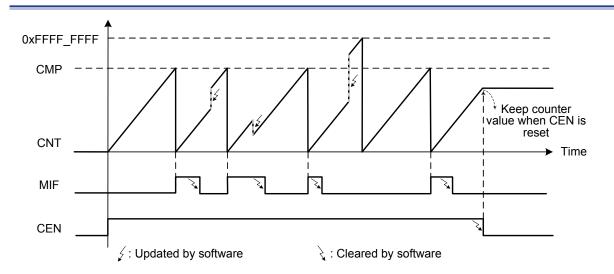


Figure 74. BFTM - Repetitive Mode

One Shot Mode

By setting the OSM bit in BFTMCR register to 1, the BFTM will operate in the one shot mode. The BFTM starts to count when the CEN bit is set to 1 by the application program. The counter value will remain unchanged if the CEN bit is cleared to 0 by the application program. However, the counter value will be reset to 0 and stop counting when the CEN bit is cleared automatically to 0 by the internal hardware when a counter compare match event occurs.

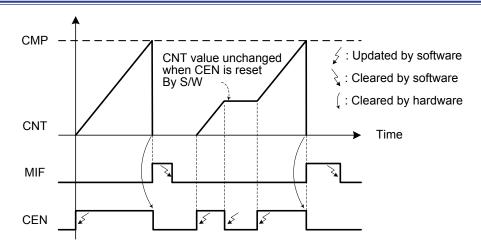


Figure 75. BFTM - One Shot Mode

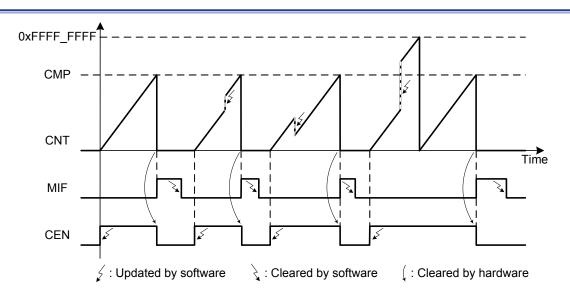


Figure 76. BFTM - One Shot Mode Counter Updating

Trigger ADC Start

When a BFTM compare match event occurs, a compare match interrupt flag, MIF, will be generated which can be used as an A/D Converter input trigger source.

Register Map

The following table shows the BFTM registers and their reset values.

Table 35. BFTM Register Map

Register	Offset	Description	Reset Value
BFTMCR	0x000	BFTM Control Register	0x0000_0000
BFTMSR	0x004	BFTM Status Register	0x0000_0000
BFTMCNTR	0x008	BFTM Counter Value Register	0x0000_0000
BFTMCMPR	0x00C	BFTM Compare Value Register	0xFFFF_FFFF

Register Descriptions

BFTM Control Register – BFTMCR

This register specifies the overall BFTM control bits.

Offset: 0x000

Reset value: 0x0000 0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset					,			
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset					,			
	7	6	5	4	3	2	1	0
			Reserved			CEN	OSM	MIEN
Type/Reset			_			RW 0	RW 0	RW 0

Bits	Field	Descriptions
[2]	CEN	BFTM Counter Enable Control 0: BFTM is disabled 1: BFTM is enabled When this bit is set to 1, the BFTM counter will start to count. The counter will stop counting and the counter value will remain unchanged when the CEN bit is cleared to 0 by the application program regardless of whether it is in the repetitive or one shot mode. However, in the one shot mode, the counter will stop counting and be reset to 0 when the CEN bit is cleared to 0 by the timer hardware circuitry which results from a compare match event.
[1]	OSM	BFTM One Shot Mode Selection 0: Counter operates in repetitive mode 1: Counter operates in one shot mode
[0]	MIEN	BFTM Compare Match Interrupt Enable Control 0: Compare Match Interrupt is disabled 1: Compare Match Interrupt is enabled

BFTM Status Register – BFTMSR

This register specifies the BFTM status.

Offset: 0x004

Reset value: 0x0000_0004

	31	30	29	28	27	26	25	24					
					Reserved								
Type/Reset													
	23	22	21	20	19	18	17	16					
		Reserved											
Type/Reset													
	15	14	13	12	11	10	9	8					
					Reserved								
Type/Reset													
	7	6	5	4	3	2	1	0					
				Reserved				MIF					
Type/Reset								W0C 0					

Bits	Field	Descriptions

[0] MIF

BFTM Compare Match Interrupt Flag

- 0: No compare match event occurs
- 1: Compare match event occurs

When the counter value, CNT, is equal to the compare register value, CMP, a compare match event will occur and the corresponding interrupt flag, MIF will be set. The MIF bit is cleared to 0 by writing a data "0".

BFTM Counter Register – BFTMCNTR

This register specifies the BFTMn counter value.

Offset: 0x008

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									CNT							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									CNT							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
									CNT							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
	7			_	5		4		3 CNT		2		1		0	

Bits Field Descriptions

[31:0] CNT BFTM Counter Value

A 32-bit BFTM counter value is stored in this field which can be read or written on-the-fly.

BFTM Compare Value Register – BFTMCMPR

The register specifies the BFTM compare value.

Offset: 0x00C

Reset value: 0xFFFF_FFFF

	31		30		29		28		27		26		25		24	
									CMP							
Type/Reset	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1
	23		22		21		20		19		18		17		16	
									CMP							
Type/Reset	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1
	15		14		13		12		11		10		9		8	
	CMP															
Type/Reset	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1
	7		6		5		4		3		2		1		0	
	CMP															
Type/Reset	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1

Bits Field Descriptions

[31:0] CMP BFTM Compare Value

This register specifies a 32-bit BFTM compare value which is used for comparison with the BFTM counter value.

16 Motor Control Timer (MCTM)

Introduction

The Motor Control Timer consists of one 16-bit up/down-counter, four 16-bit Capture/Compare Registers (CCRs), one 16-bit Counter-Reload Register (CRR), one 8-bit Repetition Counter (REPR) and several control/status registers. It can be used for a variety of purposes which include general time measurement, input signal pulse width measurement, output waveform generation for signals such as single pulse generation or PWM generation, including dead time insertion. The MCTM supports an encoder interface using a quadrature decoder with two inputs.

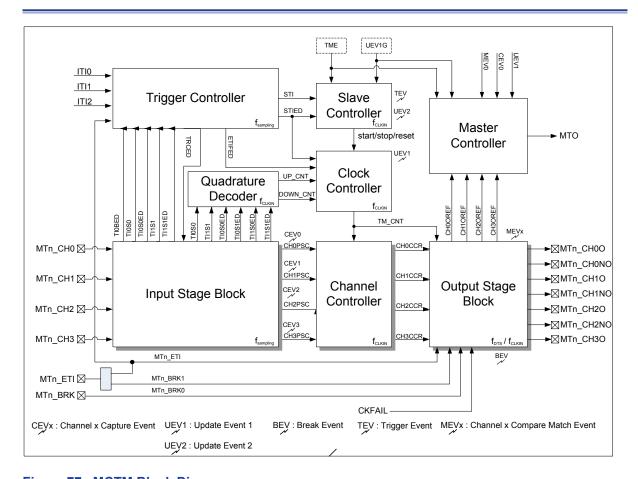


Figure 77. MCTM Block Diagram

Features

- 16-bit up/down auto-reload counter.
- 16-bit programmable prescaler that allows division the counter clock frequency by any factor between 1 and 65536.
- Up to 4 independent channels for:
 - Input Capture function
 - Compare Match Output
 - PWM waveform Generation Edge and Center-aligned Counting Mode
 - Single Pulse Mode Output
- Complementary Outputs with programmable dead-time insertion
- Encoder interface controller with two inputs using quadrature decoder
- Repetition counter updates timer registers only after a given number of counter cycles.
- Synchronization circuit controls the timer with external signals and can interconnect several timers together.
- Interrupt / PDMA generation on the following events:
 - Update event 1
 - Update event 2
 - Trigger event
 - Input capture event
 - Output compare match
 - Break event only interrupt
- MCTM Master / Slave mode controller
- Supports 3-phase motor control and hall sensor interface
- Maximum 2 Break input signals to assert the timer output signals in reset state or in a known state

Functional Descriptions

Counter Mode

Up-Counting

In this mode the counter counts continuously from 0 to the counter-reload value, which is defined in the CRR register, in a count-up direction. Once the counter reaches the counter-reload value, the Timer Module generates an overflow event and the counter restarts to count once again from 0. This action will continue repeatedly. The counting direction bit DIR in the CNTCFR register should be set to 0 for the up-counting mode.

When an update event 1 is generated by setting the UEV1G bit in the EVGR register to 1, the counter value will also be initialised to 0.

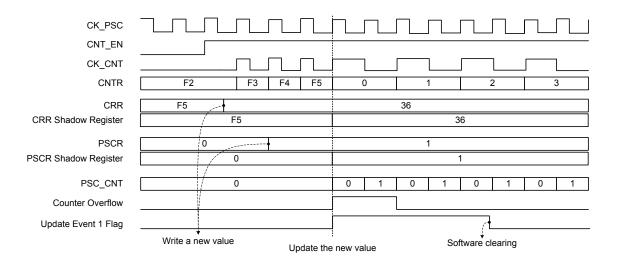


Figure 78. Up-counting Example

Down-Counting

In this mode the counter counts continuously from the counter-reload value, which is defined in the CRR register, to 0 in a count-down direction. Once the counter reaches 0, the Timer module generates an underflow event and the counter restarts to count once again from the counter-reload value. This action will continue repeatedly. The counting direction bit DIR in the CNTCFR register should be set to 1 for the down-counting mode.

When an update event 1 is generated by setting the UEV1G bit in the EVGR register to 1, the counter value will also be initialised to the counter-reload value.

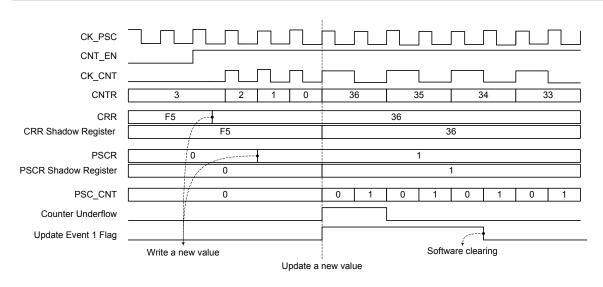


Figure 79. Down-counting Example

Center-aligned Counting

In the center-aligned counting mode, the counter counts up from 0 to the counter-reload value and then counts down to 0 alternatively. The Timer Module generates an overflow event when the counter counts to the counter-reload value in the up-counting mode and generates an underflow event when the counter counts to 0 in the down-counting mode. The counting direction bit DIR in the CNTCFR register is read-only and indicates the count direction when in the center-aligned counting mode. The count direction is updated by hardware automatically.

Setting the UEV1G bit in the EVGR register will initialise the counter value to 0 irrespective of whether the counter is counting up or down in the center-aligned counting mode.

The UEV1IF bit in the INTSR register can be set to 1 according to the CMSEL field setting in the CNTCFR register. When CMSEL=0x01, an underflow event will set the UEV1IF bit to 1. When CMSEL=0x10, an overflow event will set the UEV1IF bit to 1. When CMSEL=0x11, either underflow or overflow event will set the UEV1IF bit to 1.

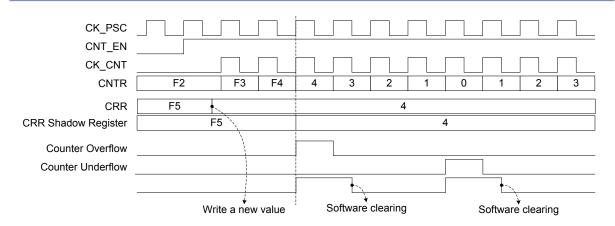


Figure 80. Center-aligned Counting Example

Repetition Down-counter Operation

The update event 1 is usually generated at each overflow or underflow event occurrence. However, when the repetition operation is active by assigning a non-zero value into the REPR register, the update event is only generated if the REPR counter has reached zero. The REPR value is decreased when the following conditions occur:

- At each counter overflow in the up-counting mode
- At each counter underflow in the down-counting mode
- At each counter overflow and at each counter underflow in the center-aligned counting mode

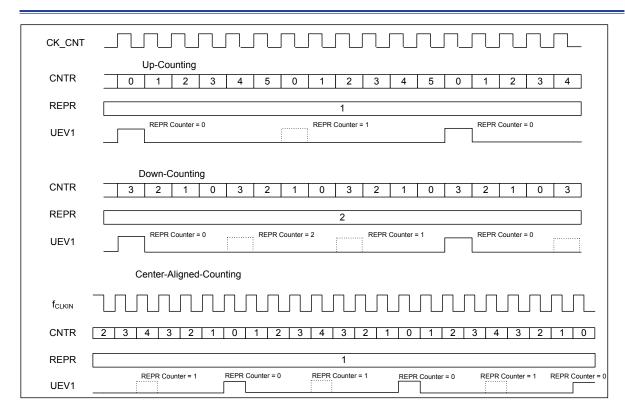


Figure 81. Update Event Dependent Repetition Mechanism Example

Clock Controller

The following describes the Timer Module clock controller which determines the internal prescaler counter clock source.

■ Internal APB clock f_{CLKIN}:

The default internal clock source is the APB clock f_{CLKIN} which is used to drive the counter prescaler when the slave mode is disabled. When the slave mode selection bits SMSEL are set to 0x4, 0x5 or 0x6, the internal APB clock f_{CLKIN} is the counter prescaler driving clock source.

■ Quadrature Decoder:

To select the Quadrature Decoder mode the SMSEL field should be set to 0x1, 0x2 or 0x3 in the MDCFR register. The Quadrature Decoder function uses the two input conditions of the MTn_CH0 and MTn_CH1 pins to generate the clock pulses to drive the counter prescaler. The counting direction bit DIR is modified by hardware automatically at each transition on the input source signal.

■ STIED:

The counter prescaler can count during each rising edge of the STI signal. This mode can be selected by setting the SMSEL field to 0x7 in the MDCFR register. Here the counter will act as an event counter. The input event, known as STI here, can be selected by setting the TRSEL field to an available value except the value of 0x0. When the STI signal is selected as the clock source, the internal edge detection circuitry will generate a clock pulse during each STI signal rising edge to drive the counter prescaler. It is important to note that if the TRSEL field is set to 0x0 to select the software UEV1G bit as the trigger source, then when the SMSEL field is set to 0x7, the counter will be updated instead of counting.

■ ETIFED:

The counter prescaler can be driven to count during each rising edge on ETIF. This mode can be selected by setting the ECME bit in the TRCFR register to 1. The other way to select the ETIF signal as the clock source is to set the SMSEL field to 0x7 and the TRSEL field to 0x3 respectively. When the clock source is selected to come from the ETIF signal, the Trigger Controller including the edge detection circuitry will generate a clock pulse during each ETIF signal rising edge to clock the counter prescaler.

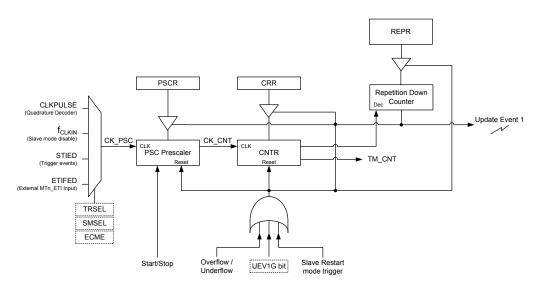


Figure 82. MCTM Clock Selection Source

Trigger Controller

The trigger controller is used to select the trigger source and setup the trigger level and edge trigger conditions. The active polarity of the external trigger input signal MTn_ETI can be configured by the External Trigger Polarity control bit, ETIPOL, in the MCTM Trigger Configuration Register TRCFR. The frequency of the external trigger input can be divided by configuring the related bits, which are the External Trigger Prescaler control bits, ETIPSC, in the TRCFR register. The trigger signal can also be filtered by configuring the External Trigger Filter ETF selection bits in the TRCFR register if a filtered signal is necessary for specific applications. For the internal trigger input, it can be selected by the Trigger Selection bits, TRSEL, in the TRCFR register. For all the trigger sources except the UEV1G bit software trigger, the internal edge detection circuitry will generate a clock pulse at each trigger signal rising edge to activate some MCTM functions which are triggered by a trigger signal rising edge.

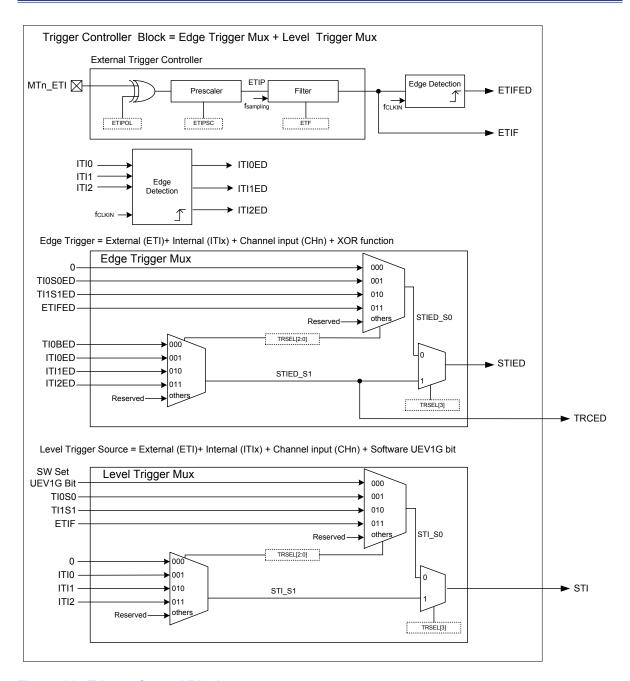


Figure 83. Trigger Control Block

Slave Controller

The MCTM can be synchronised with an internal/external trigger in several modes including the Restart mode, the Pause mode and the Trigger mode which are selected by the SMSEL field in the MDCFR register. The trigger input of these modes comes from the STI signal which is selected by the TRSEL field in the TRCFR register. The operation modes in the Slave Controller are described in the accompanying sections.

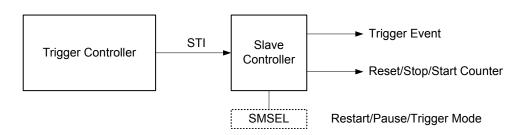


Figure 84. Slave Controller Diagram

Restart Mode

The counter and its prescaler can be reinitialised in response to an STI signal rising edge. If the UEV1DIS bit is set to 1 to disable the update event, then no update event will be generated, however the counter and prescaler are still reinitialised when an STI rising edge occurs. If the UEV1DIS bit in the CNTCFR register is cleared to enable the update event, then an update event will be generated together with the STI rising edge and all the preloaded registers will be updated.

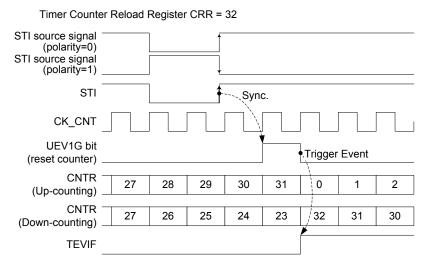


Figure 85. MCTM in Restart Mode

Pause Mode

In the Pause Mode, the selected STI input signal level is used to control the counter start/stop operation. The counter starts to count when the selected STI signal is at a high level and stops counting when the STI signal is changed to a low level. When the counter stops, it will maintain its present value and not be reset. Since the Pause function depends upon the STI level to control the counter stop/start operation, the selected STI trigger signal can not be derived from the TI0BED signal.

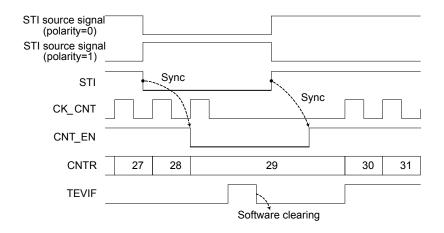


Figure 86. MCTM in Pause Mode

Trigger Mode

After the counter is disabled to count, the counter can resume counting when an STI rising edge signal occurs. When an STI rising edge occurs, the counter will start to count from the current value in the counter. Note that if the STI signal is selected to be sourced from the UEV1G bit software trigger, the counter will not resume counting. When software triggering using the UEV1G bit is selected as the STI source signal, there will be no clock pulse generated which can be used to make the counter resume counting. Note that the STI signal is only used to enable the counter to resume counting and has no effect to stop counting.

Figure 87. MCTM in Trigger Mode

Master Controller

The MCTMs and GPTMs can be linked together internally for timer synchronisation or chaining. When one MCTM is configured to be in the Master Mode, the MCTM Master Controller will generate a Master Trigger Output (MTO) signal which can reset, start, stop the Slave counter or be a clock source of the Slave Counter. This can be selected by the MMSEL field in the MDCFR register to trigger or drive another MCTM or GPTM which should be configured in the Slave Mode.

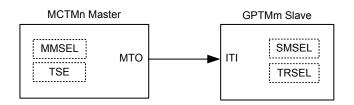


Figure 88. Master MCTMn and Slave GPTM Connection

The Master Mode Selection bits, MMSEL, in the MDCFR register are used to select the MTO source for synchronising another slave MCTM or GPTM.

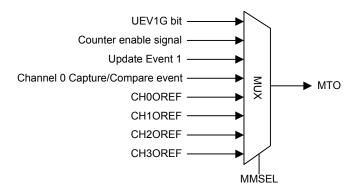


Figure 89. MTO Selection

For example, setting the MMSEL field to 0x5 is to select the CH10REF signal as the MTO signal to synchronise another slave MCTM or GPTM. For a more detailed description, refer to the related MMSEL field definitions in the MDCFR register.

Channel Controller

The MCTM has four independent channels which can be used as capture inputs or compare match outputs. Each capture input or compare match output channel is composed of a preload register and a shadow register. Data access of the APB bus is always implemented through the read/write preload register.

When used in the input capture mode, the counter value is captured into the CHxCCR shadow register first and then transferred into the CHxCCR preload register when the capture event occurs.

When used in the compare match output mode, the contents of the CHxCCR preload register is copied into the associated shadow register, the counter value is then compared with the register value.

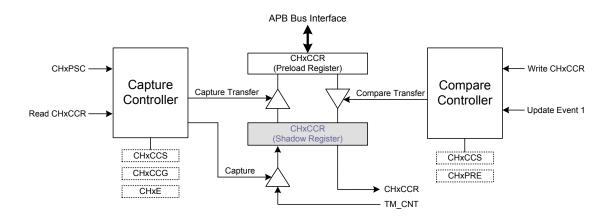


Figure 90. Capture/Compare Block Diagram

Capture Counter Value Transferred to CHxCCR

When the channel is used as a capture input, the counter value is captured into the Channel Capture/Compare Register (CHxCCR) when an effective input signal transition occurs. Once the capture event occurs, the CHxCCIF flag in the INTSR register is set accordingly. If the CHxCCIF bit is already set, i.e., the flag has not yet been cleared by software, and another capture event on this channel occurs, the corresponding channel Over-Capture flag, named CHxOCF, will be set.

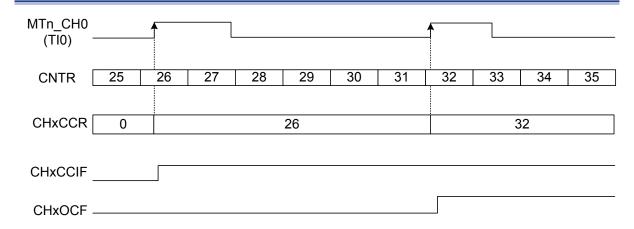


Figure 91. Input Capture Mode

Pulse Width Measurement

The input capture mode can be also used for pulse width measurement from signals on the MTn_CHx pins, TIx. The following example shows how to configure the MCTM when operated in the input capture mode to measure the high pulse width and the input period on the MTn_CH0 pin using channel 0 and channel 1. The basic steps are shown as follows.

- Configure the capture channel 0 (CH0CCS = 0x1) to select the TI0 signal as the capture input.
- Configure the CH0P bit to 0 to choose the rising edge of the TI0 input as the active polarity.
- Configure the capture channel 1 (CH1CCS = 0x2) to select the TIO signal as the capture input.
- Set the CH1P bit to 1 to choose the falling edge of the TI0 input as the active polarity.
- Setup the TRSEL bits to 0x0001 to select TI0S0 as the trigger input.
- Configure the Slave controller to operate in the Restart mode by setting the SMSEL field in the MDCFR register to 0x4
- Enable the input capture mode by setting the CH0E and CH1E bits in the CHCTR register to 1.

As the following diagram shows, the high pulse width on the MTn_CH0 pin will be captured into the CH1CCR register while the input period will be captured into the CH0CCR register after an input capture operation.

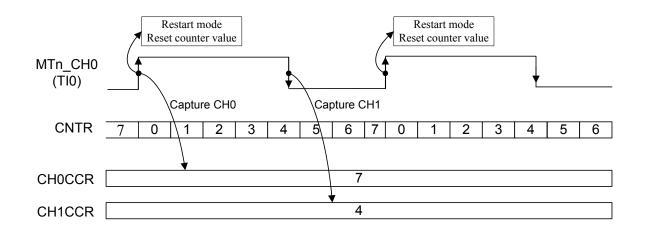


Figure 92. PWM Pulse Width Measurement Example

Input Stage

The input stage consists of a digital filter, a channel polarity selection, edge detection and a channel prescaler. The channel 0 input signal, TI0, can be chosen to come from the MTn_CH0 signal or the Excusive-OR function of the MTn_CH0, MTn_CH1 and MTn_CH2 signals. The channel input signal, TIx, is sampled by a digital filter to generate a filtered input signal TIxFP. Then the channel polarity and the edge detection block can generate a TIxSxED signal for the input capture function. The effective input event number can be set by the channel input prescaler register CHxPSC.

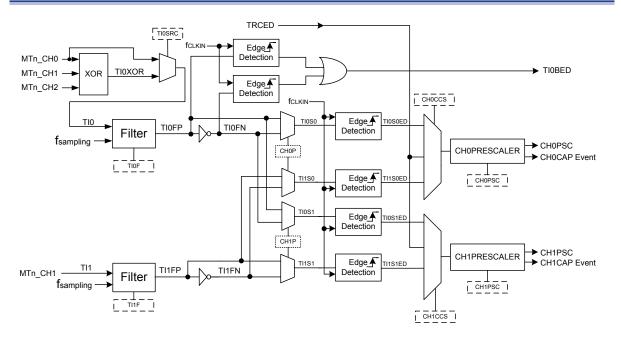


Figure 93. Channel 0 and Channel 1 Input Stages

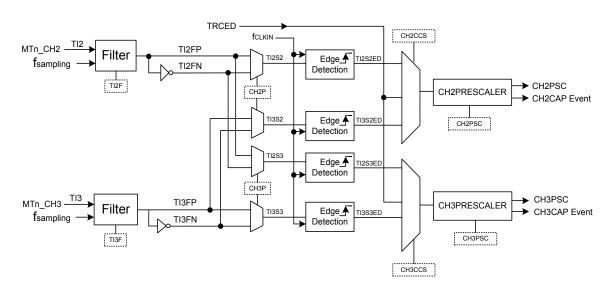


Figure 94. Channel 2 and Channel 3 Input Stages

Output Stage

The MCTM supports complementary outputs for channels 0, 1 and 2 with dead time insertion. The MCTM channel 3 output function is almost the same as that of GPTM channel 3 except for the break function.

The channel outputs, CHxO and CHxNO, are referenced to the CHxOREF signal. These channel outputs generate a wide variety of wide waveforms according to the configuration values of corresponding control bits, as shown by the dashed box in the diagram.

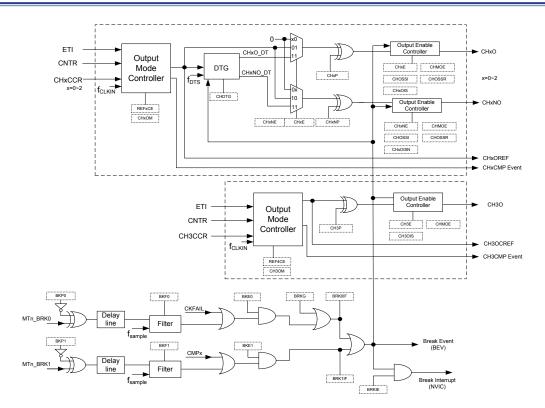


Figure 95. Output Stage Block Diagram

Channel Output Reference Signal

When the MCTM is used in the compare match output mode, the CHxOREF signal (Channel x Output Reference signal) is defined by the CHxOM bit setup. The CHxOREF signal has several types of output function which defines what happens to the output when the counter value matches the contents of the CHxCCR register. In addition to the low, high and toggle CHxOREF output types, there are also PWM mode 1 and PWM mode 2 outputs. In these modes, the CHxOREF signal level is changed according to the count direction and the relationship between the counter value and the CHxCCR content. There are also two modes which will force the output into an inactive or active state irrespective of the CHxCCR content or counter values. With regard to a more detailed description refer to the relative bit definition.

The accompanying table shows a summary of the output type setup.

Table 36. Compare Match Output Setup

CHxOM value	Compare Match Level
0x00	No change
0x01	Clear Output to 0
0x02	Set Output to 1
0x03	Toggle Output
0x04	Force Inactive Level
0x05	Force Active Level
0x06	PWM Mode 1
0x07	PWM Mode 2

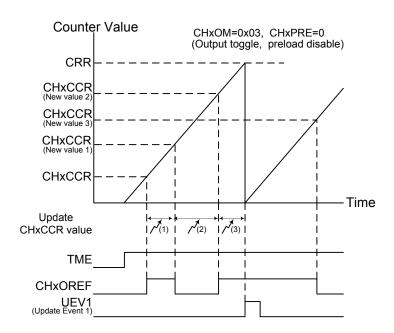


Figure 96. Toggle Mode Channel Output Reference Signal – CHxPRE = 0

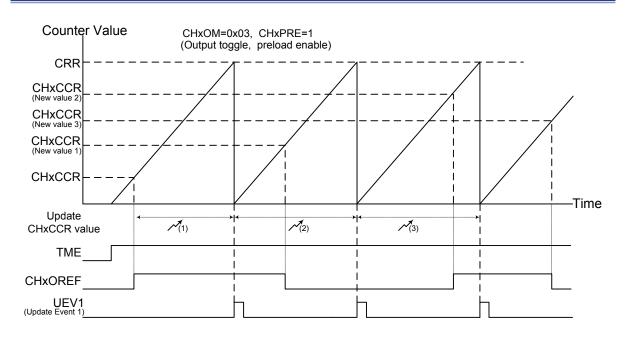


Figure 97. Toggle Mode Channel Output Reference Signal – CHxPRE = 1

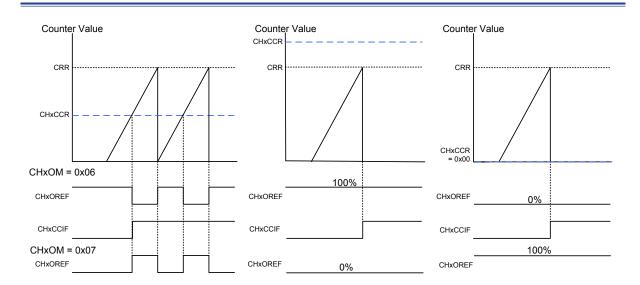


Figure 98. PWM Mode Channel Output Reference Signal and Counter in Up-counting Mode

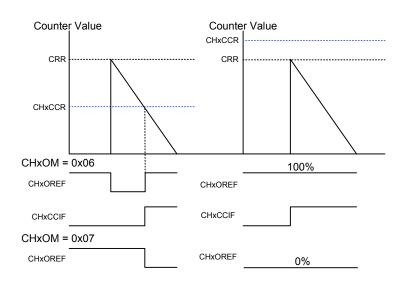
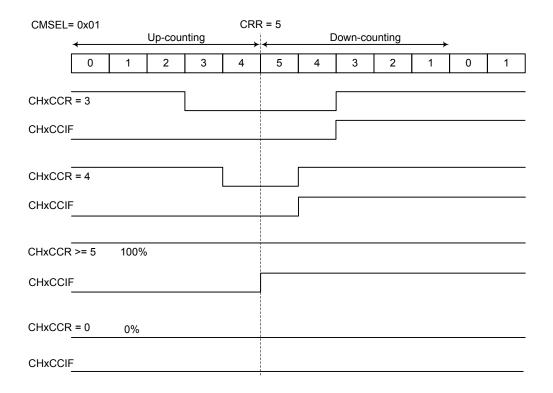
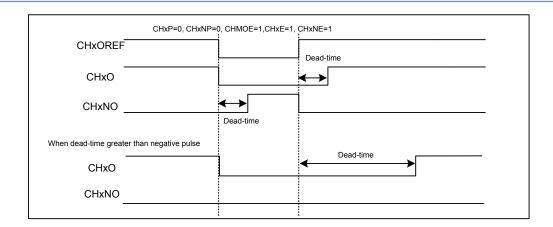


Figure 99. PWM Mode Channel Output Reference Signal and Counter in Down-counting Mode




Figure 100. PWM Mode 1 Channel Output Reference Signal and Counter in Centre-aligned Counting Mode

Dead Time Generator

An an 8-bit dead time generator function is included for channels 0~2. The dead time insertion is enabled by setting both the CHxE and CHxNE bits. The relationship between the CHxO and CHxNO signals with respect to the CHxOREF signal is as follows:

- The CHxO signal is the same as the CHxOREF signal except for the rising edge which is delayed with a dead time relative to the reference signal rising edge.
- The CHxNO is the opposite of the CHxOREF signal except for the rising edge which is delayed with a dead time relative to the reference signal falling edge.

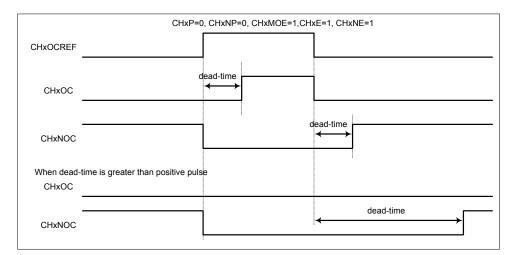


Figure 101. Dead-time Insertion Performed for Complementary Outputs

If the delay is greater than the width of the active output of CHxO or CHxNO, then the corresponding PWM pulses will not be generated.

Break Function

The MCTM includes break function and maximum two input signals for MCTM break. The MTn_BRK0 is default function and from external MTn_BRK pin. But the second break signal MTn_BRK1 is share with the MTn_ETI pin and default is disabled. It can set the BRK1SEL bit in CHBRKCTR register to select the MTn_ETI pin for extra break signal MTn_BRK1. The detail block diagram is shown as below figure.

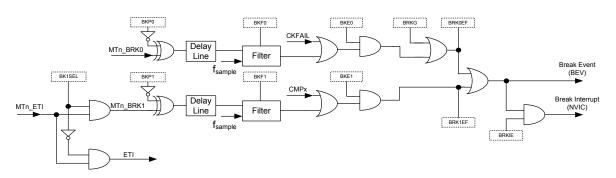


Figure 102. MCTM Break Signal Bolck Diagram

When the MT_BRK input has an active level, the Clock Monitor Circuitry detects a clock failure event or comparator transition, a break event will be generated if the break function is enabled. Meanwhile, each channel output will be forced to a reset state, an inactive or idle state. Moreover, a break event can also be generated by the software asserting the BRKG bit in the EVGR register even if the break function is disabled.

The MT_BRK input signal can be enabled by setting the BKE bit in the CHBRKCTR register. The internal polarity of break activity function is logic high. So the break input polarity can be selected by setting the BKP bit in CHBRKCTR register. The BKE and BKP bits can be modified at the same time.

The digital filters are embedded in the input stage and clock controller block for the break signal. The input filter of the MT_BRK signal can be enabled by setting the BKF bits in the CHBRKCTR register. The digital filter is an N-event counter where N refers to how many valid transitions are necessary to output a filtered signal.

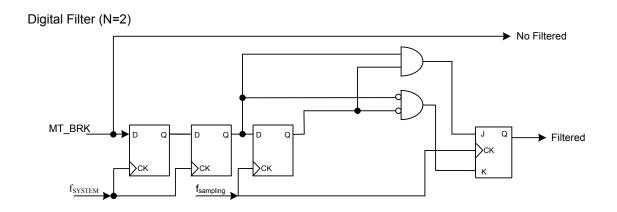


Figure 103. MT_BRK Pin Digital Filter Diagram with N = 2

When using the break function, the channel output enable signals and output levels are changed depending on several control bits which include the CHMOE, CHOSSI, CHOSSR, CHXOIS and CHXOISN bits. Once a break event occurs, the output enable bit CHMOE will be cleared asynchronously. The break interrupt flag, BRKIF, will be set and then an interrupt will be generated if the break function interrupt is enabled by setting the BRKIE bit to 1. The channel output behavior is as described below:

- If complementary outputs are used, the channel outputs a level signal first which can be selected to be either a disable or inactive level, selected by configuring the CHOSSI bit in the CHBRKCTR register. After the dead-time duration, the outputs will be changed to the idle state. The idle state is determined by the CHxOIS/CHxOISN bits in the CHBRKCFR register.
- If complementary outputs are not used (Channel 3), the channel will output an idle state.

The main output enable control bit, CHMOE can not be set until the break event is cleared.

Figure 104. Channel 3 Output with a Break Event Occurrence

The accompanying diagram shows that the complementary output states when a break event occurs where the complementary outputs are enabled by setting both the CHxE and CHxNE bits to 1.

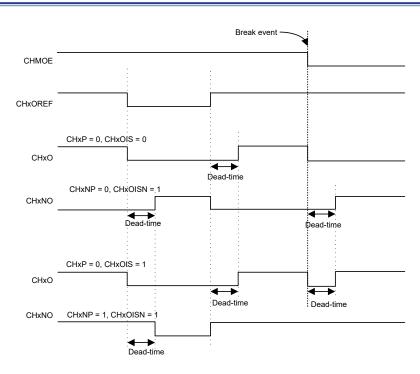


Figure 105. Channel 0 ~ 2 Complementary Outputs with a Break Event Occurrence

The accompanying diagram shows the output states in the case of the output being enabled by setting the CHxE bit to 1 and the complementary output being disabled by clearing the CHxNE to 0 when a break event occurs.

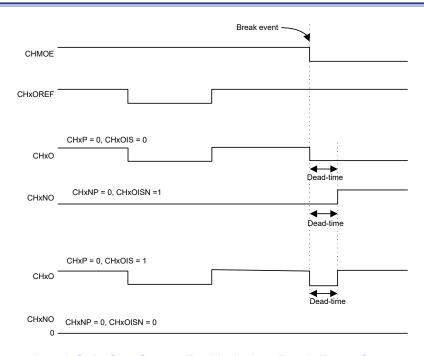


Figure 106. Channel 0 ~ 2 Only One Output Enabled when Break Event Occurs

The CHxO and CHxNO complementary outputs should not be set to an active level at the same time. The hardware will protect the MCTM circuitry to force only one channel output to be in the active state.

Example: Both CHxOIS and CHxOISN are set to active levels after a break event; only the CHxO waveform is generated.

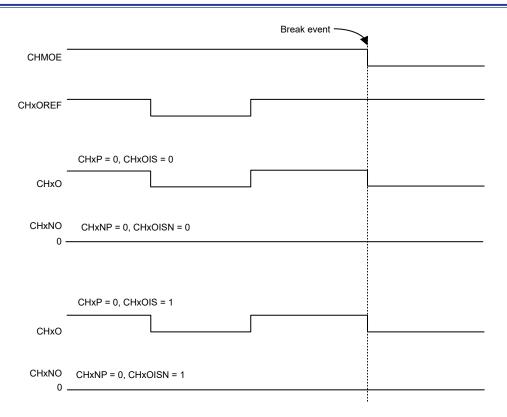


Figure 107. Hardware Protection When Both CHxO and CHxNO Are in Active Condition

CHMOE can be set automatically by update event 1 if the automatic output enable function is enabled by setting the CHAOE bit in the CHBRKCTR register to 1.

Channel Complementary Output with Break Function

The Channel complementary outputs, CHxO and CHxNO, are enabled by a combination of the CHxE, CHxNE, CHMOE, CHOSSR, CHOSSI control bits.

Table 37. Output Control Bits for Complementary Output with a Break Event Occurrence

	Control bit				Output status			
СНМОЕ	CHOSSI	CHOSSR	CHxE	CHxNE	MT_CHx Pin output state	MT_CHxN Pin output state		
		0	0	0	Output disabled - floating - not driven by the timer MT_CHx (Note 1) = floating MT_CHx_OEN (Note 2) = 1	Output disabled - floating - not driven by the timer MT_CHxN = floating MT_CHxN_OEN = 1		
		0	0	1	Output disable - floating - not driven by the timer MT_CHx_OEN = 1	Output enbaled MT_CHxN= CHx_OREF xor CHxNP MT_CHxN_OEN = 0		
		0	1	0	Output enabled MT_CHx = CHx_OREF xor CHxP MT_CHx_OEN = 0	Output disabled - floating - not driven by the timer MT_CHxN = floating MT_CHxN_OEN = 1		
1 (Dun)	1 (Run) x	0	1	1	Output enabled MT_CHx = CHx_OREF xor CHxP + dead-time MT_CHx_OEN = 0	Output enabled MT_CHxN = not CHx_OREF x or CHxNP + dead-time MT_CHxN_OEN = 0		
(Rull)		1	0	0	Output disabled - floating - not driven by the timer MT_CHx = floating MT_CHx_OEN = 1	Output disabled floating - not driven by the timer MT_CHxN = floating MT_CHxN_OEN = 1		
		1	0	1	Off-State MT_CHx = CHxP MT_CHx_OEN = 0	Output enabled MT_CHxN = CHx_OREF xor CHxNP MT_CHxN_OEN = 0		
		1	1	0	Output enbaled MT_CHx = CHx_OCREF xor CHxP MT_CHx_OEN = 0	Off-State MT_CHxN = CHxNP MT_CHxN_OEN = 0		
		1	1	1	1	1	1	Output enabled MT_CHx = CHx_OREF xor CHxP + dead-time MT_CHx_OEN = 0
	0		0	0				
	0		0	1	Before dead-time: Output disabled -	floating		
	0		1	0	MT_CHx = floating, MT_CHxN = flo	0		
			1	1	MT_CHx_OEN = 1, MT_CHxN_OE	N = 1		
0	1		0	0				
(Idle)	(Idle) 1	Х	0	1	Before dead-time: Off state	ND		
	1		1	0	MT_CHx = CHxP, MT_CHxN = CHx MT_CHx_OEN =0, MT_CHxN_OEN			
	1		1	1	After dead-time: Output enabled MT_CHx = CHxOIS, MT_CHxN = C MT_CHxN_OEN = 0, MT_CHxN_OEN			

Notes: 1. The MT_CHx pin is the MCTM I/O Pin.

2. The MT_CHx_OEN and MT_CHxN_OEN signals are the MCTM I/O pin output enable combinational logic control signals which are active low.

Update Management

The update events are categorised into two different types which are the update event 1, UEV1, and update event 2, UEV2. The update event 1 is used to update the CRR, the PSCR, the CHxACR and the CHxCCR values from the actual registers to the corresponding shadow registers. An update event 1 occurs when the counter overflows or underflows, the UEV1G bit is set or the slave restart mode is triggered. The update event 2 is used to update the CHxE, CHxNE and CHxOM control bits. An update event 2 is generated when a rising edge on the STI occurs or the corresponding software update control bit is set.

Update Event 1

The UEV1DIS bit in the CNTCFR register can determine whether an update event 1 occurs or not. When the update event 1 occurs, the corresponding update event interrupt will be generated depending upon whether the update event 1 interrupt generation function is enabled or not by configuring the UGDIS bit in the CNTCFR register. For a more detailed description, refer to the UEV1DIS and UGDIS bit definition in the CNTCFR register.

Update Event 1 Management Counter Overflow / Underflow UEV1 (Update PSCR, CRR, CHxCCR, CHxACR Shadow Registers) UEV1 (Update PSCR, CRR, CHxCCR, CHxACR Shadow Registers)

Figure 108. Update Event 1 Setup Diagram

Update Event 2

The CHxE, CHxNE, CHxOM control bits for the complementary outputs can be preloaded by setting the COMPRE bit in the CTR register. Here the shadow bits of the CHxE, CHxNE, CHxOM bits will be updated when an update event 2 occurs.

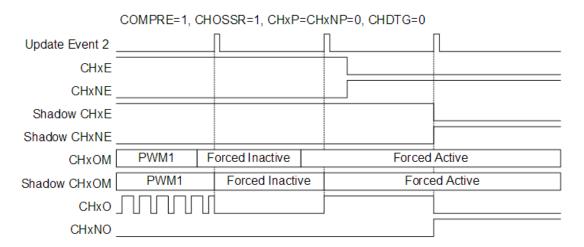


Figure 109. CHxE, CHxNE and CHxOM Updated by Update Event 2

An update event 2 can be generated by setting the software update bit, UEV2G, in the EVGR register or by the rising edge of the STI signal if the COMUS bit is set in the CTR register.

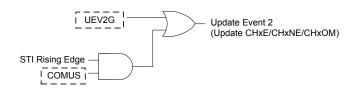


Figure 110. Update Event 2 Setup Diagram

Quadrature Decoder

The Quadrature Decoder function uses two quadrantal inputs TI0 and TI1 derived from the MTn_CH0 and MTn_CH1 pins respectively which interact to generate the counter value. The DIR bit is modified by hardware automatically during each input source transition. The counter is counting on TI0 edges only, TI1 edges only or both TI0 and TI1 edges. The selection is made by setting the SMSEL field to 0x01, 0x02 or 0x03. The mechanism for changing the counter direction is shown in the following table. The Quadrature decoder can be regarded as an external clock with a directional selection. This means that the counter counts continuously in the interval between 0 and the counter-reload value. The application program must therefore configure the CRR register before the counter starts to count.

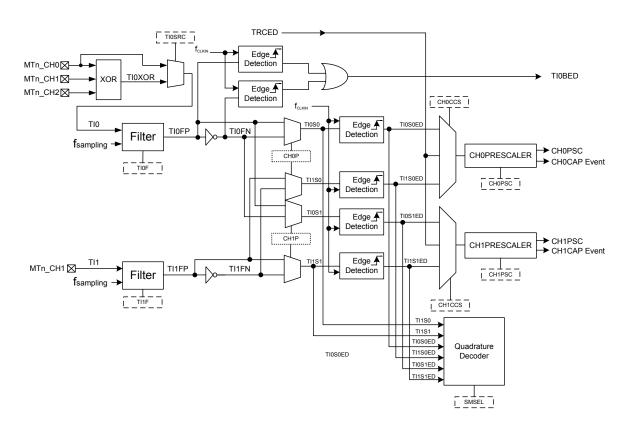


Figure 111. Input Stage and Quadature Decoder Block Diagram

Table 38. Counting Direction and Encoding Signals

Counting mode	Level	Ti0S0			TI1S1		
Counting mode	Levei	Rising	Falling	Rising	Falling		
Counting on TI0 only	TI1S1 = High	Down	Up	_	_		
(SMSEL = 0x01)	TI1S1 = Low	Up	Down	_	_		
Counting on TI1 only	TI0S0 = High	_	_	Up	Down		
(SMSEL = 0x02)	TI0S0 = Low	_	_	Down	Up		
	TI1S1 = High	Down	Up	X	X		
Counting on TI0 and TI1 (SMSEL = 0x03)	TI1S1 = Low	Up	Down	X	Х		
	TI0S0 = High	Х	Х	Up	Down		
	TI0S0 = Low	X	X	Down	Up		

Note: "—" \rightarrow means "no counting", "X" \rightarrow impossible

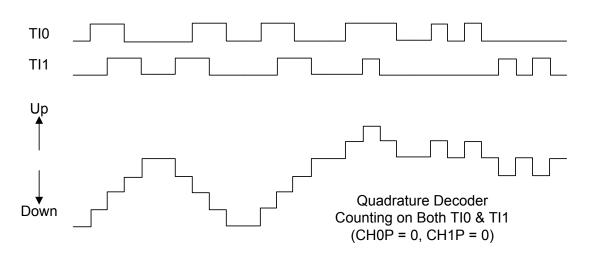


Figure 112. Both TI0 and TI1 Quadrature Decoder Counting

Digital Filter

The digital filters are embedded in the input stage and clock controller block for the MTn_CH0 ~ MTn_CH3 and MTn_ETI pins. The digital filter in the MCTM is an N-event counter where N refers to how many valid transitions are necessary to output a filtered signal. The N value can be 0, 2, 4, 5, 6 or 8 according to the selection for each filter.

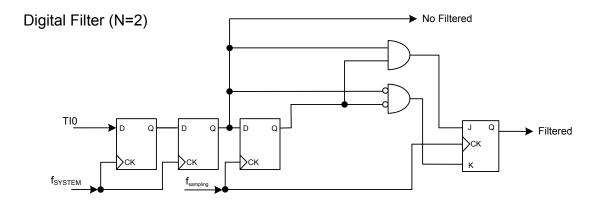


Figure 113. MTn_ETI Pin Digital Filter Diagram with N = 2

Clearing CHxOREF when ETIF is high

The CHxOREF signal can be forced to 0 when the ETIF signal is set to a high level by setting the REFxCE bit to 1 in the CHxOCFR register. The CHxOREF signal will not return to its active level until the next update event 1 occurs.

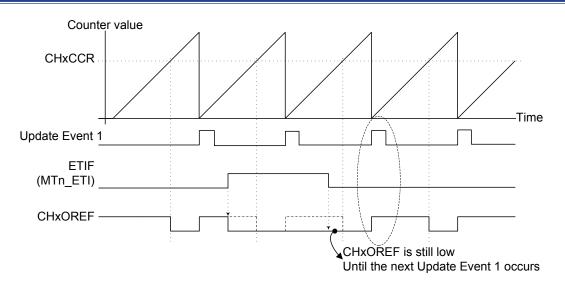


Figure 114. Clearing CHxOREF by ETIF

Single Pulse Mode

Once the timer is set to operate in the single pulse mode, it is not necessary to set the timer enable bit TME in the CTR register to 1 to enable the counter. The trigger to generate a pulse can be sourced from the STI signal rising edge or by setting the TME bit to 1 using software. Setting the TME bit to 1 or a trigger from the STI signal rising edge can generate a pulse and then keep the TME bit at a high state until the update event 1 occurs or the TME bit is cleared to 0 by software. If the TME bit is cleared to 0 using software, the counter will be stopped and its value held. If the TME bit is automatically cleared to 0 by a hardware update event 1, the counter will be reinitialised.



Figure 115. Single Pulse Mode

In the Single Pulse mode, the STI active edge which sets the TME bit to 1 will enable the counter. However, there exist several clock delays to perform the comparison result between the counter value and the CHxCCR value. In order to reduce the delay to a minimum value, users can set the CHxIMAE bit in each CHxOCFR register. After a STI rising edge trigger occurs in the single pulse mode, the CHxOREF signal will immediately be forced to the state to which the CHxOREF signal will change to as the compare match event occurs without taking the comparison result into account. The CHxIMAE bit is available only when the output channel is configured to operate in the PWM1 or PWM2 output mode and the trigger source is derived from the STI signal.

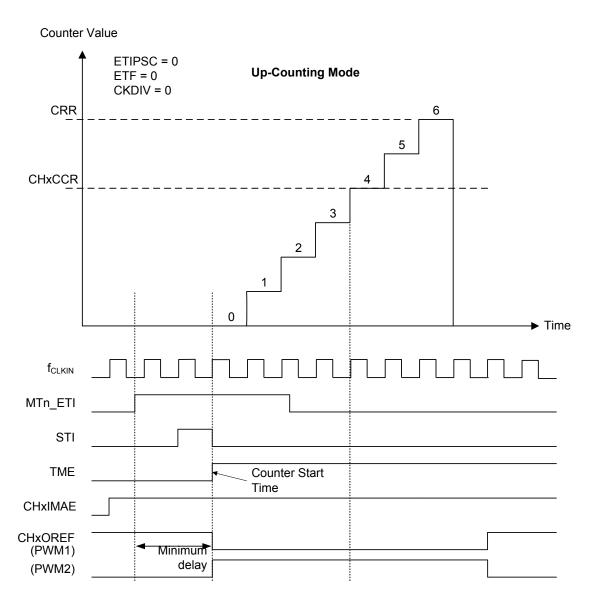


Figure 116. Immediate Active Mode Minimum Delay

Asymmetric PWM Mode

Asymmetric PWM mode allows two center-aligned PWM signals to be genetated with a programmable phase shift. While the PWM frequency is determined by the value of the CRR register, the duty cycle and the phase-shift are determined by the CHxCCR and CHxACR register. When the counter is counting up, the PWM using the value in CHxCCR as up-count compare value. When the counter is into counting down stage then the value in CHxACR are used as down-count compare value. The Figure 117 is shown as an example for asymmetric PWM mode in Center-aligned Counting mode.

Note: Asymmetric PWM mode can only be operated in Center-aligned Counting mode.

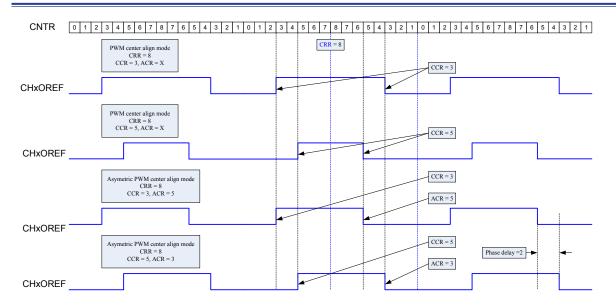


Figure 117. Asymmetric PWM Mode versus Center-aligned Counting mode

Timer Interconnection

The timers can be internally connected together for timer chaining or synchronization. This can be implemented by configuring one timer to operate in the Master mode while configuring another timer to be in the Slave mode. The following figures present several examples of trigger selection for the master and slave modes.

Using one timer to trigger another timer to start or stop counting

- Configure MCTM0 to be in the master mode and to send its channel 0 Output Reference signal CH0OREF as a trigger output (MMSEL = 0x04).
- Configure the MCTM0 CH0OREF waveform.
- \blacksquare Configure the GPTM0 to receive its input trigger source from the MCTM0 trigger output (TRSEL = 0x0A).
- Configure GPTM0 to operate in the pause mode (SMSEL = 0x05).
- Enable GPTM0 by writing '1' to the TME bit.
- Enable MCTM0 by writing '1' to the TME bit.

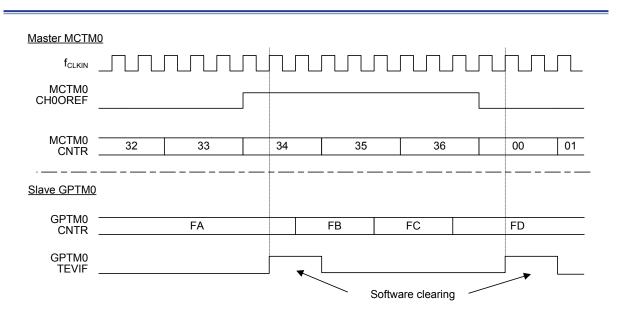


Figure 118. Pausing GPTM0 Using the MCTM0 CH0OREF Signal

Using one timer to trigger another timer to start counting

- Configure MCTM0 to operate in the master mode and to send its Update Event UEV as the trigger output (MMSEL = 0x02).
- Configure the MCTM0 period by setting the CRR register.
- Configure GPTM0 to get the input trigger source from the MCTM0 trigger output (TRSEL = 0x0A).
- \blacksquare Configure GPTM0 to be in the slave trigger mode (SMSEL = 0x06).
- Start MCTM0 by writing '1' to the TME bit.

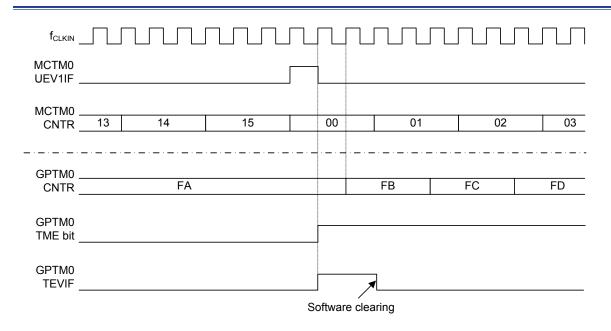


Figure 119. Triggering GPTM0 with MCTM0 Update Event 1

Starting two timers synchronously in response to an external trigger

- Configure MCTM0 to operate in the master mode to send its enable signal as a trigger output (MMSEL = 0x01).
- Configure MCTM0 slave mode to receive its input trigger source from MTn_CH0 pin (TRSEL = 0x01)
- \blacksquare Configure MCTM0 to be in the slave trigger mode (SMSEL = 0x06).
- Enable the MCTM0 master timer synchronisation function by setting the TSE bit in the MDCFR register to 1 to synchronise the slave timer.
- Configure GPTM0 to receive its input trigger source from the MCTM0 trigger output (TRSEL = 0x0A).
- Configure GPTM0 to be in the slave trigger mode (SMSEL = 0x06).

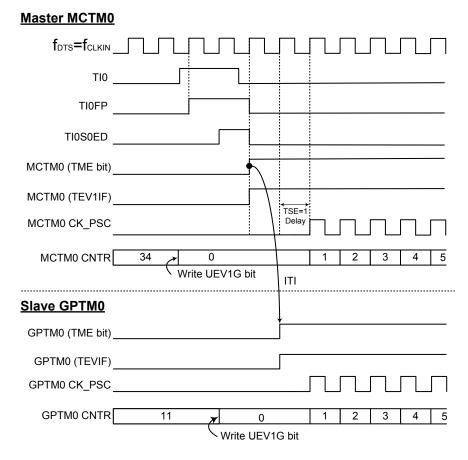


Figure 120. Trigger MCTM0 and GPTM0 with the MCTM0 CH0 Input

Using one timer as a hall sensor interface to trigger another timer with update event 2

GPTM0:

- Configure channel 0 to choose an input XOR function (TI0SRC = 1)
- Configure channel 0 to be in the input capture mode and TRCED as capture source (CH0CCS= 0x03) and Enable channel 0 (CH0E=1)
- Configure the UEV1G bit as the source of MTO (MMSEL= 0x00)
- Configure TI0BED to be connected to STI (TRSEL = 0x08)
- \blacksquare Configure the counter to be in the slave restart mode (SMSEL = 0x04)
- Enable GPTM0 (TME=1)

MCTM0:

- Select GPTM0 MTO to be the STI source of MCTM (TRSEL = 0x0A)
- Enable the CHxE, CHxNE and CHxOM preload function (COMPRE = 1)
- Select the rising edge on STI to generate an update event 2 (COMUS = 1)
- Enable the update event 2 interrupt (UEV2IE = 1)
- In the update event 2 ISR: write CHxE, CHxNE and CHxOM register for the next step

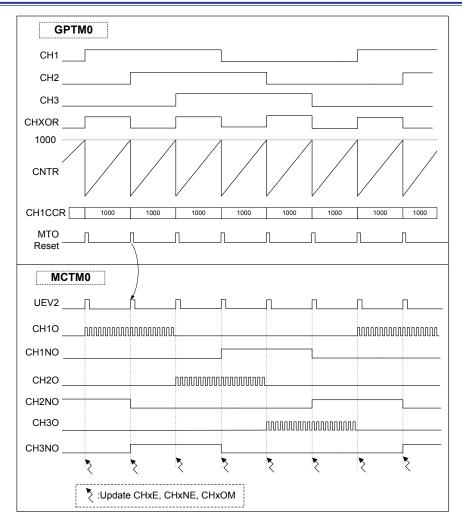


Figure 121. CH1XOR Input as Hall Sensor Interface

Trigger ADC Start

To interconnect to the Analog-to-Digital Converter, the MCTM can output the MTO signal or the channel compare match output signal CHxOREF ($x = 0 \sim 3$) to be used as an Analog-to-Digital Converter input trigger signal.

Lock Level Table

In addition to the break input and output management, a write protection has been internally implemented in the break circuitry to safeguard the application. Users can choose one protection level selected by the LOCKLV bits to protect the relative control bits of the registers. The LOCKLV bits can only be written once after an MCTM or system reset. Then the protected bits will be locked and can not be changed anymore except by the MCTM reset or when the system is reset.

Table 39. Lock Level Table

Lock Configuration	Protected Bits					
Lock Level 1 (LOCKLV = '01')	CHDTG	CHxOIS	CHxOISN	BKE	BKP	CHAOE
Lock Level 2	CHDTG	CHxOIS	CHxOISN	BKE	BKP	CHAOE
(LOCKLV = '10')	CHxP	CHxNP	CHOSSI	CHOSSR	MCTMEN ⁽¹⁾	CKMEN ⁽²⁾
	CHDTG	CHxOIS	CHxOISN	BKE	BKP	CHAOE
Lock Level 3 (LOCKLV = '11')	CHxP	CHxNP	CHOSSI	CHOSSR	MCTMEN ⁽¹⁾	CKMEN ⁽²⁾
(LOOKLV - 11)	CHxPRE	CHxOM				

Notes: 1. The MCTMEN bit of the APBCCR1 register is located in the CKCU unit and use to control the clock source of the MCTM unit.

- 2. The CKMEN bit of the GCCR register is located in the CKCU unit and use to monitor the high speed external clock (HSE) source. If the CKMEN bit is enabled and when hardware detects HSE clock stuck at low/high state, internal hardware will automatically switch the system clock to internal high speed RC clock (HSI) to protect the system safety.
- 3. When the MCTMEN and CKMEN control bits of the CKCU lock protection mode is enabled in the MCTM unit, the bits will be allowed to enable only and inhibited to disable again.

PDMA Request

The MCTM has a PDMA data transfer interface. There are certain events which can generate PDMA requests if the corresponding enable control bits are set to 1 to enable the PDMA access. These events are the MCTM update events, trigger event and channel capture/compare events. When the PDMA request is generated from the MCTM channel, it can be derived from the channel capture/compare event or the MCTM update event 1 selected by the channel PDMA selection bit, CHCCDS, for all channels. For more detailed PDMA configuring information, refer to the corresponding section in the PDMA chapter.

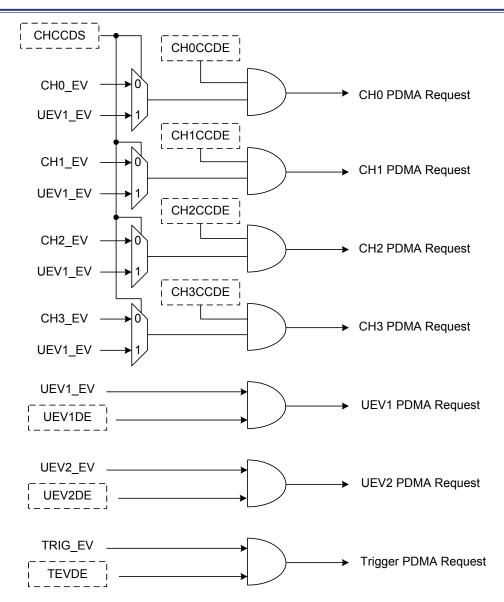


Figure 122. MCTM PDMA Mapping Diagram

Register Map

The following table shows the MCTM registers and reset values.

Table 40. MCTM Register Map

Register	Offset	Description	Reset Value
CNTCFR	0x000	Timer Counter Configuration Register	0x0000_0000
MDCFR	0x004	Timer Mode Configuration Register	0x0000_0000
TRCFR	0x008	Timer Trigger Configuration Register	0x0000_0000
CTR	0x010	Timer Control Register	0x0000_0000
CH0ICFR	0x020	Channel 0 Input Configuration Register	0x0000_0000
CH1ICFR	0x024	Channel 1 Input Configuration Register	0x0000_0000
CH2ICFR	0x028	Channel 2 Input Configuration Register	0x0000_0000
CH3ICFR	0x02C	Channel 3 Input Configuration Register	0x0000_0000
CH0OCFR	0x040	Channel 0 Output Configuration Register	0x0000_0000
CH10CFR	0x044	Channel 1 Output Configuration Register	0x0000_0000
CH2OCFR	0x048	Channel 2 Output Configuration Register	0x0000_0000
CH3OCFR	0x04C	Channel 3 Output Configuration Register	0x0000_0000
CHCTR	0x050	Channel Control Register	0x0000_0000
CHPOLR	0x054	Channel Polarity Configuration Register	0x0000_0000
CHBRKCFR	0x06C	Channel Break Configuration Register	0x0000_0000
CHBRKCTR	0x070	Channel Break Control Register	0x0000_0000
DICTR	0x074	Timer PDMA / Interrupt Control Register	0x0000_0000
EVGR	0x078	Timer Event Generator Register	0x0000_0000
INTSR	0x07C	Timer Interrupt Status Register	0x0000_0000
CNTR	0x080	Timer Counter Register	0x0000_0000
PSCR	0x084	Timer Prescaler Register	0x0000_0000
CRR	0x088	Timer Counter Reload Register	0x0000_FFFF
REPR	0x08C	Timer Repetition Register	0x0000_0000
CH0CCR	0x090	Channel 0 Capture / Compare Register	0x0000_0000
CH1CCR	0x094	Channel 1 Capture / Compare Register	0x0000_0000
CH2CCR	0x098	Channel 2 Capture / Compare Register	0x0000_0000
CH3CCR	0x09C	Channel 3 Capture / Compare Register	0x0000_0000
CH0ACR	0x0A0	Channel 0 Asymmetric Compare Register 0x0000_	
CH1ACR	0x0A4	Channel 1 Asymmetric Compare Register	0x0000_0000
CH2ACR	0x0A8	Channel 2 Asymmetric Compare Register	0x0000_0000
CH3ACR	0x0AC	Channel 3 Asymmetric Compare Register	0x0000_0000

Register Descriptions

Timer Counter Configuration Register – CNTCFR

This register specifies the MCTM counter configuration.

Offset: 0x000

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	2	24
				Reserved				D	IR
Type/Reset								RW	0
	23	22	21	20	19	18	17	1	16
				Reserved				CM	SEL
Type/Reset							RW	0 RW	0
_	15	14	13	12	11	10	9		8
				Reserved				CK	DIV
Type/Reset							RW	0 RW	0
_	7	6	5	4	3	2	1	(0
				Reserved			UGDI	S UEV	1DIS
Type/Reset							RW	0 RW	0

Bits	Field	Descriptions
[24]	DIR	Counting Direction 0: Count-up 1: Count-down Note: This bit is read only when the Timer is configured to be in the Center-aligned counting mode or when used as a Quadrature decoder
[17:16]	CMSEL	 Counter Mode Selection 00: Edge-aligned counting mode. Normal up-counting and down-counting available for this mode. Counting direction is defined by the DIR bit. 01: Center-aligned counting mode 1. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-down period. 10: Center-aligned counting mode 2. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-up period. 11: Center-aligned counting mode 3. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-up and
[9:8]	CKDIV	count-down period. Clock Division These two bits define the frequency ratio between the timer clock (f_{CLKIN}) and the dead-time clock (f_{DTS}). The dead-time clock is also used as the digital filter sampling clock. 00: $f_{DTS} = f_{CLKIN}$ 01: $f_{DTS} = f_{CLKIN} / 2$ 10: $f_{DTS} = f_{CLKIN} / 4$ 11: Reserved

Bits	Field	Descriptions
[1]	UGDIS	Update event 1 interrupt generation disable control 0: Any of the following events will generate an update PDMA request or interrupt - Counter overflow/underflow - Setting the UEV1G bit - Update generation through the slave mode 1: Only counter overflow/underflow generates an update PDMA request or interrupt
[0]	UEV1DIS	Update event 1 Disable control 0: Enable the update event 1 request by one of following events - Counter overflow/underflow - Setting the UEV1G bit - Update generation through the slave mode 1: Disable the update event 1 - however the counter and the prescaler are reinitialised if the UEV1G bit is set or if a hardware restart is received from the slave mode

Timer Mode Configuration Register – MDCFR

This register specifies the MCTM master and slave mode selection and single pulse mode.

Offset: 0x004
Reset value: 0x0000_0000

	31	30	29	28	27	26		25	2	24
				Reserved					SPN	//SET
Type/Reset									RW	0
	23	22	21	20	19	18		17	1	16
			Reserved				N	IMSEL		
Type/Reset						RW	0 RV	/	0 RW	0
	15	14	13	12	11	10		9		8
			Reserved				S	MSEL		
Type/Reset						RW	0 RV	/	0 RW	0
	7	6	5	4	3	2		1		0
									T =	CE
				Reserved					13	SE

Bits	Field	Descriptions
[24]	SPMSET	Single Pulse Mode Setting 0: Counter counts normally irrespective of whether an update event occurred or
		not 1: Counter stops counting at the next update event and then the TME bit is

cleared by hardware

Bits Field Descriptions

[18:16] MMSEL

Master Mode Selection

Master mode selection is used to select the MTO signal source which is used to synchronise the other slave timer.

MMSEL [2:0]	Mode	Descriptions
000	Reset Mode	The MTO in the Reset mode is an output derived from one of the following cases: Software setting UEV1G bit Slave has trigger input when used in slave restart mode
001	Enable Mode	The Counter Enable signal is used as the trigger output.
010	Update Mode	The update event 1 is used as the trigger output according to one of the following cases when the UEV1DIS bit is cleared to 0: Counter overflow/underflow Software setting UEV1G Slave has trigger input when used in slave restart mode
011	Capture/Compare Mode	When a Channel 0 capture or compare match event occurs, it will generate a positive pulse which is used as the master trigger output.
100	Compare output 0	The Channel 0 Output reference signal named CH0OREF is used as the trigger output.
101	Compare output 1	The Channel 1 Output reference signal named CH1OREF is used as the trigger output.
110	Compare output 2	The Channel 2 Output reference signal named CH2OREF is used as the trigger output.
111	Compare output 3	The Channel 3 Output reference signal named CH3OREF is used as the trigger output.

Bits Field Descriptions

[10:8] SMSEL Slave Mode Selection

SMSEL [2:0]	Mode	Descriptions
000	Disable mode	The prescaler is clocked directly by the internal clock.
001	Quadrature Decoder mode 1	The counter uses the clock pulses generated from the interaction between the TIO and TI1 signals to drive the counter prescaler. A transition of the TIO edge is used in this mode depending upon the TI1 level.
010	Quadrature Decoder mode 2	The counter uses the clock pulse generated from the interaction between the TIO and TI1 signals to drive the counter prescaler. A transition of the TI1 edge is used in this mode depending upon the TI0 level.
011	Quadrature Decoder mode 3	The counter uses the clock pulse generated from the interaction between the TIO and TI1 signals to drive the counter prescaler. A transition of one channel edge is used in the quadrature decoder mode 3 depending upon the other channel level.
100	Restart Mode	The counter value restarts from 0 or the CRR shadow register value depending upon the counter mode on the rising edge of the STI signal. The registers will also be updated.
101	Pause Mode	The counter starts to count when the selected trigger input STI is high. The counter stops counting on the instant, not being reset, when the STI signal changes its state to a low level. Both the counter start and stop control are determined by the STI signal.
110	Trigger Mode	The counter starts to count from the original value in the counter on the rising edge of the selected trigger input STI. Only the star of counter is controlled.
111	STIED	The rising edge of the selected trigger signal STI will clock the counter.

[0] TSE

Timer Synchronisation Enable

- 0: No action
- 1: Master timer (current timer) will generate a delay to synchronise its slave timer through the MTO signal.

Timer Trigger Configuration Register – TRCFR

This register specifies the MCTM external clock setting and the trigger source selection.

Offset: 0x008
Reset value: 0x0000_0000

	31	30	29		28		27		26		25		24	
					Reserv	⁄ed							ECM	E
Type/Reset													RW	0
	23	22	21		20		19		18		17		16	
					Reserv	⁄ed							ETIPO	OL
Type/Reset													RW	0
	15	14	13		12		11		10		9		8	
		Reserved			ETIPS	SC.					ETF			
Type/Reset			RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7	6	5		4		3		2		1		0	
			Reserv	ed							TRSE	L		
Type/Reset		_					RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[24]	ECME	External Clock Mode Enable 0: External clock mode is disabled. 1: External clock mode is enabled. The following two setting have the same effect: 1. Setting the ECME bit to 1 2. Setting SMSEL=0x111 with STI connected to ETIF (TRSEL=0x011)
[16]	ETIPOL	External Trigger Polarity 0: MTn_ETI active at high level or rising edge 1: MTn_ETI active at low level or falling edge.
[13:12]	ETIPSC	External Trigger Prescaler A prescaler can be enabled to reduce the ETIP frequency 00: Prescaler OFF 01: ETIP frequency divided by 2 10: ETIP frequency divided by 4 11: ETIP frequency divided by 8

Bits	Field	Descriptions
[11:8]	ETF	External Trigger Filter These bits define the frequency divided ratio that is used to sample the MTn_ETI signal. The digital filter in the MCTM is an N-event counter where N means how many valid transitions are necessary to output a filtered signal. 0000: No filter, the sampling clock is f_{DTS} . 0001: $f_{SAMPLING} = f_{CLKIN}$, N = 2 0010: $f_{SAMPLING} = f_{CLKIN}$, N = 8 0100: $f_{SAMPLING} = f_{DTS}/2$, N = 6 0101: $f_{SAMPLING} = f_{DTS}/4$, N = 8 0110: $f_{SAMPLING} = f_{DTS}/4$, N = 8 1000: $f_{SAMPLING} = f_{DTS}/4$, N = 8 1001: $f_{SAMPLING} = f_{DTS}/8$, N = 8 1010: $f_{SAMPLING} = f_{DTS}/16$, N = 5 1011: $f_{SAMPLING} = f_{DTS}/16$, N = 6 1100: $f_{SAMPLING} = f_{DTS}/16$, N = 8 1101: $f_{SAMPLING} = f_{DTS}/16$, N = 8 1101: $f_{SAMPLING} = f_{DTS}/32$, N = 5 1110: $f_{SAMPLING} = f_{DTS}/32$, N = 6
[3:0]	TRSEL	Trigger Source Selection These bits are used to select the trigger input (STI) for counter synchronising. 0000: Software Trigger by setting the UEV1G bit 0001: Channel 0 filtered input – TI0S0 0010: Channel 1 filtered input – TI1S1 0011: External Trigger input – ETIF 1000: Channel 0 Edge Detector – TI0BED 1001: Internal Timing Module Trigger 0 – ITI0 1010: Internal Timing Module Trigger 1 – ITI1 1011: Internal Timing Module Trigger 2 – ITI2 Others: Default 0 Note: These bits must be updated only when they are not in use, i.e. the slave mode

is disabled by setting the SMSEL field to 0x00.

Table 41. MCTM Internal Trigger Connection

Slave Timing Module	ITI0	ITI1	ITI2		
MCTM0	MCTM1	GPTM0	GPTM1		
MCTM1	MCTM0	GPTM0	GPTM1		

Timer Counter Register – CTR

This register specifies the timer enable bit (TME), CRR buffer enable bit (CRBE), Capture/compare control bit and Channel PDMA selection bit (CHCCDS).

Offset: 0x010
Reset value: 0x0000_0000

_	31	30	29	28	27	26	25		24	
					Reserved					
Type/Reset							,			
	23	22	21	20	19	18	17		16	
				Reserved					CHCC	DS
Type/Reset							'		RW	0
_	15	14	13	12	11	10	9		8	
				Reserved			COM	JS	COMF	PRE
Type/Reset							RW	0	RW	0
_	7	6	5	4	3	2	1		0	
				Reserved			CRB	E	TMI	E
Type/Reset							RW	0	RW	0

Bits	Field	Descriptions
[16]	CHCCDS	Channel Capture / Compare PDMA Selection 0: Channel PDMA request derived from the channel capture / compare event. 1: Channel PDMA request derived from the update event 1.
[9]	COMUS	Capture / Compare Control Update Selection 0: Updated by setting the UEV2G bit only 1: Updated by setting the UEV2G bit or when a STI signal rising edge occurs This bit is only available when the capture/compare preload function is enabled by setting the COMPRE bit to 1.
[8]	COMPRE	Capture / Compare Preloaded Enable Control 0: CHxE, CHxNE and CHxOM bits are not preloaded 1: CHxE, CHxNE and CHxOM bits are preloaded If this bit is set to 1, the corresponding capture / compare control bits including the CHxE, CHxNE and CHxOM bits will be upadted when the update event 2 occurs.
[1]	CRBE	Counter-Reload register Buffer Enable 0: Counter reload register can be updated immediately 1: Counter reload register can not be updated until the update event occurs
[0]	TME	Timer Enable bit 0: MCTM off 1: MCTM on – MCTM functions normally When the TME bit is cleared to 0, the counter is stopped and the MCTM consumes no power in any operational mode except for the single pulse mode and the slave trigger mode. In these two modes the TME bit can automatically be set to 1 by hardware which permits all the MCTM registers to function normally.

Channel 0 Input Configuration Register – CH0ICFR

This register specifies the channel 0 input mode configuration.

Offset: 0x020

Reset value: 0x0000_0000

	31	30	29	28	27		26	25	24	
	TI0SRC				Reserv	ed				
Type/Reset	RW 0									
	23	22	21	20	19		18	17	16	
			Reserved				CH0PSC		CH0C	CS
Type/Reset					RW	0	RW 0	RW	0 RW	0
	15	14	13	12	11		10	9	8	
					Reserv	'ed				
Type/Reset										
	7	6	5	4	3		2	1	0	
			Reserved					TIOF		
Type/Reset					RW	0	RW 0	RW	0 RW	0

Bits	Field	Descriptions
[31]	TIOSRC	Channel 0 Input Source TI0 Selection 0: The MTn_CH0 pin is connected to the channel 0 input TI0 1: The XOR operation output of the MTn_CH0, MTn_CH1, and MTn_CH2 pins are connected to the channel 0 input TI0
[19:18]	CH0PSC	Channel 0 Capture Input Source Prescaler Setting These bits define the effective events of the channel 0 capture input. Note that the prescaler is reset once the Channel 0 Capture/Compare Enable bit, CH0E, in the Channel Control register named CHCTR is cleared to 0. 00: No prescaler, channel 0 capture input signal is chosen for each active event 01: Channel 0 Capture input signal is chosen for every 2 events 10: Channel 0 Capture input signal is chosen for every 4 events 11: Channel 0 Capture input signal is chosen for every 8 events
[17:16]	CH0CCS	Channel 0 Capture/Compare Selection 00: Channel 0 is configured as an output 01: Channel 0 is configured as an input derived from the TI0 signal 10: Channel 0 is configured as an input derived from the TI1 signal 11: Channel 0 is configured as an input which comes from the TRCED signal derived from the Trigger Controller Note: The CH0CCS field can be accessed only when the CH0E bit is cleared to 0.

Rev. 1.10 362 of 680 November 22, 2018

Bits	Field	Descriptions
[3:0]	TIOF	Channel 0 Input Source TI0 Filter Setting
		These bits define the frequency divided ratio used to sample the TI0 signal. The
		Digital filter in the MCTM is an N-event counter where N is defined as how many
		valid transitions are necessary to output a filtered signal.
		0000: No filter, the sampling clock is f _{DTS}
		0001: $f_{SAMPLING} = f_{CLKIN}$, $N = 2$
		0010: $f_{SAMPLING} = f_{CLKIN}$, $N = 4$
		$0011: f_{SAMPLING} = f_{CLKIN}, N = 8$
		0100: $f_{SAMPLING} = f_{DTS}/2$, N = 6
		0101: $f_{SAMPLING} = f_{DTS}/2$, N = 8
		0110: $f_{SAMPLING} = f_{DTS}/4$, N = 6
		$0111: f_{SAMPLING} = f_{DTS}/4, N = 8$
		$1000: f_{SAMPLING} = f_{DTS}/8, N = 6$
		1001: $f_{SAMPLING} = f_{DTS}/8$, N = 8
		1010: $f_{SAMPLING} = f_{DTS}/16$, N = 5
		1011: $f_{SAMPLING} = f_{DTS}/16$, N = 6
		1100: $f_{SAMPLING} = f_{DTS}/16$, N = 8
		1101: $f_{SAMPLING} = f_{DTS}/32$, N = 5
		1110: $f_{SAMPLING} = f_{DTS}/32$, N = 6
		1111: $f_{SAMPLING} = f_{DTS}/32$, N = 8

Channel 1 Input Configuration Register – CH1ICFR

This register specifies the channel 1 input mode configuration.

Offset: 0x024 Reset value: 0x0000_0000

	31	30	29	28	27		26	25		24	<u>, </u>
					Reserv	ed					
Type/Reset					,						
	23	22	21	20	19		18	17		16	;
			Reserved				CH1PSC			CH1C	cs
Type/Reset					RW	0	RW 0	RW	0	RW	0
	15	14	13	12	11		10	9		8	
					Reserv	ed					
Type/Reset					,						
	7	6	5	4	3		2	1		0	
			Reserved					TI1F			
Type/Reset	_				RW	0	RW 0	RW	0	RW	0

Bits	Field	Descriptions
[19:18]	CH1PSC	Channel 1 Capture Input Source Prescaler Setting
		These bits define the effective events of the channel 1 capture input. Note that the
		prescaler is reset once the Channel 1 Capture/Compare Enable bit, CH1E, in the
		Channel Control register named CHCTR is cleared to 0.
		00: No prescaler, channel 1 capture input signal is chosen for each active event
		01: Channel 1 Capture input signal is chosen for every 2 events
		10: Channel 1 Capture input signal is chosen for every 4 events11: Channel 1 Capture input signal is chosen for every 8 events
		11. Chamber 1 Supraire input signal is chosen for every 6 events

Bits	Field	Descriptions
[17:16]	CH1CCS	Channel 1 Capture/Compare Selection 00: Channel 1 is configured as an output 01: Channel 1 is configured as an input derived from the TI1 signal 10: Channel 1 is configured as an input derived from the TI0 signal 11: Channel 1 is configured as an input which comes from the TRCED signal derived from the Trigger Controller Note: The CH1CCS field can be accessed only when the CH1E bit is cleared to 0.
[3:0]	TI1F	Channel 1 Input Source TI1 Filter Setting These bits define the frequency divide ratio used to sample the TI1 signal. The Digital filter in the MCTM is an N-event counter where N is defined as how many valid transitions are necessary to output a filtered signal 0000: No filter, the sampling clock is f_{DTS} 0001: $f_{SAMPLING} = f_{CLKIN}$, N = 2 0010: $f_{SAMPLING} = f_{CLKIN}$, N = 4 0011: $f_{SAMPLING} = f_{CLKIN}$, N = 8 0100: $f_{SAMPLING} = f_{DTS}/2$, N = 6 0101: $f_{SAMPLING} = f_{DTS}/2$, N = 8 0110: $f_{SAMPLING} = f_{DTS}/4$, N = 8 1000: $f_{SAMPLING} = f_{DTS}/4$, N = 8 1001: $f_{SAMPLING} = f_{DTS}/8$, N = 6 1001: $f_{SAMPLING} = f_{DTS}/8$, N = 8 1010: $f_{SAMPLING} = f_{DTS}/16$, N = 5 1011: $f_{SAMPLING} = f_{DTS}/16$, N = 6 1100: $f_{SAMPLING} = f_{DTS}/16$, N = 8 1101: $f_{SAMPLING} = f_{DTS}/16$, N = 8 1101: $f_{SAMPLING} = f_{DTS}/32$, N = 5 1110: $f_{SAMPLING} = f_{DTS}/32$, N = 6 1111: $f_{SAMPLING} = f_{DTS}/32$, N = 6 1111: $f_{SAMPLING} = f_{DTS}/32$, N = 6 1111: $f_{SAMPLING} = f_{DTS}/32$, N = 6

Channel 2 Input Configuration Register – CH2ICFR

This register specifies the channel 2 input mode configuration.

0x028

Offset: Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 20 23 22 21 19 18 17 16 CH2CCS CH2PSC Reserved 0 RW Type/Reset RW 0 RW 0 RW 15 14 13 12 11 10 9 Reserved Type/Reset 7 6 5 3 2 1 TI2F Reserved Type/Reset RW 0 RW 0 RW 0 RW

Bits	Field	Descriptions
[19:18]	CH2PSC	Channel 2 Capture Input Source Prescaler Setting These bits define the effective events of the channel 2 capture input. Note that the prescaler is reset once the Channel 2 Capture / Compare Enable bit, CH2E, in the Channel Control register named CHCTR is cleared to 0. 00: No prescaler, channel 2 capture input signal is chosen for each active event 01: Channel 2 Capture input signal is chosen for every 2 events 10: Channel 2 Capture input signal is chosen for every 4 events 11: Channel 2 Capture input signal is chosen for every 8 events
[17:16]	CH2CCS	Channel 2 Capture/Compare Selection 00: Channel 2 is configured as an output 01: Channel 2 is configured as an input derived from the TI2 signal 10: Channel 2 is configured as an input derived from the TI3 signal 11: Channel 2 is configured as an input which comes from the TRCED signal derived from the Trigger Controller Note: The CH2CCS field can be accessed only when the CH2E bit is cleared to 0.
[3:0]	TI2F	Channel 2 Input Source TI2 Filter Setting These bits define the frequency divide ratio used to sample the TI2 signal. The Digital filter in the MCTM is an N-event counter where N is defined as how many valid transitions are necessary to output a filtered signal. $0000: \text{No filter, the sampling clock is } f_{DTS}.$ $0001: f_{SAMPLING} = f_{CLKIN}, N = 2$ $0010: f_{SAMPLING} = f_{CLKIN}, N = 4$ $0011: f_{SAMPLING} = f_{DTS} / 2, N = 6$ $0100: f_{SAMPLING} = f_{DTS} / 2, N = 8$ $0100: f_{SAMPLING} = f_{DTS} / 4, N = 6$ $0111: f_{SAMPLING} = f_{DTS} / 4, N = 8$ $1000: f_{SAMPLING} = f_{DTS} / 8, N = 6$ $1001: f_{SAMPLING} = f_{DTS} / 8, N = 8$ $1010: f_{SAMPLING} = f_{DTS} / 16, N = 5$ $1011: f_{SAMPLING} = f_{DTS} / 16, N = 6$ $1100: f_{SAMPLING} = f_{DTS} / 16, N = 8$ $1101: f_{SAMPLING} = f_{DTS} / 32, N = 5$ $1110: f_{SAMPLING} = f_{DTS} / 32, N = 6$ $1111: f_{SAMPLING} = f_{DTS} / 32, N = 6$

Channel 3 Input Configuration Register – CH3ICFR

This register specifies the channel 3 input mode configuration.

Descriptions

Offset: 0x02C Reset value: 0x0000_0000

Field

Bits

	31	30	29	28	27		26	25	2	4
					Reserv	ed				
Type/Reset			'							
	23	22	21	20	19		18	17	1	6
			Reserved				CH3PSC		CH3	CCS
Type/Reset					RW	0	RW 0	RW	0 RW	0
	15	14	13	12	11		10	9	8	3
					Reserv	ed				
Type/Reset										
	7	6	5	4	3		2	1	0)
			Reserved					TI3F		
Type/Reset					RW	0	RW 0	RW	0 RW	0

[19:18]	CH3PSC	Channel 3 Capture Input Source Prescaler Setting These bits define the effective events of the channel 3 capture input. Note that the prescaler is reset once the Channel 3 Capture/Compare Enable bit, CH3E, in the Channel Control register named CHCTR is cleared to 0. 00: No prescaler, channel 3 capture input signal is chosen for each active event 01: Channel 3 Capture input signal is chosen for every 2 events 10: Channel 3 Capture input signal is chosen for every 4 events 11: Channel 3 Capture input signal is chosen for every 8 events
[17:16]	CH3CCS	Channel 3 Capture/Compare Selection 00: Channel 3 is configured as an output 01: Channel 3 is configured as an input derived from the TI3 signal 10: Channel 3 is configured as an input derived from the TI2 signal 11: Channel 3 is configured as an input which comes from the TRCED signal derived from the Trigger Controller Note: The CH3CCS field can be accessed only when the CH3E bit is cleared to 0.

Rev. 1.10 366 of 680 November 22, 2018

ne TI3 signal. The ned as how many

Channel 0 Output Configuration Register – CH0OCFR

This register specifies the channel 0 output mode configuration.

Offset: 0x040
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24	
					Reserved				
Type/Reset									
_	23	22	21	20	19	18	17	16	
					Reserved				
Type/Reset									
_	15	14	13	12	11	10	9	8	
				Reserved				СНООМ	[3]
Type/Reset								RW	0
_	7	6	5	4	3	2	1	0	
		Reserved	CH0IMAE	CH0PRE	REF0CE		CH0OM[2:0]		
Type/Reset			RW 0	RW 0	RW 0	RW	0 RW 0	RW	0

Bits	Field	Descriptions
[5]	CHOIMAE	Channel 0 Immediate Active Enable 0: No action 1: Single pulse Immediate Active Mode is enabled CH0OREF will be forced to the compare matched level immediately after an available trigger event occurs irrespective of the result of the comparison between the CNTR and the CH0CCR values. The effective duration ends automatically at the next overflow or underflow event. Note: The CH0IMAE bit is available only if channel 0 is configured operate in PWM mode 1 or PWM mode 2.
[4]	CH0PRE	Channel 0 Capture / Compare Register (CH0CCR) Preload Enable 0: CH0CCR preload function is disabled The CH0CCR register can be immediately assigned a new value when the CH0PRE bit is cleared to 0 and the updated CH0CCR value is used immediately. 1: CH0CCR preload function is enabled The new CH0CCR value will not be transferred to its shadow register until an update event 1 occurs.
[3]	REF0CE	Channel 0 Reference Output Clear Enable 0: CH0OREF operates normally and is not affected by the ETIF signal 1: CH0OREF is forced to 0 on the high level of the ETIF signal derived from the MTn_ETI pin

Bits	Field	Descriptions
[8][2:0]	CH0OM[3:0]	Channel 0 Output Mode Setting
1-11 -1		These bits define the functional types of the output reference signal CH0OREF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH0OREF is forced to 0
		0101: Force active – CH0OREF is forced to 1
		0110: PWM mode 1
		 During up-counting, channel 0 has an active level when CNTR <
		CH0CCR or otherwise has an inactive level.
		- During down-counting, channel 0 has an inactive level when CNTR >
		CH0CCR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 0 is has an inactive level when CNTR < CH0CCR or otherwise has an active level.
		- During down-counting, channel 0 has an active level when CNTR >
		CH0CCR or otherwise has an inactive level.
		1110: Asymmetric PWM mode 1
		- During up-counting, channel 0 has an active level when CNTR <
		CH0CCR or otherwise has an inactive level.
		- During down-counting, channel 0 has an inactive level when CNTR >
		CH0ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		- During up-counting, channel 0 has an inactive level when CNTR <

CH0CCR or otherwise has an active level.

aligned Counting mode (CMSEL = 01/02/03)

CH0ACR or otherwise has an inactive level

Note: When channel 0 is uesd as asymmetric PWM output mode, the Counter Mode

Selection bit in Counter Configuration Register must be configured as Center-

- During down-counting, channel 0 has an active level when CNTR >

Channel 1 Output Configuration Register – CH1OCFR

This register specifies the channel 1 output mode configuration.

Offset: 0x044

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24	
					Reserved		'		
Type/Reset							'		
	23	22	21	20	19	18	17	16	<u> </u>
					Reserved				
Type/Reset							'		
	15	14	13	12	11	10	9	8	
				Reserved				CH10	M[3]
Type/Reset							,	RW	0
	7	6	5	4	3	2	1	0	
		Reserved	CH1IMAE	CH1PRE	REF1CE		CH1OM[2:0]	
Type/Reset			RW 0	RW 0	RW 0	RW	0 RW 0	RW	0

Bits	Field	Descriptions
[5]	CH1IMAE	Channel 1 Immediate Active Enable 0: No action 1: Single pulse Immediate Active Mode enabled The CH10REF will be forced to the compare matched level immediately after an available trigger event occurs irrespective of the result of the comparison between the CNTR and the CH1CCR values. The effective duration ends automatically at the next overflow or underflow event. Note: The CH1IMAE bit is available only if channel 1 is configured to be operated in PWM mode 1 or PWM mode 2.
[4]	CH1PRE	Channel 1 Capture / Compare Register (CH1CCR) Preload Enable 0: CH1CCR preload function is disabled. The CH1CCR register can be immediately assigned a new value when the CH1PRE bit is cleared to 0 and the updated CH1CCR value is used immediately. 1: CH1CCR preload function is enabled The new CH1CCR value will not be transferred to its shadow register until an update event 1 occurs.
[3]	REF1CE	Channel 1 Reference Output Clear Enable 0: CH1OREF performed normally and is not affected by the ETIF signal 1: CH1OREF is forced to 0 on the high level of the ETIF signal derived from the MTn_ETI pin.

Bits	Field	Descriptions
[8][2:0]	CH1OM[3:0]	Channel 1 Output Mode Setting
		These bits define the functional types of the output reference signal CH10REF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH10REF is forced to 0
		0101: Force active – CH1OREF is forced to 1
		0110: PWM mode 1
		 During up-counting, channel 1 has an active level when CNTR < CH1CCR or otherwise has an inactive level.
		 During down-counting, channel 1 has an inactive level when CNTR > CH1CCR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 1 has an inactive level when CNTR < CH1CCR or otherwise has an active level.
		 During down-counting, channel 1 has an active level when CNTR > CH1CCR or otherwise has an inactive level.
		1110: Asymmetric PWM mode 1
		 During up-counting, channel 1 has an active level when CNTR < CH1CCR or otherwise has an inactive level.
		 During down-counting, channel 1 has an inactive level when CNTR > CH1ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2

CH1CCR or otherwise has an active level.

CH1ACR or otherwise has an inactive level

Note: When channel 1 is uesd as asymmetric PWM output mode, the Counter Mode

Selection bit in Counter Configuration Register must be configured as Centeraligned Counting mode (CMSEL = 01/02/03)

- During up-counting, channel 1 has an inactive level when CNTR <

- During down-counting, channel 1 has an active level when CNTR >

Channel 2 Output Configuration Register – CH2OCFR

This register specifies the channel 2 output mode configuration.

Offset: 0x048
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24	
					Reserved				
Type/Reset							'		
	23	22	21	20	19	18	17	16	
					Reserved				
Type/Reset							'		
	15	14	13	12	11	10	9	8	
				Reserved				CH2OI	M[3]
Type/Reset							'	RW	0
	7	6	5	4	3	2	1	0	
		Reserved	CH2IMAE	CH2PRE	REF2CE		CH2OM[2:0	0]	
Type/Reset			RW 0	RW 0	RW 0	RW	0 RW 0	RW	0

Bits	Field	Descriptions
[5]	CH2IMAE	Channel 2 Immediate Active Enable 0: No action 1: Single pulse Immediate Active Mode enabled The CH2OREF will be forced to the compare matched level immediately after an available trigger event occurs irrespective of the result of the comparison between the CNTR and the CH2CCR values. The effective duration ends automatically at the next overflow or underflow event. Note: The CH2IMAE bit is available only if the channel 2 is configured to be operated in PWM mode 1 or PWM mode 2.
[4]	CH2PRE	Channel 2 Capture / Compare Register (CH2CCR) Preload Enable 0: CH2CCR preload function is disabled. The CH2CCR register can be immediately assigned a new value when the CH2PRE bit is cleared to 0 and the updated CH2CCR value is used immediately. 1: CH2CCR preload function is enabled The new CH2CCR value will not be transferred to its shadow register until an update event 1 occurs.
[3]	CH3OCCE	Channel 2 Reference Output Clear Enable 0: CH2OREF operates normally and is not affected by the ETIF signal 1: CH2OREF is forced to 0 during a high level of the ETIF signal derived from the MTn_ETI pin

Bits	Field	Descriptions
[8][2:0]	CH2OM[3:0]	Channel 2 Output Mode Setting
		These bits define the functional types of the output reference signal CH2OREF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH2OREF is forced to 0
		0101: Force active – CH2OREF is forced to 1
		0110: PWM mode 1
		- During up-counting, channel 2 has an active level when CNTR <
		CH2CCR or otherwise has an inactive level.
		 During down-counting, channel 2 has an inactive level when CNTR > CH2CCR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 2 has an inactive level when CNTR < CH2CCR or otherwise has an active level.
		- During down-counting, channel 2 has an active level when CNTR >
		CH2CCR or otherwise has an inactive level.
		1110: Asymmetric PWM mode 1
		- During up-counting, channel 2 has an active level when CNTR <
		CH2CCR or otherwise has an inactive level.
		- During down-counting, channel 2 has an inactive level when CNTR >
		CH2ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2

CH2ACR or otherwise has an inactive level

Note: When channel 2 is uesd as asymmetric PWM output mode, the Counter Mode

Selection bit in Counter Configuration Register must be configured as Centeraligned Counting mode (CMSEL = 01/02/03)

CH2CCR or otherwise has an active level.

- During up-counting, channel 2 has an inactive level when CNTR <

- During down-counting, channel 2 has an active level when CNTR >

Channel 3 Output Configuration Register – CH3OCFR

This register specifies the channel 3 output mode configuration.

Offset: 0x04C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24	
					Reserved		'		
Type/Reset							"		
	23	22	21	20	19	18	17	16	
					Reserved				
Type/Reset							'		
	15	14	13	12	11	10	9	8	
				Reserved				CH3ON	Л[3]
Type/Reset							"	RW	0
	7	6	5	4	3	2	1	0	
		Reserved	CH3IMAE	CH3PRE	REF3CE		CH3OM[2:0]	
Type/Reset		·	RW 0	RW 0	RW 0	RW	0 RW 0	RW	0

Bits	Field	Descriptions
[5]	CH3IMAE	Channel 3 Immediate Active Enable 0: No action 1: Single pulse Immediate Active Mode enabled The CH3OREF will be forced to the compare matched level immediately after an available trigger event occurs irrespective of the result of the comparison between the CNTR and the CH3CCR values. The effective duration ends automatically at the next overflow or underflow event. Note: The CH3IMAE bit is available only if channel 3 is configured to be operated in PWM mode 1 or PWM mode 2.
[4]	CH3PRE	Channel 3 Capture / Compare Register (CH3CCR) Preload Enable 0: CH3CCR preload function is disabled. The CH3CCR register can be immediately assigned a new value when the CH3PRE bit is cleared to 0 and the updated CH3CCR value is used immediately. 1: CH3CCR preload function is enabled The new CH3CCR value will not be transferred to its shadow register until an update event 1 occurs.
[3]	REF3CE	Channel 3 Reference Output Clear Enable 0: CH3OREF operates normally and is not affected by the ETIF signal 1: CH3OREF is forced to 0 during the high level of the ETIF signal derived from the MTn_ETI pin

Bits	Field	Descriptions
[8][2:0]	CH3OM[3:0]	Channel 3 Output Mode Setting
		These bits define the functional types of the output reference signal CH3OREF
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH3OREF is forced to 0
		0101: Force active – CH3OREF is forced to 1
		0110: PWM mode 1
		- During up-counting, channel 3 has an active level when CNTR <
		CH3CCR or otherwise has an inactive level.
		 During down-counting, channel 3 has an inactive level when CNTR > CH3CCR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 3 has an inactive level when CNTR < CH3CCR or otherwise has an active level.
		- During down-counting, channel 3 has an active level when CNTR >
		CH3CCR or otherwise has an inactive level
		1110: Asymmetric PWM mode 1
		 During up-counting, channel 3 has an active level when CNTR <
		CH3CCR or otherwise has an inactive level.
		- During down-counting, channel 3 has an inactive level when CNTR >
		CH3ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2

CH3ACR or otherwise has an inactive level

Note: When channel 3 is uesd as asymmetric PWM output mode, the Counter Mode

Selection bit in Counter Configuration Register must be configured as Centeraligned Counting mode. (CMSEL = 01/02/03)

CH3CCR or otherwise has an active level.

- During up-counting, channel 3 has an inactive level when CNTR <

- During down-counting, channel 3 has an active level when CNTR >

Channel Control Register – CHCTR

This register contains the channel capture input or compare output function enable control bits.

Offset:	0x050							
Reset value:	0x0000_0000							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	Reserved	CH3E	CH2NE	CH2E	CH1NE	CH1E	CH0NE	CH0E
Type/Reset		RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[6]	CH3E	Channel 3 Capture / Compare Enable - Channel 3 is configured as an input (CH3CCS = 0x01/0x02/0x03) 0: Input Capture Mode is disabled 1: Input Capture Mode is enabled - Channel 3 is configured as an output (CH3CCS = 0x00) 0: Off – Channel 3 output signal CH3O is not active 1: On – Channel 3 output signal CH3O is generated on the corresponding output pin depending on the condition of the CHMOE, CHOSSI, CHOSSR and CH3OIS bits.
[5]	CH2NE	 Channel 2 Capture / Compare Complementary Enable 0: Off – Channel 2 complementary output CH2NO is not active. The CH2NO level is then determined by the CHMOE, CHOSSI, CHOSSR, CH2OIS, CH2OISN and CH2E bits. 1: On – Channel 2 complementary output CH2NO is generated on the corresponding output pin depending on the condition of the CHMOE, CHOSSI, CHOSSR, CH2OIS, CH2OISN and CH2E bits.
[4]	CH2E	Channel 2 Capture/Compare Enable - Channel 2 is configured as an input (CH2CCS = 0x01/0x02/0x03) 0: Input Capture Mode is disabled 1: Input Capture Mode is enabled - Channel 2 is configured as an output (CH2CCS = 0x00) 0: Off — Channel 2 output signal CH2O is not active. The CH2O level is then determined by the condition of the CHMOE, CHOSSI, CHOSSR, CH2OIS, CH2OISN and CH2NE bits. 1: On — Channel 2 output signal CH2O is generated on the corresponding output pin determined by the condition of the CHMOE, CHOSSI, CHOSSR, CH2OIS, CH2OISN and CH2NE bits.
[3]	CH1NE	Channel 1 Capture / Compare Complementary Enable 0: Off – Channel 1 complementary output CH1NO is not active. The CH1NO level is then determined by the condition of the CHMOE, CHOSSI, CHOSSR, CH1OIS, CH1OISN and CH1E bits. 1: On – Channel 1 complementary output CH1NO is generated on the corresponding output pin determined by the condition of the CHMOE, CHOSSI, CHOSSR, CH1OIS, CH1OISN and CH1E bits.

Bits	Field	Descriptions
[2]	CH1E	Channel 1 Capture/Compare Enable - Channel 1 is configured as an input (CH1CCS = 0x01/0x02/0x03) 0: Input Capture Mode is disabled 1: Input Capture Mode is enabled - Channel 1 is configured as an output (CH1CCS = 0x00) 0: Off – Channel 1 output signal CH1O is not active. The CH1O level is then determined by the condition of the CHMOE, CHOSSI, CHOSSR, CH1OIS, CH1OISN and CH1NE bits. 1: On – Channel 1 output signal CH1O is generated on the corresponding output pin depending on the condition of the CHMOE, CHOSSI, CHOSSR, CH1OIS, CH1OISN and CH1NE bits.
[1]	CHONE	Channel 0 Capture/Compare Complementary Enable 0: Off – Channel 0 complementary output CH0NO is not active. The CH0NO level is then determined by the condition of the CHMOE, CHOSSI, CHOSSR, CH0OIS, CH0OISN and CH0E bits. 1: On – Channel 0 complementary output CH0NO is generated on the corresponding output pin depending on the condition of the CHMOE, CHOSSI, CHOSSR, CH0OIS, CH0OISN and CH0E bits.
[0]	CH0E	Channel 0 Capture/Compare Enable - Channel 0 is configured as an input (CH0CCS = 0x01/0x02/0x03) 0: Input Capture Mode is disabled 1: Input Capture Mode is enabled - Channel 0 is configured as an output (CH0CCS = 0x00) 0: Off – Channel 0 output signal CH0O is not active. The CH0O level is then determined by the condition of the CHMOE, CHOSSI, CHOSSR, CH0OIS, CH0OISN and CH0NE bits. 1: On – Channel 0 output signal CH0O is generated on the corresponding output pin determined by the condition of the CHMOE, CHOSSI, CHOSSR, CH0OIS, CH0OISN and CH0NE bits.

Channel Polarity Configuration Register – CHPOLR

This register contains the channel capture input or compare output polarity control.

0x054

Offset:

Reset value: 0x0000_0000 28 30 29 27 26 25 24 31 Reserved Type/Reset 21 20 23 22 19 18 17 16 Reserved Type/Reset 15 14 13 12 11 10 9 8 Reserved Type/Reset 6 5 3 2 CH2NP CH2P CH0NP Reserved CH3P CH1NP CH1P RW 0 RW 0 RW 0 RW 0 RW Type/Reset

Bits	Field	Descriptions
[6]	СНЗР	Channel 3 Capture / Compare Polarity (CH3CCS = 0x01/0x02/0x03) - When Channel 3 is configured as an input 0: capture event occurs on a Channel 3 rising edge 1: capture event occurs on a Channel 3 falling edge - When Channel 3 is configured as an output (CH3CCS = 0x00) 0: Channel 3 Output is active high 1: Channel 3 Output is active low
[5]	CH2NP	Channel 2 Capture / Compare Complementary Polarity 0: Channel 2 Output is active high. 1: Channel 2 Output is active low
[4]	CH2P	Channel 2 Capture/Compare Polarity (CH2CCS = 0x01/0x02/0x03) - When Channel 2 is configured as an input 0: capture event occurs on a Channel 2 rising edge 1: capture event occurs on a Channel 2 falling edge - When Channel 2 is configured as an output (CH2CCS = 0x00) 0: Channel 2 Output is active high 1: Channel 2 Output is active low
[3]	CH1NP	Channel 1 Capture/Compare Complementary Polarity 0: Channel 1 Output is active high. 1: Channel 1 Output is active low.
[2]	CH1P	Channel 1 Capture/Compare Polarity (CH1CCS = 0x01/0x02/0x03) - When Channel 1 is configured as an input 0: capture event occurs on a Channel 1 rising edge 1: capture event occurs on a Channel 1 falling edge - Channel 1 is configured as an output (CH1CCS = 0x00) 0: Channel 1 Output is active high 1: Channel 1 Output is active low
[1]	CH0NP	Channel 0 Capture/Compare Complementary Polarity 0: Channel 0 Output is active high. 1: Channel 0 Output is active low.
[0]	CH0P	Channel 0 Capture/Compare Polarity (CH0CCS = 0x01/0x02/0x03) - When Channel 0 is configured as an input 0: capture event occurs on a Channel 0 rising edge 1: capture event occurs on a Channel 0 falling edge - When Channel 0 is configured as an output (CH0CCS = 0x00) 0: Channel 0 Output is active high 1: Channel 0 Output is active low

Channel Break Configuration Register – CHBRKCFR

This register specifies the channel output idle state when using the break function.

Offset: 0x06C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
			-	-	Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	Reserved	CH3OIS	CH2OISN	CH2OIS	CH10ISN	CH10IS	CH00ISN	CH0OIS
Type/Reset		RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[6]	CH3OIS	MTn_CH3O Output Idle State 0: Channel 3 output CH3O = 0 when CHMOE = 0 1: Channel 3 output CH3O = 1 when CHMOE = 0
[5]	CH2OISN	MTn_CH2NO Output Idle State 0: Channel 2 complementary output CH2NO = 0 after a dead time when CHMOE = 0 1: Channel 2 complementary output CH2NO = 1 after a dead time when CHMOE = 0
[4]	CH2OIS	MTn_CH2O Output Idle State 0: Channel 2 output CH2O = 0 after a dead time when CHMOE = 0 1: Channel 2 output CH2O = 1 after a dead time when CHMOE = 0
[3]	CH1OISN	MTn_CH1NO Output Idle State 0: Channel 1 complementary output CH1NO = 0 after a dead time when CHMOE = 0 1: Channel 1 complementary output CH1NO = 1 after a dead time when CHMOE = 0
[2]	CH1OIS	MTn_CH1O Output Idle State 0: Channel 1 output CH1O = 0 after a dead time when CHMOE = 0 1: Channel 1 output CH1O = 1 after a dead time when CHMOE = 0
[1]	CH0OISN	MTn_CH0NO Output Idle State 0: Channel 0 complementary output CH1NO = 0 after a dead time when CHMOE = 0 1: Channel 0 complementary output CH1NO = 1 after a dead time when CHMOE = 0
[0]	CH0OIS	MTn_CH0O Output Idle State 0: Channel 0 output CH0O = 0 after a dead time when CHMOE = 0 1: Channel 0 output CH0O = 1 after a dead time when CHMOE = 0

Channel Break Control Register – CHBRKCTR

This register specifies the channel break control bits.

Offset: 0x070
Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									CHDT	G						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
			Reserv	ed	CHOSS	SR	CHOS	SI	GFSEL	.1	GFSEL)			LOCKI	LV
Type/Reset					RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
					BKF1								BKF0			
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
	Reserve	ed	BK1SE	L	CHAO	E	СНМО	E	BKP1		BKE1		BKP0		BKE)
Type/Reset			RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	$\overline{}$

Bits	Field	Descriptions
[31:24]	CHDTG	Channel Dead Time Duration Definition CHDTG[7:5]=0xx: Channel Dead Time = CHDTG [7:0] × t_{dtg} , where $t_{dtg} = t_{DTS}$ CHDTG[7:5]=10x: Channel Dead Time = (64 + CHDTG [5:0]) × t_{dtg} , where $t_{dtg} = 2 \times t_{DTS}$ CHDTG[7:5]=110: Channel Dead Time = (32 + CHDTG [4:0]) × t_{dtg} , where $t_{dtg} = 8 \times t_{DTS}$ CHDTG[7:5]=111: Channel Dead Time = (32 + CHDTG [4:0]) × t_{dtg} , where $t_{dtg} = 16 \times t_{DTS}$
[21]	CHOSSR	Channel Off State (CHxE, CHxNE = 0) Selection for Normal Run State (CHMOE = 1) 0: When inactive, MTn_CHxO / MTn_CHxNO output disable - not driven by timer 1: When inactive, MTn_CHxO / MTn_CHxNO output enabled with their inactive level
[20]	CHOSSI	Channel Off State Selection for Idle Mode (CHMOE = 0) 0: When inactive, MTn_CHxO / MTn_CHxNO output disable - not driven by timer 1: When inactive, MTn_CHxO / MTn_CHxNO output enabled with their idle level depending upon the condition of the the CHxOIS and CHxOISN bits.
[19]	GFSEL1	Deglitch Filter Selction for Break 1 0: No input deglitch filter 1: 50ns deglitch filter
[18]	GFSEL0	Deglitch Filter Selction for Break 0 0: No input deglitch filter 1: 50ns deglitch filter
[17:16]	LOCKLV	Lock Level Setting These bits offer write protection against software errors. The bits can be written only once after a reset. 00: LOCK OFF. Register write protected function disabled. 01: LOCK Level 1 10: LOCK Level 2 11: LOCK Level 3

Bits	Field	Descriptions
[15:12]	BKF1	Break 1 Input Filter Setting These bits define the frequency ratio used to sample the MTn_BRK1 signal. The digital filter in the MCTM is an N-event counter where N is defined as how many valid transitions are necessary to output a filtered signal. $0000: No filter - don't need sample clock.$ $0001: f_{SAMPLING} = f_{CLKIN}, N = 2.$ $0010: f_{SAMPLING} = f_{CLKIN}, N = 4.$ $0011: f_{SAMPLING} = f_{CLKIN}, N = 8.$ $0100: f_{SAMPLING} = f_{DTS}/2, N = 8.$ $0101: f_{SAMPLING} = f_{DTS}/2, N = 8.$ $0110: f_{SAMPLING} = f_{DTS}/4, N = 8.$ $1010: f_{SAMPLING} = f_{DTS}/4, N = 8.$ $1000: f_{SAMPLING} = f_{DTS}/8, N = 8.$ $1010: f_{SAMPLING} = f_{DTS}/8, N = 8.$ $1010: f_{SAMPLING} = f_{DTS}/16, N = 5.$ $1011: f_{SAMPLING} = f_{DTS}/16, N = 8.$ $1101: f_{SAMPLING} = f_{DTS}/32, N = 8.$ $1101: f_{SAMPLING} = f_{DTS}/32, N = 8.$ $1111: f_{SAMPLING} = f_{DTS}/32, N = 8.$ $1111: f_{SAMPLING} = f_{DTS}/32, N = 8.$
[11:8]	BKF0	Break 0 Input Filter Setting These bits define the frequency ratio used to sample the MTn_BRK0 signal. The digital filter in the MCTM is an N-event counter where N is defined as how many valid transitions are necessary to output a filtered signal. 0000: No filter – don't need sample clock. 0001: f _{SAMPLING} = f _{CLKIN} , N = 2. 0010: f _{SAMPLING} = f _{CLKIN} , N = 4. 0011: f _{SAMPLING} = f _{CLKIN} , N = 8. 0100: f _{SAMPLING} = f _{DTS} /2, N = 6. 0101: f _{SAMPLING} = f _{DTS} /2, N = 8. 0110: f _{SAMPLING} = f _{DTS} /4, N = 8. 1000: f _{SAMPLING} = f _{DTS} /4, N = 8. 1000: f _{SAMPLING} = f _{DTS} /8, N = 6. 1001: f _{SAMPLING} = f _{DTS} /16, N = 5. 1011: f _{SAMPLING} = f _{DTS} /16, N = 6. 1100: f _{SAMPLING} = f _{DTS} /16, N = 8. 1101: f _{SAMPLING} = f _{DTS} /32, N = 5. 1110: f _{SAMPLING} = f _{DTS} /32, N = 6. 1111: f _{SAMPLING} = f _{DTS} /32, N = 6.
[6]	BK1SEL	Break 1 Selection 0: ETI signal is selected for the MTn_ETI pin. 1: MT_BRK1 signal is selected for the MTn_ETI pin. Note: The Break 1 and ETI signal are share with the same MTn_ETI pin. This control bit can switch the pin function for the second break signal of the MCTM.
[5]	CHAOE	Channel Automatic Output Enable 0: CHMOE can be set only by software. 1: CHMOE can be set by software or automatically by an update event
[4]	CHMOE	Channel Main Output Enable Cleared asynchronously by hardware on a break event occurrence. 0: MTn_CHxO and MTn_CHxNO are disabled or forced to an idle state. 1: MTn_CHxO and MTn_CHxNO are enabled if the enable bits (CHxE, CHxNE) are set.

Bits	Field	Descriptions
[3]	BKP1	Break 1 Input Polarity. 0: Break input active low. 1: Break input active high
[2]	BKE1	Break 1 Enable 0: Break inputs disabled 1: Break inputs enabled
[1]	BKP0	Break 0 Input Polarity. 0: Break input active low. 1: Break input active high
[0]	BKE0	Break 0 Enable 0: Break inputs disabled 1: Break inputs enabled

Timer PDMA / Interrupt Control Register – DICTR

This register contains the timer PDAM and interrupt enable control bits.

Offset: 0x074
Reset value: 0x0000_0000

	31	30	29	28	27		26		2	5	24	ŀ
			Reserved				TEVE	Œ	UEV	2DE	UEV1	1DE
Type/Reset							RW	0	RW	0	RW	0
	23	22	21	20	19		18		1	7	16	<u> </u>
			Reserved		CH3CC	DE	CH2CC	DE	CH10	CCDE	CH0C	CDE
Type/Reset					RW	0	RW	0	RW	0	RW	0
	15	14	13	12	11		10			9	8	
	15	14	13 Reserved	12	11 BRKI	E	10 TEVI	E) /2IE	8 UEV	
Type/Reset	15	14		12								
Type/Reset	15 7	6		12	BRKI		TEVI		UΕ\	/2IE	UEV	1IE
Type/Reset	7		Reserved		BRKI RW	0	TEVI	0	UE\ RW	/2IE	UEV	1IE 0

Bits	Field	Descriptions
[26]	TEVDE	Trigger event PDMA Request Enable 0: Trigger PDMA request is disabled 1: Trigger PDMA request is enabled
[25]	UEV2DE	Update event 2 PDMA Request Enable 0: Update event 2 PDMA request is disabled 1: Update event 2 PDMA request is enabled
[24]	UEV1DE	Update event 1 DMA Request Enable 0: Update event 1 DMA request is disabled 1: Update event 1 DMA request is enabled
[19]	CH3CCDE	Channel 3 Capture / Compare PDMA Request Enable 0: Channel 3 PDMA request is disabled 1: Channel 3 PDMA request is enabled
[18]	CH2CCDE	Channel 2 Capture / Compare PDMA Request Enable 0: Channel 2 PDMA request is disabled 1: Channel 2 PDMA request is enabled

Bits	Field	Descriptions
[17]	CH1CCDE	Channel 1 Capture / Compare PDMA Request Enable 0: Channel 1 PDMA request is disabled 1: Channel 1 PDMA request is enabled
[16]	CH0CCDE	Channel 0 Capture / Compare PDMA Request Enable 0: Channel 0 PDMA request is disabled 1: Channel 0 PDMA request is enabled
[11]	BRKIE	Break event Interrupt Enable 0: Break event interrupt is disabled 1: Break event interrupt is enabled
[10]	TEVIE	Trigger event Interrupt Enable 0: Trigger event interrupt is disabled 1: Trigger event interrupt is enabled
[9]	UEV2IE	Update event 2 Interrupt Enable 0: Update event 2 interrupt is disabled 1: Update event 2 interrupt is enabled
[8]	UEV1IE	Update event 1 Interrupt Enable 0: Update event 1 interrupt is disabled 1: Update event 1 interrupt is enabled
[3]	CH3CCIE	Channel 3 Capture / Compare Interrupt Enable 0: Channel 3 interrupt is disabled 1: Channel 3 interrupt is enabled
[2]	CH2CCIE	Channel 2 Capture / Compare Interrupt Enable 0: Channel 2 interrupt is disabled 1: Channel 2 interrupt is enabled
[1]	CH1CCIE	Channel 1 Capture / Compare Interrupt Enable 0: Channel 1 interrupt is disabled 1: Channel 1 interrupt is enabled
[0]	CH0CCIE	Channel 0 Capture / Compare Interrupt Enable 0: Channel 0 interrupt is disabled 1: Channel 0 interrupt is enabled

Timer Event Generator Register – EVGR

This register contains the software event generation bits.

Offset: 0x078
Reset value: 0x0000_0000

	31	30	29	28	27		26		25		24	
					Reserv	/ed						
Type/Reset					'							
	23	22	21	20	19		18		17		16	6
					Reserv	/ed						
Type/Reset					'							
	15	14	13	12	11		10		9		8	
			Reserved		BRK	G	TEVG	; [UEV2G		UEV1G	
Type/Reset					WO	0	WO	0	WO	0	WO	0
	7	6	5	4	3		2		1		0	
			Reserved		CH3C0	CG	CH2CC	G	CH1C	CG	CH00	CCG
Type/Reset					WO	0	WO	0	WO	0	WO	0

Bits	Field	Descriptions
[11]	BRKG	Softeware Break Event Generation The break event BEV can be generated by setting this bit. It is automatically cleared by hardware. 0: No action. 1: The BRK0IF flag is set and then the CHMOE bit will be cleared.
[10]	TEVG	Trigger Event Generation The trigger event TEV can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: The TEVIF flag is set
[9]	UEV2G	Update Event 2 Generation The update event 2 UEV2 can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Update the CHxE, CHxNE, and CHxOM bits when COMPRE bit in CTR Register is set to 1.
[8]	UEV1G	Update Event 1 Generation The update event 1 UEV1 can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Reinitialise the counter The counter value returns to 0 or the CRR preload value, depending on the counter mode in which the current timer is being used. An update operation on any related registers will also be executed. For a more detailed description, refer to the corresponding section.

Bits	Field	Descriptions
[3]	CH3CCG	Channel 3 Capture / Compare Generation A Channel 3 capture / compare event can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Capture / compare event is generated on channel 3 If Channel 3 is configured as an input, the counter value is captured into the CH3CCR register and then the CH3CCIF bit is set. If Channel 3 is configured as an output, the CH3CCIF bit is set.
[2]	CH2CCG	Channel 2 Capture / Compare Generation A Channel 2 capture / compare event can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Capture/compare event is generated on channel 2 If Channel 2 is configured as an input, the counter value is captured into the CH2CCR register and then the CH2CCIF bit is set. If Channel 2 is configured as an output, the CH2CCIF bit is set.
[1]	CH1CCG	Channel 1 Capture / Compare Generation A Channel 1 capture / compare event can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Capture / compare event is generated on channel 1 If Channel 1 is configured as an input, the counter value is captured into the CH1CCR register and then the CH1CCIF bit is set. If Channel 1 is configured as an output, the CH1CCIF bit is set.
[0]	CH0CCG	Channel 0 Capture / Compare Generation A Channel 0 capture/compare event can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Capture / compare event is generated on channel 0 If Channel 0 is configured as an input, the counter value is captured into the CH0CCR register and then the CH0CCIF bit is set. If Channel 0 is configured as an output, the CH0CCIF bit is set.

Timer Interrupt Status Register – INTSR

This register stores the timer interrupt status.

Offset: 0x07C Reset value: 0x0000_0000

	31		30		29)	28		27		26		25		24	
									Reserv	/ed						
Type/Reset																
	23		22		21		20		19		18		17		16	
									Reserv	/ed						
Type/Reset																
	15		14		13	3	12		11		10		9		8	
			Reser	ved			BRK1	IIF	BRK0IF		TEVI	F	UEV2	IF	UEV1	IIF
Type/Reset							W0C	0	W0C	0	W0C	0	W0C	0	W0C	0
			6		5		4		3		2		1		0	
			CH2O	CF	CH10CF		CH0C	CF	CH3CCIF		CH2C	CIF	CH1C	CIF	CH0CCIF	
Type/Reset	W0C	0	W0C	0	W0C	0	W0C	0	W0C	0	W0C	0	W0C	0	W0C	0

Bits	Field	Descriptions
[12]	BRK1IF	Break 1 Event Interrupt Flag This flag is set by hardware when a break 1 event occurs and is cleared by software. 0: No break 1 event occurred 1: Break 1 event occurred
[11]	BRK0IF	Break 0 Event Interrupt Flag This flag is set by hardware when a break 0 event occurs and is cleared by software. 0: No break 0 event occurred 1: Break 0 event occurred
[10]	TEVIF	Trigger Event Interrupt Flag This flag is set by hardware when a trigger event occurs and is cleared by software. 0: No trigger event occurred 1: Trigger event occurred
[9]	UEV2IF	Update Event 2 Interrupt Flag This bit is set by hardware when an update event 2 occurs and is cleared by software. 0: No update event 2 occurred 1: Update event 2 occurred
[8]	UEV1IF	Update Event 1 Interrupt Flag This bit is set by hardware when a update event 1 occurs and is cleared by software. 0: No update event 1 occurred 1: Update event 1 occurred Note: The update event 1 is sourced from the following conditions: - A counter overflow or underflow - The UEV1G bit is set with UEVDIS=0 - A STI rising edge is received in slave restart mode with UEVDIS=0
[7]	CH3OCF	Channel 3 Over-capture Flag This flag is set by hardware and cleared by software. 0: No over-capture event is detected 1: Capture event occurs again when the CH3CCIF bit is already set and it is not yet cleared by software.

Bits	Field	Descriptions
[6]	CH2OCF	Channel 2 Over-capture Flag This flag is set by hardware and cleared by software. 0: No over-capture event is detected
		 Capture event occurs again when the CH2CCIF bit is already set and it is not cleared yet by software.
[5]	CH10CF	Channel 1 Over-capture Flag
		This flag is set by hardware and cleared by software. 0: No over-capture event is detected 1: Capture event occurs again when the CH1CCIF bit is already set and it is not cleared yet by software.
[4]	CH0OCF	Channel 0 Over-capture Flag
		This flag is set by hardware and cleared by software.
		0: No over-capture event is detected1: Capture event occurs again when the CH0CCIFbit is already set and it is not yet cleared by software
[3]	CH3CCIF	Channel 3 Capture / Compare Interrupt Flag
		- Channel 3 is configured as an output 0: No match event occurred
		The contents of the counter CNTR have matched the contents of the CH3CCR register.
		This flag is set by hardware when the counter value matches the CH3CCR value
		with exception in the center-aligned counting mode. It is cleared by software. - Channel 3 is configured as an input
		0: No input capture occurred
		1: Input capture occurred
		This bit is set by hardware when a capture event occurs. It is cleared by software or by reading the CH3CCR register.
[2]	CH2CCIF	Channel 2 Capture / Compare Interrupt Flag
		- Channel 2 is configured as an output 0: No match event occurred
		The contents of the counter CNTR have matched the contents of the CH2CCR register
		This flag is set by hardware when the counter value matches the CH2CCR value with exception in the center-aligned counting mode. It is cleared by software.
		 Channel 2 is configured as an input No input capture occurred
		1: Input capture occurred.
		This bit is set by hardware on a capture event. It is cleared by software or by reading the CH2CCR register.
[1]	CH1CCIF	Channel 1 Capture / Compare Interrupt Flag
		 Channel 1 is configured as an output 0: No match event occurred 1: The contents of the counter CNTR have matched the contents of the CH1CCR
		register
		This flag is set by hardware when the counter value matches the CH1CCR value with exception in the center-aligned counting mode. It is cleared by software. - Channel 1 is configured as an input
		0: No input capture occurred
		1: Input capture occurred
		This bit is set by hardware on a capture event. It is cleared by software or by reading the CH1CCR register.

Bits	Field	Descriptions
[0]	CH0CCIF	Channel 0 Capture / Compare Interrupt Flag
		- Channel 0 is configured as an output
		0: No match event occurs
		1: The contents of the counter CNTR have matched the content of the CH0CCR register
		This flag is set by hardware when the counter value matches the CH0CCR value with exception in the center-aligned counting mode. It is cleared by software.
		 - Channel 0 is configured as an input 0: No input capture occurred 1: Input capture occurred
		This bit is set by hardware on a capture event. It is cleared by software or by reading the CHOCCR register

Timer Counter Register – CNTR

This register stores the timer counter value.

Offset: 0x080
Reset value: 0x0000_0000

	31	30	29		28	27	26	25	24			
						Reserve	ed					
Type/Reset												
	23	22	21		20	19	18	17	16			
						Reserve	ed					
Type/Reset												
	15	14	13		12	11	10	9	8			
						CNTV	′					
Type/Reset	RW	0 RW	0 RW	0 RW	/ () RW	0 RW	0 RW	0 RW 0			
	7	6	5		4	3	2	1	0			
	CNTV											
Type/Reset	RW	0 RW	0 RW	0 RV	/ (RW	0 RW	0 RW	0 RW 0			

Field Des	riptions
CNTV Cou	er Value.

Timer Prescaler Register – PSCR

This register specifies the timer prescaler value to generate the counter clock.

Offset: 0x084

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset					'			
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					'			
	15	14	13	12	11	10	9	8
					PSCV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW () RW 0
	7	6	5	4	3	2	1	0
					PSCV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (0 RW 0) RW 0

Bits Field Descriptions

[15:0] PSCV Prescaler Value

These bits are used to specify the prescaler value to generate the counter clock frequency $f_{\text{CK_CNT}}.$

 $f_{\text{CK_CNT}} = \frac{f_{\text{CK_PSC}}}{\text{PSCV}[15:0]+1}, \text{ where the } f_{\text{CK_PSC}} \text{ is the prescaler clock source.}$

Timer Counter Reload Register – CRR

This register specifies the timer counter reload value.

Offset: 0x088
Reset value: 0x0000_FFFF

	31		30		29			28		2	7		26			25		24	4
										Rese	erved								
Type/Reset																			
	23		22		21			20		1	9		18			17		10	3
										Rese	erved								
Type/Reset																			
	15		14		13			12		1	1		10			9		8	
										CF	₹V								
Type/Reset	RW	1 RW		1 R	RW.	1	RW		1	RW	1	RW	'	1	RW		1	RW	1
	7		6		5			4		3	3		2			1		0	
										CF	₹V								
Type/Reset	RW	1 RW		1 R	W	1	RW		1	RW	1	RW	'	1	RW		1	RW	1

Bits	Field	Descriptions
[15:0]	CRV	Counter Reload Value
		The CRV is the reload value which is loaded into the actual counter register.

Timer Repetition Register – REPR

This register specifies the timer repetition counter value.

Offset:	0x08C
Reset value:	0x0000_0000

	31		30		29)		28		27		26			25		24	
										Reserv	/ed							
Type/Reset																		
	23		22		21			20		19		18			17		16	
										Reserv	/ed							
Type/Reset																		
	15		14		13	,		12		11		10			9		8	
										Reserv	/ed							
Type/Reset																		
	7		6		5			4		3		2			1		0	
										REP'	V							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0 R	W	0

Bits	Field	Descriptions

[7:0] REPV

Repetition Counter Value.

These bits allow the user to specify the update rate of the compare registers.

Channel 0 Capture / Compare Register – CH0CCR

This register specifies the timer channel 0 capture / compare value.

Offset: 0x090

Reset value: 0x0000 0000

	31		30			29			28			27		2	26			25			24	
											Res	erve	ed									
Type/Reset																						
	23		22			21			20			19		•	18			17			16	
											Res	erve	ed									
Type/Reset																						
	15		14			13			12			11		•	10			9			8	
											СН	0CC	:V									
Type/Reset	RW	0 1	RW	0	RW		0	RW		0	RW		0	RW		0	RW		0	RW		0
	7		6			5			4			3			2			1			0	
											СН	0CC	:V									
Type/Reset	RW	0 1	RW	0	RW		0	RW		0	RW		0	RW		0	RW		0	RW		0

Bits	Field	Descriptions
[15:0]	CHOCCV	Channel 0 Capture / Compare Value - When Channel 0 is configured as an output The CH0CCR value is compared with the counter value and the comparison result is used to trigger the CH0OREF output signal. - When Channel 0 is configured as an input The CH0CCR register stores the counter value captured by the last channel 0
		capture event.

Channel 1 Capture / Compare Register – CH1CCR

This register specifies the timer channel 1 capture / compare value.

Offset: 0x094

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset		'						
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset		,		,				_
	15	14	13	12	11	10	9	8
					CH1CCV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (RW (0 RW 0
	7	6	5	4	3	2	1	0
					CH1CCV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (RW (0 RW 0

[15:0] CH1CCV Channel 1 Capture / Compare Value - When Channel 1 is configured as an output The CH1CCR value is compared with the counter value and the comparison result is used to trigger the CH1OREF output signal. - When Channel 1 is configured as an input The CH1CCR register stores the counter value captured by the last channel 1 capture event.

Channel 2 Capture / Compare Register – CH2CCR

This register specifies the timer channel 2 capture / compare value.

Offset: 0x098

Reset value: 0x0000_0000

	31		30		29		28		2	7	26			25		24	
									Rese	rved							
Type/Reset																	
	23		22		21		20		1	9	18		•	17		16	
									Rese	rved							
Type/Reset											'						
	15		14		13		12		1	1	10			9		8	
									CH2	CCV							
Type/Reset	RW	0 R	W	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0
	7		6		5		4		3	3	2			1		0	
			·					, and the second	CH2	CCV							
Type/Reset	RW	0 R	RW.	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0

Bits	Field	Descriptions
[15:0]	CH2CCV	Channel 2 Capture / Compare Value
		- When Channel 2 is configured as an output
		The CH2CCR value is compared with the counter value and the comparison result is
		used to trigger the CH2OREF output signal.
		- When Channel 2 is configured as an input
		The CH2CCR register stores the counter value captured by the last channel 2
		capture event.

Channel 3 Capture / Compare Register – CH3CCR

This register specifies the timer channel 3 capture / compare value.

Offset: 0x09C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset			,		,			
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset			,		,		'	_
	15	14	13	12	11	10	9	8
					CH3CCV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0
	7	6	5	4	3	2	1	0
					CH3CCV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0

Bits	Field	Descriptions
[15:0]	CH3CCV	Channel 3 Capture / Compare Value
		- When Channel 3 is configured as an output
		The CH3CCR value is compared with the counter value and the comparison result is
		used to trigger the CH3OREF output signal.
		- When Channel 3 is configured as an input
		The CH3CCR register stores the counter value captured by the last channel 3
		capture event.

Channel 0 Asymmetric Compare Register – CH0ACR

This register specifies the timer channel 0 asymmetric compare value.

Offset: 0x0A0

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved		,	
Type/Reset					'		'	
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					'		'	
	15	14	13	12	11	10	9	8
					CH0ACV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0
	7	6	5	4	3	2	1	0
					CH0ACV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0

Bits Field Descriptions

[15:0] CH0ACV

Channel 0 Asymmetric Compare Value

When channel 0 is configured as asymmetric PWM mode and the counter is counting down, the value written is this register will be compared to the counter.

Channel 1 Asymmetric Compare Register – CH1ACR

This register specifies the timer channel 1 asymmetric compare value.

Offset: 0x0A4

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset				,				_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset				,				
	15	14	13	12	11	10	9	8
					CH1ACV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (RW (0 RW 0
	7	6	5	4	3	2	1	0
					CH1ACV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (RW (0 RW 0

Bits	Field	Descriptions
[15:0]	CH1ACV	Channel 1 Asymmetric Compare Value
		When channel 1 is configured as asymmetric PWM mode and the counter is
		counting down, the value written is this register will be compared to the counter.

Channel 2 Asymmetric Compare Register – CH2ACR

This register specifies the timer channel 2 asymmetric compare value.

Offset: 0x0A8

Reset value: 0x0000_0000

	31	30		29	28	27	26	25	24	ļ.
						Reser	ved			
Type/Reset						"	"	'		
	23	22		21	20	19	18	17	16	3
						Reser	ved			
Type/Reset						'				
	15	14		13	12	11	10	9	8	
						CH2A	CV			
Type/Reset	RW	0 RW	0 RW	0	RW	0 RW	0 RW	0 RW	0 RW	0
	7	6		5	4	3	2	1	0	
		·				CH2A	CV			
Type/Reset	RW	0 RW	0 RW	0	RW	0 RW	0 RW	0 RW	0 RW	0

Bits Field Descriptions

[15:0] CH2ACV

Channel 2 Asymmetric Compare Value

When channel 2 is configured as asymmetric PWM mode and the counter is counting down, the value written is this register will be compared to the counter.

Channel 3 Asymmetric Compare Register – CH3ACR

This register specifies the timer channel 3 asymmetric compare value.

Offset: 0x0AC
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset							,	_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset							,	
	15	14	13	12	11	10	9	8
					CH3ACV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (RW (0 RW 0
	7	6	5	4	3	2	1	0
					CH3ACV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (RW (0 RW 0

Bits	Field	Descriptions
[15:0]	CH3ACV	Channel 3 Asymmetric Compare Value
		When channel 3 is configured as asymmetric PWM mode and the counter is
		counting down, the value written is this register will be compared to the counter.

17 Real Time Clock (RTC)

Introduction

The Real Time Clock, RTC, circuitry includes the APB interface, a 32-bit up-counter, a control register, a prescaler, a compare register and a status register. Most of the RTC circuits are located in the Backup Domain, as shown shaded in the accompanying figure, except for the APB interface. The APB interface is located in the V_{DD15} domain. Therefore, it is necessary to be isolated from the ISO signal that comes from the power control unit when the V_{DD15} domain is powered off, i.e., when the device enters the Power-Down mode. The RTC counter is used as a wakeup timer to let the system resume from the Power-Down mode. The detailed RTC function will be described in the following sections.

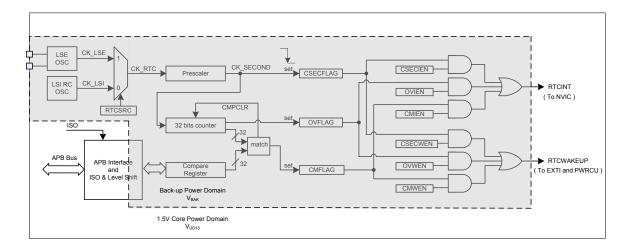


Figure 123. RTC Block Diagram

Features

- 32-bit up counter for counting elapsed time
- Programmable clock prescaler
 - Division factor: 1, 2, 4, 8..., 32768
- 32-bit compare register for alarm usage
- RTC clock source
 - LSE oscillator clock
 - LSI oscillator clock
- Three RTC Interrupt / wakeup settings
 - RTC second clock interrupt / wakeup
 - RTC compare match interrupt / wakeup
 - RTC counter overflow interrupt / wakeup
- The RTC interrupt / wakeup event can work together with power management to wake up the chip from power saving mode

Functional Descriptions

RTC Related Register Reset

The RTC registers can only be reset by either a Backup Domain power on reset, PORB, or by a Backup Domain software reset by setting the BAKRST bit in the BAKCR register. Other reset events have no effect to clear the RTC registers.

Reading RTC Register

The RTC control logic and the related registers are powered by the V_{BAK} supply voltage. Therefore, the RTC circuitry remains operational in the Power-Down mode where V_{DD15} is powered off. Only the APB bus, which is located in the V_{DD15} domain, is interconnected to the circuits located in the V_{BAK} domain using level shift circuitry and isolated by the ISO signals when the V_{DD15} supply voltage is powered off. The isolation function must be disabled by setting the BAKISO bit to 1 in the LPCR register as described in the Clock Control Unit before accessing the RTC registers using the APB bus.

Low Speed Clock Configuration

The default RTC clock source, CK_RTC, is derived from the LSI oscillator. The CK_RTC clock can be derived from either the external 32768 Hz crystal oscillator, named the LSE oscillator, or the internal 32K RC oscillator named the LSI oscillator, by setting the RTCSRC bit in the RTCCR register. A prescaler is provided to divide the CK_RTC by a ratio ranged from 2° to 2¹⁵ determined by the RPRE [3:0] field. For instance, setting the prescaler value RPRE [3:0] to 0x0F will generate an exact 1 Hz CK_SECOND clock if the CK_RTC clock frequency is equal to 32,768 Hz. The LSI and LSE oscillators can be enabled by the LSIEN and LSEEN control bits in the RTCCR register respectively. In addition, the LSE oscillator startup mode can be selected by configuring the LSESM bit in the RTCCR register. This enables the LSE oscillator to have either a shorter startup time or a lower power consumption, both of which are traded off depending upon specific application requirements. An example of the startup time and the power consumption for different startup modes are shown in the accompanying table for reference.

Table 42. LSE Startup Mode Operating Current and Startup Time

Startup mode	LSESM Setting in the RTCCR register	Operating Current	Startup time		
Normal startup	0	2.0 μΑ	Above 500 ms		
Fast startup	1	3.5 μΑ	Below 300 ms		

@ V_{DD} = 3.3 V and LSE clock = 32,768 Hz; these values are only for reference, actual values are dependent on the specification of the external 32.768KHz crystal.

RTC Counter Operation

The RTC provides a 32-bit up-counter which increments at the falling edge of the CK_SECOND clock and whose value can be read from the RTCCNT register asynchronously via the APB bus. A 32-bit compare register, RTCCMP, is provided to store the specific value to be compared with the RTCCNT content. This is used to define a pre-determined time interval. When the RTCCNT register content is equal to the RTCCMP register value, the match flag CMFLAG in the RTCSR register will be set by hardware and an interrupt or wakeup event can be sent according to the corresponding enable bits in the RTCIWEN register. The RTC counter will be either reset to zero or keep counting when the compare match event occurs, depending upon the CMPCLR bit in the RTCCR register. For example, if the RPRE [3:0] is set to 0x0F, the RTCCMP register content is set to a decimal value of 60 and the CMPCLR bit is set to 1, then the CMFLAG bit will be set every minute. In addition, the OVFLAG bit in the RTCSR register will be set when the RTC counter overflows. A read operation on the RTCSR register clears the status flags including the CSECFLAG, CMFLAG and OVFLAG bits.

Interrupt and Wakeup Control

The falling edge of the CK_SECOND clock causes the CSECFLAG bit in the RTCSR register to be set and generates an interrupt if the corresponding interrupt enable bit, CSECIEN, in the RTCIWEN register is set. The wakeup event can also be generated to wake up the HIS / HSE oscillators, the PLL circuitry, the LDO and the CPU core if the corresponding wakeup enable bit CSECWEN is set. When the RTC counter overflows or a compare match event occurs, it will generate an interrupt or a wake up event determined by the corresponding interrupt or wakeup enable control bits, OVIEN / OVWEN or CMIEN / CMWEN bits, in the RTCIWEN register. Refer to the related register definitions for more details.

RTCOUT Output Pin Configuration

The following table shows RTCOUT output format according to the mode, polarity, and event selection setting.

Table 43. RTCOUT Output Mode and Active Level Setting

ROWM	ROES	RTCOUT Output Waveform
0	0 Compare match	RTCCMP
0 (Pulse mode)	1 Second clock	RTCCMP X RTCCNT 3 4 5 RTCOUT (ROAP = 0) T_R T_R T_R T_R RTCOUT (ROAP = 1)
1	0 Compare match	RTCCMP 4 RTCCNT 3 4 5 RTCOUT (ROAP = 0)
(Level mode)	1 Second clock	RTCCMP X RTCCNT 3 4 5 RTCOUT (ROAP = 0) □ □ □ RTCOUT (ROAP = 1) □ □ □ □ ROLF → □

 T_R : RTCOUT output pulse time = 1 / f_{CK_RTC}

→: Clear by software reading ROLF bit

Register Map

The following table shows the RTC registers and reset values. Note all the registers in this unit are located at the V_{BAK} backup power domain.

Table 44. RTC Register Map

		•	
Register	Offset	Description	Reset Value
RTCCNT	0x000	RTC Counter Register	0x0000_0000
RTCCMP	0x004	RTC Compare Register	0x0000_0000
RTCCR	0x008	RTC Control Register	0x0000_0F04
RTCSR	0x00C	RTC Status Register	0x0000_0000
RTCIWEN	0x010	RTC Interrupt and Wakeup Enable Register	0x0000_0000

Register Descriptions

RTC Counter Register – RTCCNT

This register defines a 32-bit up counter which is incremented by the CK_SECOND clock.

Address: 0x000

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					RTCCNTV			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO 0	RO	0 RO	0 RO 0
	23	22	21	20	19	18	17	16
					RTCCNTV			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO 0	RO	0 RO	0 RO 0
	15	4.4	40	40	11	10	9	8
	15	14	13	12		10	<u> </u>	
	15	14	13	12	RTCCNTV	10		0
Type/Reset	RO	0 RO	0 RO	0 RO	RTCCNTV	RO	0 RO	0 RO 0
Type/Reset					RTCCNTV			
Type/Reset		0 RO	0 RO	0 RO	RTCCNTV	RO		

Bits	Field	Descriptions
[31:0]	RTCCNTV	RTC Counter Value
		The current value of the RTC counter is returned when reading the RTCCNT
		register. The RTCCNT register is updated during the falling edge of the CK_
		SECOND. This register is reset by one of the following conditions:
		Backup Domain software reset - set the BAKRST bit in the BAKCR register
		Backup Domain power on reset - PORB
		Compare match (RTCCNT = RTCCMP) when CMPCLR = 1 (in the RTCCR register)
		RTCEN bit changed from 0 to 1

RTC Compare Register - RTCCMP

This register defines a specific value to be compared with the RTC counter value.

Address: 0x004

Reset value: 0x0000 0000 (Reset by Backup Domain reset only)

	31		30		29		28		27		26		25		24	
									RTCCM	IPV						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									RTCCM	IPV						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
									RTCCM	IPV						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
			O		5		-		•						•	
					3				RTCCN	IPV						

Bits Field Descriptions

[31:0] RTCCMPV

RTC Compare Match Value

A match condition happens when the value in the RTCCNT register is equal to RTCCMP value. An interrupt can be generated if the CMIEN bit in the RTCIWEN register is set. When the CMPCLR bit in the RTCCR register is set to 0 and a match condition happens, the CMFLAG bit in the RTCSR register is set while the value in the RTCCNT register is not affected and will continue to count until overflow. When the CMPCLR bit is set to 1 and a match condition happens, the CMFLAG bit in the RTCSR register is set and the RTCCNT register will be reset to zero and then the counter continues to count.

RTC Control Register – RTCCR

This register specifies a range of RTC circuitry control bits.

Address: 0x008

Reset value: 0x0000_0F04 (Reset by Backup Domain reset only)

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
		Reserved		ROLF	ROAP	ROWM	ROES	ROEN
Type/Reset				RC 0	RW 0	RW 0	RW 0	RW 0
	15	14	13	12	11	10	9	8
			Reserved				RPRE	
Type/Reset					RW 1	RW 1	RW 1	RW 1
	7	6	5	4	3	2	1	0
		Reserved	LSESM	CMPCLR	LSEEN	LSIEN	RTCSRC	RTCEN
Type/Reset			RW 0	RW 0	RW 0	RW 1	RW 0	RW 0

Bits	Field	Descriptions
[20]	ROLF	RTCOUT Level Mode Flag 0: RTCOUT Output is inactive 1: RTCOUT Output is holding as active level Set by hardware when level mode (ROWM = 1) and a RTCOUT output event occurred. Cleared by software reading this flag. The RTCOUT signal will return to the inactive level after software has read this bit.
[19]	ROAP	RTCOUT Output Active Polarity 0: Active level is high 1: Active level is low
[18]	ROWM	RTCOUT Output Waveform Mode 0: Pulse mode The output pulse duration is one RTC clock (CK_RTC) period. 1: Level mode The RTCOUT signal will remain at an active level until the ROLF bit is cleared by software reading the ROLF bit.
[17]	ROES	RTCOUT Output Event Selection 0: RTC compare match is selected 1: RTC second clock (CK_SECOND) event is selected The ROES bit can be used to select whether the RTCOUT signal is output on the RTCOUT pin when an RTC compare match event or the RTC second clock (CK_SECOND) event occurs.
[16]	ROEN	RTCOUT Output Pin Enable 0: Disable RTCOUT output pin 1: Enable RTCOUT output pin When the ROEN bit is set to 1, the RTCOUT signal will be at an active level once an RTC compare match on the RTC second clock (CK_SECOOD) event occurs. The active polarity and output waveform mode can be configured by the ROAP and ROWM bits respectively. When the ROEN bit is cleared to 0, the RTCOUT pin will be in a floating state.

Bits	Field	Descriptions
[11:8]	RPRE	RTC Clock Prescaler Select CK_SECOND = CK_RTC / 2 RPRE 0000: CK_SECOND = CK_RTC / 20 0001: CK_SECOND = CK_RTC / 21 0010: CK_SECOND = CK_RTC / 22
[5]	LSESM	1111: CK_SECOND = CK_RTC / 2 ¹⁵ LSE oscillator Startup Mode
ام	LOLOW	O: Normal startup and requires less operating power 1: Fast startup but requires higher operating current
[4]	CMPCLR	Compare Match Counter Clear 0: 32-bit RTC counter is not affected when compare match condition occurs 1: 32-bit RTC counter is cleared when compare match condition occurs
[3]	LSEEN	LSE oscillator Enable Control 0: LSE oscillator disabled 1: LSE oscillator enabled
[2]	LSIEN	LSI oscillator Enable Control 0: LSI oscillator disabled 1: LSI oscillator enabled The LSIEN bit default value is 1 which means the LSI oscillator is enabled automatically after the Backup Domain powered up. Note: After the backup domain is powered on, the internal LSI RC oscillator will start to oscillate. The frequency range of the LSI oscillator is shown in the LSI oscillator electrical characteristics in the datasheet. The device also provides a production trim value to obtain a more accurate oscillation frequency. The procedure is to disable the LSI oscillator and then enable it again after the backup domain is powered on. After the trimming procedure has completed, the system will automatically load the production trim value to the frequency trimming circuit of the LSI RC oscillator.
[1]	RTCSRC	RTC Clock Source Selection 0: LSI oscillator selected as the RTC clock source 1: LSE oscillator selected as the RTC clock source
[0]	RTCEN	RTC Enable Control 0: RTC is disabled 1: RTC is enabled

RTC Status Register - RTCSR

This register stores the counter flags.

Address: 0x00C

Reset value: 0x0000 0000 (Reset by Backup Domain reset and RTCEN bit change from 1 to 0)

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset					,			
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset					,			_
	7	6	5	4	3	2	1	0
			Reserved			OVFLAG	CMFLAG	CSECFLAG
Type/Reset	·					RC 0	RC 0	RC 0

Bits	Field	Descriptions
[2]	OVFLAG	Counter Overflow Flag 0: Counter overflow not occurred since the last RTCSR register read operation 1: Counter overflow has occurred since the last RTCSR register read operation This bit is set by hardware when the counter value in the RTCCNT register changes from 0xFFFF_FFFF to 0x0000_0000 and cleared by read operation. This bit is suggested to read in the RTC IRQ handler and should be taken care when software polling is used.

[1] CMFLAG

Compare Match Condition Flag

- 0: Compare match condition not occurred since the last RTCSR register read operation
- 1: Compare match condition has occurred since the last RTCSR register read operation.

This bit is set by hardware on the CK_SECOND clock falling edge when the RTCCNT register value is equal to the RTCCMP register content. It is cleared by software reading this bit. This bit is suggested for access in the corresponding RTC interrupt routine – do not use software polling during software free running.

[0] CSECFLAG

CK_SECOND Occurrence Flag

0: CK SECOND not occurred since the last RTCSR register read operation

1: CK_SECOND has occurred since the last RTCSR register read operation This bit is set by hardware on the CK_SECOND clock falling edge. It is cleared by software reading this bit. This bit is suggested for access in the corresponding RTC interrupt routine – do not use software polling during software free running.

RTC Interrupt and Wakeup Enable Register – RTCIWEN

This register contains the interrupt and wakeup enable bits.

Address: 0x010

Reset value: 0x0000_0000 (Reset by Backup Domain reset only)

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
			Reserved			OVWEN	CMWEN	CSECWEN
Type/Reset						RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
			Reserved	•		OVIEN	CMIEN	CSECIEN
Type/Reset						RW 0	RW 0	RW 0

Bits	Field	Descriptions
[10]	OVWEN	Counter Overflow Wakeup Enable 0: Counter overflow wakeup disabled 1: Counter overflow wakeup enabled
[9]	CMWEN	Compare Match Wakeup Enable 0: Compare match wakeup disabled 1: Compare match wakeup enabled
[8]	CSECWEN	Counter Clock CK_SECOND Wakeup Enable 0: Counter Clock CK_SECOND wakeup disabled 1: Counter Clock CK_SECOND wakeup enabled
[2]	OVIEN	Counter Overflow Interrupt Enable 0: Counter Overflow Interrupt disabled 1: Counter Overflow Interrupt enabled
[1]	CMIEN	Compare Match Interrupt Enable 0: Compare Match Interrupt disabled 1: Compare Match Interrupt enabled
[0]	CSECIEN	Counter Clock CK_SECOND Interrupt Enable 0: Counter Clock CK_SECOND Interrupt disabled 1: Counter Clock CK_SECOND Interrupt enabled

18 Watchdog Timer (WDT)

Introduction

The Watchdog timer is a hardware timing circuitry that can be used to detect a system lock-up due to software trapped in a deadlock. The Watchdog timer can be operated in a reset mode. The Watchdog timer will generate a reset when the counter counts down to a zero value. Therefore, the software should reload the counter value before a Watchdog timer underflow occurs. In addition, a reset is also generated if the software reloads the counter before it reaches a delta value. That means that the Watchdog timer prevents a software deadlock that continuously triggers the Watchdog, the reload must occur when the Watchdog timer value has a value within a limited window of 0 and WDTD. The Watchdog timer counter can be stopped when the processor is in the debug or sleep mode. The register write protection function can be enabled to prevent an unexpected change in the Watchdog timer configuration.

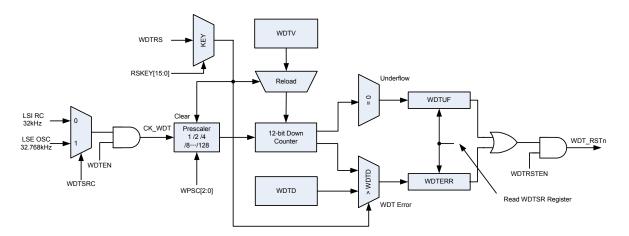


Figure 124. Watchdog Timer Block Diagram

Features

- Clock source from either internal 32 kHz RC oscillator (LSI) or 32,768 Hz oscillator (LSE)
- Can be independently setup to keep running or to stop when entering the sleep or deep sleep mode 1
- 12-bit down counter with 3-bit prescaler structure
- Provides reset to the system
- Limited reload window setup function for custom Watchdog timer reload times
- Watchdog Timer may be stopped when the processor is in the debug
- Reload lock key to prevent unexpected operation
- Configuration register write protection function for counter value, reset enable, delta value, and prescaler

Functional Description

The Watchdog timer is formed from a 12-bit count-down and a fixed 3-bit prescaler. The largest time-out period is 16 seconds, using the LSE or LSI clock and a 1/128 maximum prescaler value.

The Watchdog timer configuration setup includes a programmable counter reload value, reset enable, window value and prescaler value. These configurations are setup using the WDTMR0 and WDTMR1 registers which must be properly programmed before the Watchdog timer starts counting. In order to prevent unexpected write operations to those configurations, a register write protection function can be enabled by writing any value, other than 0x35CA to PROTECT[15:0], in the WDTPR register. A value of 0x35CA can be written to PROTECT[15:0] to disable the register write protection function before accessing any configuration register. A read operation on PROTECT[0] can obtain the enable/disable status of the register write protection function.

During normal operation, the Watchdog timer counter should be reloaded before it underflows to prevent the generation of a Watchdog reset. The 12-bit count-down counter can be reloaded with the required Watchdog Timer Counter Value (WDTV) by first setting the WDTRS bit to 1 with the correct key, which is 0x5FA0 in the WDTCR register.

If a software deadlock occurs during a Watchdog timer reload routine, the reload operation will still go ahead and therefore the software deadlock cannot be detected. To prevent this situation from occurring, the reload operation must be executed in such a way that the value of the Watchdog timer counter is limited to within a delta value (WDTD). A reload operation after the delta value will cause a Watchdog Timer error. The Watchdog timer error will generate a Watchdog reset depending upon the related setup. Additionally, the above features can be disabled by programming a WDTD value greater than or equal to the WDTV value.

The WDTERR and WDTUF flags in the WDTSR register will be set respectively when the Watchdog timer underflows or when a Watchdog timer error occurs. A system reset or written one operation on the WDTSR register clears the WDTERR and WDTUF flags.

The watchdog timer uses two clocks: PCLK and CK_WDT. The PCLK clock is used for APB access to the watchdog registers. The CK_WDT clock is used for the Watchdog timer functionality and counting. There is some synchronization logic between these two clock domains.

When the system enters the Sleep or Deep sleep mode 1, the Watchdog timer counter will either continue to count or stop depending on the WDTSHLT bits in the WDTMR0 register. The Watchdog stops counting when the WDTSHLT bits are set in the Sleep mode. The count value is retained so that it continues counting after the system is woken up from the Sleep mode. A Watchdog reset will occur any time when the Watchdog timer is running and when it has an operating clock source. When the system enters the debug mode, the Watchdog timer counter will either continue to count or stop depending on the DBWDT bit (in the MCUDBGCR register) in the Clock Control Unit.

The Watchdog timer should be used in the following manners:

- Set the Watchdog timer reload value (WDTV) and reset in the WDTMR0 register.
- Set the Watchdog timer delta value (WDTD) and prescaler in the WDTMR1 register.
- Start the Watchdog timer by writing to the WDTCR register with WDTRS = 1 and RSKEY = 0x5FA0.
- Write to the WDTPR register to lock all the Watchdog timer registers except for WDTCR and WDTPR.
- The Watchdog timer counter should be reloaded again within the delta value (WDTD).

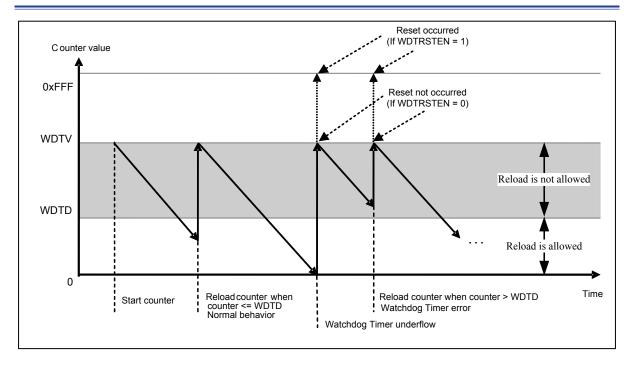


Figure 125. Watchdog Timer Behavior

Register Map

The following table shows the Watchdog Timer registers and reset values.

Table 45. Watchdog Timer Register Map

Register	Offset	Description	Reset Value
WDTCR	0x000	Watchdog Timer Control Register	0x0000_0000
WDTMR0	0x004	Watchdog Timer Mode Register 0	0x0000_0FFF
WDTMR1	0x008	Watchdog Timer Mode Register 1	0x0000_7FFF
WDTSR	0x00C	Watchdog Timer Status Register	0x0000_0000
WDTPR	0x010	Watchdog Timer Protection Register	0x0000_0000
WDTCSR	0x018	Watchdog Timer Clock Selection Register	0x0000_0000

Register Descriptions

Watchdog Timer Control Register – WDTCR

This register is used to reload the Watchdog timer.

Offset: 0x000

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					RSKEY			
Type/Reset	WO	0 WO	0 WO	0 WO		WO	0 WO	0 WO 0
•	23	22	21	20	19	18	17	16
					RSKEY			
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO 0	WO	0 WO	0 WO 0
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset			'	'				
	7	6	5	4	3	2	1	0
				Reserve	ed			WDTRS
Type/Reset								WO 0

Bits	Field	Descriptions
[31:16]	RSKEY	Watchdog Timer Reload Lock Key The RSKEY [15:0] bits should be written with a 0x5FA0 value to enable the WDT reload operation function. Writing any other value except 0x5FA0 in this field will abort the write operation.
[0]	WDTRS	Watchdog Timer Reload 0: No effect 1: Reload Watchdog Timer This bit is used to reload the Watchdog timer counter as a WDTV value which is stored in the WDTMR0 register. It is set to 1 by software and cleared to 0 by hardware automatically.

Watchdog Timer Mode Register 0 – WDTMR0

This register specifies the Watchdog timer counter reload value and reset enable control.

Offset: 0x004
Reset value: 0x0000_0FFF

	31	30			29	28		27		26		25		24	
								Reserve	ed						
Type/Reset															
	23	22			21	20		19		18		17		16	
								Reserve	ed					WDTE	ΞN
Type/Reset														RW	0
	15	14			13	12		11		10		9		8	
	V	VDTSHLT		WDT	RSTEN	Reserved						WDTV			
Type/Reset	RW	0 RW	0	RW	0		F	₹W	1	RW	1	RW	1	RW	1
	7	6			5	4		3		2		1		0	
								WDTV	′						
Type/Reset	RW	1 RW	1	RW	1	RW 1	F	₹W	1	RW	1	RW	1	RW	1

Bits	Field	Descriptions
[16]	WDTEN	Watchdog Timer Running Enable 0: Watchdog timer is disabled 1: Watchdog timer is enabled to run When the Watchdog timer is disabled, the counter will be reset to its hardware default condition. When the WDTEN bit is set, the Watchdog timer will be reloaded with the WDTV value and count down.
[15:14]	WDTSHLT	Watchdog Timer Sleep Halt 00: The Watchdog runs when the system is in the Sleep mode or Deep Sleep mode 1 01: The Watchdog runs when the system is in the Sleep mode and halts in Deep Sleep mode 1 1x: The Watchdog halts when the system is in the Sleep mode and Deep Sleep mode 1 Note that the Watchdog timer always halts when the system is in Deep Sleep mode 2. If a Watchdog interrupt occurs in Sleep or Deep Sleep mode 1, it will wake up the device. The Watchdog stops counting when the WDTSHLT bits are set in the Sleep mode. The count value is retained so that it continues counting after the system wakes up from the Sleep mode.
[13]	WDTRSTEN	Watchdog Timer Reset Enable 0: A Watchdog Timer underflow or error has no effect on the reset of system 1: A Watchdog Timer underflow or error triggers a Watchdog timer system reset
[11:0]	WDTV	Watchdog Timer Counter Value WDTV defines the value loaded into the 12-bit Watchdog down counter.

Watchdog Timer Mode Register 1 – WDTMR1

This register specifies the Watchdog delta value and the prescaler selection.

Descriptions

Offset: 0x008
Reset value: 0x0000_7FFF

Field

Bits

	31	30	29	9	28		27		26		25		24	
							Reser	/ed						
Type/Reset											1			
	23	22	2	1	20		19		18		17		16	1
							Reser	/ed						
Type/Reset														
	15	14	13	3	12		11		10		9		8	
	Reserved		WP	sc							WDT	D		
Type/Reset		RW	1 RW	1	RW	1	RW	1	RW	1	RW	1	RW	1
	7	6	5		4		3		2		1		0	
							WDT	D						
Type/Reset	RW 1	RW	1 RW	1	RW	1	RW	1	RW	1	RW	1	RW	1

[14:12]	WPSC	Watchdog Timer Prescaler Selection 000: 1/1 001: 1/2 010: 1/4 011: 1/8 100: 1/16 101: 1/32 110: 1/64 111: 1/128
[11:0]	WDTD	Watchdog Timer Delta Value Define the permitted range to reload the Watchdog timer. If the Watchdog timer counter value is less than or equal to WDTD, writing to the WDTCR register with WDTRS = 1 and RSKEY = 0x5FA0 will reload the timer. If the Watchdog Timer value

Define the permitted range to reload the Watchdog timer. If the Watchdog timer counter value is less than or equal to WDTD, writing to the WDTCR register with WDTRS = 1 and RSKEY = 0x5FA0 will reload the timer. If the Watchdog Timer value is greater than WDTD, then writing WDTCR with WDTRS = 1 and RSKEY = 0x5FA0 will cause a Watchdog Timer error. This feature can be disabled by programming a WDTD value greater then or equal to the WDTV value.

Watchdog Timer Status Register – WDTSR

This register specifies the Watchdog timer status.

Offset: 0x00C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset							'	
	23	22	21	20	19	18	17	16
					Reserved		'	
Type/Reset							<u> </u>	
	15	14	13	12	11	10	9	8
					Reserved		'	
Type/Reset							'	
	7	6	5	4	3	2	1	0
				Reserved			WDTERR	WDTUF
Type/Reset							WC 0	WC 0

Bits	Field	Descriptions
[1]	WDTERR	Watchdog Timer Error 0: No Watchdog timer error has occurred since the last read of this register 1: A Watchdog timer error has occurred since the last read of this register Note: A reload operation when the Watchdog timer counter value is larger than WDTD causes a Watchdog timer error. Note this bit is a write one clear flag.
[0]	WDTUF	Watchdog timer Underflow 0: No Watchdog timer underflow since the last read of this register 1: A Watchdog timer underflow has occurred since the last read of this register Note that this bit is a write-one clear flag.

Watchdog Timer Protection Register - WDTPR

This register specifies the Watchdog timer protect key configuration.

Offset: 0x010

Reset value: 0x0000 0000

	31		30		29)		28		2	7	2	6		25		24	
										Rese	rved							
Type/Reset		'																
	23		22		21	I		20		1	9	1	В		17		16	
										Rese	rved							
Type/Reset																		
	15		14		13	3		12		1	1	1	0		9		8	
										PRO	ГЕСТ	Г						
Type/Reset	RW	0 RW	/	0	RW	0	RW		0	RW	C	RW	(RW		0	RW	0
	7		6		5			4		3	3	2			1		0	
										PRO	TECT							
Type/Reset	RW	0 RW	/	0	RW	0	RW		0	RW	C	RW	(RW		0	RW	0

Bits Field Descriptions

[15:0] PROTECT Water

Watchdog Timer Register Protection

For write operation:

0x35CA: Disable the Watchdog timer register write protection Others: Enable the Watchdog timer register write protection

For read operation:

0x0000: Watchdog timer register write protection is disabled 0x0001: Watchdog timer register write protection is enabled

This register is used to enable / disable the Watchdog timer configuration register write protection function. All configuration registers become read only except for WDTCR and WDTPR when the register write protection is enabled. Additionally, the read operation of PROTECT[0] can obtain the enable/disable status of the register write protection function.

Watchdog Timer Clock Selection Register – WDTCSR

This register specifies the Watchdog timer clock source selection and lock configuration.

Offset: 0x018
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved	t		
Type/Reset						''		
	23	22	21	20	19	18	17	16
					Reserved	t		'
Type/Reset								
	15	14	13	12	11	10	9	8
				Reserv	ved .			
Type/Reset						'		'
	7	6	5	4	3	2	1	0
		Reserved		WDTLOCK		Reserved		WDTSEL
Type/Reset		·	·	RW 0	·			RW 0

Bits	Field	Descriptions
[4]	WDTLOCK	Watchdog Timer Lock Mode
		0: This bit is only set to 0 on any reset. It cannot be cleared by software. 1: This bit is set once only by software and locks the Watchdog timer function. Software can set this bit to 1 at any time. Once the WDTLOCK bit is set, the function
		and registers of the Watchdog timer cannot be modified or disabled, including the
		Watchdog timer clock source, and only waits for a system reset to disable the lock mode.
[0]	WDTSRC	Watchdog Timer Clock Source Selection 0: Internal 32 kHz RC oscillator clock selected (LSI) 1: External 32.768 kHz crystal oscillator clock selected (LSE) Select using software to control the Watchdog timer clock source.

Rev. 1.10 414 of 680 November 22, 2018

19 Inter-Integrated Circuit (I²C)

Introduction

The I²C Module is an internal circuit allowing communication with an external I²C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line, SDA, and a serial clock line, SCL. The I²C module provides three data transfer rates: (1) 100 kHz in the Standard mode, (2) 400 kHz in the Fast mode and (3) 1 MHz in the Fast-mode plus. The SCL period generation register is used to setup different kinds of duty cycle implementation for the SCL pulse.

The SDA line which is connected to the whole I²C bus is a bi-directional data line between the master and slave devices used for the transmission and reception of data. The I²C module also has an arbitration detection function to prevent the situation where more than one master attempts to transmit data on the I²C bus at the same time.

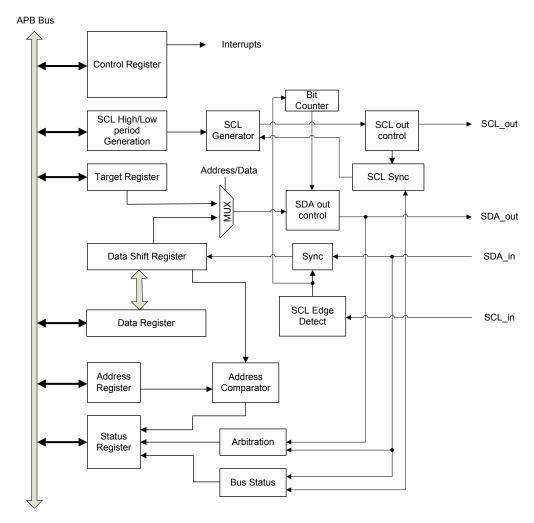


Figure 126. I²C Module Block Diagram

Features

- Two-wire I²C serial interface
 - Serial data line (SDA) and serial clock (SCL)
- Multiple speed modes
 - Standard mode 100 kHz
 - Fast mode 400 kHz
 - Fast mode plus 1 MHz
- Bi-directional data transfer between master and slave
- Multi-master bus no central master
 - The same interface can act as Master or Slave
- Arbitration among simultaneously transmitting masters without corrupting of serial data on the bus.
- Clock synchronization
 - Allow devices with different bit rates to communicate via one serial bus
- Supports 7-bit and 10-bit addressing mode and general call addressing.
- Multiple slave addresses using address mask function
- Time-out function
- Supports PDMA Interface

Functional Descriptions

Two Wire Serial Interface

The I²C module has two external lines, the serial data SDA and serial clock SCL lines, to carry information between the interconnected devices connected to the bus. The SCL and SDA lines are both bidirectional and must be connected to a pull-high resistor. When the I²C bus is in the free or idle state, both pins are at a high level to perform the required wired-AND function for multiple connected devices.

START and STOP Conditions

A master device can initialize a transfer by sending a START signal and terminate the transfer with a STOP signal. A START signal is usually referred to as the "S" bit, which is defined as a High to Low transition on the SDA line while the SCL line is high. A STOP signal is usually referred to as the "P" bit, which is defined as a Low to High transition on the SDA line while SCL is high.

A repeated START, which is denoted as the "Sr" bit, is functionally identical to the normal START condition. A repeated START signal allows the I²C interface to communicate with another slave device or with the same device but in a different transfer direction without releasing the I²C bus control.

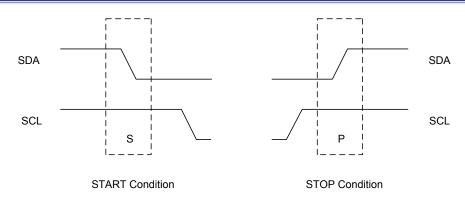


Figure 127. START and STOP Condition

Data Validity

The data on the SDA line must be stable during the high period of the SCL clock. The SDA data state can only be changed when the clock signal on the SCL line is in a low state.

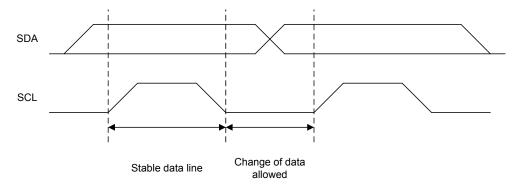


Figure 128. Data Validity

Addressing Format

The I²C interface starts to transfer data after the master device has sent the address to confirm the targeted slave device. The address frame is sent just after the START signal by master device. The addressing mode selection bit named ADRM in the I2CCR register should be defined to choose either the 7-bit or 10-bit addressing mode.

7-bits Address Format

The 7-bit address format is composed of the seven-bit length slave address, which the master device wants to communicate with an R/\overline{W} bit and an ACK bit. The R/\overline{W} bit defines the direction of the data transfer.

 $R/\overline{W}=0$ (Write): The master transmits data to the addressed slave.

 $R/\overline{W}=1$ (Read): The master receives data from the addressed slave.

The slave address can be assigned through the ADDR field in the I2CADDR register. The slave device sends back the acknowledge bit (ACK) if its slave address matches the transmitted address sent by master. Note that it is forbidden to own the same address for two slave devices.

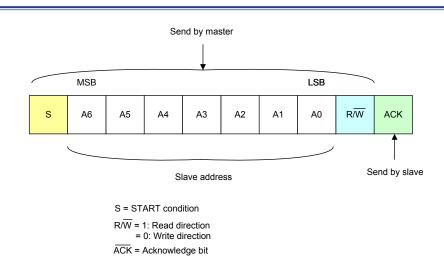


Figure 129. 7-bit Addressing Mode

10-bits Address Format

In order to prevent address clashes, due to the limited range of the 7-bit addresses, a new 10-bit address scheme has been introduced. This enhancement can be mixed with the 7-bit addressing mode which increases the available address range about ten times. For the 10-bit addressing mode, the first two bytes after a START signal include a header byte and an address byte that usually determines which slave will be selected by the master. The header byte is composed of a leading "11110", 10th and 9th bits of the slave address. The second byte is the remaining 8 bit address of the slave device.

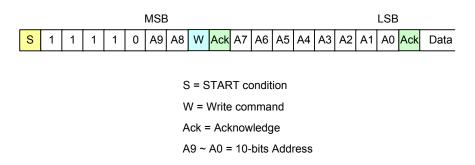


Figure 130. 10-bit Addressing Write Transmit Mode

Figure 131. 10-bit Addressing Read Receive Mode

Data Transfer and Acknowledge

Once the slave device address has been matched, the data can be transmitted to or received from the slave device according to the transfer direction specified by the R/\overline{W} bit. Each byte is followed by an acknowledge bit on the 9^{th} SCL clock.

If the slave device returns a Not Acknowledge (NACK) signal to the master device, the master device can generate a STOP signal to terminate the data transfer or generate a repeated START signal to restart the transfer.

If the master device sends a Not Acknowledge (NACK) signal to the slave device, the slave device should release the SDA line for the master device to generate a STOP signal to terminate the transfer.

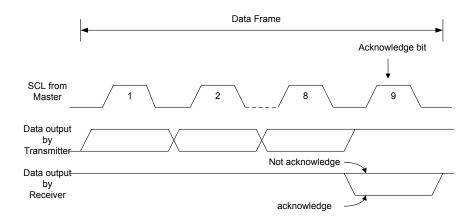


Figure 132. I²C Bus Acknowledge

Clock Synchronization

Only one master device can generate the SCL clock under normal operation. However when there is more than one master trying to generate the SCL clock, the clock should be synchronized so that the data output can be compared. Clock synchronization is performed using the wired-AND connection of the I²C interface to the SCL line.

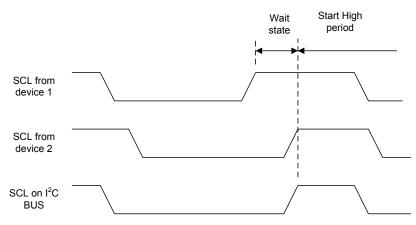


Figure 133. Clock Synchronization during Arbitration

Arbitration

A master may start a transfer only if the I²C bus line is in the free or idle mode. If two or more masters generate a START signal at approximately the same time, an arbitration procedure will occur.

Arbitration takes place on the SDA line and can continue for many bits. The arbitration procedure gives a higher priority to the device that transmits serial data with a binary low bit (logic low). Other master devices which want to transmit binary high bits (logic high) will lose the arbitration. As soon as a master loses the arbitration, the I²C module will set the ARBLOS bit in the I2CSR register and generate an interrupt if the interrupt enable bit, ARBLSIEN, in the I2CIER register is set to 1. Meanwhile, it stops sending data and listens to the bus in order to detect an I²C stop signal. When the stop signal is detected, the master which has lost the arbitration may try to access the bus again.

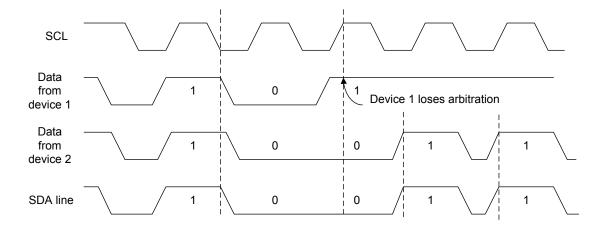


Figure 134. Two Master Arbitration Procedure

General Call Addressing

The general call addressing function can be used to address all the devices connected to the I²C bus. The master device can activate the general call function by writing a value "00" into the TAR and setting the RWD bit to 0 in the I2CTAR register on the addressing frame.

The device can support the general call addressing function by setting the corresponding enable control bit GCEN to 1. If the GCEN bit is set to 1 to support the general call addressing, the AA bit in the I2CCR register should also be set to 1 to send an acknowledge signal back when the device receives an address frame with a value of 00H. When this condition occurs, the general call flag, GCS, will be set to 1, but the ADRS flag will not be set.

Bus Error

If an unpredictable START or STOP condition occurs when the data is being transferred on the I^2C bus, it will be considered as a bus error and the transferring data will be aborted. When a bus error event occurs, the relevant bus error flag BUSERR in the I2CSR register will set to 1 and both the SDA and SCL lines are released. The BUSERR flag should be cleared by writing a 1 to it to initiate the I^2C module to an idle state.

Address Mask Enable

The I²C module provides address mask function for user to decide which address bit can be ignored during the comparison with the address frame sent from the master. The ADRS flag will be asserted when the unmasked address bits and the address frame sent from the master are matched. Note that this function is only available in the slave mode.

For instance, the user sets a data transfer with 7-bit addressing mode together with the I2CADDMR register value as 0x05h and the I2CADDR register value as 0x55h, this means if an address which is sent by an I²C master on the bus is equal to 0x50h, 0x51h, 0x54h or 0x55h, the I²C slave address will all be considered to be matched and the ADRS flag in the I2CSR register will be asserted after the address frame.

Address Snoop

The Address Snoop register, I2CADDSR, is used to monitor the calling address on the I²C bus during the whole data transfer operation no matter if the I²C module operates as a master or a slave device. Note that the I2CADDSR register is a read only register and each calling address on the I²C bus will be stored in the I2CADDSR register automatically even if the I²C device is not addressed.

Operation Mode

The I²C module can operate in one of the following modes:

- Master Transmitter
- Master Receiver
- Slave Transmitter
- Slave Receiver

The I²C module operates in the slave mode by default. The interface will switch to the master mode automatically after generating a START signal.

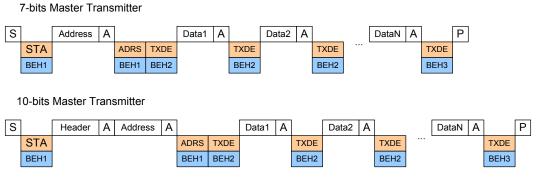
Master Transmitter Mode

Start condition

Users write the target slave device address and communication direction into the I2CTAR register after setting the I2CEN bit in the I2CCR register. The STA flag in the I2CSR register is set by hardware after a start condition occurs. In order to send the following address frame, the STA flag must be cleared to 0 if it has been set to 1. The STA flag is cleared by reading the I2CSR register.

Address Frame

The ADRS flag in the I2CSR register will be set after the address frame is sent by the master device and the acknowledge signal from the address matched slave device is received. In order to send the following data frame, the ADRS flag must be cleared to 0 if it has been set to 1. The ADRS bit is cleared by reading the I2CSR register.


Data Frame

The data to be transmitted to the slave device must be transferred to the I2CDR register.

The TXDE bit in the I2CSR register is set to indicate that the I2CDR register is empty, which results in the SCL line being held at a logic low state. New data must then be transferred to the I2CDR register to continue the data transfer process. Writing a data into the I2CDR register will clear the TXDE flag.

Close / Continue Transmission

After transmitting the last data byte, the STOP bit in the I2CCR register can be set to terminate the transmission or re-assign another slave device by configuring the I2CTAR register to restart a new transfer.

BEH1 : cleared by reading I2CSR register BEH2 : cleared by writing I2CDR register

BEH3: cleared by HW automatically by sending STOP condition

Figure 135. Master Transmitter Timing Diagram

Master Receiver Mode

Start condition

The target slave device address and communication direction must be written into the I2CTAR register. The STA flag in the I2CSR register is set by hardware after a start condition occurs. In order to send the following address frame, the STA flag must be cleared to 0 if it has been set to 1. The STA flag is cleared by reading the I2CSR register.

Address Frame

In the 7-bit addressing mode: The ADRS flag is set after the address frame is sent by the master device and the acknowledge signal from the address matched slave device is received. In order to receive the following data frame, the ADRS bit must be cleared to 0 if it has been set to 1. The ADRS bit is cleared after reading the I2CSR register.

In the 10-bit addressing mode: The ADRS bit in the I2CSR register will be set twice in the 10-bit addressing mode. The first time the ADRS bit is set is when the 10-bit address is sent and the acknowledge signal from the slave device is received. The second time the ADRS bit is set is when the header byte is sent and the slave acknowledge signal is received. In order to receive the following data frame, the ADRS bit must be cleared to 0 if it has been set to 1. The ADRS bit is cleared after reading the I2CSR register. The detailed master receiver mode timing diagram is shown in the following figure.

Data Frame

In the master receiver mode, data is transmitted from the slave device. Once a data is received by the master device, the RXDNE flag in the I2CSR register is set but it will not hold the SCL line. However, if the device receives a complete new data byte and the RXDNE flag has already been set to 1, the RXBF bit in the I2CSR register will be set to 1 and the SCL line will be held at a logic low state. When this situation occurs, data from the I2CDR register should be read to continue the data transfer process. The RXDNE flag can be cleared after reading the I2CDR register.

Close / Continue Transmission

The master device needs to reset the AA bit in the I2CCR register to send a NACK signal to the slave device before the last data byte transfer has been completed. After the last data byte has been received from the slave device, the master device will hold the SCL line at a logic low state following after a NACK signal sent by the master device to the slave device. The STOP bit can be set to terminate the data transfer process or re-assign the I2CTAR register to restart a new transfer.

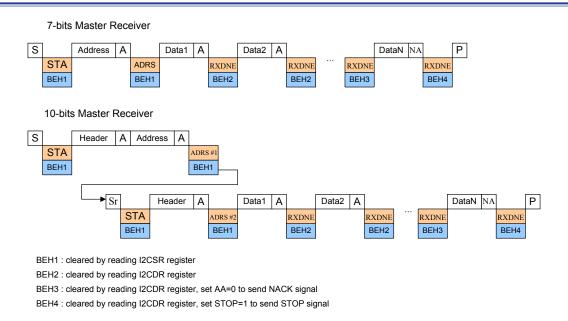


Figure 136. Master Receiver Timing Diagram

Slave Transmitter Mode

Address Frame

In the 7-bit addressing mode, the ADRS bit in the I2CSR register is set after the slave device receives the calling address which matches with the slave device address. In the 10-bit addressing mode, the ADRS bit is set when the first header byte is matched and the second address byte is matched respectively. After the ADRS bit has been set to 1, it must be cleared to 0 to continue the data transfer process. The ADRS bit is cleared after reading the I2CSR register.

Data Frame

In the Slave transmitter mode, the TXDE bit is set to indicate that the I2CDR is empty, which results in the SCL line being held at a logic low state. New transmission data must then be written into the I2CDR register to continue the data transfer process. Writing a data into the I2CDR register will clear the TXDE bit.

Receive Not-Acknowledge

When the slave device receives a Not-Acknowledge signal, the RXNACK bit in the I2CSR Register is set but it will not hold the SCL line. Writing "1" to RXNACK will clear the RXNACK flag.

STOP Condition

When the slave device detects a STOP condition, the STO bit in the I2CSR register is set to indicate that the I²C interface transmission is terminated. Reading the I2CSR register can clear the STO flag.

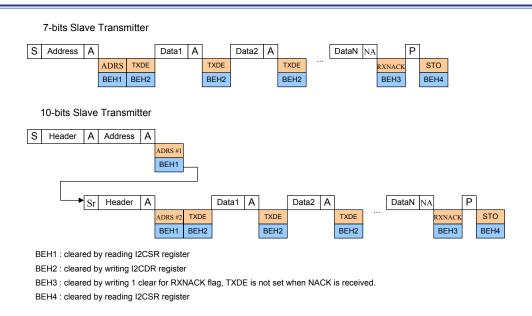


Figure 137. Slave Transmitter Timing Diagram

Slave Receiver Mode

Address Frame

The ADRS bit in the I2CSR register is set after the slave device receives the calling address which matches with the slave device address. After the ADRS bit has been set to 1, it must be cleared to 0 to continue the data transfer process. The ADRS flag is cleared after reading the I2CSR register.

Data Frame

In the slave receiver mode, the data is transmitted from the master device. Once a data byte is received by the slave device, the RXDNE flag in the I2CSR register is set but it will not hold the SCL line. However, if the device receives a complete new data byte and the RXDNE bit has been set to 1, the RXBF bit in the I2CSR register will be set to 1 and the SCL line will be held at a logic low state. When this situation occurs, data from the I2CDR register should be read to continue the data transfer process. The RXDNE flag bit can be cleared after reading the I2CDR register.

STOP condition

When the slave device detects a STOP condition, the STO flag bit in the I2CSR register is set to indicate that the I²C interface transmission is terminated. Reading the I2CSR register can clear the STO flag bit.

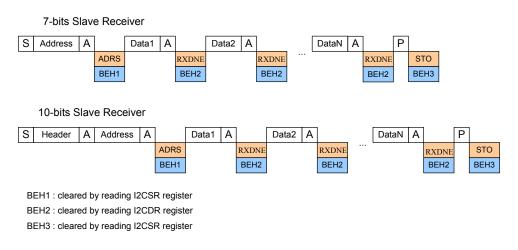


Figure 138. Slave Receiver Timing Diagram

Conditions of Holding SCL Line

The following conditions will cause the SCL line to be held at a logic low state by hardware resulting in all the I²C transfers being stopped. Data transfer will be continued after the creating conditions are eliminated.

Table 46. Conditions of Holding SCL line

Type	Condition	Description	Eliminated
	TXDE	I ² C is used in transmitted mode and I2CDR register needs to have data to transmit. (Note: TXDE won't be assert after receiving a NACK)	Master case: Writing data to I2CDR register Set TAR Set STOP Slave case: Writing data to I2CDR register
	GCS	I ² C is addressed as slave through general call	Reading I2CSR register
Flag	ADRS	Master: I ² C is sent over address frame and is returned an ACK from slave (Note: Reference Fig.135 and Fig.136) Slave: I ² C is addressed as slave device (Note: Reference Fig.137 and Fig.138)	Reading I2CSR register
	STA	Master send START signal	Reading I2CSR register
	RXBF	Received a complete new data and meanwhile the RXDNE flag has been set already before.	Reading I2CDR register
	Master receives NACK	No matter in address or data frame, once received a NACK signal will hold SCL line in master mode.	Set TAR Set STOP
Event	Master send NACK used in received mode	Occurred when receiving the last data byte in Master received mode (Note: Reference Fig.135, and RXNACK flag won't be assert at this case)	Set TAR

I²C Timeout Function

In order to reduce the occurrence of I^2C lockup problem due to the reception of erroneous clock source, a timeout function is provided. If the I^2C bus clock source is not received for a certain timeout period, then a corresponding I^2C timeout flag will be asserted. This timeout period is determined by a 16-bit down-counting counter with a programmable preload value. The timeout counter is driven by the I^2C timeout clock, f_{I2CTO} , which is specified by the timeout prescaler field in the I2CTOUT register. The TOUT field in the I2CTOUT register is used to define the timeout counter preload value. The timeout function is enabled by setting the ENTOUT bit in the I2CCR register. The timeout counter will start to count down from the preloaded value if the ENTOUT bit is set to 1 and one of the following conditions occurs:

- The I²C master module sends a START signal.
- The I²C slave module detects a START signal.
- The RXBF, TXDE, RXDNE, RXNACK, GCS or ADRS flags are asserted.

The timeout counter will stop counting when the ENTOUT bit is cleared. However, the counter will also stop counting when the conditions, listed as follows occur:

- The I²C slave module is not addressed.
- The I²C slave module detects a STOP signal.
- The I²C master module sends a STOP signal.
- The ARBLOS or BUSERR flags in the I2CSR register are asserted.

If the timeout counter underflows, the corresponding timeout flag, TOUTF, in the I2CSR register will be set to 1 and a timeout interrupt will be generated if the relevant interrupt is enabled.

PDMA Interface

The PDMA interface is integrated in the I²C module. The PDMA function can be enabled by setting the TXDMAE or RXDMAE bit to 1 in the transmitter or receiver mode respectively. When the data register is empty in the transmitter mode and the TXDMAE bit is set to 1, the PMDA function will be activated to move data from a certain memory location into the I²C data register. Similarly, when the data register is not empty in the receiver mode and the RXDMAE bit is set to 1, the PDMA function will also be activated to move data from the I²C data register to a specific memory location.

The DMA NACK control bit, DMANACK, is used to determine whether the NACK signal is sent or not when the I²C module operates in the master receiver mode and the PDMA function is enabled. If the DMANACK bit is set to 1 and the data has all been received and moved using the PDMA interface, a NACK signal will automatically be sent out to properly terminate the data transfer.

For a mode detailed description on the PDMA configurations, refer to the PDMA chapter.

Register Map

The following table shows the I²C registers and reset values.

Table 47. I²C Register Map

Register	Offset	Description	Reset Value
I2CCR	0x000	I ² C Control Register	0x0000_2000
I2CIER	0x004	I ² C Interrupt Enable Register	0x0000_0000
I2CADDR	0x008	I ² C Address Register	0x0000_0000
I2CSR	0x00C	I ² C Status Register	0x0000_0000
I2CSHPGR	0x010	I ² C SCL High Period Generation Register	0x0000_0000
I2CSLPGR	0x014	I ² C SCL Low Period Generation Register	0x0000_0000
I2CDR	0x018	I ² C Data Register	0x0000_0000
I2CTAR	0x01C	I ² C Target Register	0x0000_0000
I2CADDMR	0x020	I ² C Address Mask Register	0x0000_0000
I2CADDSR	0x024	I ² C Address Snoop Register	0x0000_0000
I2CTOUT	0x028	I ² C Timeout Register	0x0000_0000

Register Descriptions

I²C Control Register – I2CCR

This register specifies the corresponding I^2C function enable control.

Offset: 0x000 (0)
Reset value: 0x0000_2000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset		'	'					
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset			'					
	15	14	13	12	11	10	9	8
	SEQF	ILTER	COMBFILTEREn	ENTOUT	Reserved	DMANACK	RXDMAE	TXDMAE
Type/Reset	RW 0	RW () RW 1	RW 0		RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
	ADRM		Reserved		I2CEN	GCEN	STOP	AA
Type/Reset	RW 0				RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[15:14]	SEQFILTER	SDA or SCL Input Sequential Filter Configuration Bits 00: Sequential filter disable 01: 1 PCLK glitch filter 1x: 2 PCLK glitch filter Note: This setting would affect the frequency of SCL. Detail is described in I2CSLPGR register.
[13]	COMBFILTEREn	SDA or SCL Input Combinational Filter Enable Bit 0: Combinational filter Disable 1: Combinational filter Enable
[12]	ENTOUT	I ² C Timeout Function Enable Control 0: Timeout Function disabled 1: Timeout Function enabled This bit is used to enable or disable the I ² C timeout function. When the I2CEN bit is cleared to 0, the ENTOUT bit will be automatically cleared to 0 by hardware. It is recommended that users have to properly configure the PSC and TOUT fields in the I2CTOUT register before the timeout counter starts to count by setting the ENOUT bit to 1.
[10]	DMANACK	DMA Mode NACK Control 0: No operation 1: The I ² C master receiver module sends a NACK signal automatically after receiving the last byte from the slave transmitter in the DMA mode When the I2CEN bit is cleared to 0, the DMANACK bit is automatically cleared to 0 by hardware.

Bits	Field	Descriptions
[9]	RXDMAE	DMA Mode RX Request Enable Control 0: RX DMA request disabled 1: RX DMA request enabled If the data register is not empty in the receiver mode and the RXDMAE bit is set to 1, the relevant PDMA channel will be activated to move the data from the data register to a specific location which is defined in the corresponding PDMA register. When the I2CEN bit is cleared to 0, the RXDMAE bit is automatically cleared to 0 by hardware.
[8]	TXDMAE	DMA Mode TX Request Enable Control 0: TX DMA request disabled 1: TX DMA request enabled If the data register is empty in the transmitter mode and the TXDMAE bit is set to 1, the relevant PDMA channel will be activated to move the data from a specific location defined in the related PDMA register to the data register. When the I2CEN bit is cleared to 0, the TXDMAE bit is automatically cleared to 0 by hardware.
[7]	ADRM	Addressing Mode 0: 7-bit addressing mode 1: 10-bit addressing mode When the I ² C master/slave module operates in the 7-bit addressing mode, it can only send out and respond to a 7-bit address and vice versa. When the I ² CEN bit is disabled, the ADRM bit is automatically cleared to 0 by hardware.
[3]	I2CEN	I ² C Interface Enable 0: I ² C interface disabled 1: I ² C interface enabled
[2]	GCEN	General Call Enable 0: General call disabled 1: General call enabled When the device receives the calling address with a value of 0x00 and if both the GCEN and the AA bits are set to 1, then the I ² C interface is addressed as a slave and the GCS bit in the I2CSR register is set to 1. When the I2CEN bit is cleared to 0, the GCEN bit is automatically cleared to 0 by hardware.
[1]	STOP	STOP Condition Control 0: No action 1: Send a STOP condition in master mode This bit is set to 1 by software to generate a STOP condition and automatically
[0]	AA	cleared to 0 by hardware. The STOP bit is only available for the master device. Acknowledge Bit 0: Send a Not Acknowledge (NACK) signal after a byte is received 1: Send an Acknowledge (ACK) signal after a byte is received When the I2CEN bit is cleared to 0, the AA bit is automatically cleared to 0 by hardware.

I²C Interrupt Enable Register – I2CIER

This register specifies the corresponding I²C interrupt enable bits.

Offset: 0x004 Reset value: 0x0000_0000

	31	30	29	28	27		26		2	5	24	4
					Reserve	ed						
Type/Reset												
	23	22	21	20	19		18		17	7	16	3
			Reserved				RXBF	ΙE	TXD	EIE	RXDN	NEIE
Type/Reset							RW	0	RW	0	RW	0
	15	14	13	12	11		10		9)	8	
			Reserved		TOUTII	Ε	BUSER	RIE	RXNA	CKIE	ARBL	OSIE
Type/Reset					RW	0	RW	0	RW	0	RW	0
	7	6	5	4	3		2		1		0	
			Reserved		GCSIE		ADRS	ΙE	STO	DIE	STA	ΝE
Type/Reset			-		RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[18]	RXBFIE	RX Buffer Full Interrupt Enable Bit 0: Interrupt disabled 1: Interrupt enabled When the I2CEN bit in the I2CCR register is cleared to 0, this bit is cleared to 0 by hardware.
[17]	TXDEIE	Data Register Empty Interrupt Enable Bit in Transmitter Mode 0: Interrupt disabled 1: Interrupt enabled When the I2CEN bit in the I2CCR register is cleared to 0, this bit is cleared to 0 by hardware.
[16]	RXDNEIE	Data Register Not Empty Interrupt Enable Bit in Receiver Mode 0: Interrupt disabled 1: Interrupt enabled When the I2CEN bit in the I2CCR register is cleared to 0, this bit is cleared to 0 by hardware.
[11]	TOUTIE	Timeout Interrupt Enable Bit 0: Interrupt disabled 1: Interrupt enabled When the I2CEN bit in the I2CCR register is cleared to 0, this bit is cleared to 0 by hardware.
[10]	BUSERRIE	Bus Error Interrupt Enable Bit 0: Interrupt disabled 1: Interrupt enabled When the I2CEN bit in the I2CCR register is cleared to 0, this bit is cleared to 0 by hardware.
[9]	RXNACKIE	Received Not Acknowledge Interrupt Enable Bit 0: Interrupt disabled 1: Interrupt enabled When the I2CEN bit in the I2CCR register is cleared to 0, this bit is cleared to 0 by hardware.

Bits	Field	Descriptions
[8]	ARBLOSIE	Arbitration Loss Interrupt Enable Bit in the I2C multi-master mode 0: Interrupt disabled 1: Interrupt enabled When the I2CEN bit in the I2CCR register is cleared to 0, this bit is cleared to 0 by hardware.
[3]	GCSIE	General Call Slave Interrupt Enable Bit 0: Interrupt disabled 1: Interrupt enabled When the I2CEN bit in the I2CCR register is cleared to 0, this bit is cleared to 0 by hardware.
[2]	ADRSIE	Slave Address Match Interrupt Enable Bit 0: Interrupt disabled 1: Interrupt enabled When the I2CEN bit in the I2CCR register is cleared to 0, this bit is cleared to 0 by hardware.
[1]	STOIE	STOP Condition Detected Interrupt Enable Bit 0: Interrupt disabled 1: Interrupt enabled When the I2CEN bit in the I2CCR register is cleared to 0, this bit is cleared to 0 by hardware. The bit is used for the I2C slave mode only.
[0]	STAIE	START Condition Transmit Interrupt Enable Bit 0: Interrupt disabled 1: Interrupt enabled When the I2CEN bit in the I2CCR register is cleared to 0, this bit is cleared to 0 by hardware. The bit is used for the I2C master mode only.

I²C Address Register – I2CADDR

This register specifies the I2C device address.

Offset: 0x008

Reset value: 0x0000_0000

	31		30		29		28		27		26			25		24	
									Reser	ved							
Type/Reset																	
	23		22		21		20		19		18			17		16	
									Reser	ved							
Type/Reset																	
	15		14		13		12		11		10			9		8	
							Reserv	/ed								ADD	R
Type/Reset													RW		0	RW	0
	7		6		5		4		3		2			1		0	
									ADD	R							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0

Bits Field Descriptions
[9:0] ADDR Device Address

The register indicates the I^2C device address. When the I2C device is used in the 7-bit addressing mode, only the ADDR[6:0] bits will be compared with the received address sent from the I2C master device.

I²C Status Register – I2CSR

This register contains the I2C operation status.

Offset: 0x00C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								_
	23	22	21	20	19	18	17	16
		Reserved	TXNRX	MASTER	BUSBUSY	RXBF	TXDE	RXDNE
Type/Reset			RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8
			Reserved		TOUTF	BUSERR	RXNACK	ARBLOS
Type/Reset					WC 0	WC 0	WC 0	WC 0
	7	6	5	4	3	2	1	0
			Reserved		GCS	ADRS	STO	STA
Type/Reset	·			·	RC 0	RC 0	RC 0	RC 0

Bits	Field	Descriptions
[21]	TXNRX	Transmitter / Receiver Mode 0: Receiver mode 1: Transmitter mode
		Read only bit.
[20]	MASTER	Master Mode 0: I ² C is in the slave mode or idle 1: I ² C is in the master mode The I ² C interface is switched as a master device on the I ² C bus when the I2CTAR register is assigned and the I ² C bus is idle. The MASTER bit is cleared by hardware when software disables the I ² C bus by clearing the I2CEN bit to 0 or sends a STOP condition to the I ² C bus or the bus error is detected. This bit is set and cleared by hardware and is a read only bit.
[19]	BUSBUSY	Bus Busy 0: I ² C bus is idle 1: I ² C bus is busy
		The I ² C interface hardware starts to detect the I ² C bus status if the interface is enabled by setting the I2CEN bit to 1. It is set to 1 when the SDA or SCL signal is detected to have a logic low state and cleared when a STOP condition is detected.
[18]	RXBF	Buffer Full Flag in Receiver Mode 0: Data buffer is not full 1: Data buffer is full This bit is set when the data register I2CDR has already stored a data byte and meanwhile the data shift register also has been received a complete new data byte.
		The RXBF bit is cleared by software reading the I2CDR register.
[17]	TXDE	Data Register Empty Using in Transmitter Mode 0: Data register I2CDR not empty 1: Data register I2CDR empty This bit is set when the I2CDR register is empty in the Transmitter mode. Note that the TXDE bit will be set after the address frame is being transmitted to inform that the data to be transmitted should be loaded into the I2CDR register. The TXDE bit is cleared by software writing data to the I2CDR register in both the master and slave mode or cleared automatically by hardware after setting the STOP signal to terminate the data transfer or setting the I2CTAR register to restart a new data transfer in the master mode.
[16]	RXDNE	Data Register Not Empty in Receiver Mode 0: Data register I2CDR empty 1: Data register I2CDR not empty This bit is set when the I2CDR register is not empty in the receiver mode. The RXDNE bit is cleared by software reading the data byte from the I2CDR register.
[11]	TOUTF	Timeout Counter Underflow Flag 0: No timeout counter underflow occurred 1: Timeout counter underflow occurred Writing "1" to this bit will clear the TOUTF flag.
[10]	BUSERR	Bus Error Flag 0: No bus error has occurs 1: Bus error has occurred This bit is set by hardware when the I ² C interface detects a misplaced START or STOP condition in a transfer process. Writing a "1" to this bit will clear the BUSERR flag. In Master Mode: Once the Bus Error event occurs, both the SDA and SCL lines are released by hardware and the BUSERR flag is asserted. The application software has to clear the BUSERR flag before the next address byte is transmitted. In Slave Mode: Once a misplaced START or STOP condition has been detected by the slave device, the software must clear the BUSERR flag before the next address byte is received.

Bits	Field	Descriptions
[9]	RXNACK	Received Not Acknowledge Flag 0: Acknowledge is returned from receiver 1: Not Acknowledge is returned from receiver The RXNACK bit indicates that the not Acknowledge signal is received in master or slave transmitter mode. Writing "1" to this bit will clear the RXNACK flag.
[8]	ARBLOS	Arbitration Loss Flag 0: No arbitration loss is detected 1: Bit arbitration loss is detected This bit is set by hardware on the current clock which the I ² C interface loses the bus arbitration to another master during the address or data frame transmission. Writing "1" to this bit will clear the ARBLOS flag. Once the ARBLOS flag is asserted by hardware, the ARBLOS flag must be cleared before the next transmission.
[3]	GCS	General Call Slave Flag 0: No general call slave occurs 1: I ² C interface is addressed by a general call command When the I ² C interface receives an address with a value of 0x00 or 0x000 in the 7-bit or 10-bit addressing mode, if both the GCEN and the AA bit are set to 1, then it is switched as a general call slave. This flag is cleared automatically after being read.
[2]	ADRS	Address Transmit (master mode) / Address Receive (slave mode) Flag Address Sent in Master Mode 0: Address frame has not been transmitted 1: Address frame has been transmitted For the 7-bit addressing mode, this bit is set after the master device receives the address frame acknowledge bit sent from the slave device. For the 10-bit addressing mode, this bit is set after receiving the acknowledge bit of the first header byte and the second address. Address Matched in Slave Mode 0: I²C interface is not addressed 1: I²C interface is addressed as slave When the I²C interface has received the calling address that matches the address defined in the I2CADDR register together with the AA bit being set to 1 in the I2CCR register, it will be switched to a slave mode. This flag is cleared automatically after the I2CSR register has been read.
[1]	STO	STOP Condition Detected Flag 0: No STOP condition detected 1: STOP condition detected in slave mode This bit is only available for the slave mode and is cleared automatically after the I2CSR register is read.
[0]	STA	START Condition Transmit 0: No START condition detected 1: START condition is transmitted in master mode This bit is only available for the master mode and is cleared automatically after the I2CSR register is read.

I²C SCL High Period Generation Register – I2CSHPGR

This register specifies the I²C SCL clock high period interval.

Offset: 0x010

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									Reser	ved						
Type/Reset																
	23		22		21		20		19		18		17		16	<u> </u>
									Reser	ved						
Type/Reset																
	15		14		13		12		11		10		9		8	
									SHP	G						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
									SHP	G						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits Field	Descriptions
------------	--------------

[15:0] SHPG

SCL Clock High Period Generation

High period duration setting $SCL_{HIGH} = T_{PCLK} \times (SHPG + d)$ where T_{PCLK} is the APB bus peripheral clock (PCLK) period of the I^2C , and d value depends on the setting of SEQFILTER in the I^2C Control Register (I2CCR).

If SEQFILTER=00, d=6 If SEQFILTER=01, d=8 If SEQFILTER=10 or 11, d=9

I²C SCL Low Period Generation Register – I2CSLPGR

This register specifies the I^2C SCL clock low period interval.

Offset: 0x014

Reset value: 0x0000_0000

	31		30		1	29			28			27			26			25			24	
											Res	serve	ed									
Type/Reset																						
	23		22		:	21			20			19			18			17			16	
											Res	serve	ed									
Type/Reset																						
	15		14			13			12			11			10			9			8	
											SI	LPG										
Type/Reset	RW	0 RW	'	0	RW		0	RW		0	RW		0	RW		0	RW		0	RW		0
	7		6			5			4			3			2			1			0	
											SI	LPG										
Type/Reset	RW	0 RW		0	RW		0	RW		0	RW		0	RW		0	RW		0	RW		0

Bits	Field	Descriptions
[15:0]	SLPG	SCL Clock Low Period Generation Low period duration setting $SCL_{LOW} = T_{PCLK} \times (SLPG + d)$ where T_{PCLK} is the APB bus peripheral clock (PCLK) period of I^2C , and d value depends on the setting of SEQFILTER in the I^2C Control Register (I2CCR). If SEQFILTER=00, d=6 If SEQFILTER=01, d=8 If SEQFILTER=10 or 11, d=9

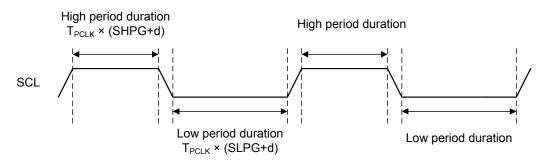


Figure 139. SCL Timing Diagram

Table 48. I²C Clock Setting Example

I ² C Clock	T _{SCL} =	T _{SCL} = T _{PCLK} × [(SHPG + d) + (SLPG + d)] (where d = 6) SHPG + SLPG value at PCLK												
	8MHz	24MHz	48MHz	72MHz	96MHz									
100 kHz (Standard Mode)	68	228	468	708	948									
400 kHz (Fast Mode)	8	48	108	168	228									
1 MHz (Fast Mode plus)	Х	12	36	60	84									

I²C Data Register – I2CDR

This register specifies the data to be transmitted or received by the I2C module.

Offset: 0x018

Reset value: 0x0000_0000

	31		30		29		2	3		27	2	6		25		24	
									Res	erved							
Type/Reset																	
	23		22		21		2)		19	1	8		17		16	
									Res	erved							
Type/Reset																	
	15		14		13		1:	2		11	1	0		9		8	
									Res	erved							
Type/Reset																	
	7		6		5		4			3	2	2		1		0	
									D	ATA							
Type/Reset	RW	0 RW	/	0 R	W	0	RW	(RW	0	RW	0	RW		0	RW	0

Bits	Field	Descriptions
[7:0]	DATA	I ² C Data Register

For the transmitter mode, a data byte which is transmitted to a slave device can be assigned to these bits. The TXDE flag is cleared if the application software assigns new data to the I2CDR register. For the receiver mode, a data byte is received bit by bit from MSB to LSB through the I2C interface and stored in the data shift register. Once the acknowledge bit is given, the data shift register value is delivered into the I2CDR register if the RXDNE flag is equal to 0.

Rev. 1.10 437 of 680 November 22, 2018

I²C Target Register – I2CTAR

This register specifies the target device address to be communicated.

Descriptions

Offset: 0x01C Reset value: 0x0000_0000

Field

Bits

	31		30		2	29		28		27		26			25		24	
										Reserv	/ed							
Type/Reset																		
	23		22		2	21		20		19		18			17		16	
										Reserv	/ed							
Type/Reset																		
	15		14		1	13		12		11		10			9		8	
					Rese	erve	d					RWD)				TAF	₹
Type/Reset												RW	0	RW		0	RW	0
	7		6			5		4		3		2			1		0	
										TAR								
Type/Reset	RW	0	RW	0	RW		0	RW	0	RW	0	RW	0	RW		0	RW	0

[10]	RWD	Read or Write Direction 0: Write direction to target slave address 1: Read direction from target slave address If this bit is set to 1 in the 10-bit master receiver mode, the I ² C interface will initiate a byte with a value of 11110XX0b in the first header frame and then continue to deliver a byte with a value of 11110XX1b in the second header frame by hardware automatically.
[9:0]	TAR	Target Slave Address The I ² C interface will assign a START signal and send a target slave address automatically once the data is written to this register. When the system wants to send a repeated START signal to the I ² C bus, the timing is suggested to set the I2CTAR register after a byte transfer is completed. It is not allowed to set TAR in the address frame. I2CTAR[9:7] is not available under the 7-bit addressing mode.

I²C Address Mask Register – I2CADDMR

This register specifies which bit of the I2C address is masked and not compared with corresponding bit of the received address frame.

Offset: 0x020
Reset value: 0x0000_0000

	31		30		29		28		27		26		:	25		24	
									Reserv	/ed							
Type/Reset																	
	23		22		21		20		19		18			17		16	
									Reserv	/ed							
Type/Reset																	
	15		14		13		12		11		10			9		8	
							Reserv	ed								ADDN	/IR
Type/Reset													RW		0	RW	0
	7		6		5		4		3		2			1		0	
									ADDN	/IR							
Type/Reset	RW	0	RW	0 R	RW.	0	RW	0	RW	0	RW	0	RW		0	RW	0

Bits Field Descriptions

[9:0] ADDMR Address Mask Control Bit

The ADDMR[i] is used to specify whether the i^{th} bit of the ADDR in the I2CADDR register is masked and is compared with the received address frame or not on the I²C bus. The register is only used for the I²C slave mode only.

0: ith bit of the ADDR is compared with the address frame on the I²C bus.

1: ith bit of the ADDR is masked and not compared with the address frame on the I²C bus.

I²C Address Snoop Register – I2CADDSR

This register is used to indicate the address frame value appeared on the I²C bus.

Offset: 0x024

Reset value: 0x0000_0000

	31	;	30		29		28		27	,	26			25		24	
									Reser	ved							
Type/Reset																	
	23	:	22		21		20		19)	18			17		16	
									Reser	ved							
Type/Reset																	
	15		14		13		12		11		10			9		8	
						Re	serve	ed								ADD	SR
Type/Reset													RO		0	RO	0
	7		6		5		4		3		2			1		0	
									ADD	SR							
Type/Reset	RO	0 RO		0 RO		0 RO		0	RO	0	RO	0	RO		0	RO	0

DIIS	rieiu	Descriptions
[0.0]	ADDSR	Address Snoon

Once the I2CEN bit is enabled, the calling address value on the I^2C bus will automatically be loaded into this ADDSR field.

I²C Timeout Register – I2CTOUT

This register specifies the I²C Timeout counter preload value and clock prescaler ratio.

Offset: 0x028

Reset value: 0x0000_0000

	31		30		29)		28		27		26			25		2	4	
										Reserv	/ed								
Type/Reset																			
	23		22		21		- 2	20		19		18			17		1	6	
					Reser	ved								Р	SC				
Type/Reset												RW	0	RW		0	RW		0
	15		14		13	3		12		11		10			9			3	
										TOU	Т								
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW		0
	7		6		5			4		3		2			1)	
				Ť		Ť				TOU	Т	·							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW		0

Bits	Field	Descriptions

[18:16] PSC

I²C Time-out Counter Prescaler Selection

This PSC field is used to specify the l^2C time-out counter clock frequency, f_{l2CTO} . The time-out clock frequency is obtained using the formula.

$$\begin{split} f_{\rm I2CTO} &= \frac{f_{\rm PCLK}}{2^{\rm PSC}} \\ \text{PSC=0} &\to f_{\rm I2CTO} = f_{\rm PCLK} \, / \, 2^0 = f_{\rm PCLK} \\ \text{PSC=1} &\to f_{\rm I2CTO} = f_{\rm PCLK} \, / \, 2^1 = f_{\rm PCLK} \, / \, 2 \\ \text{PSC=2} &\to f_{\rm I2CTO} = f_{\rm PCLK} \, / \, 2^2 = f_{\rm PCLK} \, / \, 4 \end{split}$$

PSC=7 \rightarrow f_{I2CTO} = f_{PCLK} / 2⁷ = f_{PCLK} / 128

[15:0] TOUT

I²C Timeout Counter Preload Value

The TOUT field is used to define the counter preloaded value

The counter value is reloaded as the following conditions occur:

- The RXBF, TXDE, RXDNE, RXNACK, GCS or ADRS flag in the I2CSR register is asserted.
- 2. The I²C master module sends a START signal.
- 3. The I²C slave module detects a START signal.

The counter stops counting as the following conditions occur:

- 1. The I²C slave device is not addressed.
- 2. The I²C master module sends a STOP signal.
- 3. The I²C slave module detects a STOP signal.
- 4. The ARBLOS or BUSERR flag in the I2CSR register is asserted.

20 Serial Peripheral Interface (SPI)

Introduction

The Serial Peripheral Interface, SPI, provides an SPI protocol data transmit and receive functions in both master or slave mode. The SPI interface uses 4 pins, among which are serial data input and output lines MISO and MOSI, the clock line SCK, and the slave select line SEL. One SPI device acts as a master who controls the data flow using the SEL and SCK signals to indicate the start of the data communication and the data sampling rate. To receive the data bits, the streamlined data bits which range from 1 bit to 16 bits specified by the DFL field in the SPICR1 register are latched in a specific clock edge and stored in the data register or in the RX FIFO. Data transmission is carried in a similar way but with the reverse sequence. The mode fault detection provides a capability for multi-master applications.

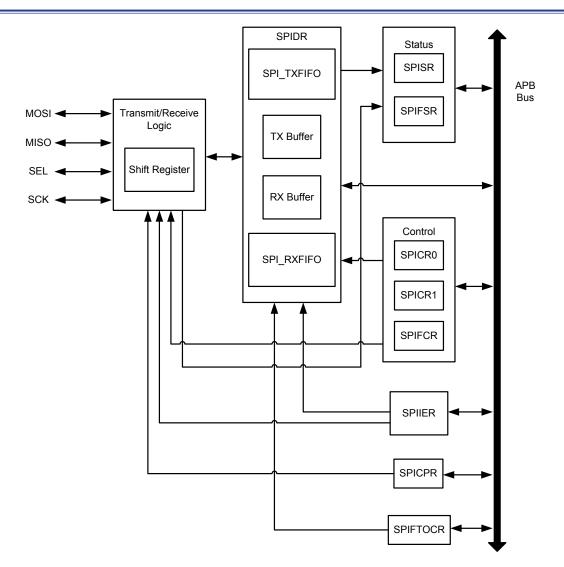


Figure 140. SPI Block Diagram

Features

- Master or slave mode
- \blacksquare Master mode speed up to $f_{PCLK}/2$
- Slave mode speed up to $f_{PCLK}/3$
- Programmable data frame length up to 16 bits
- FIFO Depth: 8 levels
- MSB or LSB first shift selection
- Programmable slave select high or low active polarity
- Multi-master and multi-slave operation
- Master mode supports the dual output read mode of SPI series NOR Flash
- Four error flags with individual interrupt
 - Read overrun
 - Write collision
 - Mode fault
 - Slave abort
- Support PDMA interface

Function Descriptions

Master Mode

Each data frame can range from 1 to 16 bits in data length. The first bit of the transmitted data can be either an MSB or LSB determined by the FIRSTBIT bit in the SPICR1 register. The SPI module is configured as a master or a slave by setting the MODE bit in the SPICR1 register. When the MODE bit is set, the SPI module is configured as a master and will generate the serial clock on the SCK pin. The data stream will transmit data in the shift register to the MOSI pin on the serial clock edge. The SEL pin is active during the full data transmission. When the SELAP bit in the SPICR1 register is set, the SEL pin is active high during the complete data transactions. When the SELM bit in the SPICR1 register is set, the SEL pin will be driven by the hardware automatically and the time interval between the active SEL edge and the first edge of SCK is equal to one half an SCK period.

Slave Mode

In the slave mode, the SCK pin acts as an input pin and the serial clock will be derived from the external master device. The SEL pin also acts as an input. When the SELAP bit is cleared to 0, the SEL signal is active low during the full data stream reception. When the SELAP bit is set to 1, the SEL signal will be active high during the full data stream byte reception.

Note: For the slave mode, the APB clock, known as f_{PCLK} , must be at least 3 times faster than the external SCK clock input frequency.

SPI Serial Frame Format

The SPI interface format is based on the Clock Polarity, CPOL, and the Clock Phase, CPHA, configurations.

- Clock Polarity Bit CPOL
 When the Clock Polarity bit is cleared to 0, the SCK line idle state is LOW. When the Clock
 Polarity bit is set to 1, the SCK line idle state is HIGH.
- Clock Phase Bit CPHA

 When the Clock Phase bit is cleared to 0, the data is sampled on the first SCK clock transition.

 When the Clock Phase bit is set to 1, the data is sampled on the second SCK clock transition.

There are four formats contained in the SPI interface. Table 49 shows how to configure these formats by setting the FORMAT field in the SPICR1 register.

Table 49. SPI Interface Format Setup

FORMAT [2:0]	CPOL	СРНА				
001	0	0				
010	0	1				
110	1	0				
101	1	1				
Others	Reserved					

CPOL = 0, CPHA = 0

In this format, the received data is sampled on the SCK line rising edge while the transmitted data is changed on the SCK line falling edge. In the master mode, the first bit is driven when data is written into the SPIDR Register. In the slave mode, the first bit is driven when the SEL signal goes to an active level. Figure 141 shows the single byte data transfer timing of this format.

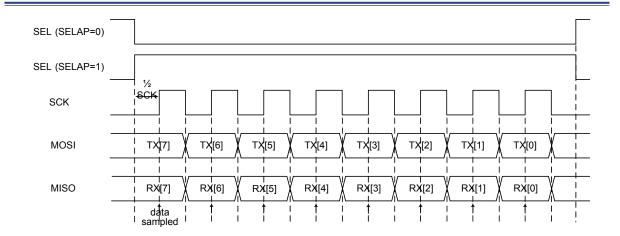


Figure 141. SPI Single Byte Transfer Timing Diagram – CPOL = 0, CPHA = 0

Figure 142 shows the continuous data transfer timing diagram of this format. Note that the SEL signal must change to an inactive level between each data frame.

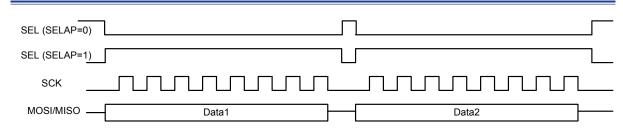


Figure 142. SPI Continuous Data Transfer Timing Diagram - CPOL = 0, CPHA = 0

CPOL = 0, CPHA = 1

In this format, the received data is sampled on the SCK line falling edge while the transmitted data is changed on the SCK line rising edge. In the master mode, the first bit is driven when data is written into the SPIDR register. In the slave mode, the first bit is driven at the first SCK clock rising edge. Figure 143 shows the single data byte transfer timing.

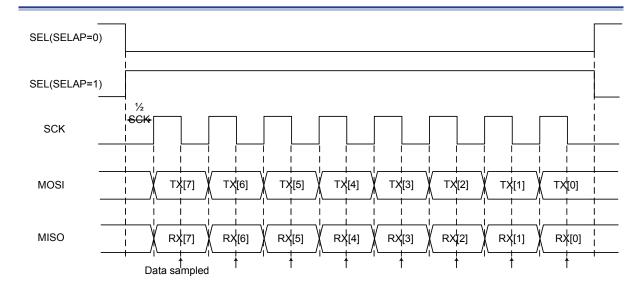


Figure 143. SPI Single Byte Transfer Timing Diagram - CPOL = 0, CPHA = 1

Figure 144 shows the continuous data transfer diagram timing. Note that the SEL signal must remain active until the last data transfer has completed.

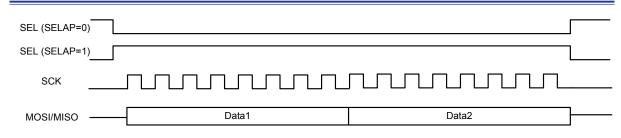


Figure 144. SPI Continuous Transfer Timing Diagram - CPOL = 0, CPHA = 1

CPOL = 1, CPHA = 0

In this format, the received data is sampled on the SCK line falling edge while the transmitted data is changed on the SCK line rising edge. In the master mode, the first bit is driven when data is written into the SPIDR register. In the slave mode, the first bit is driven when the SEL signal changes to an active level. Figure 145 shows the single byte transfer timing of this format.

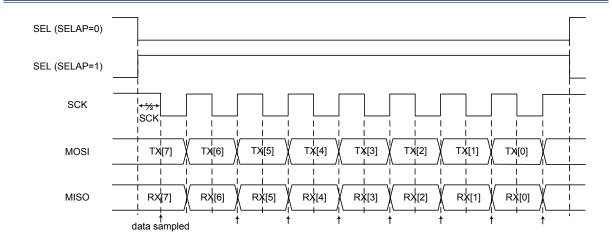


Figure 145. SPI Single Byte Transfer Timing Diagram – CPOL = 1, CPHA = 0

Figure 146 shows the continuous data transfer timing of this format. Note that the SEL signal must change to an inactive level between each data frame.

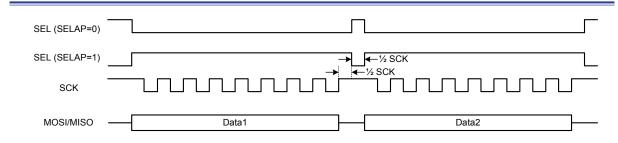


Figure 146. SPI Continuous Transfer Timing Diagram – CPOL = 1, CPHA = 0

CPOL = 1, CPHA = 1

In this format, the received data is sampled on the SCK line rising edge while the transmitted data is changed on the SCK line falling edge. In the master mode, the first bit is driven when data is written into the SPIDR register. In the slave mode, the first bit is driven at the first SCK falling edge. Figure 147 shows the single byte transfer timing of this format.

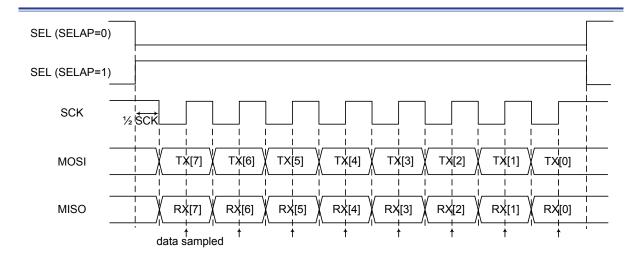


Figure 147. SPI Single Byte Transfer Timing Diagram - CPOL = 1, CPHA = 1

Figure 148 shows the continuous data transfer timing of this format. Note that the SEL signal must remain active until the last data transfer has completed.

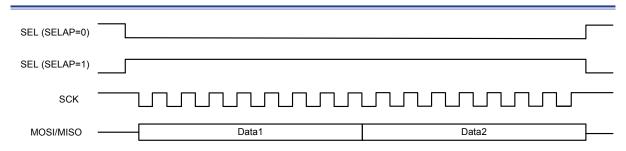


Figure 148. SPI Continuous Transfer Timing Diagram - CPOL = 1, CPHA = 1

Status Flags

TX Buffer Empty – TXBE

This TXBE flag is set when the TX buffer is empty in the non-FIFO mode or when the TX FIFO data length is equal to or less than the TX FIFO threshold level as defined by the TXFTLS field in the SPIFCR register in the FIFO mode. The following data to be transmitted can then be loaded into the buffer again. After this, the TXBE flag will be reset when the TX buffer already contains new data in the non-FIFO mode or the TX FIFO data length is greater than the TX FIFO threshold level determined by the TXFTLS bits in FIFO mode.

Transmission Register Empty - TXE

This TXE flag is set when both the TX buffer and the TX shift registers are empty. It will be reset when the TX buffer or the TX shift register contains new transmitted data.

RX Buffer Not Empty - RXBNE

This RXBNE flag is set when there is valid received data in the RX Buffer in the non-FIFO mode or the RX FIFO data length is equal to or greater than the RX FIFO threshold level as defined by the RXFTLS field in the SPIFCR register in the SPI FIFO mode. This flag will be automatically cleared by hardware when the received data have been read out from the RX buffer totally in the non-FIFO mode or when the RX FIFO data length is less than the RX FIFO threshold level set in the RXFTLS field.

Time Out Flag - TO

The time out function is only available in the SPI FIFO mode and is disabled by loading a zero value into the TOC field in the Time Out Counter register. The time out counter will start counting if the SPI RX FIFO is not empty, once data is read from the SPIDR register or new data is received, the time out counter will be reset to 0 and count again. When the time out counter value is equal to the value specified by the TOC field in the SPIFTOCR register, the TO flag will be set. The flag is cleared by writing 1 to this bit.

Mode Fault - MF

The mode fault flag can be used to detect SPI bus usage in the SPI multi-master mode. For the multi-master mode, the SPI module is configured as a master device and the SEL signal is setup as an input signal. The mode fault flag is set when the SPI SEL pin is suddenly changed to an active level by another SPI master. This means that another SPI master is requesting to use the SPI bus. Therefore, when an SPI mode fault occurs, it will force the SPI module to operate in the slave mode and also disable all of the SPI interface signals to avoid SPI bus signal collisions. For the same reason, if the SPI master wants to transfer data, it also needs to inform other SPI masters by driving its SEL signal to an active state. The detailed configuration diagram for the SPI multi-master mode is shown in the following figure.

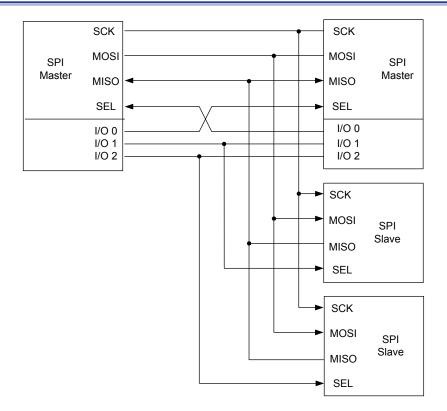


Figure 149. SPI Multi-Master Slave Environment

Table 50. SPI Mode Fault Trigger Conditions

Mode fault	Descriptions
Trigger condition	SPI Master mode SELOEN = 0 in the SPICR0 register – SEL pin is configured to be the input mode SEL signal changes to an active level when driven by the external SPI master
SPI behavior	Mode fault flag is set. The SPIEN bit in the SPICR0 register is reset. This disables the SPI interface and blocks all output signals from the device. The MODE bit in the SPICR1 register is reset. This forces the device into slave mode.

Table 51. SPI Master Mode SEL Pin Status

	SEL as Input	- SELOEN = 0	SEL as Output - SELOEN = 1			
Multi-master	Sup	port	Not support			
SPI SEL control signal		to replace the SEL nction	SEL pin in hardware or software mode - using SELM setting			
Continuous	Case 1	Case 2	Case 1	Case 2		
Continuous transfer	Not supported	Supported	Using hardware control	Hardware or software control		

Case 1: SEL signal must be inactive between each data transfer.

Case 2: SEL signal will not to be active until the last data frame has finished.

Note: When the SPI is in the slave mode, the SEL signal is always an input and not affected by the SELOEN bit in the SPICR0 register.

Write Collision - WC

The following conditions will assert the Write Collision Flag.

- The FIFOEN bit in the SPIFCR register is cleared

 The write collision flag is asserted when new data is written into the SPIDR register while both the TX buffer and the shift register are already full. Any new data written into the TX buffer will be lost.
- The FIFOEN bit in the SPIFCR register is set

 The write collision flag is asserted to indicate that new data is written into the SPIDR register while both the TX FIFO and the TX shift register are already full. Any new data written into the TX FIFO will be lost.

Read Overrun - RO

- The FIFOEN bit in the SPIFCR register is cleared

 The read overrun flag is asserted to indicate that both the RX shift register and the RX buffer are already full, if one more data is received. This will result in the newly received data not being shifted into the SPI shift register. As a result the latest received data will be lost.
- The FIFOEN bit in the SPIFCR register is set

 The read overrun flag is set to indicate that the RX shift register and the RX FIFO are both full,
 if one more data is received. This means that the latest received data can not be shifted into the
 SPI shift register. As a result the latest received data will be lost.

Slave Abort - SA

In the SPI slave mode, the slave abort flag is set to indicate that the SEL pin suddenly changed to an inactive state during the reception of a data frame transfer. The data frame length is set by the DFL field in the SPICR1 register.

PDMA Interface

The PDMA interface is integrated in the SPI module. The PDMA function can be enabled by setting the TXDMAE or RXDMAE bit to 1 in the transmitter or receiver mode respectively. When the transmit buffer empty flag, TXBE, is asserted and the TXDMAE bit is set to 1, the PMDA function will be activated to move data from the memory location that users designated into the SPI data register or the TX FIFO until the TXBE flag is cleared to 0. The TXBE flag will be asserted when the transmit buffer is empty in the non-FIFO mode or the data contained in the TX FIFO is equal to or less than the level defined by the TXFTLS field in the FIFO mode.

Similarly, when the receive buffer not empty flag, RXBNE, is asserted and the RXDMAE bit is set to 1, the PDMA function will be activated to move data from the SPI data register or the RX FIFO to the memory location that users designated until the RXBNE flag is cleared to 0. The RXBNE flag will be asserted when the receive buffer is not empty in the non-FIFO mode or the data contained in the RX FIFO is equal to or greater than the level defined by the RXFTLS field in the FIFO mode.

For a mode detailed description on the PDMA configurations, refer to the PDMA chapter.

Register Map

The following table shows the SPI registers and their reset values.

Table 52. SPI Register Map

Register	Offset	Description	Reset Value
SPICR0	0x000	SPI Control Register 0	0x0000_0000
SPICR1	0x004	SPI Control Register 1	0x0000_0000
SPIIER	0x008	SPI Interrupt Enable Register	0x0000_0000
SPICPR	0x00C	SPI Clock Prescaler Register	0x0000_0000
SPIDR	0x010	SPI Data Register	0x0000_0000
SPISR	0x014	SPI Status Register	0x0000_0003
SPIFCR	0x018	SPI FIFO Control Register	0x0000_0000
SPIFSR	0x01C	SPI FIFO Status Register	0x0000_0000
SPIFTOCR	0x020	SPI FIFO Time Out Counter Register	0x0000_0000

Register Descriptions

SPI Control Register 0 – SPICR0

This register specifies the SEL control and the SPI enable bits.

Offset: 0x000

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									Reserv	/ed						
Type/Reset																
	23		22		21		20		19		18		17		16	
									Reserv	/ed						
Type/Reset																
	15		14		13		12		11		10		9		8	
					SELF	łΤ							GUAD	Т		
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
	GUADT	ΈN	DUAL	ΞN	Reserv	ved	SSEL	С	SELOI	ΞN	RXDM.	ΑE	TXDM	ΑE	SPIE	EN
Type/Reset	RW	0	RW	0			RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[15:12]	SELHT	Chip Select Hold Time 0x0: 1/2 SCK 0x1: 1 SCK 0x2: 3/2 SCK 0x3: 2 SCK
		Note that SELHT is for master mode only.
[11:8]	GUADT	Guard Time GUADTEN=1 0x0:1 SCK 0x1: 2 SCK 0x2: 3 SCK
		Note that GUADT is for master mode only.
[7]	GUADTEN	Guard Time Enable 0: Guard Time is 1/2 SCK 1: When set this bit, Guard time can be controlled by GUADT Note that GUADTEN is for master mode only.
[6]	DUALEN	Dual Port Enable 0: Dual port is disabled 1: Dual port is enabled The control bit is used to support the dual output read mode of the series SPI NOR Flash. When this bit is set and the MOSI signal will change the direction from output to input and receive the series data stream. That means the DUALEN control bit is only for master mode.

Bits	Field	Descriptions
[4]	SSELC	Software Slave Select Control 0: Set the SEL output to an inactive state 1: Set the SEL output to an active state The application Software can setup the SEL output to an active or inactive state by configuring the SSELC bit. The active level is configured by the SELAP bit in the SPICR1 register. Note that the SSELC bit is only available when the SELOEN bit is set to 1 for enabling the SEL output meanwhile the SELM bit is cleared to 0 for controlling the SEL signal by software. Otherwise, the SSELC bit has no effect.
[3]	SELOEN	Slave Select Output Enable 0: Set the SEL signal to the input mode for Multi-master mode 1: Set the SEL signal to the output mode for slave select The SELOEN is only available in the master mode to setup the SEL signal as an input or output signal. When the SEL signal is configured to operate in the output mode, it is used as a slave select signal in either the hardware or software mode according to the SELM bit setting in the SPICR1 register. The SEL signal is used for mode fault detection in the multi-master environment when it is configured to operate in the input mode
[2]	RXDMAE	RX PDMA request enable 0: SPI RX path PDMA request disabled. 1: SPI RX path PDMA request enabled.
[1]	TXDMAE	TX PDMA request enable 0: SPI TX path PDMA request disabled. 1: SPI TX path PDMA request enabled.
[0]	SPIEN	SPI Enable 0: SPI interface is disabled 1: SPI interface is enabled

SPI Control Register 1 – SPICR1

This register specifies the SPI parameters including the data length, the transfer format, the SEL active polarity/mode, the LSB/MSB control and the master/slave mode.

Offset: 0x004
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								,
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
	Reserved	MODE	SELM	FIRSTBIT	SELAP		FORMA	Т
Type/Reset		RW 0	RW 0	RW 0	RW 0	RW	0 RW	0 RW 0
	7	6	5	4	3	2	1	0
			Reserved				DFL	
Type/Reset					RW 0	RW	0 RW	0 RW 0

Bits	Field	Descriptions								
[14]	MODE	Master or Slave Mode 0: Slave mode 1: Master mode	0: Slave mode							
[13]	SELM	1: SEL signal is con hardware	0: SEL signal is controlled by software – asserted or de-asserted by the SSELC bit 1: SEL signal is controlled by hardware – generated automatically by the SPI							
[12]	FIRSTBIT	LSB or MSB Transmitted 0: MSB transmitted fire	SB or MSB Transmitted First 0: MSB transmitted first 1: LSB transmitted first							
[11]	SELAP	0: SEL signal is active	lave Select Active Polarity 0: SEL signal is active low 1: SEL signal is active high							
[10:8]	FORMAT		SPI Data Transfer Format These three bits are used to determine the data transfer format of the SPI interface							
		FORMAT [2:0]	CPOL	СРНА						
		001	0	0						
		010	0	1						
		110	1	0						
		101	1	1						
		Others	Rese	erved						
[3:0]	DFL	CPOL: Clock Polarity 0: SCK Idle state is lot 1: SCK Idle state is his CPHA: Clock Phase 0: Data is captured on 1: Data is captured on Data Frame Length Selects the data transfer 0x1: 1 bit 0x2: 2 bits 0xF: 15 bits 0x0: 16 bits	gh the first SCK clock of the second SCK clo	ock edge						

SPI Interrupt Enable Register – SPIIER

This register contains the corresponding SPI interrupt enable control bit.

Offset: 0x008

Offset: 0x008

Reset value: 0x0000_0000

Reset value:	0x0000_000	0						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	TOIEN	SAIEN	MFIEN	ROIEN	WCIEN	RXBNEIEN	TXEIEN	TXBEIEN
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[7]	TOIEN	Time Out Interrupt Enable 0: Disable 1: Enable
[6]	SAIEN	Slave Abort Interrupt Enable 0: Disable 1: Enable
[5]	MFIEN	Mode Fault Interrupt Enable 0: Disable 1: Enable
[4]	ROIEN	Read Overrun Interrupt Enable 0: Disable 1: Enable
[3]	WCIEN	Write Collision Interrupt Enable 0: Disable 1: Enable
[2]	RXBNEIEN	RX Buffer Not Empty Interrupt Enable 0: Disable 1: Enable Generates an interrupt request when the RXBNE flag is set and when RXBNEIEN is set. In the FIFO mode, the interrupt request being generated depends upon the RX FIFO trigger level setting
[1]	TXEIEN	TX Empty Interrupt Enable 0: Disable 1: Enable The TX register empty interrupt request will be generated when the TXE flag and the TXEIEN bit are set.
[0]	TXBEIEN	TX Buffer Empty Interrupt Enable 0: Disable 1: Enable The TX buffer empty interrupt request will be generated when the TXBE flag and the TXBEIEN bit are set. In the FIFO mode, the interrupt request being generated depends upon the TX FIFO trigger level setting.

SPI Clock Prescaler Register – SPICPR

This register specifies the SPI clock prescaler ratio.

Offset: 0x00C

Reset value: 0x0000_0000

	31	30	29	2	8 27	26	25	24
					Reserv	ed		
Type/Reset				'		,		
	23	22	21	2	0 19	18	17	16
					Reserv	ed		
Type/Reset				,				
	15	14	13	1:	2 11	10	9	8
					CP			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW 0	RW 0
	7	6	5	4	3	2	1	0
					CP			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW 0	RW 0

Bits	Field	Descriptions

[15:0] CP SPI Clock Prescaler

The SPI clock (SCK) is determined by the following equation:

 $f_{SCK} = f_{PCLK} / (2 \times (CP + 1))$, where the CP ranges from 0 to 65535

Note: For the SPI slave mode, the system clock (f_{PCLK}) must be at least 3 times faster than the external SPI SCK input.

SPI Data Register – SPIDR

This register stores the SPI received or transmitted Data.

Offset: 0x010

Reset value: 0x0000_0000

	31		30		29			28		27		26			25		24	
										Reserv	/ed							
Type/Reset																		
	23		22		21			20		19		18			17		16	
										Reserv	/ed							
Type/Reset																		
	15		14		13			12		11		10			9		8	
										DR								
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0
	7		6		5			4		3		2			1		0	
										DR								
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0

Bits Field Descriptions

[15:0] DR Data Register

The SPI data register is used to store the serial bus transmitted or received data. In the non-FIFO mode, writing data into the SPI data register will also load the data into the data transmission buffer, known as the TX buffer. Reading data from the SPI data register will return the data held in the data received buffer, named RX buffer.

SPI Status Register - SPISR

This register contains the relevant SPI status.

Offset: 0x014 Reset value: 0x0000_0003

	_													
	31	;	30	29		28		27		26	25		24	
								Reserv	ed					
Type/Reset														
	23	:	22	21		20		19		18	17		16	i
								Reserv	ed					
Type/Reset		·												
	15		14	13		12		11		10	9		8	
						Reserve	ed						BUS	Υ
Type/Reset													RO	0
	7		6	5		4		3		2	1		0	
	TO		SA	MF		RO		WC		RXBNE	TXE		TXB	BE
Type/Reset	WC	0 WC	0	WC	0	WC	0	WC	0	RO 0	RO	1	RO	1

Bits	Field	Descriptions
[8]	BUSY	SPI Busy flag 0: SPI not busy 1: SPI busy In the master mode, this flag is reset when the TX buffer and TX shift register are both empty and is set when the TX buffer or the TX shift register are not empty. In the slave mode, this flag is set when SEL changes to an active level and is reset when SEL changes to an inactive level.
[7]	ТО	Time Out flag 0: No RX FIFO time out 1: RX FIFO time out has occurred. Write 1 to clear it. Once the time out counter value is equal to the TOC field setting in the SPIFTOCR register, the time out flag will be set and an interrupt will be generated if the TOIEN bit in the SPIIER register is enabled. This bit is cleared by writing 1 Note: This Time Out flag function is only available in the SPI FIFO mode.
[6]	SA	Slave Abort flag 0: No slave abort 1: Slave abort has occurred. This bit is set by hardware and cleared by writing 1.
[5]	MF	Mode Fault flag 0: No mode fault 1: Mode fault has occurred This bit is set by hardware and cleared by writing 1.
[4]	RO	Read Overrun flag 0: No read overrun 1: Read overrun has occurred This bit is set by hardware and cleared by writing 1.
[3]	WC	Write Collision flag 0: No write collision 1: Write collision has occurred. This bit is set by hardware and cleared by writing 1.
[2]	RXBNE	Receive Buffer Not Empty flag 0: RX buffer empty 1: RX buffer not empty This bit indicates the RX buffer status in the non-FIFO mode. It is also used to indicate if the RX FIFO trigger level has been reached in the FIFO mode. This bit will be cleared when the SPI RX buffer is empty in the non-FIFO mode or if the number of data contained in RX FIFO is less than the trigger level which is specified by the RXFTLS field in the SPIFCR register in the SPI FIFO mode.
[1]	TXE	Transmission Register Empty flag 0: TX buffer or TX shift register is not empty 1: TX buffer and TX shift register both are empty
[0]	TXBE	Transmit Buffer Empty flag 0: TX buffer not empty 1: TX buffer empty In the FIFO mode, this bit indicates that the number of data contained in TX FIFO is equal to or less than the trigger level specified by the TXFTLS field in the SPIFCR register.

SPI FIFO Control Register – SPIFCR

This register contains the related SPI FIFO control including the FIFO enable control and the FIFO trigger level selections.

Offset: 0x018
Reset value: 0x0000_0000

	31	30	1	29	28		27		26		25	24	
							Reserv	ed					
Type/Reset													
	23	22		21	20		19		18		17	16	
							Reserv	ed					
Type/Reset		'										'	
	15	14		13	12		11		10		9	8	
			F	eserved					FIFOE	N		Reserv	ved
Type/Reset									RW	0			
	7	6		5	4		3		2		1	0	
			F	RXFTLS							TXFTLS		
Type/Reset	RW	0 RW	0 R\	V 0	RW	0	RW	0	RW	0	RW 0	RW	0

Bits	Field	Descriptions
[10]	FIFOEN	FIFO Enable 0: FIFO disable 1: FIFO enable This bit cannot be set or reset when the SPI interface is in transmitting.
[7:4]	RXFTLS	RX FIFO Trigger Level Select 0000: Trigger level is 0 0001: Trigger level is 1
		1000: Trigger level is 8 Others: Reserved The RXFTLS field is used to specify the RX FIFO trigger level. When the number of data contained in the RX FIFO is equal to or greater than the trigger level defined by the RXFTLS field, the RXBNE flag will be set
[3:0]	TXFTLS	TX FIFO Trigger Level Select 0000: Trigger level is 0 0001: Trigger level is 1
		1000: Trigger level is 8 Others: Reserved The TXFTLS field is used to specify the TX FIFO trigger level. When the number of data contained in the TX FIFO is equal to or less than the trigger level defined by the

TXFTLS field, the TXBE flag will be set.

SPI FIFO Status Register – SPIFSR

This register contains the relevant SPI FIFO status.

Offset: 0x01C Reset value: 0x0000_0000

	31	30	29	28		27	26	25	24
						Reserve	d		
Type/Reset							,	,	
	23	22	21	20		19	18	17	16
						Reserve	d		
Type/Reset							'	'	
	15	14	13	12		11	10	9	8
						Reserve	d		
Type/Reset							,	'	
	7	6	5	4		3	2	1	0
			RXFS					TXFS	
Type/Reset	RO	0 RO	0 RO	0 RO	0	RO	0 RO	0 RO	0 RO 0

Bits	Field	Descriptions
[7:4]	RXFS	RX FIFO Status 0000: RX FIFO empty 0001: RX FIFO contains 1 data
		1000: RX FIFO contains 8 data Others: Reserved
[3:0]	TXFS	TX FIFO Status 0000: TX FIFO empty 0001: TX FIFO contains 1 data
		 1000: TX FIFO contains 8 data Others: Reserved

SPI FIFO Time Out Counter Register - SPIFTOCR

This register stores the SPI RX FIFO time out counter value.

Offset: 0x020

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserve	ed		
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserve	ed		
Type/Reset					,			
	15	14	13	12	11	10	9	8
					TOC			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW 0
	7	6	5	4	3	2	1	0
					TOC			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW 0

Bits Field Descriptions

[15:0] TOC Time Out Counter

The time out counter starts to count from 0 after the SPI RX FIFO receives a data, and reset the counter value once the data is read from the SPIDR register by software or another new data is received. If the FIFO does not receive new data or the software does not read data from the SPIDR register the time out counter value will continuously increase. When the time out counter value is equal to the TOC setting value, the TO flag in the SPISR register will be set and an interrupt will be generated if the TOIEN bit in the SPIIEN register is set. The time out counter will be stopped when the RX FIFO is empty. The SPI FIFO time out function can

be disabled by setting the TOC field to zero. The time out counter is driven by the

system APB clock, named f_{PCLK}.

21 Universal Synchronous Asynchronous Receiver Transmitter (USART)

Introduction

The Universal Synchronous Asynchronous Receiver Transceiver, USART, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. The USART is used to translate data between parallel and serial interfaces, and is also commonly used for RS232 standard communication. The USART peripheral function supports a variety of interrupts.

The USART module includes an 8-byte transmit FIFO, TX FIFO, and a 8-byte receive FIFO, RX FIFO. Software can detect a USART error status by reading USART Status & Interrupt Flag Register, USRSIFR. The status includes the condition of the transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events.

The USART includes a programmable baud rate generator which is capable of dividing the USART clock of the CK_APB (CK_USART) to produce a baud rate clock for the USART transmitter and receiver.

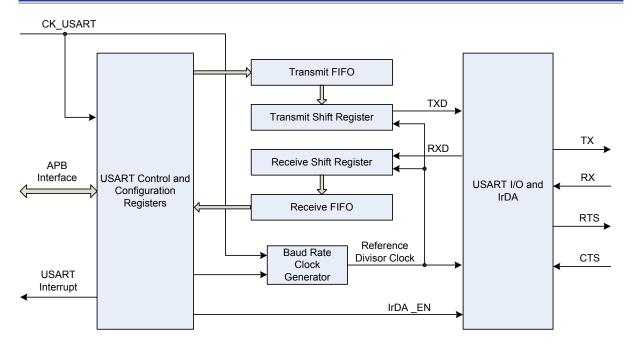


Figure 150. USART Block Diagram

Features

- Supports both asynchronous and clocked synchronous serial communication modes
- Full Duplex Communication Capability
- Programming baud rate up to $(f_{PCLK}/16)$ MHz for asynchronous mode and $(f_{PCLK}/8)$ MHz for synchronous mode
- IrDA SIR encoder and decoder
 - Support of normal 3/16 bit duration and low-power (1.41 \sim 2.23 μ s) durations
- Supports RS485 mode with output enable
- Auto hardware flow control mode RTS, CTS
- Fully programmable serial communication functions including:
 - Word length: 7, 8 or 9-bit character
 - Parity: Even, odd, or no-parity bit generation and detection
 - Stop bit: 1 or 2 stop bit generation
 - Bit order: LSB-first or MSB-first transfer
- Error detection: Parity, overrun, and frame error
- FIFO
 - Receive FIFO: 8 × 9 bits (max 9 data bits)
 - Transmit FIFO: 8 × 9 bits (max 9 data bits)
- Supports PDMA Interface

Function Descriptions

Serial Data Format

The USART module performs a parallel-to-serial conversion on data that is written to the transmit FIFO registers and then sends the data with the following format: Start bit, $7 \sim 9$ LSB first data bits, optional Parity bit and finally $1 \sim 2$ Stop bits. The Start bit has the opposite polarity of the data line idle state. The Stop bit is the same as the data line idle state and provides a delay before the next start situation. The both Start and Stop bits are used for data synchronization during the asynchronous data transmission.

The USART module also performs a serial-to-parallel conversion on the data that is read from the receive FIFO registers. It will first check the Parity bit and will then look for a Stop bit. If the Stop bit is not found, the USART module will consider the entire word transmission to have failed and respond with a Framing Error.

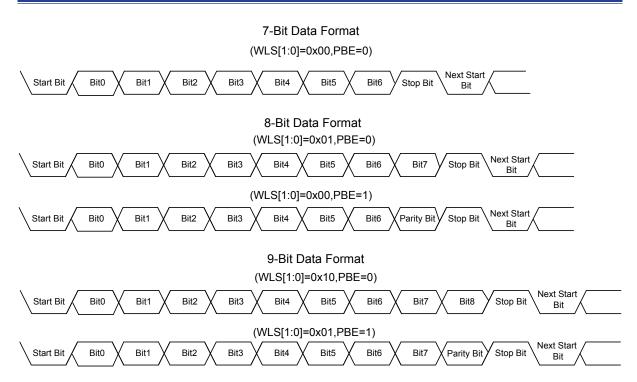


Figure 151. USART Serial Data Format

Baud Rate Generation

The baud rate for the USART receiver and transmitter are both set with the same values. The baud-rate divisor, BRD, has the following relationship with the USART clock which is known as CK_USART.

Where CK_USART clock is the APB clock connected to the USART while the BRD range is from 16 to 65535 for asynchronous mode and 8 to 65535 for synchronous mode.

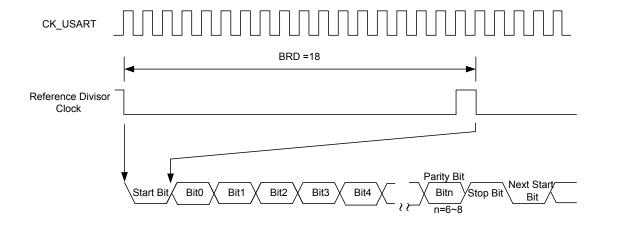


Figure 152. USART Clock CK_USART and Data Frame Timing

Table 53. Baud Rate Deviation Error Calculation – CK_USART = 48 MHz

Baud	d rate	CK_USART = 48 MHz				
No	Kbps	Actual	BRD	Deviation Error rate		
1	2.4	2.4	20000	0.00%		
2	9.6	9.6	5000	0.00%		
3	19.2	19.2	2500	0.00%		
4	57.6	57.6	833	0.04%		
5	115.2	115.1	417	-0.08%		
6	230.4	230.8	208	0.16%		
7	460.8	461.5	104	0.16%		
8	921.6	923.1	52	0.16%		
9	2250	2285.7	21	1.59%		
10	3000	3000	16	0.00%		

Table 54. Table 2 Baud Rate Deviation Error Calculation – CK_USART = 96 MHz

Baud	d rate	CK_USART = 96 MHz			
No	Kbps	Actual	BRD	Deviation Error rate	
1	2.4	2.4	40000	0.00%	
2	9.6	9.6	10000	0.00%	
3	19.2	19.2	5000	0.00%	
4	57.6	57.6	1667	-0.02%	
5	115.2	115.2	833	0.04%	
6	230.4	230.2	417	-0.08%	
7	460.8	461.5	208	0.16%	
8	921.6	923.1	104	0.16%	
9	2250	2232.6	43	-0.78%	
10	3000	3000	32	0.00%	

Hardware Flow Control

The USART supports the hardware flow control function which is enabled by setting the HFCEN bit in the USRCR register to 1. It is possible to control the serial data flow between 2 USART devices by using the CTS input and the RTS output. The Figure 153 is show the connection diagram in this mode. The hardware flow control function is categorized into to types. One is the RTS flow control function and the other is the CTS flow control function.

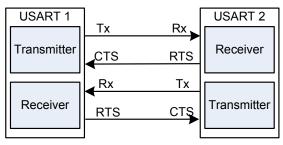


Figure 153. Hardware Flow Control between 2 USARTs

RTS Flow Control

In the RTS flow control, the USART RTS pin is active with a logic low state when the receive data register is empty. It means that the receiver is ready to receive a new data. When the RX FIFO reaches the trigger level which is specified by configuring the RXTL field in the USRFCR register, the USART RTS pin is inactive with a logic high state. Figure 154 shows the example of RTS flow control.

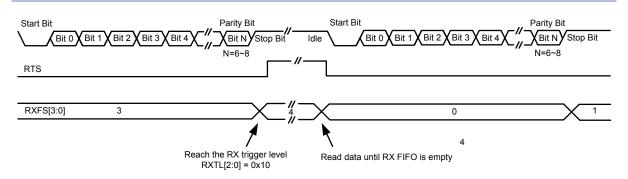


Figure 154. USART RTS Flow Control

CTS Flow Control

If the hard flow control function is enabled, the URTXEN bit in the USRCR register will be controlled by the USART CTS input signal. If the USART CTS pin is forced to a logic low state, the URTXEN bit will automatically be set to 1 to enable the data transmission. However, if the USART CTS pin is forced to a logic high state, the URTXEN bit will be cleared to 0 and then the data transmission will also be disabled.

When the USART CTS pin is forced to a logic high state during a data transmission period, the current data transmission will be continued until the stop bit is completed. The Figure 155 shows an example of communication with CTS flow control.

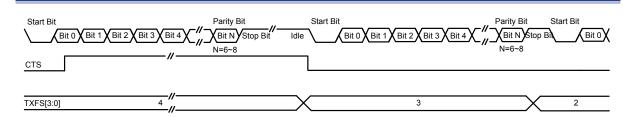


Figure 155. USART CTS Flow Control

IrDA

The USART IrDA mode is provided half-duplex point-to-point wireless communication.

The USART module includes an integrated modulator and demodulator which allow a wireless communication using infrared transceivers. The transmitter specifies a logic data '0' as a 'high' pulse and a logic data '1' as a 'low' level while the Receiver specifies a logic data '0' as a 'low' pulse and a logic data '1' as 'high' level in the IrDA mode.

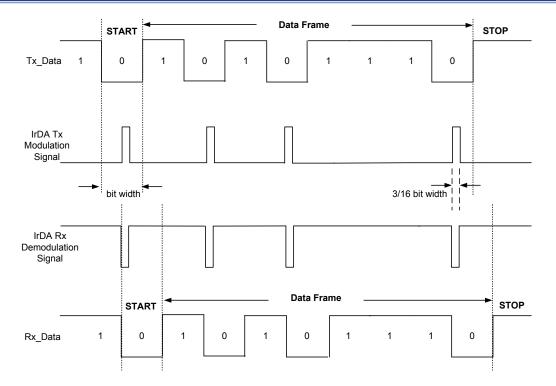


Figure 156. IrDA Modulation and Demodulation

The IrDA mode provides two operation modes, one is the normal mode, and the other is the low-power mode.

IrDA Normal Mode

For the IrDA normal mode, the width of each transmitted pulse generated by the transmitter modulator is specified as 3/16 of the baud rate clock period. The receiver pulse width for the IrDA receiver demodulator is based on the IrDA receive debounce filter which is implement using an 8-bit down-counting counter. The debounce filter counter value is specified by the IrDAPSC field in the IrDACR register. When a falling edge is detected on the receiver pin, the debounce filter counter starts to count down, driven by the CK_USART clock. If a rising edge is detected on the receiver pin, the counter stops counting and is reloaded with the IrDAPSC value. When a low pulse falling edge on the receiver pin is detected and then before the debounce filter has counted down to zero, a rising edge is also detected, then this low pulse will be considered as glitch noise and will be discarded. If a low pulse falling edge appears on the receiver pin but no rising edge is detected before the debounce counter reaches 0, then the input is regarded as a valid data "0" for this bit duration. The IrDAPSC value must be set to be greater than or equal to 0x01, then the

IrDA receiver demodulation operation can function properly. The IrDAPSC value can be adjusted to meet the USART baud rate setting to filter the IrDA received glitch noise of which the width is smaller than the prescaler setting duration.

IrDA Low-Power Mode

In the IrDA low-power mode, the transmitted IrDA pulse width generated by the transmitter modulator is not kept at 3/16 of the baud rate clock period. Instead, the pulse width is fixed and is calculated by the following formula. The transmitted pulse width can be adjusted by the IrDAPSC field to meet the minimum pulse width specification of the external IrDA Receiver device.

$$T_{IrDAL} = 3 \times IrDAPSC / CK USART$$

Notes: 1. T_{IrDA_L} is transmitted pulse width in the low power mode.

2. The IrDAPSC filed in the IrDA Control Register IrDACR is the IrDACR prescaler value.

The debounce behavior in the IrDA low-power receiving mode is similar to the IrDA normal mode. For glitch detection, the low pulse of which the pulse width is shorter than $1 \times (IrDAPSC / CK_USART)$ should be discarded in the IrDA receiver demodulation. A valid low data is accepted if its low pulse width is greater than

The IrDA physical layer specification specifies a minimum delay with a value of 10 ms between the transmission and reception switch, and this IrDA receiver set-up time also should be managed by the software.

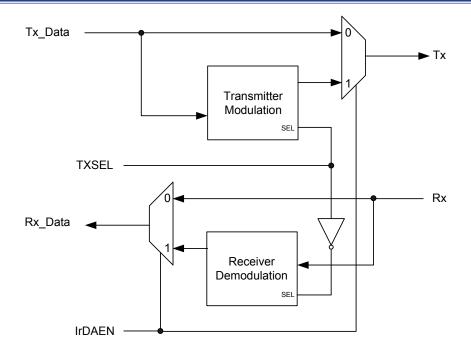


Figure 157. USART I/O and IrDA Block Diagram

RS485 Mode

The RS485 mode of USART provides the data on interface is transmitted over a 2-wire twisted pair bus. The RS485 transceiver interprets the voltage levels of the differential signals with respect to a third common voltage. Without this common reference, the transceiver may interpret the differential signals incorrectly. This enhances the noise rejection capabilities of the RS485 interface. The USART RTS pin is used to control the external RS485 transceiver whose polarity can be selected by configuring the TXENP bit in the RS485 Control Register, named RS485CR, when the USART operates in the RS485 mode.

RS485 Auto Direction Mode - AUD

When the RS485 mode is configured as a master transmitter, it will operate in the Auto Direction Mode, AUD. In the AUD mode the polarity of the USART RTS pin is configurable according to the TXENP bit in the RS485 Control Register in the RS485 mode. This pin can be used to control the external RS485 transceiver to enable the transmitter.

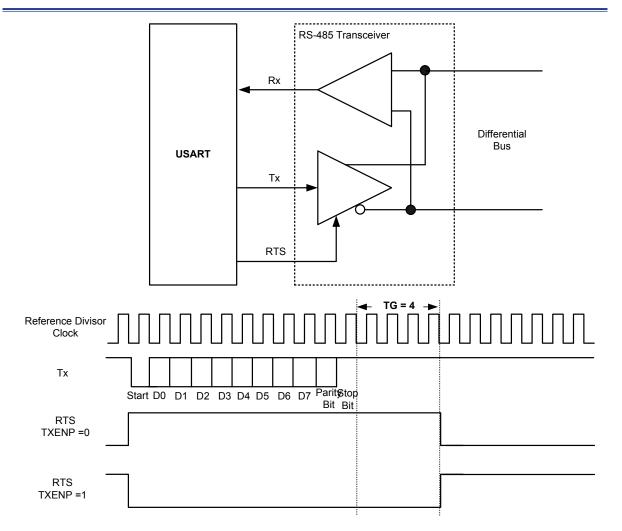


Figure 158. RS485 Interface and Waveform

RS485 Normal Multi-drop Operation Mode - NMM

When the RS485 mode is configured as an addressable slave, it will operate in the Normal Multidrop Operation Mode, NMM. This mode is enabled when the RSNMM field is set in the RS485CR register. Regardless of the URRXEN value in the USRCR register, all the received data with a parity bit "0" will be ignored until the first address byte is detected with a parity bit "1" and then the received address byte will be stored in the RX FIFO. Once the first address data is detected and stored in the RX FIFO, the RSADDE flag in the USRSIFR register will be set and generate an interrupt if the RSADDIE bit in the USRIER register is set to 1. Application software can determine whether the receiver is enabled or disabled to accept the following data by configuring the URRXEN bit. When the receiver is enabled by setting the URRXEN bit to 1, all received data will be stored in the RX FIFO. Otherwise, all received data will be ignored if the receiver is disabled by clearing the URRXEN bit to 0.

RS485 Auto Address Detection Operation Mode – AAD

Except in the Normal Multi-drop Operation Mode, the RS485 mode can operate in the Auto Address Detection Operation Mode, AAD, when it is configured as an addressable slave. This mode is enabled by setting the RSAAD filed to 1 in the RS485CR register. The receiver will detect the address frame with a parity bit "1" and then compare the received address data with the ADDMATCH field value which is a programmable 8-bit address value specified in the RS485CR register. If the address data matches the ADDMATCH value, it will be stored in the RX FIFO and the URRXEN bit will be automatically set. When the receiver is enabled, all received data will be stored in the RX FIFO until the next address frame does not match the ADDMATCH value and then the receiver will be automatically disabled. After the receiver is enabled, software can disable the receiver by setting the URRXEN bit to '0'.

Synchronous Master Mode

The data is transmitted in a full-duplex style in the USART Synchronous Master Mode, i.e., data transmission and reception both occur at the same time and only support master mode. The USART CTS pin is the synchronous USART transmitter clock output. In this mode, no clock pulses will be sent to the CTS pin during the start bit, parity bit and stop bit duration. The CPS bit in the Synchronous Control Register SYNCR, can be used to determine whether data is captured on the first or the second clock edge. The CPO bit in the SYNCR can be use to configure the clock polarity in the USART Synchronous Mode idle state. Detailed timing information is shown in the accompanying diagram.

In the USART synchronous Mode, the USART CTS/SCK clock output pin is only used to transmit the data to slave device. If the transmission data register USRDR, is written with valid data, the USART synchronous mode will automatically transmit this data with the corresponding clock output and the USART receiver will also receive data on the RX pin. Otherwise the receiver will not obtain synchronous data if no data is transmitted.

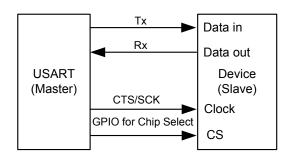
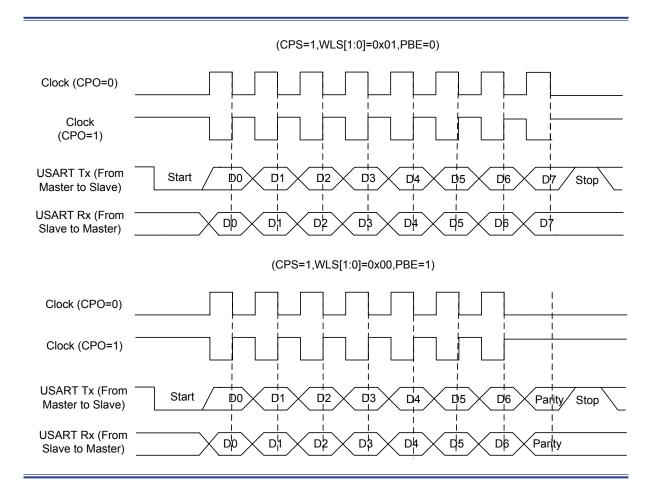



Figure 159. USART Synchronous Transmission Example

Note: The USART supports the synchronous master mode only: it cannot receive or send data related to an input clock. The USART CTS/SCK clock is always an output.

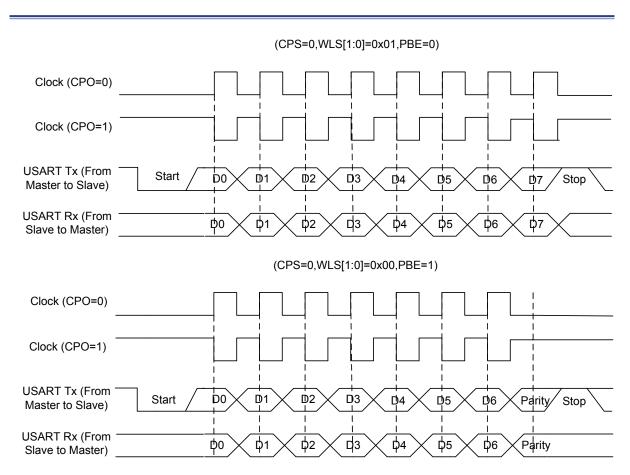


Figure 160. 8-bit Format USART Synchronous Waveform

Interrupts and Status

The USART can generate interrupts when the following event occurs and corresponding interrupt enable bits are set:

- Receive FIFO time-out interrupt: An interrupt will be generated when the USART receive FIFO does not receive a new data package during the specified time-out interval.
- Receiver line status interrupts: The interrupts will be generated when the USART receiver overrun error, parity error, framing error, or break events occurs.
- Transmit FIFO threshold level interrupt: An interrupt will be generated when the data to be transmitted in the USART Transmit FIFO is less than the specified threshold level.
- Transmit complete interrupt: An interrupt will be generated when the Transmit FIFO is empty and the content of the transmit shift register (TSR) is also completely shifted.
- Receive FIFO threshold level interrupt: An interrupt will be generated when the FIFO received data amount has reached the specified threshold level.

PDMA Interface

The PDMA interface is integrated in the USART. The PDMA function can be enabled by setting the TXDMAEN or RXDMAEN bit in the USRCR register to 1 in the transmit or receive mode respectively. When the data to be transmitted in the USART Transmit FIFO is less than the TX FIFO threshold level specified by the TXTL field in the USRFCR register and the TXDMAEN bit is set to 1, the PDMA function will be activated to move data from a source location into the USART TX FIFO.

Similarly, when the received data amount in the receive FIFO is equal to the RX FIFO threshold level specified by the RXTL field in the USRFCR register and the RXDMAEN bit is set to 1, the PDMA function will be activated to move data from the USART RX FIFO to a specific destination location. For a mode detailed description on the PDMA configurations, refer to the PDMA chapter.

Register Map

The following table shows the USART registers and reset values.

Table 55. USART Register Map

Register	Offset	Description	Reset Value
USRDR	0x000	USART Data Register	0x0000_0000
USRCR	0x004	USART Control Register	0x0000_0000
USRFCR	800x0	USART FIFO Control Register	0x0000_0000
USRIER	0x00C	USART Interrupt Enable Register	0x0000_0000
USRSIFR	0x010	USART Status & Interrupt Flag Register	0x0000_0180
USRTPR	0x014	USART Timing Parameter Register	0x0000_0000
IrDACR	0x018	USART IrDA Control Register	0x0000_0000
RS485CR	0x01C	USART RS485 Control Register	0x0000_0000
SYNCR	0x020	USART Synchronous Control Register	0x0000_0000
USRDLR	0x024	USART Divider Latch Register	0x0000_0010
USRTSTR	0x028	USART Test Register	0x0000_0000

Register Descriptions

USART Data Register – USRDR

The register is used to access the USART transmitted and received FIFO data.

Offset:	0x000	
Reset value:	0x0000_	0000

	31		30		29		28		27		26		25	5	24	
									Reserv	/ed						
Type/Reset																
	23		22		21		20		19		18		17	7	16	<u> </u>
									Reserv	/ed						
Type/Reset																
	15		14		13		12		11		10		9		8	
							Reserv	ed							DE	3
Type/Reset															RW	0
	7		6		5		4		3		2		1		0	
									DB							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits Field Descriptions

[8:0] DB

Reading data via this receiver buffer register will return the data from the receive FIFO. The receive FIFO has a capacity of up to 8×9 bits. By reading this register, the USART will return a 7, 8 and 9-bit received data. The DB field bit 8 is valid for 9-bit mode only and is fixed at 0 for the 8-bit mode. For the 7-bits mode, the DB[6:0] contains the available bits.

Writing data to this buffer register will load data into the Transmit FIFO. The Transmit FIFO has a capacity of up to 8×9 bits. By writing to this register, the USART will send out 7, 8 or 9-bit transmitted data. The DB field bit 8 is valid for the 9-bit mode only and will be ignored for the 8-bit mode. For the 7-bit mode, the DB[6:0] contains the available bits.

USART Control Register – USRCR

The register specifies the serial parameters such as data length, parity, and stop bit for the USART. It also contains the USART enable control bits together with the USART mode and data transfer mode selections.

Offset: 0x004 Reset value: 0x0000_0000

	31		30		29		28		27		26		:	25		24	
									Reserv	ed							
Type/Reset																	
	23		22		21		20		19		18			17		16	<u> </u>
									Reserv	ed							
Type/Reset																	
	15		14		13		12		11		10			9		8	
	RTS		BCB		SPE		EPE		PBE		NSB					WL	S
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0
	7		6		5		4		3		2			1		0	
	RXDMA	ΕN	TXDMAE	N	URRXE	N	URTXE	N	HFCE	N	TRSM	1				MOI	DE
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0

Bits	Field	Descriptions
[15]	RTS	Request-To-Send Signal 0: Drive USART RTS pin to logic 1 1: Drive USART RTS pin to logic 0 Note that the RTS bit is used to control the USART RTS pin status when the HFCEN bit is reset. When the HFCEN bit is set, this RTS bit indicates the pin status that is controlled by hardware flow control function.
[14]	ВСВ	Break Control Bit When this bit is set 1, the serial data output on the USART TX pin will be forced to the Spacing State (logic 0). This bit acts only on USART TX output pin and has no effect on the transmitter logic.
[13]	SPE	Stick Parity Enable 0: Disable stick parity 1: Stick Parity bit is transmitted This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.
[12]	EPE	 Even Parity Enable 0: Odd number of logic 1's are transmitted or checked in the data word and parity bits. 1: Even number of logic 1's are transmitted or checked in the data word and parity bits. This bit is only available when PBE is set to 1.
[11]	PBE	Parity Bit Enable 0: Parity bit is not generated (transmitted data) or checked (received data) during transfer. 1: Parity bit is generated or checked during transfer. Note: When the WLS field is set to "10" to select the 9-bit data format, writing to the PBE bit has no effect.

Bits	Field	Descriptions
[10]	NSB	Number of "STOP bit" 0: One " STOP bit" is generated in the transmitted data 1: Two "STOP bit" is generated when 8- and 9-bit word length is selected.
[9:8]	WLS	Word Length Select 00: 7 bits 01: 8 bits 10: 9 bits 11: Reserved
[7]	RXDMAEN	USART RX DMA Enable 0: Disabled 1: Enabled
[6]	TXDMAEN	USART TX DMA Enable 0: Disabled 1: Enabled
[5]	URRXEN	USART RX Enable 0: Disabled 1: Enabled
[4]	URTXEN	USART TX Enable 0: Disabled 1: Enabled
[3]	HFCEN	Hardware Flow Control Function Enable 0: Disabled 1: Enabled
[2]	TRSM	Transfer Mode Selection This bit is used to select the data transfer protocol. 0: LSB first 1: MSB first
[1:0]	MODE	USART Mode Selection. 00: Normal operation 01: IrDA 10: RS485 11: Synchronous

USART FIFO Control Register – USRFCR

This register specifies the USART FIFO control and configurations including threshold level and reset function together with the USART FIFO status.

Offset: 0x008
Reset value: 0x0000_0000

	31	30	29	28	27	20	6	25		24	
			Reserv	ed				RXFS	3		
Type/Reset				,	RO	0 RO	0	RO	0	RO	0
	23	22	21	20	19	18	В	17		16	
			Reserv	ed				TXFS	3		
Type/Reset		'		'	RO	0 RO	0	RO	0	RO	0
	15	14	13	12	11	10	0	9		8	
					Reserve	ed					
Type/Reset											
	7	6	5	4	3	2		1		0	
		RXTL		TXTL		Rese	rved	RXR		TXF	₹
Type/Reset	RW	0 RW	0 RW	0 RW 0	•	· ·		WO	0	WO	0

Bits	Field	Descriptions
[27:24]	RXFS	RX FIFO Status The RXFS field shows the current number of data contained in the RX FIFO. 0000: RX FIFO is empty 0001: RX FIFO contains 1 data
		 1000: RX FIFO contains 8 data Others: Reserved
[19:16]	TXFS	TX FIFO Status The TXFS field shows the current number of data contained in the TX FIFO. 0000: TX FIFO is empty 0001: TX FIFO contains 1 data
		 1000: TX FIFO contains 8 data Others: Reserved
[7:6]	RXTL	RX FIFO Threshold Level Setting 00: 1 byte 01: 2 bytes 10: 4 bytes 11: 6 bytes The RXTL field defines the RX FIFO trigger level.
[5:4]	TXTL	TX FIFO Threshold Level Setting 00: 0 byte 01: 2 bytes 10: 4 bytes 11: 6 bytes The TXTL field determines the TX FIFO trigger level.
[1]	RXR	RX FIFO Reset Setting this bit will generate a reset pulse to reset the RX FIFO which will empty the RX FIFO. i.e., the RX pointer will be reset to 0, after a reset signal. This bit returns to 0 automatically after the reset pulse is generated.

0x00C

Offset:

Type/Reset RW

0 RW

Bits	Field	Descriptions
[0]	TXR	TX FIFO Reset Setting this bit will generate a reset pulse to reset TX FIFO which will empty the TX FIFO. i.e., the TX pointer will be reset to 0, after a reset signal. This bit returns to 0 automatically after the reset pulse is generated.

USART Interrupt Enable Register – USRIER

0 RW

This register is used to enable the related USART interrupt function. The USART module generates interrupts to the controller when the corresponding events occur and the corresponding interrupt enable bits are set.

Reset value:	0x0000_000	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
				Reserved			CTSIE	RXTOIE
Type/Reset							RW 0	RW 0
	7	6	5	4	3	2	1	0
	RSADDIE	BIE	FEIE	PEIE	OEIE	TXCIE	TXTLIE	RXTLIE

0 RW

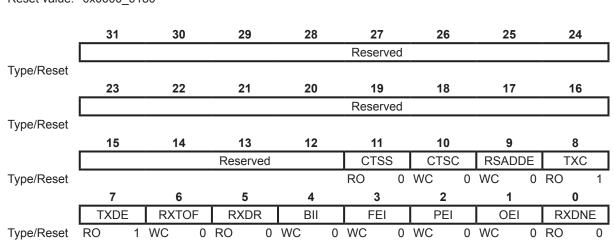
0 RW

0 RW

0 RW

0 RW

Bits	Field	Descriptions
[9]	CTSIE	CTS Clear-To-Send Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the CTSC bit is set in the USRSIFR register.
[8]	RXTOIE	Receive FIFO Time-Out Interrupt Enable 0: Disable interrupt 1: Enable interrupt Receive FIFO Time-Out Interrupt means that receive FIFO is not empty and no activities have occurred in the receive FIFO during the RXTOIC time-out duration.
[7]	RSADDIE	RS485 Address Detection Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the RSADD bit is set in the USRSIFR register.
[6]	BIE	Break Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the BII bit is set in the USRSIFR register.
[5]	FEIE	Framing Error Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the FEI bit is set in the URSIFR register.



Bits	Field	Descriptions
[4]	PEIE	Parity Error Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the PEI bit is set in the USRSIFR register.
[3]	OEIE	Overrun Error Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the OEI bit is set in the USRSIFR register.
[2]	TXCIE	Transmit Complete Interrupt Enable 0: Disable interrupt. 1: Enable interrupt An interrupt is generated when the TXC bit is set in the USRSIFR register.
[1]	TXDEIE	Transmit Data Empty Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the TXDE bit is set in the USRSIFR register.
[0]	RXDRIE	Receive Data Ready Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the RXDR bit is set in the USRSIFR register.

USART Status & Interrupt Flag Register – USRSIFR

This register contains the corresponding USART status.

Offset: 0x010
Reset value: 0x0000_0180

Bits	Field	Descriptions
[11]	CTSS	CTS Clear-To-Send Status
		0: CTS pin is inactive
		1: CTS pin is active and kept at a logic low state
[10]	CTSC	CTS Status Change Flag
		This bit is set whenever the CTS input pin status has been changed and an Interrupt is generated if the CTSIE = 1 in the USRIER register. Writing 1 to this bit clears the flag.

Bits	Field	Descriptions
[9]	RSADD	RS485 Address Detection 0: Address is not detected 1: Address is detected This bit is set to 1 when the receiver detects the address. An interrupt will be
		generated if RSADDIE = 1 in the USRIER register. Writing 1 to this bit clears the flag. Note: This bit is only used in the RS485 mode by setting the MODE field in the USRCR register.
[8]	TXC	Transmit Complete 0: Either transmit FIFO (TX FIFO) or transmit shift register (TSR) is not empty. 1: Both the TX FIFO and TSR register are empty. An interrupt will be generated if TXCIE=1 in the USRIER register. This bit is cleared by a write to the USRDR register with new data.
[7]	TXDE	Transmit Data FIFO Empty 0: TX FIFO level is higher than threshold 1: TX FIFO level is less than threshold. The TXDE bit is set when transmit FIFO level is less than the transmit FIFO threshold level setting which is set by the TXTL field in the USRFCR register. This bit is clear when the USRDR is written with data until TX FIFO level is higher than threshold setting.
[6]	RXTOF	Receive FIFO Time-Out Flag 0: RX FIFO Time-Out Interrupt is not enabled or occurred 1: RX FIFO Time-Out Interrupt occurs This bit is clear when RX FIFO is empty.
[5]	RXDR	Receive FIFO Ready Flag 0: RX FIFO level is less than threshold 1: RX FIFO level is higher than threshold The RXDR bit is set when the FIFO received data amount reaches the specified threshold level which is set by the RXTL field in the USRFCR register. This bit will be cleared when the data is read from the USRDR register and the RX FIFO level is less than threshold setting.
[4]	BII	Break Interrupt Indicator This bit is set to 1 whenever the received data input is held in the "spacing state" (logic 0) for longer than a full word transmission time, which is the total time of "start bit" + data bits + "parity" + "stop bits" duration. Writing 1 to this bit clears the flag.
[3]	FEI	Framing Error Indicator This bit will be set to 1 whenever the received character does not have a valid "stop bit", which means, the stop bit following the last data bit or parity bit is detected as logic 0. Writing 1 to this bit clears the flag.
[2]	PEI	Parity Error Indicator This bit will be set to 1 whenever the received character does not have a valid "parity bit". Writing 1 to this bit clears the flag.
[1]	OEI	Overrun Error Indicator An overrun error will occur only after the RX_FIFO is full and when the next character has been completely received in the RX shift register. The character in the shift register will be overwritten, if a new character is received in the RX shift register after an overrun event occurs, but the data in the RX FIFO will not be overwritten. The OEI bit is used to indicate as soon as it happens. Writing 1 to this bit clears the flag.
[0]	RXDNE	RX FIFO Data Ready 0: RX FIFO is empty 1: RX FIFO contains at least 1 received data word.

USART Timing Parameter Register – USRTPR

This register contains the USART timing parameters including the transmitter time guard parameters and the receive FIFO time-out value together with the RX FIFO time-out interrupt enable control.

Offset: 0x014
Reset value: 0x0000_0000

	31		30		29			28		27		2	6		25		24	4
										Reser	ved							
Type/Reset																		
	23		22		21			20		19		1	8		17		10	3
										Reser	ved							
Type/Reset																		
	15		14		13			12		11		1	0		9		8	
										TG								
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	C	RW	'	0	RW	0
	7		6		5			4		3			2		1		0	
	RXTOE	N								RXTO	С							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	C	RW	'	0	RW	0

Bits	Field	Descriptions
[15:8]	TG	Transmitter Time Guard The transmitter time guard counter is driven by the baud rate clock. When the TX FIFO transmits data, the counter is reset and then starts to count. Only when the counter content is equal to the TG value, are further word transmission transactions allowed.
[7]	RXTOEN	Receive FIFO Time-Out Counter Enable 0: Receive FIFO Time-Out Counter is disabled. 1: Receive FIFO Time-Out Counter is enabled.
[6:0]	RXTOC	Receive FIFO Time-Out Counter Compare Value The RX FIFO time-out counter is driven by the baud rate clock. When the RX FIFO receives new data, the counter is reset and then starts to count. Once the time-out counter content is equal to the time-out counter compare value RXTOC, a receive FIFO time-out interrupt, RXTOI, will be generated if the RXTOIE bit in the USRIER register is set to 1. New received data or the empty RX FIFO after being read will clear the RX FIFO time-out counter.

USART IrDA Control Register – IrDACR

This register is used to control the IrDA mode of USART.

Offset: 0x018

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
		'			Reserve	ed	'	
Type/Reset		'					"	
	23	22	21	20	19	18	17	16
					Reserve	ed		
Type/Reset								
	15	14	13	12	11	10	9	8
					IrDAPS	С		
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW 0	RW 0
	7	6	5	4	3	2	1	0
		Reserve	d RXINV	TXINV	/ LB	TXSEL	IrDALP	IrDAEN
Type/Reset		-	RW	0 RW	0 RW	0 RW	0 RW 0	RW 0

Bits	Field	Descriptions
[15:8]	IrDAPSC	IrDA Prescaler value This field contains the 8-bit debounce prescaler value. The debounce count-down counter is driven by the USART clock, named as CK_USART. The counting period is specified by the IrDAPSC field. The IrDAPSC field must be set to a value equal to or greater than 0x01 for normal debounce counter operation. If the pulse width is less than the duration specified by the IrDAPSC field, the pulse will be considered as glitch noise and discarded. 00000000: Reserved – can not be used. 00000001: CK_USART clock divided by 1 00000011: CK_USART clock divided by 2 00000011: CK_USART clock divided by 3
[5]	RXINV	RX Signal Inverse Control 0: No inversion 1: RX input signal is inversed
[4]	TXINV	TX Signal Inverse Control 0: No inversion 1: TX output signal is inversed
[3]	LB	IrDA Loop Back Mode 0: Disable IrDA loop back mode 1: Enable IrDA loop back mode for self testing
[2]	TXSEL	Transmit Select 0: Enable IrDA receiver 1: Enable IrDA transmitter
[1]	IrDALP	IrDA Low Power Mode Select the IrDA operation mode. 0: Normal mode 1: IrDA low power mode
[0]	IrDAEN	IrDA Enable control 0: Disable IrDA mode 1: Enable IrDA mode

USART RS485 Control Register – RS485CR

This register is used to control the RS485 mode of USART.

Offset: 0x01C
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserv	ed		
Type/Reset		'			'	"	,	-
	23	22	21	20	19	18	17	16
					Reserv	ed		
Type/Reset					"	'	'	
	15	14	13	12	11	10	9	8
				ΑI	DDMATCH			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW 0	RW 0
	7	6	5	4	3	2	1	0
			Reserv	ed		RSAAD	RSNMM	TXENP
Type/Reset					· ·	RW	0 RW 0	RW 0

Bits	Field	Descriptions
[15:8]	ADDMATCH	RS485 Auto Address Match value The field contains the address match value for the RS485 auto address detection operation mode.
[2]	RSAAD	RS485 Auto Address Detection Operation Mode Control 0: Disable 1: Enable
[1]	RSNMM	RS485 Normal Multi-drop Operation Mode Control 0: Disable 1: Enable
[0]	TXENP	USART RTS / TXE Pin Polarity 0: RTS / TXE is active high in the RS485 transmission mode 1: RTS / TXE is active low in the RS485 transmission mode

USART Synchronous Control Register – SYNCR

This register is used to control the USART synchronous mode.

Offset: 0x020
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved	t		
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved	t		
Type/Reset						,		
	15	14	13	12	11	10	9	8
					Reserved	t		
Type/Reset	,					,		
	7	6	5	4	3	2	1	0
			Reserved		CPO	CPS	Reserved	CLKEN
Type/Reset		_			RW (0 RW 0		RW 0

Bits	Field	Descriptions
[3]	CPO	Clock Polarity 0: CTS / SCK pin idle state is low 1: CTS / SCK pin idle state is high Selects the polarity of the clock output on the USART CTS / SCK pin in the synchronous mode. Works in conjunction with the CPS bit to specify the desired clock idle state.
[2]	CPS	Clock Phase 0: Data is captured on the first clock edge 1: Data is captured on the second clock edge This bit allows the user to select the phase of the clock output on the USART CTS / SCK pin in the synchronous mode. Works in conjunction with the CPO bit to determine the data capture edge.
[0]	CLKEN	Clock Enable 0: CTS / SCK pin disabled 1: CTS / SCK pin enabled Enable / disable the USART CTS / SCK pin.

Rev. 1.10 484 of 680 November 22, 2018

USART Divider Latch Register – USRDLR

The register is used to determine the USART clock divided ratio to generate the appropriate baud rate.

Offset: 0x024

Reset value: 0x0000_0010

	31		30		29		28	3	27		26		2	25		24	
									Reserv	/ed							
Type/Reset																	
	23		22		21		20)	19		18		1	7		16	
									Reserv	/ed							
Type/Reset																	
	15		14		13		12		11		10			9		8	
									BRE)							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0
	7		6		5		4		3		2			1		0	
									BRE)							
Type/Reset	RW	0	RW	0	RW	0	RW	1	RW	0	RW	0	RW		0	RW	0

Field	Descriptions
BRD	Baud Rate Divider
	The 16 bits define the USART clock divider ratio.
	Baud Rate = CK_USART / BRD
	Where the CK_USART clock is the clock connected to the USART module.
	BRD = 16 ~ 65535 for asynchronous mode
	BRD = 8 ~ 65535 for synchronous mode.

USART Test Register – USRTSTR

This register controls the USART debug mode.

Offset: 0x028

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								'
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
				Reserved				LBM
Type/Reset					_		RW	0 RW (

Bits	Field	Descriptions
------	-------	--------------

[1:0] LBM Loopback Test Mode Select

00: Normal Operation

01: Reserved

10: Automatic Echo Mode

11: Loopback Mode

22 Universal Asynchronous Receiver Transmitter (UART)

Introduction

The Universal Asynchronous Receiver Transceiver, UART, provides a flexible full duplex data exchange using asynchronous transfer. The UART is used to translate data between parallel and serial interfaces, and is also commonly used for RS232 standard communication. The UART peripheral function supports a variety of interrupts.

The UART module includes a transmit data register TDR and transmit shift register TSR, and a receive data register RDR and receive shift register RSR. Software can detect a UART error status by reading UART Status & Interrupt Flag Register, URSIFR. The status includes the condition of the transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events.

The UART includes a programmable baud rate generator which is capable of dividing the UART clock of the CK_APB (CK_UART) to produce a baud rate clock for the UART transmitter and receiver.

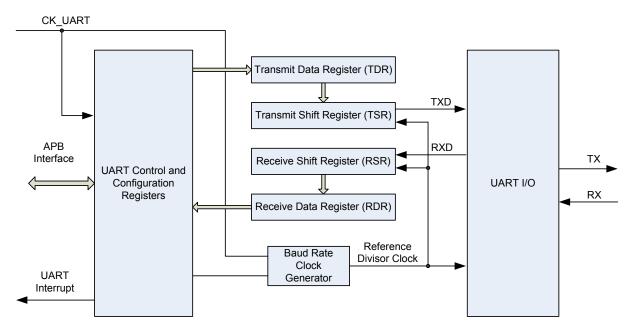
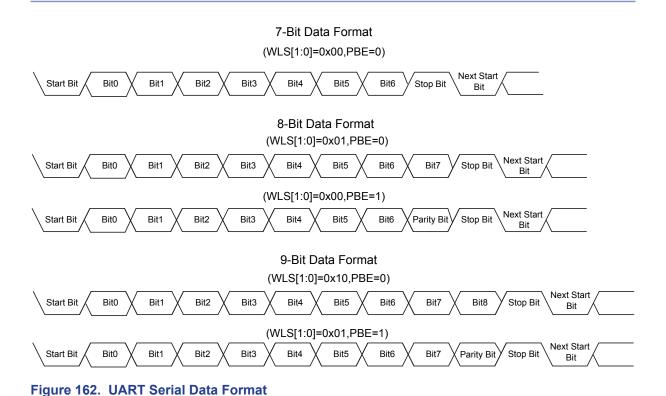


Figure 161. UART Block Diagram

Features

- Supports asynchronous serial communication modes
- Full Duplex Communication Capability
- Programming baud rate up to $(f_{PCLK}/16)$ MHz
- Fully programmable serial communication functions including:
 - Word length: 7, 8 or 9-bit character
 - Parity: Even, odd or no-parity bit generation and detection
 - Stop bit: 1 or 2 stop bit generation
 - Bit order: LSB-first or MSB-first transfer
- Error detection: Parity, overrun, and frame error
- Supports PDMA Interface


Function Descriptions

Serial Data Format

The UART module performs a parallel-to-serial conversion on data that is written to the transmit data register and then sends the data with the following format: Start bit, $7 \sim 9$ LSB first data bits, optional Parity bit and finally $1 \sim 2$ Stop bits. The Start bit has the opposite polarity of the data line idle state. The Stop bit is the same as the data line idle state and provides a delay before the next start situation. The both Start and Stop bits are used for data synchronization during the asynchronous data transmission.

The UART module also performs a serial-to-parallel conversion on the data that is read from the receive data register. It will first check the Parity bit and will then look for a Stop bit. If the Stop bit is not found, the UART module will consider the entire word transmission to have failed and respond with a Framing Error.

Baud Rate Generation

The baud rate for the UART receiver and transmitter are both set with the same values. The baud-rate divisor, BRD, has the following relationship with the UART clock which is known as CK_UART.

Baud Rate Clock = CK_UART / BRD

Where CK_UART clock is the APB clock connected to the UART while the BRD range is from 16 to 65535.

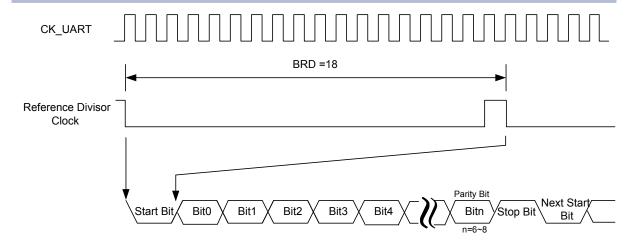


Figure 163. UART Clock CK UART and Data Frame Timing

Table 56. Baud Rate Deviation Error Calculation – CK_UART = 48 MHz

Baud	d rate	CK_UART = 48 MHz					
No	Kbps	Actual	BRD	Deviation Error rate			
1	2.4	2.4	20000	0.00%			
2	9.6	9.6	5000	0.00%			
3	19.2	19.2	2500	0.00%			
4	57.6	57.6	833	0.04%			
5	115.2	115.1	417	-0.08%			
6	230.4	230.8	208	0.16%			
7	460.8	461.5	104	0.16%			
8	921.6	923.1	52	0.16%			
9	2250	2285.7	21	1.59%			
10	3000	3000	16	0.00%			

Table 57. Baud Rate Deviation Error Calculation – CK_UART = 96 MHz

Baud	d rate	CK_UART = 96 MHz					
No	Kbps	Actual	BRD	Deviation Error rate			
1	2.4	2.4	40000	0.00%			
2	9.6	9.6	10000	0.00%			
3	19.2	19.2	5000	0.00%			
4	57.6	57.6	1667	-0.02%			
5	115.2	115.2	833	0.04%			
6	230.4	230.2	417	-0.08%			
7	460.8	461.5	208	0.16%			
8	921.6	923.1	104	0.16%			
9	2250	2232.6	43	-0.78%			
10	3000	3000	32	0.00%			

Interrupts and Status

The UART can generate interrupts when the following event occurs and corresponding interrupt enable bits are set:

- Receiver line status interrupts: The interrupts are generated when the receiver of UART are occurred overrun error, parity error, framing error, or break events.
- Transmit data register empty interrupt: An interrupt is generated when the content of the transmit data register is transferred to the transmit shift register (TSR).
- Transmit complete interrupt: An interrupt is generated when the transmit data register (TDR) is empty and the content of the transmit shift register (TSR) is also completely shifted.
- Receive data ready interrupt: An interrupt is generated when the content of the receive shift register RDR has been transferred to the URDR register and is ready to read.

PDMA Interface

The PDMA interface is integrated in the UART. The PDMA function can be enabled by setting the TXDMAEN or RXDMAEN bit in the URCR register to 1 in the transmit or receive mode respectively. When the UART transmit data register TDR is empty and the TXDMAEN bit is set to 1, the PDMA function will be activated to move data from a source location into the UART transmit data register TDR.

Similarly, when the received data has been in the UART receive data register RDR and the RXDMAEN bit is set to 1, the PDMA function will be activated to move data from the UART receive data register RDR to a specific destination location. For a mode detailed description on the PDMA configurations, refer to the PDMA chapter.

Register Map

The following table shows the UART registers and reset values.

Table 58. UART Register Map

Register	Offset	Description	Reset Value
URDR	0x000	UART Data Register	0x0000_0000
URCR	0x004	UART Control Register	0x0000_0000
URIER	0x00C	UART Interrupt Enable Register	0x0000_0000
URSIFR	0x010	UART Status & Interrupt Flag Register	0x0000_0180
URDLR	0x024	UART Divider Latch Register	0x0000_0010
URTSTR	0x028	UART Test Register	0x0000_0000

Register Descriptions

UART Data Register – URDR

The register is used to access the UART transmitted and received data.

Offset: 0x000

Reset value: 0x0000 0000

	31		30		29		28		27		26		25		24	
									Reserv	⁄ed						
Type/Reset																
	23		22		21		20		19		18		17		16	
									Reserv	⁄ed						
Type/Reset																
	15		14		13		12		11		10		9		8	
							Reser	ved							DB	
Type/Reset															RW	0
	7		6		5		4		3		2		1		0	
									DB							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits Field Descriptions

[8:0] DB

By reading this register, the UART will return a 7, 8 and 9-bit received data. The DB field bit 8 is valid for 9-bit mode only and is fixed at 0 for the 8-bit mode. For the 7-bits mode, the DB[6:0] contains the available bits.

By writing to this register, the UART will send out 7, 8 or 9-bit transmitted data. The DB field bit 8 is valid for the 9-bit mode only and will be ignored for the 8-bit mode. For the 7-bit mode, the DB[6:0] contains the available bits.

UART Control Register – URCR

The register specifies the serial parameters such as data length, parity and stop bit for the UART.

Offset: 0x004

Reset value: 0x0000 0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
		BCB	SPE	EPE	PBE	NSB		WLS
Type/Reset		RW 0	RW 0	RW 0	RW 0	RW 0	RW (0 RW 0
	7	6	5	4	3	2	1	0
	RXDMAEN	TXDMAEN	URRXEN	URTXEN	Reserved	TRSM		Reserved
Type/Reset	RW 0	RW 0	RW 0	RW 0		RW 0		

Bits	Field	Descriptions
[14]	BCB	Break Control Bit When this bit is set 1, the serial data output on the UART TX pin will be forced to the Spacing State (logic 0). This bit acts only on UART TX output pin and has no effect on the transmitter logic.
[13]	SPE	Stick Parity Enable 0: Disable stick parity 1: Stick Parity bit is transmitted This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.
[12]	EPE	 Even Parity Enable 0: Odd number of logic 1's are transmitted or checked in the data word and parity bits. 1: Even number of logic 1's are transmitted or checked in the data word and parity bits. This bit is only available when PBE is set to 1.
[11]	PBE	Parity Bit Enable 0: Parity bit is not generated (transmitted data) and checked (receive data) during transfer. 1: Parity bit is generated and checked during transfer. Note: When the WLS field is set to "10" to select the 9-bit data format, writing to the PBE bit has no effect.
[10]	NSB	Number of "STOP bit" 0: One " STOP bit" is generated in the transmitted data 1: Two "STOP bit" is generated when 8- and 9-bit word length is selected.
[9:8]	WLS	Word Length Select 00: 7 bits 01: 8 bits 10: 9 bits 11: Reserved
[7]	RXDMAEN	UART RX DMA Enable 0: Disabled 1: Enabled
[6]	TXDMAEN	UART TX DMA Enable 0: Disabled 1: Enabled
[5]	URRXEN	UART RX Enable 0: Disabled 1: Enabled
[4]	URTXEN	UART TX Enable 0: Disabled 1: Enabled
[2]	TRSM	Transfer Mode Selection This bit is used to select the data transfer protocol. 0: LSB first 1: MSB first

UART Interrupt Enable Register – URIER

This register is used to enable the related UART interrupt function. The UART module generates interrupts to the controller when the corresponding events occur and the corresponding interrupt enable bits are set.

Offset: 0x00C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset			'					
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset			,					
	7	6	5	4	3	2	1	0
	Reserved	BIE	FEIE	PEIE	OEIE	TXCIE	TXDEIE	RXDRIE
Type/Reset		RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[6]	BIE	Break Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the BII bit is set in the URSIFR register.
[5]	FEIE	Framing Error Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the FEI bit is set in the URSIFR register.
[4]	PEIE	Parity Error Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the PEI bit is set in the URSIFR register.
[3]	OEIE	Overrun Error Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the OEI bit is set in the URSIFR register.
[2]	TXCIE	Transmit Complete Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the TXC bit is set in the URSIFR register.
[1]	TXDEIE	Transmit Data Register Empty Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the TXDE bit is set in the URSIFR register.
[0]	RXDRIE	Receive Data Ready Interrupt Enable 0: Disable interrupt 1: Enable interrupt An interrupt is generated when the RXDR bit is set in the URSIFR register.

UART Status & Interrupt Flag Register – URSIFR

This register contains the corresponding UART status.

Offset: 0x010

Reset value: 0x0000_0180

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			TXC
Type/Reset								RO 1
	7	6	5	4	3	2	1	0
	TXDE	Reserved	RXDR	BII	FEI	PEI	OEI	Reserved
Type/Reset	RO 1	-	RO 0	WC 0	WC 0	WC 0	WC 0	

Bits	Field	Descriptions
[8]	TXC	Transmit Complete 0: Either the transmit data register (TDR) or transmit shift register (TSR) is not empty 1: Both the transmit data register (TDR) or transmit shift register (TSR) are empty An interrupt is generated if TXCIE=1 in the URIER register. This bit is cleared by a write to the URDR register with new data.
[7]	TXDE	Transmit Data Register Empty 0: Transmit data register is not empty 1: Transmit data register is empty The TXE bit is set by hardware when the content of the transmit data register is transferred to the transmit shift register (TSR). An interrupt is generated if TXEIE=1 in the URIER register. This bit is cleared by a write to the URDR register with new data.
[5]	RXDR	RX Data Ready 0: Receive data register is empty 1: Received data in receive data register is ready to read This bit is set by hardware when the content of the receive shift register RDR has been transferred to the URDR register. It is cleared by a read to the URDR register. An interrupt is generated if RXDRIE=1 in the URIER register.
[4]	BII	Break Interrupt Indicator This bit is set to 1 whenever the received data input is held in the "spacing state" (logic 0) for longer than a full character transmission time, which is the total time of "start bit" + data bits + "parity" + "stop bits" duration. Writing 1 to this bit clears the flag.
[3]	FEI	Framing Error Indicator This bit is set 1 whenever the received character does not have a valid "stop bit" which means, the stop bit following the last data bit or parity bit is detected as logic 0. Writing 1 to this bit clears the flag.
[2]	PEI	Parity Error Indicator This bit is set to 1 whenever the received character does not have a valid "parity bit". Writing 1 to this bit clears the flag.

Bits	Field	Descriptions
[1]	OEI	Overrun Error Indicator An overrun error will occur only after the receive data register is full and when the next character has been completely received in the receive shift register. The character in the receive shift register will be ovewritten, when a new character is received in the receive shift register after an overrun event occurs, but the data in the receive shift register will not be transferred to the receive data register. The OEI bit is used to indicate event as soon as it happens. Writing 1 to this bit clears the flag.

UART Divider Latch Register – URDLR

Descriptions

The register is used to determine the UART clock divided ratio to generate the appropriate baud rate.

Offset: 0x024 Reset value: 0x0000_0010

Field

Bits

	31		30		29			28		27		26		2	25		24	
										Reserv	ed							
Type/Reset																		
	23		22		21			20		19		18			17		16	
										Reserv	ed							
Type/Reset																		
	15		14		13			12		11		10			9		8	
										BRD								
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0
	7		6		5			4		3		2			1		0	
										BRD								
Type/Reset	RW	0	RW	0	RW	0	RW		1	RW	0	RW	0	RW		0	RW	0

[15:0]	BRD	Baud Rate Divider
		The 16 bits define the UART clock divider ratio.
		Baud Rate = CK_UART / BRD
		Where the CK_UART clock is the clock connected to the UART module.
		BRD = 16 ~ 65535 for LIART mode

UART Test Register – URTSTR

This register controls the UART debug mode.

Offset: 0x028

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
				Reserved				LBM
Type/Reset			<u> </u>				RW	0 RW 0

Bits Field Descriptions

[1:0] LBM Loopback Test Mode Select

00: Normal Operation

01: Reserved

10: Automatic Echo Mode

11: Loopback Mode

23 Smart Card Interface (SCI)

Introduction

The Smart Card Interface, SCI, is compatible with the ISO 7816-3 standard. This interface includes functions for card Insertion/Removal detection, SCI data transfer control logic and data buffers, internal Timer Counters and corresponding control logic circuits to perform the required Smart Card operations. The Smart Card interface acts as a Smart Card Reader to facilitate communication with the external Smart Card. The overall functions of the Smart Card interface are controlled by a series of registers including control and status registers together with several corresponding interrupts which are generated to get the attention of the microcontroller for SCI transfer status.

As the complexity of ISO7816-3 standard data protocol does not permit comprehensive specifications to be provided in this datasheet, the reader should therefore consult other external information for a detailed understanding of this standard.

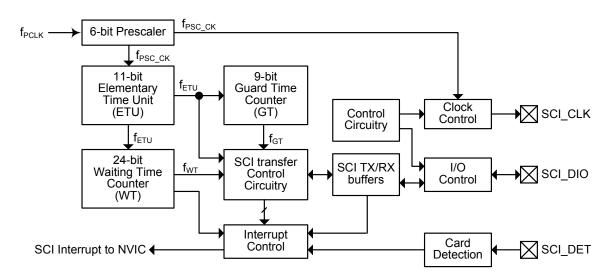


Figure 164. SCI Block Diagram

Features

- Supports ISO 7816-3 standard
- Character Transfer Mode
- 1 transmit buffer and 1 receive buffer
- 11-bit ETU (Elementary Time Unit) counter
- 9-bit guard time counter
- 24-bit general purpose waiting time counter
- Parity generation and checking
- Automatic character repetition on parity error detection in transmission and reception modes
- Supports PDMA access at a transmission or reception completion

Functional Descriptions

To communicate with an external Smart Card, the integrated Smart Card Interface has a series of external pins known as SCI_CLK, SCI_DIO and SCI_DET. The SCI_CLK pin is the clock output signal used to communicate with the external Smart Card together with the serial data pin named SCI_DIO. The operation of the SCI_CLK and SCI_DIO pins can be selected to be the SCI data Transfer Mode which is driven automatically by the SCI control circuits or to be the Manual mode which is controlled by configuring the internal CLK and DIO register bits respectively by the application program. The SCI_DET pin is the external card detection input pin. Insertion or removal of the external Smart Card can be automatically detected and will generate an interrupt signal which is sent to the microcontroller if the corresponding interrupt function is enabled.

For proper data transfer, some timing related procedures must be executed before the Smart Card Interface can begin to communicate with the external card. There are three counters named Elementary Time Unit, ETU, Guard Time Counter, GT, and Waiting Time Counter, WT, which are used for the timing related functions in Smart Card Interface data transfer operations.

Elementary Time Unit Counter

The Elementary Time Unit, ETU, is an 11-bit up-counting counter which generates a clock denoted as f_{ETU} to be used as the operating frequency source for the SCI data transmission and reception. The clock source of the ETU comes from the Smart Card clock, named $f_{\text{PSC_CK}}$, which is derived from the 6-bit prescaler. The data transfer of the SCI is a character frame based protocol, which basically consists of a Start bit, 8-bits of data and a Parity bit. The time period, t_{ETU} (1/ f_{ETU}), generated by the ETU, is the time unit for a character bit. There is a register related to the Elementary Time Unit known as the ETUR register which stores the expected contents of the ETU. Each time the ETUR register is written, the ETU circuitry will reload the new written value and restart counting. The elementary time unit t_{ETU} is obtained from the following formula which defines the bit rate in the ISO 7816-3 standard specification.

$$1etu = t_{ETU} = \frac{F_i}{D_i} \times \frac{1}{f}$$

where:

- etu is the nominal duration of the data bit on the signal SCI_DIO provided to the card by the interface
- Di is the bit-rate adjustment factor
- Fi is the clock rate conversion factor
- f is the frequency value of the clock signal SCI_CLK provided to the card by the interface

D_i is an encoded decimal value based on a 4-bit field, named DI, as represented in the accompanying table.

Table 59. DI Field Based D_i Encoded Decimal Values

DI field	0001	0010	0011	0100	0101	0110	1000	1001
Di (decimal)	1	2	4	8	16	32	12	20

F_i is an encoded decimal value based on a 4-bit field, named FI, as represented in the following table.

Table 60. FI Field Based Fi Encoded Decimal Values

FI field	0000	0001	0010	0011	0100	0101	0110	1001	1010	1011	1100	1101
Fi (decimal)	372	372	558	744	1116	1488	1860	512	768	1024	1536	2048

The values of FI and DI, as they appear in the preceding tables, will be obtained from the Answerto-Reset packet sent from the external Smart Card to the Smart Card Interface the first time the external Smart Card is inserted. When the SCI receives the FI and DI information, the Fi and Di values can be obtained by looking up the preceding two tables. After the Fi and Di values are obtained, the value which should be written into the ETUR register can be calculated by Fi/Di. The following table shows the possible ETU values obtained by the F_i/D_i ratio.

Table 61. Possible ETU Values Obtained with the Fi/Di Ratio

F _i	372	558	774	1116	1488	1860	512	768	1024	1536	2048
1	372	558	744	1116	1488	1860	512	768	1024	1536	2048
2	186	279	372	558	744	930	256	384	512	768	1024
4	93	139.5	186	279	372	465	128	192	256	384	512
8	46.5	69.75	93	139.5	186	232.5	64	96	128	192	256
16	23.25	34.87	46.5	69.75	93	116.2	32	48	64	96	128
32	22.62	17.43	23.25	34.87	46.5	58.13	16	24	32	48	64
12	31	46.5	62	93	124	155	42.66	64	85.33	128	170.6
20	18.6	27.9	37.2	55.8	74.4	93	25.6	38.4	51.2	76.8	102.4

Compensation mode

As the value of the ETUR register is obtained by the above procedure, the calculation results of the value may not be an integer. If the calculation result is not an integer and is less than the integer n but greater than the integer (n-1), either the integer n or (n-1) should be written into the ETUR register depending upon whether the result is closer to integer n or (n-1). The integer n mentioned here is a decimal.

If the calculation result is close to the value of (n-0.5), the compensation mode should be enabled by setting the compensation enable control bit, COMP, in the ETUR register to 1 for successful data transfer. When the result is close to the value of (n-0.5) and the compensation mode is enabled, the value written into the ETUR register should be n. The ETU circuitry will then generate the time unit sequence with n clock cycles and next (n-1) clock cycles alternately and so on. This results in an average time unit of (n-0.5) clock cycles and allows a time granularity down to a half clock cycle. Note that the ETU will reload the ETUR register value and restart counting at the time when the Start bit appears in the SCI data Transfer Mode.

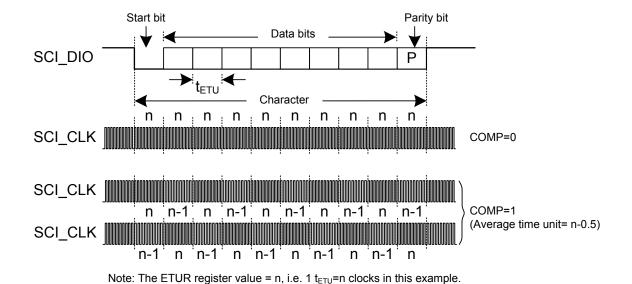


Figure 165. Character Frame and Compensation Mode

Guard Time Counter

The Guard Time Counter, GT, is a 9-bit up-counting counter which generates a minimum time duration known as a character frame, denoted as $t_{\rm GT}$, between the leading edges of two consecutive characters in the SCI data transfer. The clock source of the guard time counter comes from the ETU, named $f_{\rm ETU}$ in the block diagram. There is a register related to the guard time counter known as the GTR register, which stores the expected value of the guard time counter. The guard time value will be reloaded at the end of the current guard time period. Note that the guard time between the last character received from the Smart Card and the next character transmitted by the SCI circuitry which should be properly managed by the application program. There is no guard time insertion when the first character is transmitted.

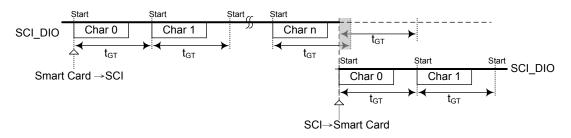


Figure 166. Guard Time Duration

Waiting Time Counter

The Waiting Time counter, WT, is a 24-bit down counting counter which generates a maximum time duration, denoted as t_{WT} , for data transfer. The clock source of the waiting time counter comes from the ETU and is named f_{ETU} .

There is a register for the waiting time counter known as the WTR register which stores the expected waiting time counter value. The waiting time counter can be used in both the SCI data Transfer Mode and manual mode and can reload the value for specific conditions. The function of the waiting time counter is controlled by the WTEN bit in the CR register. When the SCI is configured to be operated in the SCI data Transfer Mode and the waiting time counter is enabled by setting the WTEN bit to 1, the updated WTR register value will be loaded into the waiting time counter when the Start bit is detected. Note that the WTEN bit should not be set to 1 to enable the waiting time counter in the SCI data Transfer Mode until after the external Smart Card is inserted.

If the SCI is configured to operate in the manual mode, the waiting time counter can be used as a general purpose timer and this timer is enabled or disabled by setting or clearing the WTEN bit. The updated WTR register value will not be loaded into the waiting time counter if the waiting time counter is enabled. When the waiting time counter is disabled by setting the WTEN bit to 0 and an updated value is written into the WTR register, the new value will immediately be loaded into the waiting time counter and then the counter will start to count after the WTEN bit is again set to 1.

Software can change the Waiting Time value on-the-fly. For example, in T=1 mode, the value of the Block Waiting Time, $t_{\rm BWT}$, should be written into the WTR register before the Start bit of the last transmitted character occurs. After the transmission of the last character is completed, software should write the Character Waiting Time value, $t_{\rm CWT}$, into the WTR register.

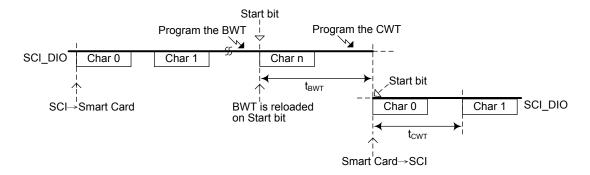


Figure 167. Character and Block Waiting Time Duration - CWT and BWT

Card Clock and Data Selection

The SCI communicates with an external Smart Card using a series of external pins. These are the serial data pin, SCI_DIO, output clock pin, SCI_CLK, and the Card Detection input pin, SCI_DET.

The SCI serial data pin, named SCI_DIO, can be controlled by the SCI hardware circuitry or the software control bits depending upon whether the SCI is operated in the SCI Transfer Mode or in the Manual Mode. The mode selection is determined by the SCIM bit in the CR register. The SCI_DIO pin status is controlled by the CDIO bit in the CCR register when the SCI is configured to operate in the Manual mode by clearing the SCIM bit in the CR register. In the Manual Mode the SCI_DIO pin status is a copy of the CDIO bit. However, when the SCI is configured to operate in the SCI Transfer Mode, the SCI DIO pin status is determined by the SCI transfer circuitry.

The SCI clock output pin named SCI_CLK can be controlled by the 6-bit SCI prescaler or the software control bits depending upon the condition of the CLKSEL bit in the CCR register. The SCI_CLK pin status is controlled by the CCLK bit in the CCR register when the CLKSEL bit is cleared to 0. The SCI_CLK pin status is a copy of the CCLK bit. However, when the CLKSEL bit is set to 1, the SCI_CLK signal is sourced from the 6-bit prescaler output. The prescaler division ratio is determined by the PSC field in the PSCR register.

Card Detection

When an external Smart Card is inserted, the internal card detector can detect this insertion operation and generate a card insertion interrupt if the corresponding interrupt enable control bit, CARDIRE, in the IER register is set to 1. Similarly, if the card is removed, the internal card detector can also detect the removal and consequently generate a card removal interrupt when the corresponding interrupt function is enabled by setting the control bit, CARDIRE, in the IER register, to 1.

The card detector can support two kinds of card detect switch mechanisms. One is a normally open switch mechanism when the card is not present and the other is a normally closed switch mechanism. After noting which card detect switch mechanism type is used, the card switch selection should be configured by setting the selection bit, DETCNF, in the CR register to correctly detect the card presence. No matter what type of the card switch is selected, by configuring the DETCNF bit, the card Insertion/Removal flag, CPREF, in the SR register will be set to 1 when the card is actually present on the SCI_DET pin. Note that there are no hardware de-bounce circuits in the card detector. Any change of the SCI_DET pin level will cause the CPREF bit to change. The required de-bounce time should be handled by the application program.

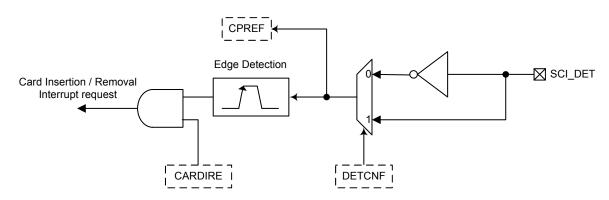


Figure 168. SCI Card Detection Diagram

SCI Data Transfer Mode

The SCI data transfer with the external Smart Card is implemented with two operating modes. One is the SCI mode while the other is the Manual Mode. The data Transfer Mode is selected by the SCI mode selection bit, SCIM, in the CR register. When the SCIM bit is set to 1, the SCI mode is enabled and data will automatically be transferred by the SCI transfer circuitry. Otherwise, data transfer operates in the Manual Mode if the SCIM bit is cleared to 0. The SCI transfer interface is a half-duplex interface and communicates with the external Smart Card via the SCI_CLK and SCI_DIO pins. After a reset condition the SCI transfer interface is in the reception mode but the SCI transfer operation is disabled. When the SCI mode is enabled, data transfer is driven by the SCI transfer circuitry automatically through the SCI_CLK and SCI_DIO pins.

There are two data registers related to data transmission and reception, TXB and RXB, which store the data to be transmitted and received respectively. If a character is written into the TXB register in the SCI Transfer Mode, the SCI transfer interface will automatically switch to the Transmission Mode from the reception mode after a reset. When the SCI transmission or reception has finished, the corresponding request flag, named TXCF or RXCF, in the SR register is set to 1. If the transmit buffer is empty, the transmit buffer empty flag, TXBEF, in the SR register will be set to 1.

Parity Check Function

The SCI transfer interface supports a parity generator and a parity check function. As the parity error occurs during a data transfer, the corresponding request flag, named PARF in the SR register, will be set to 1. Once the PARF bit is set to 1, the parity error pending flag, PARP, in the IPR register will also be set to 1 if the relevant interrupt control bit, PARE, in the IER register is enabled

If the data transmitted by the SCI is received by the external Smart Card without a parity error, the SCI transmission request flag, TXCF, will be set to 1 and the SCI parity error request flag, PARF, will be cleared to 0. If the data transmitted by the external Smart Card is received by the SCI without a parity error, the SCI reception request flag, RXCF, will be set to 1 and the parity error flag, PARF, will be cleared to 0.

Repetition Function

There is a Character Repetition function supported by the SCI transfer circuitry when a parity error occurs. The Character Repetition function is enabled by setting the CREP bit in the CR register to 1. A repetition function will then be activated when a parity error occurs during a data transfer. The repetition time number can be selected to be 4 or 5 by configuring the RETRY bit in the CR register.

When the CREP bit is set to 1, the character repetition function will be activated. Taking a 4 time repetition as an example, when the CREP bit is set to 1 and the RETRY bit is set to 1, in the Transmission Mode, the SCI will repeatedly transmit the data a maximum of 4 times when an error signal occurs. However, if the SCI is informed that there is still an error signal during the 4 transmissions, the parity error flag PARF will be set to 1 after the same data has been transmitted 4 times but the TXCF flag will not be set. At this time the data in the transmit buffer will be loaded into the transmit shift register and the transmit buffer will be empty which will result in the TXBEF flag being set to 1.

Similarly, when the SCI operates in the reception mode, it will inform the external Smart Card that there is a parity error for a maximum of 4 times if the character repetition function is enabled. If the SCI informs the external Smart Card that there is still an error signal for the 4 receptions, the parity error flag, PARF, will be set to 1 together with the reception request flag, RXCF.

If the CREP bit is cleared to 0, the character repetition function will be disabled. When the SCI operates in the reception mode, both the PARF and RXCF bits will be set to 1 as data with a parity error has been received. If the SCI is informed that there is a parity error in the Transmission Mode, the PARF bit will be set to 1 but the TXCF bit will not be set.

Manual Data Transfer Mode

When the SCIM bit is cleared to 0, data will be transferred in the Manual Mode. In the Manual Mode, the data is controlled by the control bit, CDIO, in the CCR register. The CDIO bit value will be reflected immediately on the SCI_DIO pin in the Manual Mode. Note that in the Manual Mode the character repetition function can not be used as well as the related flags and all the data transfer is handled by the application program. The clock used to drive the external Smart Card that appears on the SCI_CLK pin can be derived from the internal clock source, which is the 6-bit prescaler output, f_{PSC_CK} , or from the control bit, CCLK, in the CCR register. The clock source is selected using the bit, CLKSEL, in the CCR register. When CLKSEL bit is set to 1, the clock used to drive the Smart Card will be sourced from the 6-bit prescaler output, f_{PSC_CK} . If the clock is to be managed manually, the CLKSEL bit should first be cleared to 0 and then the value of the CCLK bit will be present in the SCI_CLK pin.

Data Transfer Direction Convention

If the direction convention used by the Smart Card is the same as the convention used by the SCI, the SCI will generate a reception interrupt if the reception interrupt is enabled without a parity error flag. Otherwise, the SCI will generate a reception interrupt and the parity error flag will be asserted. By checking the parity error flag, the SCI can know if the data direction convention is correct or not.

Interrupt Generator

There are several conditions for the SCI to generate an SCI interrupt. When these conditions are met, an interrupt signal will be generated to obtain the attention of the microcontroller. These conditions are a Smart Card Insertion/Removal, a Waiting Time Counter Underflow, a Parity error, an end of a Character Transmission or Reception and an empty Transmit buffer. When a Smart Card interrupt is generated by any of these conditions, then if the SCI global interrupt and the corresponding SCI interrupt are together enabled, the program will jump to the corresponding interrupt vector where it can be serviced before returning to the main program.

For SCI interrupt events, there are corresponding pending flags which can be masked by the relevant interrupt enable control bit. When the related interrupt enable control is disabled, the corresponding interrupt pending flag will not be affected by the request flag and no interrupt will be generated. If the related interrupt enable control is enabled, the relevant interrupt pending flag will be affected by the request flag and then the interrupt will be generated. The pending flag register, named IPR, is read only and once the pending flag is read by the application program, it will be automatically cleared while the related request flag should be cleared by the application program manually.

For an SCI Interrupt to be serviced, in addition to the bits for the corresponding interrupt enable control in the SCI being set, the SCI global interrupt enable control bit in the NVIC must also be set. If this SCI global interrupt control bit is not set, then no SCI interrupt will be serviced.

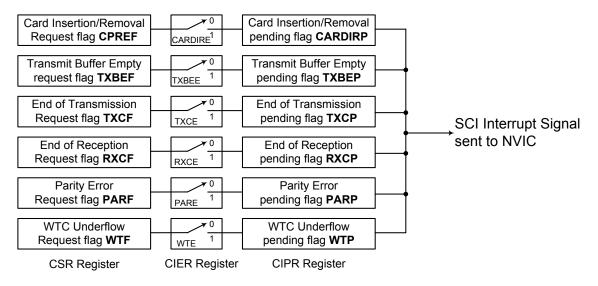


Figure 169. SCI Interrupt Structure

PDMA Interface

The PDMA interface is integrated in the SCI module. The PDMA function can be enabled by setting the TXDMA or RXDMA bit to 1 in the transmitter or receiver mode respectively. When the transmit buffer is empty which results in the transmit buffer empty flag, TXBEF, being asserted and the TXDMA bit is set to 1, the PDMA function will be activated to move data from a certain memory location into the SCI Transmit buffer. Similarly, when the SCI receives a character which results in the character received flag, RXCF, being asserted and the RXDMA bit is set to 1, the PDMA function will be activated to move data from the SCI Receive buffer to a specific memory location.

For a mode detailed descriptions on the PDMA configurations, refer to the PDMA chapter.

Register Map

There are several registers associated with the Smart Card function. Some of these registers control the SCI overall function as well as the interrupts, while some of the registers contain the status bits which indicate the Smart Card data transfer situation and error conditions. Also there are two registers for the SCI transmission and reception respectively to store the data received from or to be transmitted to the external Smart Card. The following table shows the SCI register list and reset values.

Table 62. SCI Register Map

Register	Offset	Description	Reset Value
CR	0x000	SCI Control Register	0x0000_0000
SR	0x004	SCI Status Register	0x0000_0080
CCR	0x008	SCI Contact Control Register	0x0000_0008
ETUR	0x00C	SCI Elementary Time Unit Register	0x0000_0174
GTR	0x010	SCI Guard Time Register	0x0000_000C
WTR	0x014	SCI Waiting Time Register	0x0000_2580
IER	0x018	SCI Interrupt Enable Register	0x0000_0000
IPR	0x01C	SCI Interrupt Pending Register	0x0000_0000
TXB	0x020	SCI Transmit Buffer	0x0000_0000
RXB	0x024	SCI Receive Buffer	0x0000_0000
PSCR	0x028	SCI Prescaler Register	0x0000_0000

Register Descriptions

SCI Control Register - CR

This register contains the SCI control bits.

Offset: 0x000

Reset value:	0x0000_	0000
	_	_

Field

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								-
	15	14	13	12	11	10	9	8
				Reserved			RXDMA	TXDMA
Type/Reset							RW 0	RW 0
	7	6	5	4	3	2	1	0
	Reserved	DETCNF	ENSCI	RETRY	SCIM	WTEN	CREP	CONV
Type/Reset		RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0

סונס	i ieiu	Descriptions	Descriptions					
[9]	RXDMA	SCI reception DM	SCI reception DMA request enable					
			n DMA request is dis n DMA request is en					
[8]	TXDMA	SCI transmission I	DMA request enable	control				
	0: SCI transmission DMA request is disab							
		1: SCI transmis	ssion DMA request is	s enabled				
[6]	DETCNF	Card switch type s	selection					
		0: Switch is no	rmally opened if no o	ard is present				
		1: Switch is normally closed if no card is present						
		DETCNT	SCI_DET pin	STATUS				
			4					

Descriptions

DETCNT	SCI_DET pin	STATUS
0	1	No card insert
0	0	Card insert
1	1	Card insert
1	0	No card insert

This bit is set and cleared by the application program to configure the card detector switch type.

[5] ENSCI

Rite

SCI finite state machine enable bit

0: SCI FSM is disabled and forced to its initial state

1: SCI FSM is enabled

[4] RETRY

Character transfer repetition time selection for a parity error condition

0: Data transfer 5 times when parity error occurs

1: Data transfer 4 times when parity error occurs

The bit is available only when the CREP bit is set to 1. When this bit is set to 1, the data will be transmitted or received 4 times once a parity error occurs. If the bit is cleared to 0, the data will be transferred 5 times if a parity error occurs.

Bits	Field	Descriptions
[3]	SCIM	SCI Mode Selection 0: SCI data transfer in manual mode 1: SCI data transfer in SCI mode This bit is set and cleared by the application program to select the SCI data Transfer Mode. If it is cleared to 0, the SCI_DIO pin status is the same as the value of the CDIO bit in the CCR register. If it is set to 1, the SCI_DIO pin is driven by the internal SCI control circuitry. Before the data transfer type is switched from the Manual Mode to the SCI Mode, the CDIO bit must be set to 1 to avoid an SCI malfunction.
[2]	WTEN	Waiting Time Counter enable control 0: Waiting Time Counter stops counting 1: Waiting Time Counter starts counting The WTEN bit is set and cleared by the application program. When the WTEN bit is cleared to 0, a write access to the WTR register will load the value into the waiting time counter. If it is set to 1, the waiting time counter is enabled and automatically reloaded with the value at each start bit occurrence.
[1]	CREP	Automatic character repetition enable control for a parity error condition 0: No retry on parity error 1: Automatic retry on parity error The CREP bit is set and cleared by the application program. When the CREP bit is cleared to 0, both the RXCF and PARF flags will be set when a parity error occurs in the reception mode after the data is received. However, in the Transmission Mode, the PARF flag will be set but the TXCF flag will not be set when a parity error occurs. If the CREP bit is set to 1, a character transfer will automatically be activated 4 or 5 times depending upon the RETRY bit value. In the Transmission Mode the character will be re-transmitted if the transmitted data has a parity error. Here the parity error flag, PARF, will be set at the end of the 4th or 5th transmission without the TXCF bit being set. In the reception mode if the received data has a parity error, the SCI will inform the external Smart Card for 4 or 5 times and then the PARF and RXCF flags will both be set at the end of the 4th or 5th reception.
[0]	CONV	Data direction convention select 0: LSB is transferred first; a data "1" is a logic high level on the SCI_DIO pin and the parity bit is added after the MSB. 1: MSB is transferred first; a data "1" is a logic low level on the SCI_DIO pin and the parity bit is added after the LSB. This bit is set and cleared by the application program to select if the data is transmitted LSB or MSB first. When the data direction convention is the same as the data direction specified by the external Smart Card, only the RXCF flag will be set to 1 without a parity error. Otherwise, both the RXCF and PARF flags will be set to 1 after the data is received.

SCI Status Register – SR

This register contains the SCI status bits.

Offset: 0x004 Reset value: 0x0000_0080

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset				'				
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	TXBEF	CPREF		reserved	WTF	TXCF	RXCF	PARF
Type/Reset	RO 1	RO 0			RO 0	W0C 0	RO 0	W0C 0

Bits	Field	Descriptions
[7]	TXBEF	Transmit Buffer Empty Request Flag 0: Transmit buffer is not empty 1: Transmit buffer is empty This bit is used to indicate if the transmit buffer is empty and is set or cleared by hardware automatically.
[6]	CPREF	Card Presence Request Flag 0: No card is present 1: A card is present This bit is used to indicate if a card is present and is set or cleared by hardware automatically. The card presence detection function is enabled after the ENSCI bit is set.
[3]	WTF	Waiting Time Counter Underflow Request Flag 0: No Waiting Time Counter underflow 1: The Waiting Time Counter underflows This bit is set and cleared by the application program and indicates if the Waiting Time Counter underflows.
[2]	TXCF	Character Transmission Request Flag. 0: No character transmitted 1: A character has been transmitted This bit is set by hardware and cleared by writing a "0" into it.
[1]	RXCF	Character Received Request Flag. 0: No character received 1: A character has been received This bit is set by hardware and cleared after a read access to the RXB register by the application program. The RXCF bit will be set to 1 when a character is received regardless of the result of the parity check. When the character has been received, the received data stored in the RXB register should be moved to the data memory as specified by the application program. If the contents of the RXB register are not read before the end of the next character to be shifted in, the data stored in the RXB register will be overwritten.

Bits	Field	Descriptions
[0]	PARF	Parity Error Request Flag. 0: No parity error occurs 1: Parity error has occurred This bit is set by hardware and cleared by writing a "0" into it. When a character is received, the parity check circuitry will check that the parity is correct or not. If the result of the parity check is not correct, the parity error request flag, PARF, will be set to 1. Otherwise, the PARF bit will remain zero. In the Transmission Mode when the SCI is informed that there is a parity error in the transmitted character by the external Smart Card, the PARF bit will also be set to 1.

SCI Contact Control Register – CCR

This register specifies the SCI pin setting and clock selection.

Offset:

0x008

Reset value:	0x0000_000	J8						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			

Type/Reset											
	7		6	5	4	3		2		1	0
	CLKS	SEL		Reserved		CDI)	CCLK			Reserved
Type/Reset	RW	0				RW	1	RW	0		

Bits	Field	Descriptions
[7]	CLKSEL	Card Clock Selection 0: The CCLK bit content is present on the external SCI_CLK pin. 1: The clock output on the external SCI_CLK pin is sourced from the f _{PSC_CK} clock. This bit is used to select the external SCI_CLK pin clock source. It is set and cleared by the application program. It is recommended that to activate the clock at a known level a certain value should be first programmed into the CCLK bit before the CLKSEL bit is switched from 1 to 0.
[3]	CDIO	SCI_DIO pin control 0: SCI_DIO pin is logic level 0 1: SCI_DIO pin in open-drain condition This bit is available only when the SCIM bit in the CR register is cleared to 0 to configure the SCI to operate in the Manual Transfer Mode. It is set and cleared by application program to control the external SCI_DIO pin status in the Manual Mode. Reading this bit will return the present status of the SCI_DIO pin.

Bits	Field	Descriptions
[2]	CCLK	SCI_CLK pin control. 0: SCI_CLK pin is logic level 0. 1: SCI_CLK pin is logic level 1. This bit is available only when the SCIM bit in the CR register is cleared to 0 to configure the SCI to operate in the Manual Transfer Mode. It is set and cleared by application program to control the external SCI_CLK pin status in the Manual Mode. Reading this bit will return the current value in the register and not the present status of the external SCI_CLK pin. To ensure that the clock remains at a known level a certain value should be first programmed into the CCLK bit before the CLKSEL bit is switched from 1 to 0.

SCI Elementary Time Unit Register – ETUR

The register specifies the value determined by the formula described in the ETU section. It also includes the Compensation function enable control bit for the ETU time granularity.

Offset: 0x00C Reset value: 0x0000_0174

	31		30		29			28		27		26		:	25		24	
										Reserve	ed							
Type/Reset																		
	23		22		21			20		19		18		•	17		16	
										Reserve	ed							
Type/Reset																		
	15		14		13			12		11		10			9		8	
	COMP						Res	serve	ed					Е	TU			
Type/Reset	RW	0										RW	0	RW		0	RW	1
	7		6		5			4		3		2			1		0	
										ETU								
Type/Reset	RW	0 F	₹W	1	RW	1	RW		1	RW	0	RW	1	RW		0	RW	0

Bits	Field	Descriptions
[15]	COMP	Elementary Time Unit Compensation mode enable control 0: Compensation mode is disabled 1: Compensation mode is enabled This bit is set and cleared by application program and used to control the ETU compensation function. For more details regarding the compensation function consult the Elementary Time Unit section.
[10:0]	ETU	ETU value for a character data bit This field is configured by the application program to modify the ETU time duration. Note that the value of ETU must be in the range of 0x00C to 0x7FF. To obtain the maximum ETU decimal value of 2048, a 0x000 value should be written into this bit field.

SCI Guard Time Register – GTR

This register specifies the guard time value obtained from the Answer-to-Reset packet described in the Guard Time Counter section.

Offset: 0x010
Reset value: 0x0000_000C

	31		30		29		28		27		26		25		24	
									Reserv	/ed						
Type/Reset																
	23		22		21		20		19		18		17		16	
									Reserv	/ed						
Type/Reset																
	15		14		13		12		11		10		9		8	
							Reser	ved							GT	
Type/Reset															RW	0
	7		6		5		4		3		2		1		0	
									GT							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	1	RW	1	RW	0	RW	0

Bits Field Descriptions

[8:0] GT Character Guard Time value

This field is configured by the application program to modify the guard time duration. The updated GT value will be loaded into the GT counter at the end of the current guard time period. Note that the GT value must be in the range from 0x00C to 0x1FF.

SCI Waiting Time Register – WTR

This register specifies the waiting time value obtained from the Answer-to-Reset packet described in the Waiting Time Counter section.

Offset: 0x014
Reset value: 0x0000_2580

	31		30		29			28		27		26			25		2	24	
										Reserv	ed								
Type/Reset																			
	23		22		21			20		19		18			17		1	6	
										WT									
Type/Reset	RW	0 F	₹W	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW		0
	15		14		13			12		11		10			9			8	
										WT									
Type/Reset	RW	0 F	RW	0	RW	1	RW		0	RW	0	RW	1	RW		0	RW		1
	7		6		5			4		3		2			1			0	
										WT									
Type/Reset	RW	1 F	₹W	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW		0

Bits	Field	Descriptions
[23:0]	WT	Character Waiting Time value expressed in ETU (0/16777215). This field is configured by the application program to modify the waiting time duration. The reload conditions of the updated waiting time counter value are described in the waiting time counter section. Refer to the waiting time counter section for more details. Note that the WT value can range from 0x00_0000 to 0xFF_FFFF.

SCI Interrupt Enable Register – IER

This register specifies the interrupt enable control bits for all of the interrupt events in the SCI.

Offset:	00018
Reset value:	0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved	d		
Type/Reset				'		'		
	23	22	21	20	19	18	17	16
					Reserved	d		
Type/Reset						,		
	15	14	13	12	11	10	9	8
					Reserved	d		
Type/Reset						,		
	7	6	5	4	3	2	1	0
	TXBEE	CARDIRE		Reserved	WTE	TXCE	RXCE	PARE
Type/Reset	RW 0	RW 0		·	RW (0 RW 0	RW 0	RW 0

Bits	Field	Descriptions
[7]	TXBEE	Transmit buffer empty interrupt enable control 0: Disabled 1: Enabled This bit is set and cleared by application program and is used to control the Transmit Buffer Empty interrupt. If this bit is set to 1, the transmit buffer empty interrupt will be generated when the transmit buffer is empty.
[6]	CARDIRE	Card Insertion / Removal interrupt enable control 0: Disabled 1: Enabled This bit is set and cleared by application program and is used to control the card insertion/removal interrupt. If this bit is set to 1, the card insertion/removal interrupt will be generated when the external Smart Card is inserted or removed.
[3]	WTE	Waiting Timer Underflow interrupt enable control 0: Disabled 1: Enabled This bit is set and cleared by the application program and is used to control the Waiting Timer underflow interrupt. If this bit is set to 1, the waiting time counter underflow interrupt will be generated when the waiting time counter underflows.

Bits	Field	Descriptions
[2]	TXCE	Character Transmission Completion interrupt enable control 0: Disabled 1: Enabled This bit is set and cleared by the application program and is used to control the Character Transmission Completion interrupt. If this bit is set to1, the Character Transmission Completion interrupt will be generated at the end of the character transmission.
[1]	RXCE	Character Reception Completion interrupt enable control 0: Disabled 1: Enabled This bit is set and cleared by the application program and is used to control the Character Reception Completion interrupt. If this bit is set to 1, the Character Reception Completion interrupt will be generated at the end of the character reception.
[0]	PARE	Parity Error interrupt enable control 0: Disabled 1: Enabled This bit is set and cleared by the application program and is used to control the parity error interrupt. if this bit is set to 1, the Parity Error interrupt will be generated when a parity error occurs.

SCI Interrupt Pending Register – IPR

This register contains the interrupt pending flags for all of the interrupt events in the SCI. These pending flags can be masked by the corresponding interrupt enable control bits.

Offset: 0x01C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	TXBEP	CARDIRP		Reserved	WTP	TXCP	RXCP	PARP
Type/Reset	RC 0	RC 0			RC 0	RC 0	RC 0	RC 0

Bits	Field	Descriptions
[7]	TXBEP	Transmit Buffer Empty interrupt pending flag 0: No interrupt pending 1: Interrupt pending This bit is set by hardware and cleared by a read access to this register using the application program. This bit is used to indicate if there is a Transmit Buffer Empty interrupt pending or not. If the Transmit Buffer is empty and the corresponding interrupt enable control bit is set to 1, this bit will be set to 1 to indicate that the transmit buffer empty interrupt is pending.

Bits	Field	Descriptions
[6]	CARDIRP	Card Insertion/Removal interrupt pending flag 0: No interrupt pending 1: Interrupt pending This bit is set by hardware and cleared by a read access to this register using the application program. It is used to indicate if there is an external Smart Card insertion/ removal interrupt pending or not. If an external Smart Card is inserted or removed and the corresponding interrupt enable control bit is set to 1, this bit will be set to 1 to indicate that the Card insertion/removal interrupt is pending.
[3]	WTP	Waiting Timer Underflow interrupt pending flag 0: No interrupt pending 1: Interrupt pending This bit is set by hardware and cleared by a read access to this register using the application program. It is used to indicate if there is a waiting time counter underflow interrupt pending or not. If the waiting time counter underflows and the corresponding interrupt enable control bit is set to 1, this bit will be set to 1 to indicate that the waiting time counter underflow interrupt is pending.
[2]	TXCP	Character Transmission Completion interrupt pending 1: Interrupt pending 1: Interrupt pending This bit is set by hardware and cleared by a read access to this register using the application program. It is used to indicate if there is a Character Transmission Completion interrupt pending or not. If a character has been transmitted and the related interrupt enable control bit is set to 1, this bit will be set to 1 to indicate that the character transmission completion interrupt is pending.
[1]	RXCP	Character Reception Completion interrupt pending 1: Interrupt pending 1: Interrupt pending This bit is set by hardware and cleared by a read access to this register using the application program. It is used to indicate if there is a Character Reception Completion interrupt pending or not. If a character has been received and the relevant interrupt enable control bit is set to 1, this bit will be set to 1 to indicate that the character reception completion interrupt is pending.
[0]	PARP	Parity Error interrupt pending flag 0: No interrupt pending 1: Interrupt pending This bit is set by hardware and cleared by a read access to this register using the application program. It is used to indicate if there is a Parity Error interrupt pending or not. If the parity error occurs and its interrupt enable control bit is set to 1, this bit will be set to 1 to indicate that the parity error interrupt is pending.

SCI Transmit Buffer - TXB

This register is used to store the SCI data to be transmitted.

Offset: 0x020

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									Reserv	/ed						
Type/Reset																
	23		22		21		20		19		18		17		16	
									Reserv	/ed						
Type/Reset																
	15		14		13		12		11		10		9		8	
									Reserv	/ed						
Type/Reset																
	7		6		5		4		3		2		1		0	
									TB							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
F7 01	TD	001 1010 1010 101

[7:0] TB SCI data byte to be transmitted

SCI Receive Buffer - RXB

This register is used to store the SCI received data.

Offset: 0x024
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserve	ed		
Type/Reset					,		'	
	23	22	21	20	19	18	17	16
					Reserve	ed		
Type/Reset							'	
	15	14	13	12	11	10	9	8
					Reserve	ed		
Type/Reset					"	'	'	
	7	6	5	4	3	2	1	0
					RB			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW 0	RW 0

Bits	Field	Descriptions
[7:0]	RB	SCI Received data byte

SCI Prescaler Register – PSCR

This register specifies the prescaler division ratio which is used the SCI internal clock.

Offset: 0x028

Reset value: 0x0000_0000

	31	30	29		28		27		26		25		24	
							Reserv	/ed						
Type/Reset														
	23	22	21		20		19		18		17		16	
							Reserv	/ed						
Type/Reset														
	15	14	13		12		11		10		9		8	
							Reserv	/ed						
Type/Reset														
	7	6	5		4		3		2		1		0	
		Reserved							PSC					
Type/Reset		·	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[5:0]	PSC	SCI prescaler division ratio 0: f _{PSC_CK} = f _{PCLK} 1 ~ 63: f _{PSC_CK} = f _{PCLV} /(2×PSC)

Rev. 1.10 518 of 680 November 22, 2018

24 USB Device Controller (USB)

Introduction

The USB device controller is compliant with the USB 2.0 full-speed specification. There is one control endpoint know as Endpoint 0 and seven configurable endpoints (EP1~EP7). A 1024-byte EP_SRAM is used for the endpoint buffers. Each endpoint buffer size is programmable by corresponding registers, which provides maximum flexibility for various applications. The integrated USB full-speed transceiver helps to minimize overall system complexity and cost. The USB also contains the suspend and resume features to meet low-power consumption requirement. The accompanying figure shows the USB block diagram.

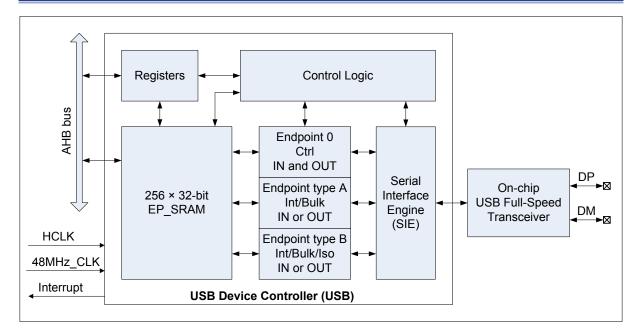


Figure 170. USB Block Diagram

Features

- Complies with USB 2.0 full-speed (12Mbps) specification
- Fully integrated USB full-speed transceiver
- 1 control endpoint (EP0) for control transfer
- 3 single-buffered endpoint (EP1~EP3) for bulk and interrupt transfer
- 4 double-buffered endpoint (EP4~EP7) for bulk, interrupt and isochronous transfer
- 1,024 bytes EP-SRAM used as endpoint data buffers

Functional Descriptions

Endpoints

The USB Endpoint 0 is the only bidirectional endpoint dedicated to USB control transfer. The device also contains seven unidirectional endpoints for other USB transfer types. There are three endpoints (EP1~EP3) which supports a single buffering function which is used for Bulk and Interrupt IN or OUT data transfer. There are four other endpoints (EP4~EP7) which supports single or double buffering functions for Bulk, Interrupt and Isochronous IN or OUT data transfer. The address of the seven unidirectional endpoints (EP1~EP7) can be configured by the application software. The following table lists the endpoint characteristics.

Table 63. Endpoint Characteristics

Endpoint Number	Number Address	Transfer Type	Direction	Buffer Type
0	Fixed	Control	IN and OUT	Single buffering
1~3	Configurable	Interrupt/Bulk	IN or OUT	Single buffering
4~7	Configurable	Interrupt/Bulk/Isochronous	IN or OUT	Single or Double buffering

EP_SRAM

The USB controller contains a dedicated memory space, EP_SRAM, which is used for the USB endpoint buffers. The EP_SRAM, which is connected to the AHB bus, can be accessed by the MCU and PDMA. The EP_SRAM base address is $0x400A_A000$ with an offset which ranges from 0x000 to 0x3FF. The EP_SRAM first two words are reserved for Endpoint 0 to temporarily store the 8-byte SETUP data. Therefore the valid start address of the endpoint buffer should start from 0x008 and align to a 4-byte boundary. Each endpoint buffer size is programmable. The following table lists the maximum USB endpoint buffer size which is compliant with USB 2.0 full-speed device specification.

Table 64. USB Data Types and Buffer Size

Transfer Type	Direction	Supported Buffer Size	Bandwidth	CRC	Retrying
Control	Bidirectional	8, 16, 32, 64	Not guaranteed	Yes	Automatic
Bulk	Unidirectional	8, 16, 32, 64	Not guaranteed	Yes	Yes
Interrupt	Unidirectional	≤ 64	Not guaranteed	Yes	Yes
Isochronous	Unidirectional	< 512	Guaranteed	Yes	No

In the following endpoint buffer allocation example, the Endpoint "4" is configured as a double-buffered Bulk IN endpoint while the Endpoint "5" is configured as a double-buffered Bulk OUT endpoint. Each endpoint buffer size is set to 64-bytes.

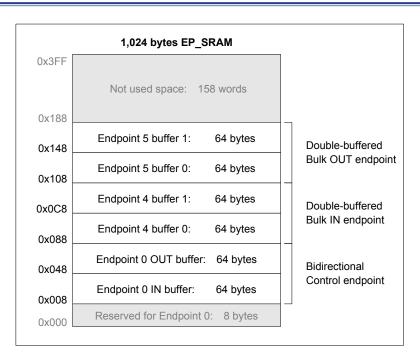
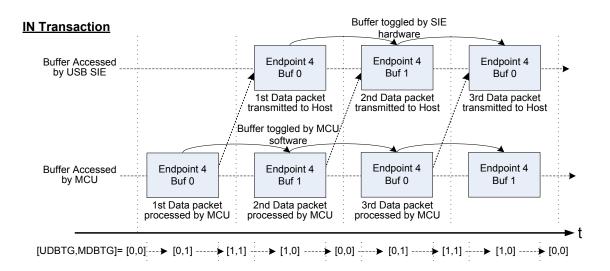


Figure 171. Endpoint Buffer Allocation Example


Serial Interface Engine - SIE

The Serial Interface Engine, SIE, which is connected to the USB full-speed transceiver and internal USB control circuitry provides a temporal buffer for the transmitted and received data. The SIE also decodes the SE0 signal, SE1 signal, J-state, K-state, USB RESET event and End of Packet event signals, EOP, when the USB module receives data, transmits data or transmits the resume signal for remote control. The SIE detects the number of SOF packets and generates the SOF interrupt signal to the USB control circuitry which includes data format conversion from parallel to serial or serial to parallel. It also includes, CRC checking and generation, PID decoder, bit-stuffing and debit-stuffing functions.

Double-Buffering

The double buffering function is recommended to be enabled when the corresponding endpoint is specified to be used for Isochronous transfer or high throughput Bulk transfer. The double buffering function stores the preceding data packet sent by the USB host in a simple buffer for the MCU to process and the hardware will ensure that it continues to receive the current data packet in the other buffer during an OUT transaction, and vice versa. Using a double buffering function can achieve the highest possible data transfer rate. The details regarding double buffering usage is provided in the corresponding UDBTG and MDBTG control bit description in the USBEPnCSR register where the denotation n ranges from 4 to 7.

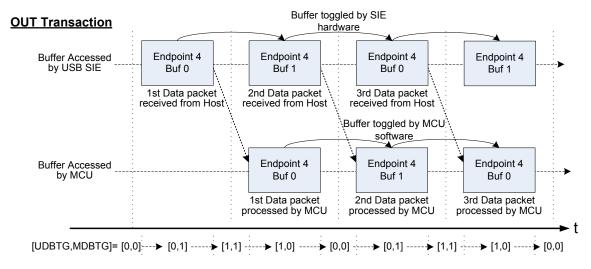


Figure 172. Double-buffering Operation Example

Suspend Mode and Wake-up

According to USB specifications, the device must enter the suspend mode after a 3 ms bus idle time. When the USB device enters the suspend mode, the current from the USB bus must not be greater than $500~\mu A$ to meet the specification suspend mode current requirements. The USB control circuitry will generate a suspend interrupt if the bus is in the idle state for 3 ms. Here the software should set the LPMODE and PDWN bits in the USBCSR register to 1. The LPMODE bit is used to determine whether the USB controller enters the low power mode or not by holding the USB bus in a reset condition while the PDWN bit is used to determine if the integrated USB full-speed transceiver is turned off or not.

There are two ways for the USB host to wake up the USB device, one is to send a USB reset signal, SE0, and the other is to send a USB resume signal known as the K-state, After a wake-up signal, regardless of whether a SE0 signal or a K-state is detected, the USB device will be woken up.

Remote Wake-up

As the USB device has a remote wake-up function, it can wake up the USB host by sending a resume request signal by setting the GENRSM bit in the USBCSR register to 1. Once the USB host receives the remote wake-up signal from the USB device, it will send a resume signal to the USB device.

Register Map

The following table shows the USB registers and reset values.

Table 65. USB Register Map

Register	Offset	Description	Reset Value
USBCSR	0x000	USB Control and Status Register	0x0000_00X6
USBIER	0x004	USB Interrupt Enable Register	0x0000_0000
USBISR	0x008	USB Interrupt Status Register	0x0000_0000
USBFCR	0x00C	USB Frame Count Register	0x0000_0000
USBDEVAR	0x010	USB Device Address Register	0x0000_0000
USBEP0CSR	0x014	USB Endpoint 0 Control and Status Register	0x0000_0002
USBEP0IER	0x018	USB Endpoint 0 Interrupt Enable Register	0x0000_0000
USBEP0ISR	0x01C	USB Endpoint 0 Interrupt Status Register	0x0000_0000
USBEP0TCR	0x020	USB Endpoint 0 Transfer Count Register	0x0000_0000
USBEP0CFGR	0x024	USB Endpoint 0 Configuration Register	0x8000_0002
USBEP1CSR	0x028	USB Endpoint 1 Control and Status Register	0x0000_0002
USBEP1IER	0x02C	USB Endpoint 1 Interrupt Enable Register	0x0000_0000
USBEP1ISR	0x030	USB Endpoint 1 Interrupt Status Register	0x0000_0000
USBEP1TCR	0x034	USB Endpoint 1 Transfer Count Register	0x0000_0000
USBEP1CFGR	0x038	USB Endpoint 1 Configuration Register	0x1000_03FF
USBEP2CSR	0x03C	USB Endpoint 2 Control and Status Register	0x0000_0002
USBEP2IER	0x040	USB Endpoint 2 Interrupt Enable Register	0x0000_0000
USBEP2ISR	0x044	USB Endpoint 2 Interrupt Status Register	0x0000_0000
USBEP2TCR	0x048	USB Endpoint 2 Transfer Count Register	0x0000_0000
USBEP2CFGR	0x04C	USB Endpoint 2 Configuration Register	0x1000_03FF
USBEP3CSR	0x050	USB Endpoint 3 Control and Status Register	0x0000_0002
USBEP3IER	0x054	USB Endpoint 3 Interrupt Enable Register	0x0000_0000

Register	Offset	Description	Reset Value
USBEP3ISR	0x058	USB Endpoint 3 Interrupt Status Register	0x0000_0000
USBEP3TCR	0x05C	USB Endpoint 3 Transfer Count Register	0x0000_0000
USBEP3CFGR	0x060	USB Endpoint 3 Configuration Register	0x1000_03FF
USBEP4CSR	0x064	USB Endpoint 4 Control and Status Register	0x0000_0002
USBEP4IER	0x068	USB Endpoint 4 Interrupt Enable Register	0x0000_0000
USBEP4ISR	0x06C	USB Endpoint 4 Interrupt Status Register	0x0000_0000
USBEP4TCR	0x070	USB Endpoint 4 Transfer Count Register	0x0000_0000
USBEP4CFGR	0x074	USB Endpoint 4 Configuration Register	0x1000_03FF
USBEP5CSR	0x078	USB Endpoint 5 Control and Status Register	0x0000_0002
USBEP5IER	0x07C	USB Endpoint 5 Interrupt Enable Register	0x0000_0000
USBEP5ISR	0x080	USB Endpoint 5 Interrupt Status Register	0x0000_0000
USBEP5TCR	0x084	USB Endpoint 5 Transfer Count Register	0x0000_0000
USBEP5CFGR	0x088	USB Endpoint 5 Configuration Register	0x1000_03FF
USBEP6CSR	0x08C	USB Endpoint 6 Control and Status Register	0x0000_0002
USBEP6IER	0x090	USB Endpoint 6 Interrupt Enable Register	0x0000_0000
USBEP6ISR	0x094	USB Endpoint 6 Interrupt Status Register	0x0000_0000
USBEP6TCR	0x098	USB Endpoint 6 Transfer Count Register	0x0000_0000
USBEP6CFGR	0x09C	USB Endpoint 6 Configuration Register	0x1000_03FF
USBEP7CSR	0x0A0	USB Endpoint 7 Control and Status Register	0x0000_0002
USBEP7IER	0x0A4	USB Endpoint 7 Interrupt Enable Register	0x0000_0000
USBEP7ISR	0x0A8	USB Endpoint 7 Interrupt Status Register	0x0000_0000
USBEP7TCR	0x0AC	USB Endpoint 7 Transfer Count Register	0x0000_0000
USBEP7CFGR	0x0B0	USB Endpoint 7 Configuration Register	0x1000_03FF

Register Descriptions

USB Control and Status Register – USBCSR

This register specifies the USB control bits and USB data line status.

Offset: 0x000
Reset value: 0x0000_00X6

	_							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
			Reserved		DPWKEN	DPPUEN	SRAMRSTC	ADRSET
Type/Reset					RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
	RXDM	RXDP	GENRSM	Reserved	LPMODE	PDWN	FRES	Reserved
Type/Reset	RO X	RO X	RW 0		RW 0	RW 1	RW 1	

Bits	Field	Descriptions
[11]	DPWKEN	DP Wake Up Enable 0 : Disable DP wake up 1 : Enable DP wake up
[10]	DPPUEN	DP Pull Up Enable 0 : Disable DP pull up 1 : Enable DP pull up
[9]	SRAMRSTC	EP_SRAM reset condition 0 : Reset EP_SRAM when (DP, DM) = (0,0) 1 : User can access EP_SRAM in spite of (DP, DM) state
[8]	ADRSET	Device Address Setting Control This bit is used to determine the when USB SIE updates the device address with the value of the USBDEVAR register. 0: The SIE updates the device address immediately after an address is written into the USBDEVAR register. 1: The SIE updates the device address after the USB Host has successfully read the data from the device by the IN operation. This bit is cleared by the SIE after the device address is updated.
[7]	RXDM	Received DM Line Status This bit is used to observe the status of DM data line status at the end of suspend routines to determine whether a wakeup event has occurred.
[6]	RXDP	Received DP Line Status This bit is used to observe the status of DP data line status at the end of suspend routines to determine whether a wakeup event has occurred.

Bits	Field	Descriptions
[5]	GENRSM	Resume Request Generation Control This bit is used to generate a resume request which is sent to the USB host by writing 1 into this bit location. The USB remote wakeup function is always enabled. This bit will be cleared to 0 after a resume signal, sent by the USB host, has been received.
[3]	LPMODE	Low-power Mode Control This bit is used to determine the USB operating mode. Setting this bit will force the USB to enter the low-power mode. When USB bus traffic, known as a wakeup event, is detected by the hardware, this bit should be cleared by software. 0: Exit the Low-power mode 1: Enter the Low-power mode
[2]	PDWN	Power Down Mode Control Setting this bit will power down the full-speed USB PHY transceiver. This will disconnect the USB PHY transceiver from the USB bus. 0: Exit the Power-Down 1: Enter the Power-Down mode
[1]	FRES	Force USB Reset Control This bit is used to reset the USB circuitry. Setting this bit will force the USB into a reset state until the software clears it. A USB reset interrupt will be generated if the corresponding interrupt enable bit in the USBIER register is set to 1. All related USB registers are reset to their default values. 0: Release USB reset 1: Force USB reset

Table 66. Resume Event Detection

[RXDP, RXDM] Status	Wakeup event	Required resume software action
00	Root reset	None
10	None (noise on bus)	Go back to suspend mode
01	Root resume	None
11	Not allowed (noise on bus)	Go back to suspend mode

USB Interrupt Enable Register – USBIER

This register specifies the USB interrupt enable control.

Offset: 0x004

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
	EP7IE	EP6IE	EP5IE	EP4IE	EP3IE	EP2IE	EP1IE	EP0IE
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
		Reserved	ESOFIE	SUSPIE	RSMIE	URSTIE	SOFIE	UGIE
Type/Reset	·		RW 0	RW 0	RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[15:8]	EPnIE	Endpoint n Interrupt Enable Control (n = 0 ~ 7) 0: Disable interrupt 1: Enable interrupt
[5]	ESOFIE	Expected Start of Frame (ESOF) Interrupt Enable Control 0: Disable ESOF interrupt 1: Enable ESOF interrupt
[4]	SUSPIE	Suspend Interrupt Enable Control 0: Disable suspend interrupt 1: Enable suspend interrupt
[3]	RSMIE	Resume Interrupt Enable Control 0: Disable Resume interrupt 1: Enable Resume interrupt
[2]	URSTIE	USB Reset Interrupt Enable Control 0: Disable USB Reset interrupt 1: Enable USB Reset interrupt
[1]	SOFIE	Start of Frame (SOF) Interrupt Enable Control 0: Disable SOF interrupt 1: Enable SOF interrupt
[0]	UGIE	USB Global Interrupt Enable Control 0: USB Global interrupt is disabled 1: USB Global interrupt is enabled This bit must be set to 1 to enable the corresponding USB interrupt function, If this

bit is cleared to 0, the relevant USB interrupt will not be generated, however, the corresponding interrupt flags still be asserted.

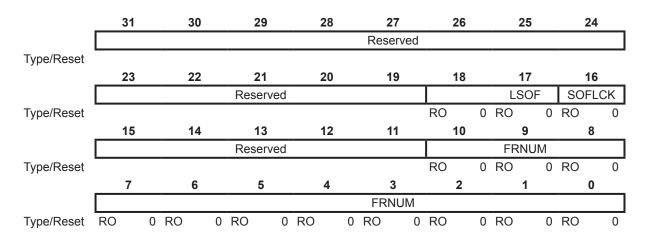
USB Interrupt Status Register – USBISR

This register specifies the USB interrupt status.

Offset:	800x0	
Reset value:	0x0000	0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
	EP7IF	EP6IF	EP5IF	EP4IF	EP3IF	EP2IF	EP1IF	EP0IF
Type/Reset	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0
	7	6	5	4	3	2	1	0
		Reserved	ESOFIF	SUSPIF	RSMIF	URSTIF	SOFIF	Reserved
Type/Reset			RW 0	WC 0	WC 0	WC 0	WC 0	

Bits	Field	Descriptions
[15:8]	EPnIF	Endpoint n Interrupt Flag (n = 0 \sim 7) This bit is set by the hardware to indicate the generation of relevant endpoint interrupt. Writing 1 into this bit to clear it. It is important to note that the interrupt flag can only be cleared when the endpoint interrupt status bit in the USBEPnISR register is equal to 0.
[5]	ESOFIF	Expected Start of Frame Interrupt Flag This bit is set by the hardware when an SOF packet is expected to be received. The USB host sends an SOF (Start of Frame) packet each millisecond. If the USB device hardware does not receive it properly, an ESOF interrupt will be generated when the ESOFIE bit in the USBIER register is set to 1. If three consecutive ESOF interrupts are generated, which means that the SOF packet has been missed 3 times, the SUSPIF will be set to 1. This bit will be set to 1 when the missing SOF packets occur if the timer is not yet locked. This bit can be read or written. However, only 0 can be written into this bit. Writing 1 has no effect.
[4]	SUSPIF	Suspend Interrupt Flag This bit is set by the hardware when no data transfer has occurred for 3 ms, indicating that a suspend request has been sent from the USB host. The suspend condition check is enabled immediately after a USB reset. This bit is cleared to 0 by writing 1.
[3]	RSMIF	Resume Interrupt Flag This bit is set by the hardware. When this bit is set 1, this means that a device resume has occurred. This bit is cleared to 0 by writing 1.



Bits	Field	Descriptions
[2]	URSTIF	USB Reset Interrupt Flag This bit is set by the hardware when the USB reset has been detected. When a USB reset occurs, the internal protocol state machine will be reset and an USB reset interrupt will be generated if the URSTIE bit in the USBIER register is set to 1. Data reception and transmission are disabled until the URSTIF bit is cleared to 0. The USB configuration related registers (USBCSR, USBIER, USBISR, USBFCR and USBDEVAR) will not be reset by a USB reset event except for the USB device address (USBDEVAR), this is to ensure that a USB reset interrupt can be safely excited and any data transactions immediately followed by the USB reset can be completely accessed by the software. Therefore the microcontroller must properly reset these registers. The USB endpoint related registers (USBEPnCSR, USBEPnISR and USBEPnTCR) are also reset by a USB reset event, however, the endpoint configuration (USBEPnCFGR) and interrupt enable (USBEPnIER) registers are not affected by the USB reset event and will remain unchanged. This bit is cleared to 0 by writing 1.
[1]	SOFIF	SOF Interrupt Flag This bit is set by the hardware when a start-of-frame packet has been received. This bit is cleared to 0 by writing 1.

USB Frame Count Register – USBFCR

This register specifies the lost Start-of-Frame number and the USB frame count.

Offset: 0x00C Reset value: 0x0000_0000

Bits	Field	Descriptions
[18:17]	LSOF	Lost Start-of-Frame number These bits are written and incremented by 1 by the hardware each time the ESOFIF bit is set. It is used to count the number of lost SOF packets. When a SOF packet has been received, these bits are cleared.
[16]	SOFLCK	Start-of-Frame Lock Flag This bit is set by the hardware when SOF packets have been received before the frame timer times out. Once this flag is set to 1, the frame number which is sent from the USB host will be loaded into the Frame Number field in the USBFCR register. If there no SOF packet has been received during the 1 ms frame time duration, this bit will be cleared to 0.

Bits	Field	Descriptions
[10:0]	FRNUM	Frame Number
		This field stores the frame number received from the USB host.

USB Device Address Register – USBDEVAR

This register specifies the USB device address.

Offset: 0x010
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserve	ed		
Type/Reset						,		
	23	22	21	20	19	18	17	16
					Reserve	ed		
Type/Reset					'	'	''	
	15	14	13	12	11	10	9	8
					Reserve	ed		
Type/Reset					,			
	7	6	5	4	3	2	1	0
	Reserved				DEVA			
Type/Reset		RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW 0

Bits	Field	Descriptions	
[6:0]	DEVA	Device Address	

This field is used to specify the USB device address. This field is cleared when a USB reset event occurs.

USB Endpoint 0 Control and Status Register – USBEP0CSR

This register specifies the Endpoint 0 control and status.

Offset: 0x014

Reset value: 0x0000_0002

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
		Reserved	STLRX	NAKRX	DTGRX	STLTX	NAKTX	DTGTX
Type/Reset			RW 0	RW 0	RW 0	RW 0	RW 1	RW 0

Bits	Field	Descriptions
[5]	STLRX	STALL Status for reception (OUT) transfer This bit is set to 1 by the application software and then returns a STALL signal in the handshake phase of an OUT transaction if a functional error is detected. This means that a control request delivered from the USB host is not supported by the USB device. The STALL status is cleared by the hardware circuitry when a SETUP token is received. This bit can be read and written and can only be toggled by writing 1.
[4]	NAKRX	NAK Status for reception (OUT) transfer This bit is toggled from 0 to 1 by the hardware circuitry, which will result in a NAK signal in the handshake phase of an OUT transaction after an ACK signal has been transmitted. This means that the USB device will be temporarily unable to accept data from the USB host. Therefore, more time will be required for the received data to be properly processed. This bit can be read and written and can only be toggled by writing 1.
[3]	DTGRX	Data Toggle Status for reception (OUT) transfer This bit contains the expected value of the data toggle bit (0=DATA0, 1=DTAT1) for the next data packet to be received. When the current valid data packet is received and the corresponding ACK signal is sent to the USB host by the USB device, the hardware circuitry will toggle this bit and the device will be ready to receive the next data packet. For Endpoint 0, the hardware circuitry will toggle this bit to 1 after the SETUP token is received as Endpoint 0 is addressed. This bit can also be toggled by the software to initialize its value for certain applications. This bit can be read and written and can only be toggled by writing 1.
[2]	STLTX	STALL Status for transmission (IN) transfer This bit is set to 1 by the application software and then returns a STALL signal in response to an IN token if a functional error is detected. This means that the USB device is unable to transmit data. The STALL status is cleared by the hardware circuitry when a SETUP token is received. This bit can be read and written and can only be toggled by writing 1.

Bits	Field	Descriptions
[1]	NAKTX	NAK Status for transmission (IN) transfer This bit is toggled from 0 to 1 by the hardware circuitry, which will result in a NAK signal in the handshake phase of an IN transaction after an ACK signal has been received. It indicates that the USB device is temporarily unable to transmit data to the USB host. Therefore, there will be more time for the application software to properly prepare the data to be transmitted. This bit can be read and written and can only be toggled by writing 1.
[0]	DTGTX	Data Toggle Status for transmission (IN) transfer This bit contains the required value of the data toggle bit (0=DATA0, 1=DATA1) for the next data packet to be transmitted. When the current data packet is transmitted by the USB device and the corresponding ACK signal sent by the USB host is received, the hardware circuitry will toggle this bit and the next data packet will be transmitted. For Endpoint 0, the hardware circuitry will toggle this bit to 1 after the SETUP token is received as Endpoint 0 is addressed. This bit can also be toggled by the software to initialize its value for certain applications. This bit can be read and written and can only be toggled by writing 1.

USB Endpoint 0 Interrupt Enable Register – USBEP0IER

This register specifies the Endpoint 0 interrupt control bits.

Offset: 0x018
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								-
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
			Reserved		ZLRXIE	SDERIE	SDRXIE	STRXIE
Type/Reset					RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
	UERIE	STLIE	NAKIE	IDTXIE	ITRXIE	ODOVIE	ODRXIE	OTRXIE
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[11]	ZLRXIE	Zero Length Data Received Interrupt Enable Control 0: Disable interrupt 1: Enable interrupt
[10]	SDERIE	SETUP Data Error Interrupt Enable Control 0: Disable interrupt 1: Enable interrupt
[9]	SDRXIE	SETUP Data Received Interrupt Enable Control 0: Disable interrupt 1: Enable interrupt
[8]	STRXIE	SETUP Token Received Interrupt Enable Control 0: Disable interrupt 1: Enable interrupt

Bits	Field	Descriptions
[7]	UERIE	USB Error Interrupt Enable Control 0: Disable interrupt 1: Enable interrupt
[6]	STLIE	STALL Transmitted Interrupt Enable Control 0: Disable interrupt 1: Enable interrupt
[5]	NAKIE	NAK Transmitted Interrupt Enable Control 0: Disable interrupt 1: Enable interrupt
[4]	IDTXIE	IN Data Transmitted Interrupt Enable Control 0: Disable interrupt 1: Enable interrupt
[3]	ITRXIE	IN Token Received Interrupt Enable Control 0: Disable interrupt 1: Enable interrupt
[2]	ODOVIE	OUT Data Buffer Overrun Interrupt Enable Control 0: Disable interrupt 1: Enable interrupt
[1]	ODRXIE	OUT Data Received Interrupt Enable Control 0: Disable interrupt 1: Enable interrupt
[0]	OTRXIE	OUT Token Received Interrupt Enable Control 0: Disable interrupt 1: Enable interrupt

USB Endpoint 0 Interrupt Status Register – USBEP0ISR

This register specifies the Endpoint 0 interrupt status.

Offset: 0x01C

Reset value: 0x0000_0000

recor value.	0,0000_000	50						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
			Reserved		ZLRXIF	SDERIF	SDRXIF	STRXIF
Type/Reset					WC 0	WC 0	WC 0	WC 0
	7	6	5	4	3	2	1	0
	UERIF	STLIF	NAKIF	IDTXIF	ITRXIF	ODOVIF	ODRXIF	OTRXIF
Type/Reset	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0

Bits	Field	Descriptions
[11]	ZLRXIF	Zero Length Data Received Interrupt Flag This bit is set by the hardware when a zero length data packet is received. This bit is cleared by hardware when a SETUP Token is received or by writing 1.
[10]	SDERIF	SETUP Data Error Interrupt Flag This bit is set by the hardware when the SETUP data packet length is not 8 bytes. This bit is cleared by hardware when a SETUP Token is received or by writing 1.
[9]	SDRXIF	SETUP Data Received Interrupt Flag This bit is set by the hardware when a SETUP data packet from the USB host has been received. This bit is cleared by the hardware when a SETUP Token is received or by writing 1. If the received SETUP data is not accessed by the application software before the next SETUP packet is received, the SETUP data buffer will be overwritten.
[8]	STRXIF	SETUP Token Received Interrupt Flag This bit is set by the hardware when a SETUP token is received and is cleared by writing 1.
[7]	UERIF	USB Error Interrupt Flag This bit is set by the hardware when an error occurs during the Endpoint 0 transaction. This bit is cleared by hardware when a SETUP Token is received or by writing 1.
[6]	STLIF	STALL Transmitted Interrupt Flag This bit is set by the hardware when a STALL signal is sent in response to an IN or OUT transaction. This bit is cleared by hardware when a SETUP Token is received or by writing 1.
[5]	NAKIF	NAK Transmitted Interrupt Flag This bit is set by the hardware when a NAK signal is sent in response to an IN or OUT transaction. This bit is cleared by hardware when a SETUP Token is received or by writing 1.
[4]	IDTXIF	IN Data Transmitted Interrupt Flag This bit is set by the hardware when a data packet is transmitted to and then an ACK signal is received from the USB host. This bit is cleared by hardware when a SETUP Token is received or by writing 1.
[3]	ITRXIF	IN Token Received Interrupt Flag This bit is set by the hardware when the IN token is received from the USB host. This bit is cleared by hardware when a SETUP Token is received or by writing 1.
[2]	ODOVIF	OUT Data Buffer Overrun Interrupt Flag This bit is set by the hardware when the number of received data bytes is larger than the endpoint buffer size. This bit is cleared by hardware when a SETUP Token is received or by writing 1.
[1]	ODRXIF	OUT Data Received Interrupt Flag This bit is set by the hardware when a data packet is successfully received frome and then an ACK signal is sent to the USB host. This bit is cleared by hardware when a SETUP Token is received or by writing 1.
[0]	OTRXIF	OUT Token Received Interrupt Flag This bit is set by the hardware when the OUT token is received from the USB host. This bit is cleared by hardware when a SETUP Token is received or by writing 1.

USB Endpoint 0 Transfer Count Register – USBEP0TCR

This register specifies the Endpoint 0 data transfer byte count.

Offset: 0x020
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset			'					
	23	22	21	20	19	18	17	16
	Reserved				RXCNT			
Type/Reset		RO	0 RO	0 RO	0 RO 0	RO	0 RO	0 RO 0
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset			'					
	7	6	5	4	3	2	1	0
	Reserved				TXCNT			
Type/Reset		RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0

Bits	Field	Descriptions
[22:16]	RXCNT	Reception Byte Count
		The bit field contains the number of data bytes received by Endpoint 0 in the preceding SETUP transaction.
[6:0]	TXCNT	Transmission Byte Count The bit field contains the number of data bytes to be transmitted by Endpoint 0 in the next IN token. If the value of this field is zero, it indicates that a zero length packet will be sent.

USB Endpoint 0 Configuration Register – USBEP0CFGR

This register specifies the Endpoint 0 configurations.

Offset: 0x024
Reset value: 0x8000_0002

	31	30	29	28	27	26	25	24
	EPEN		Reserve	d			EPADR	
Type/Reset	RO 1			'	RO 0) RO 0	RO 0	RO 0
	23	22	21	20	19	18	17	16
				Reserved				EPLEN
Type/Reset				'				RW 0
	15	14	13	12	11	10	9	8
			"	EPLEN				EPBUFA
Type/Reset	RW (RW	0 RW	0 RW 0	RW 0) RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
					EPBUFA			
Type/Reset	RW (RW	0 RW	0 RW 0	RW 0) RW 0	RW 1	RW 0

Bits	Field	Descriptions
[31]	EPEN	Endpoint Enable Control This bit is always set to 1 by the hardware circuitry to always enable Endpoint 0.
[27:24]	EPADR	Endpoint Address This field is always set to 0 by the hardware circuitry.
[16:10]	EPLEN	Endpoint Buffer Length This field is used to specify the control transfer packet size which can be 8, 16, 32 or 64 bytes as defined in the USB full-speed standard specification.
[9:0]	EPBUFA	Endpoint Buffer Address This field is used to specify the star address of the Endpoint 0 buffer allocated in the EP_SRAM. It starts from 0x008 and should be aligned to 4-byte boundary. Start address of EP0 IN buffer = EPBUFA Start address of EP0 OUT buffer = EPBUFA + EPLEN

USB Endpoint 1 ~ 3 Control and Status Register – USBEPnCSR (n = 1 ~ 3)

This register specifies the Endpoint 1 \sim 3 control and status bit.

Offset: 0x028 (n = 1), 0x03C (n = 2), 0x050 (n = 3)

Reset value: 0x0000_0002

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
		Reserved	STLRX	NAKRX	DTGRX	STLTX	NAKTX	DTGTX
Type/Reset			RW 0	RW 0	RW 0	RW 0	RW 1	RW 0

Bits	Field	Descriptions
[5]	STLRX	STALL bit for reception transfers This bit is set to 1 by the application software if a functional error has been detected. This bit can be read and written and can only be toggled by writing 1. It can also be toggled by the software to initialize the value under certain conditions.
[4]	NAKRX	NAK bit for reception transfers This bit is toggled from 0 to 1 by the hardware circuitry, which will result in a NAK signal in the handshake phase of an OUT transaction after an ACK signal has been transmitted. It means that the USB device will be temporarily unable to accept data from the USB host until the received data is properly processed. This bit can be read and written and can be only toggled by writing 1.
[3]	DTGRX	Data Toggle bit for reception transfers This bit contains the expected value of the data toggle bit (0=DATA0, 1=DATA1) for the next data packet to be received. When the current valid data packet is received and the corresponding ACK signal is sent to the USB host by the USB device, the hardware circuitry will toggle this bit and the device will be ready to receive the next data packet. This bit can be read and written and can only be toggled by writing 1. This bit can also be toggled by the software to initialize its value under certain conditions.
[2]	STLTX	STALL bit for transmission transfers This bit is set to 1 by the application software if a functional error has been detected. This bit can be read and written and can be only toggled by writing 1. It can also be toggled by the software to initialize its value under certain conditions.
[1]	NAKTX	NAK bit for transmission transfers This bit is toggled from 0 to 1 by the hardware circuitry, which will result in a NAK signal in the handshake phase of an IN transaction after an ACK signal has been received. It means that the USB device will be temporarily unable to transmit data packet until the data to be transmitted is appropriately prepared by the application software. This bit can be read and written and can be only toggled by writing 1.

Bits	Field	Descriptions
[0]	DTGTX	Data Toggle bit for transmission transfers. This bit contains the required value of the data toggle bit (0=DATA0, 1=DATA1) for the next data packet to be transmitted. When the current data packet is transmitted by the USB device and the corresponding ACK signal sent from the USB host is received, the hardware circuitry will toggle this bit and then the next data packet will be transmitted. This bit can be read and written and can only be toggled by writing 1. It can also be toggled by the software to initialize its value under certain conditions.

USB Endpoint 1 ~ 3 Interrupt Enable Register – USBEPnIER (n = 1 ~ 3)

This register specifies the Endpoint 1 ~ 3 interrupt enable control bits.

Offset: 0x02C (n = 1), 0x040 (n = 2), 0x054 (n = 3)

Reset value: 0x0000_0000

	31	3	0	29	2	28	27		26		25		24	ı
							Reser	ved						
Type/Reset														
	23	2	2	21	2	20	19)	18		17		16	5
							Reser	ved						
Type/Reset														
	15	1	4	13		12	11		10		9		8	
							Reser	ved						
Type/Reset														
	7	(6	5		4	3		2		1		0	
	UERIE	ST	LIE	NAKIE	ID.	ГХІЕ	ITRX	ΊE	ODO\	/IE	ODR)	KIE	OTR:	XIE
Type/Reset	RW	0 RW	0	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[7]	UERIE	USB Error Interrupt Enable Control. 1: Enable interrupt 0: Disable interrupt
[6]	STLIE	STALL Transmitted Interrupt Enable Control. 1: Enable interrupt 0: Disable interrupt
[5]	NAKIE	NAK Transmitted Interrupt Enable Control. 1: Enable interrupt 0: Disable interrupt
[4]	IDTXIE	IN Data Transmitted Interrupt Enable Control. 1: Enable interrupt 0: Disable interrupt
[3]	ITRXIE	IN Token Received Interrupt Enable Control. 1: Enable interrupt 0: Disable interrupt
[2]	ODOVIE	OUT Data Buffer Overrun Interrupt Enable Control. 1: Enable interrupt 0: Disable interrupt

Bits	Field	Descriptions
[1]	ODRXIE	OUT Data Received Interrupt Enable Control. 1: Enable interrupt 0: Disable interrupt
[0]	OTRXIE	OUT Token Received Interrupt Enable Control. 1: Enable interrupt 0: Disable interrupt

USB Endpoint 1 \sim 3 Interrupt Status Register – USBEPnISR (n = 1 \sim 3)

This register specifies the Endpoint 1 \sim 3 interrupt status.

Offset: 0x030 (n = 1), 0x044 (n = 2), 0x058 (n = 3)

Reset value: 0x0000_0000

	31		30		29		28		27	,	2	6	2	5	24	4
									Reser	ved						
Type/Reset																
	23		22		21		20		19)	1	8	1	7	16	6
									Reser	ved						
Type/Reset																
	15		14		13		12		11		1	0	9	9	8	
									Reser	ved						
Type/Reset																
	7		6		5		4		3			2	1	1	0	
	UERI	F	STLI	F	NAK	IF	IDTX	ΊF	ITR)	ΚIF	ODO	OVIF	ODF	RXIF	OTR	XIF
Type/Reset	WC	0	WC	0	WC	0	WC	0	WC	0	WC	0	WC	0	WC	0

Bits	Field	Descriptions
[7]	UERIF	USB Error Interrupt Flag. This bit is set by the hardware when an error occurs during the transaction. Writing 1 into this status bit will clear it to 0.
[6]	STLIF	STALL Transmitted Interrupt Flag. This bit is set by hardware circuitry when a STALL-token is sent in response to an IN or OUT token and is cleared to 0 by writing 1.
[5]	NAKIF	NAK Transmitted Interrupt Flag. This bit is set by hardware circuitry when a NAK-token is sent in response to an IN or OUT token and is cleared to 0 by writing 1.
[4]	IDTXIF	IN Data Transmitted Interrupt Flag. This bit is set by hardware circuitry when a data packet is successfully transmitted to the host in response to an IN-token and an ACK-token is received. Writing 1 into this status bit will clear it to 0.
[3]	ITRXIF	IN Token Received Interrupt Flag. This bit is set by the hardware circuitry when the endpoint receives an IN token from the host and is cleared to 0 by writing 1.
[2]	ODOVIF	OUT Data Buffer Overrun Interrupt Flag. This bit is set by the hardware circuitry when the received data byte count is larger than the corresponding endpoint OUT data buffer size. Writing 1 into this status bit will clear it to 0.

Bits	Field	Descriptions
[1]	ODRXIF	OUT Data Received Interrupt Flag. This bit is set by the hardware circuitry when a data packet is successfully received from the host for an OUT-token and when an endpoint n ACK signal is sent to the host. Writing 1 into this status bit will clear it to 0.
[0]	OTRXIF	OUT Token Received Interrupt Flag. This bit is set by the hardware circuitry when the endpoint receives an OUT token from the host and is cleared to 0 by writing 1.

USB Endpoint 1 ~ 3 Transfer Count Register – USBEPnTCR (n = 1 ~ 3)

This register specifies the Endpoint $1 \sim 3$ transfer byte count.

Offset: 0x034 (n = 1), 0x048 (n = 2), 0x05C (n = 3)

Reset value: 0x0000_0000

	31		30		29		28	3	27		26		2	5	24	
									Reser	ved						
Type/Reset																
	23		22		21		20)	19		18		1	7	16	
									Reser	ved						
Type/Reset																
	15		14		13		12	2	11		10		9	9	8	
							Rese	rved							TCN	Т
Type/Reset															RW	0
	7		6		5		4		3		2		1	1	0	
									TCN	ΙΤ						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[0:8]	TCNT	Transfer Byte Count

This field contains the number of bytes received by the endpoint n in the preceding OUT transaction or the number of bytes to be transmitted by the endpoint n in the next IN transaction.

USB Endpoint 1 ~ 3 Configuration Register – USBEPnCFGR (n = 1 ~ 3)

This register specifies the Endpoint 1 ~ 3 configurations.

Offset: 0x038 (n = 1), 0x04C (n = 2), 0x060 (n = 3)

Reset value: 0x1000_03FF

	31		30		29		28		27		26		25	5	24	
	EPEN		Reserve	d	EPTYP	E	EPDII	R					EPA	DR		
Type/Reset	RW	0			RW	0	RW	1	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17	,	16	
							Reserv	ed							EPLE	EN
Type/Reset															RW	0
	15		14		13		12		11		10		9		8	
							EPLE	N							EPBU	ΙFΑ
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	1	RW	1
	7		6		5		4		3		2		1		0	
									EPBU	FA						
Type/Reset	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1	RW	1

Bits	Field	Descriptions
[31]	EPEN	Enable Control 0: Disable the endpoint n 1: Enable the endpoint n
[29]	EPTYPE	Transfer Type This bit is set to 0 by the hardware circuitry to specify that the endpoint n transfer type is an Interrupt or Bulk transfer type.
[28]	EPDIR	Transfer Direction 0: OUT 1: IN
[27:24]	EPADR	Endpoint Address The EPADR field value can be assigned by the application software to specify the address of the endpoint n. It is important to note that this EPADR field should not be set to 0; otherwise, the endpoint will be disabled.
[16:10]	EPLEN	Buffer Length This field is used to specify the endpoint n data packet size. The field value must be word-aligned to a 4-byte boundary. The maximum size in this field can be 64 bytes which is the maximum payload as defined in the USB full-speed standard specification. Note that the EPLEN value should not be assigned to 0 which will result in the endpoint being disabled.
[9:0]	EPBUFA	Endpoint Buffer Address This field is used to specify the endpoint n data buffer start address which ranges from 0x008 to 0x3FC in the EP_SRAM which has a capacity of 1024 bytes and whose field value must be a multiple of 4.

USB Endpoint 4 ~ 7 Control and Status Register – USBEPnCSR (n = 4 ~ 7)

This register specifies the Endpoint 4 ~ 7 control and status bits.

Offset: 0x064 (n = 4), 0x078 (n = 5), 0x08C (n = 6), 0x0A0 (n = 7)

Reset value: 0x0000 0002

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	UDBTG	MDBTG	STLRX	NAKRX	DTGRX	STLTX	NAKTX	DTGTX
Type/Reset	RW 0	RW 0	RW 1	RW 0				

Bits Field Descriptions

71 UDBTG

USB Double Buffer Toggle bit

The UDBTG and MDBTG bits are used to indicate which data buffer is accessed by the USB SIE hardware and which data buffer is accessed by the MCU software if the double buffering function is enabled. The UDBTG bit will be toggled by the SIE hardware circuitry after the current buffer operation is complete. After the UDBTG bit is toggled by the SIE, a NAK signal will be sent automatically to the USB host by the hardware circuitry. Therefore, the data transfer will be stopped temporarily until the data in the other buffer has been properly setup after which the MDBTG bit is toggled by the MCU application software.

The following tables show the double buffering operation and the UDBTG and MDBTG bit status for an IN or OUT transaction.

Transaction Type	UDBTG	MDBTG	Buffer read by SIE	Buffer written by MCU
	0	0	None*	EP_BUF0
IN	0	1	EP_BUF0	EP_BUF1
IIN	1	1	None*	EP_BUF1
	1	0	EP_BUF1	EP_BUF0

Transaction Type	UDBTG	MDBTG	Buffer written by SIE	Buffer read by MCU
	0	0	None*	EP_BUF0
OUT	0	1	EP_BUF0	EP_BUF1
001	1	1	None*	EP_BUF1
	1	0	EP BUF1	EP BUF0

^{*} means the USB device sends a NAK signal to the USB host using the hardware circuitry.

The UDBTG and MDBTG bits setting procedure for the double buffering function is shown in the following example:

[UDBTG, MDBTG] = $[0, 0] \rightarrow [0, 1] \rightarrow [1, 1] \rightarrow [1, 0] \rightarrow [0, 0] \rightarrow [0, 1] \rightarrow [1, 1] \rightarrow [1, 0] \rightarrow ...$

Bits	Field	Descriptions
[6]	MDBTG	MCU Double Buffer Toggle bit The MDBTG bit is used to indicate which data buffer is accessed by the MCU if the double buffering function is enabled. It can be toggled to switch to the other buffer by the MCU application software after the data in the current buffer accessed by the MCU has been properly setup. The double buffering operation together with the UDBTG and MDBTG bits are shown in the preceding two tables for the UDBTG bit definition
[5]	STLRX	STALL bit for reception transfers This bit is set to 1 by the application software if a functional error has been detected. This bit can be read and written and can only be toggled by writing 1. It can also be toggled by software to initialize its value under certain conditions.
[4]	NAKRX	NAK bit for reception transfers This bit is toggled from 0 to 1 by the hardware circuitry, which will result in a NAK signal in the handshake phase of an OUT transaction after an ACK signal has been transmitted. It means that the USB device will be temporarily unable to accept data from the USB host until the received data is properly processed. If the endpoint is defined as an Isochronous transfer type, this bit is not available for usage. The hardware will not change the NAKRX bit status after a complete transaction. This bit can be read and written and can be only toggled by writing 1.
[3]	DTGRX	Data Toggle bit for reception transfers If the endpoint is not used for Isochronous transfer, this bit is available for usage. This bit contains the expected value of the data toggle bit (0 = DATA0, 1 = DATA1) for the next data packet to be received. When the current valid data packet is received and the corresponding ACK signal is sent to the USB host by the USB device, the hardware circuitry will toggle this bit and the device will be ready to receive the next data packet. If the endpoint is defined as an Isochronous transfer type, this bit is not used since no data toggling is used and only the DATA0 packet will be transferred for normal Isochronous transfers. This bit can be read and written and can only be toggled by writing 1. This bit can also be toggled by the software to initialize its value under certain conditions.
[2]	STLTX	STALL bit for transmission transfers This bit is set to 1 by the application software if there a functional error has been detected. This bit can be read and written and can be only toggled by writing 1. It can be toggled by the software to initialize its value under certain conditions.
[1]	NAKTX	NAK bit for transmission transfers This bit is toggled from 0 to 1 by the hardware circuitry, which will result in a NAK signal in the handshake phase of an IN transaction after an ACK signal has been received. It means that the USB device will be temporarily unable to transmit a data packet until the data to be transmitted is properly setup by the application software. If the endpoint is defined as an Isochronous transfer type, then this bit is not available for usage. The hardware will not change the NAKTX bit status after a complete transaction. This bit can be read and written and can be only toggled by writing 1. It can also be toggled by the software to initialize its value under certain conditions.
[0]	DTGTX	Data Toggle bit for transmission transfers. If the endpoint is not used for Isochronous transfer, this bit is available for usage. This bit contains the required value of the data toggle bit (0 = DATA0, 1 = DATA1) for the next data packet to be transmitted. When the current data packet is transmitted by the USB device and the corresponding ACK signal sent from the USB host is received, the hardware circuitry will toggle this bit and then the next data packet will be transmitted. If the endpoint is used for Isochronous transfer, this bit is not used since no data toggling is used and only the DATA0 packet will be transferred for normal Isochronous transfer. This bit can be read and written and can only be toggled by writing 1. It can also be toggled by the software to initialize its value under certain conditions.

USB Endpoint 4 ~ 7 Interrupt Enable Register – USBEPnIER (n = 4 ~ 7)

This register specifies the Endpoint $4 \sim 7$ interrupt enable control bits.

Offset: 0x068 (n = 4), 0x07C (n = 5), 0x090 (n = 6), 0x0A4 (n = 7)

	31		30		29		28		27	7	2	6	2	5	2	4
									Rese	rved						
Type/Reset																
	23		22		21		20		19	9	1	8	1	7	1	6
									Rese	rved						
Type/Reset																
	15		14		13		12		11	1	1	0	9)	8	3
									Rese	rved						
Type/Reset																
	7		6		5		4		3		2	2	1	l	C)
	UERIE		STLI	E	NAKII	Ε	IDTX	ΙE	ITR)	KIE	ODC	VIE	ODF	RXIE	OTR	RXIE
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[7]	UERIE	USB Error Interrupt Enable Control 1: Enable interrupt 0: Disable interrupt
[6]	STLIE	STALL Transmitted Interrupt Enable Control 1: Enable interrupt 0: Disable interrupt
[5]	NAKIE	NAK Transmitted Interrupt Enable Control 1: Enable interrupt 0: Disable interrupt
[4]	IDTXIE	IN Data Transmitted Interrupt Enable Control 1: Enable interrupt 0: Disable interrupt
[3]	ITRXIE	IN Token Received Interrupt Enable Control 1: Enable interrupt 0: Disable interrupt
[2]	ODOVIE	OUT Data Buffer Overrun Interrupt Enable Control 1: Enable interrupt 0: Disable interrupt
[1]	ODRXIE	OUT Data Received Interrupt Enable Control 1: Enable interrupt 0: Disable interrupt
[0]	OTRXIE	OUT Token Received Interrupt Enable Control 1: Enable interrupt 0: Disable interrupt

USB Endpoint 4 ~ 7 Interrupt Status Register – USBEPnISR (n = 4 ~ 7)

This register specifies the Endpoint $4 \sim 7$ interrupt status.

Offset: 0x06C (n = 4), 0x080 (n = 5), 0x094 (n = 6), 0x0A8 (n = 7)

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	UERIF	STLIF	NAKIF	IDTXIF	ITRXIF	ODOVIF	ODRXIF	OTRXIF
Type/Reset	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0

Bits	Field	Descriptions
[7]	UERIF	USB Error Interrupt flag This bit is set by the hardware circuitry when an error occurs during the transaction. Writing 1 into this status bit will clear it to 0.
[6]	STLIF	STALL Transmitted Interrupt flag This bit is set by the hardware circuitry when a STALL-token is sent in response to an IN or OUT token and is cleared to 0 by writing 1.
[5]	NAKIF	NAK Transmitted Interrupt flag This bit is set by the hardware circuitry when a NAK-token is sent in response to an IN or OUT token and is cleared to 0 by writing 1.
[4]	IDTXIF	IN Data Transmitted Interrupt flag This bit is set by the hardware circuitry when a data packet is successfully transmitted to the host in response to an IN-token and an ACK-token is received. Writing 1 into this status bit will clear it to 0.
[3]	ITRXIF	IN Token Received Interrupt flag This bit is set by the hardware circuitry when the endpoint receives an IN token from the host and is cleared to 0 by writing 1.
[2]	ODOVIF	OUT Data Buffer Overrun Interrupt flag This bit is set by the hardware circuitry when the received data byte count is larger than the endpoint OUT data buffer size. Writing 1 into this status bit will clear it to 0.
[1]	ODRXIF	OUT Data Received Interrupt flag This bit is set by the hardware circuitry when a data packet is successfully received from the host for an OUT-token and an ACK signal is sent to the host. Writing 1 into this status bit will clear it to 0.
[0]	OTRXIF	OUT Token Received Interrupt flag This bit is set by the hardware circuitry when the endpoint receives an OUT token from the host and is cleared to 0 by writing 1.

USB Endpoint 4 ~ 7 Transfer Count Register – USBEPnTCR (n = 4 ~ 7)

This register specifies the Endpoint $4 \sim 7$ transfer byte count.

Offset: 0x070 (n = 4), 0x084 (n = 5), 0x098 (n = 6), 0x0AC (n = 7)

	31		30		29		28		27		26		25		24	
							Reser	ved							TCNT	1
Type/Reset													RW	0	RW	0
	23		22		21		20		19		18		17		16	
									TCNT	1						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
							Reser	ved							TCNT	0
Type/Reset													RW	0	RW	0
	7		6		5		4		3		2		1		0	
									TCNT	0						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[25:16]	TCNT1	Buffer 1 Transfer Byte Count This bit field contains the number of data bytes received by the endpoint n buffer 1 in the preceding OUT transaction or the number of data bytes to be transmitted by the endpoint n buffer1 in the next IN transaction.
[9:0]	TCNT0	Buffer 0 Transfer Byte Count This bit field contains the number of data bytes received by the endpoint n buffer 0 in the preceding OUT transaction or the number of data bytes to be transmitted by the endpoint n buffer 0 in the next IN transaction. Only the TCNT0 field is used for the endpoint data transfer count when the endpoint is configured as a single-buffering transfer type.

USB Endpoint 4 ~ 7 Configuration Register – USBEPnCFGR (n = 4 ~ 7)

This register specifies the Endpoint 4 ~ 7 configurations.

Offset: 0x074 (n = 4), 0x088 (n = 5), 0x09C (n = 6), 0x0B0 (n = 7)

Reset value: 0x1000_03FF

	31		30		29		2	28		27		26		2	25		24	
	EPEN		Reserve	d	EPTYP	Ε	EP	DIR						EP/	ADR			
Type/Reset	RW	0			RW	0	RW		1	RW	0	RW	0	RW		0		
	23		22		21		2	20		19		18		1	17		16	
	SDBS	;			Reserve	ed								EP	LEN			
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0							
	15		14		13		1	2		11		10		!	9		8	
							EP	LEN									EPBU	FA
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		1	RW	1
	7		6		5			4		3		2			1		0	
										EPBUF	A							
Type/Reset	RW	1	RW	1	RW	1	RW		1	RW	1	RW	1	RW		1	RW	1

Bits	Field	Descriptions
[31]	EPEN	Enable Control 0: Disable the endpoint n 1: Enable the endpoint n
[29]	EPTYPE	Transfer Type 0: Interrupt or Bulk transfer type 1: Isochronous transfer type
[28]	EPDIR	Transfer Direction 0: OUT 1: IN
[27:24]	EPADR	Endpoint Address The EPADR field can be configured by the application software to specify the address of endpoint n. It is important to note that this EPADR field should not be set to 0; otherwise, the endpoint n will be disabled.
[23]	SDBS	Single-Buffering or Double-Buffering Selection 0: Single-buffering 1: Double-buffering If SDBS bit is set to 1, the endpoint buffer size is twice that of the EPLEN value: - Endpoint Buffer 0 start address is EPBUFA - Endpoint Buffer 1 start address is (EPBUFA + EPLEN)
[19:10]	EPLEN	Buffer Length This field is used to specify the endpoint n data packet size whose field value must be word-aligned to a 4-byte boundary. Note that the endpoint will be disabled if the LEN value is assigned to 0.
[9:0]	EPBUFA	Buffer Address This field is used to specify the endpoint n data buffer start address which ranges from 0x008 to 0x3FC in the EP_SRAM which has a capacity of 1024 bytes where the endpoint transfer data is stored. Note that the buffer start address value must be a multiple of 4.

25 Peripheral Direct Memory Access (PDMA)

Introduction

The Peripheral Direct Memory Access circuitry, PDMA, provides 12 unidirectional channels for dedicated peripherals to implement the peripheral-to-memory and memory-to-peripheral data transfer. The memory-to-memory data transfer such as the FLASH-to-SRAM or SRAM-to-SRAM type is also supported and requested by the application program. Each PDMA channel configuration is independent. The PDMA channel transfer is split into multiple block transactions and the size of a block is equal to the block length multiplied by the data width.

Features

- 12 unidirectional PDMA channels
- Memory-to-peripheral, peripheral-to-memory and memory-to-memory data transfer
- 8-bit, 16-bit and 32-bit width data transfer
- Software and hardware requested data transfer with configurable channel priority
- Linear, circular and non-increment address modes
- 4 transfer event flags Transfer complete, Half Transfer, Block End and Transfer Error
- Auto-Reload function

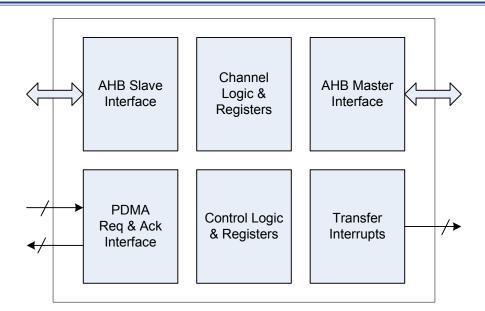


Figure 173. PDMA Block Diagram

Functional Description

AHB Master

The PDMA is an AHB master connected to other AHB peripherals such as the FLASH memory, the SRAM memory and the AHB-to-APB bridges through the bus-matrix. The CPU and PDMA can access different AHB slaves at the same time via the bus-matrix.

PDMA Channel

There are 12 unidirectional PDMA channels used to support data transfer between the peripherals and the memory. The configuration and operation of each PDMA channel is independent. For a bidirectional transfer application, two PDMA channels are required. Each PDMA channel is designed to support the dedicated multiple peripherals with the same registers. Therefore, one PDMA channel only can service one peripheral at the same time. The related registers of the PDMA channel are limited to be accessed with 32-bit operation; otherwise a system hard fault event will occur.

PDMA Request Mapping

The multiple requests from the peripherals (ADC, SPI, I²C, USART and so on) are simply logically ANDed before entering the PDMA, that means that only one request must be enabled at a time in each PDMA channel. Refer to Figure 174: PDMA request mapping architecture and detail peripheral IP requests mapping table is show as the Table 67. The peripheral DMA requests can be independently activated/de-activated by programming the DMA control bit in the registers of the corresponding peripheral.

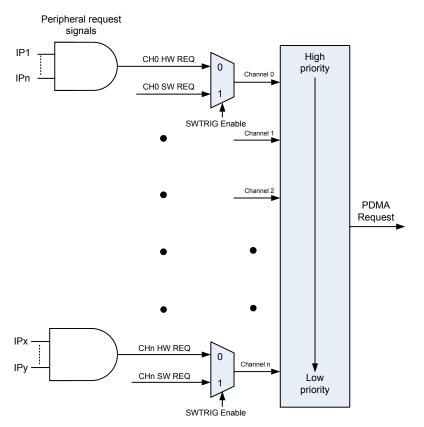


Figure 174. PDMA Request Mapping Architecture

Table 67. PDMA Channel Assignments

IP						PDMA Chann	el Number					
(x=0,1)	CH0	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	CH9	CH10	CH11
ADC	ADC											
SPIx	SPI0_RX	SPI0_TX			SPI1_RX	SPI1_TX						
USARTx			USR0_RX	USR0_TX					USR1_RX	USR1_TX		
UARTx	UR0_RX	UR0_TX			UR1_RX	UR1_TX						
SCIx									SCI0_RX	SCI0_TX	SCI1_RX	SCI1_TX
I2Cx							I2C1_RX	I2C1_TX			I2C0_RX	I2C0_TX
MCTMx	мто_сно	MT0_TRIG MT1_CH0	MT0_CH1 MT1_CH2	MT0_CH3 MT1_UEV1	MT0_CH2 MT1_CH1	MT0_UEV1 MT1_CH3	MT1_ UEV2	MT0_UEV2 MT1_TRIG				
GPTMx	GT0_CH1 GT0_CH3	GT0_UEV	GT0_CH2	GT0_CH0 GT0_TRIG					GT1_CH0	GT1_CH1 GT1_UEV	GT1_CH2 GT1_TRIG	GT1_CH3
I2S			I2S_RX	I2S_TX								
CSIF	CSIF											
SDIO							SDIO_RX	SDIO_TX				
AES											AES_OUT	AES_IN

Channel Transfer

A PDMA channel transfer is split into multiple block transactions with PDMA arbitration occurring at the end of each block transaction. Although these channel transfers can all be activated, there is only one block transaction being transferred through the bus at a time. The channel transfer sequence depends upon the channel priority setting of each PDMA channel. The total transfer size is calculated from the block transaction count and block size. The block size is equal to the product of the block length and data bit width. For an efficient transfer, it is recommended that the block length is set as a multiple of 4.

The total transfer data size calculation is shown as below equation:

A PDMA channel total transfer data size = Block transaction count × (Block length × Data width)

Channel Priority

The PDMA provides four priority levels, known as very high, high, medium and low, which can be configured by the application software. The PDMA also provides two methods to determine the channel priority. One is determined by application software configuration and the other is determined by the fixed hardware channel number. The PDMA arbitration processor will first check the software configuring channel priority level used to request the PDMA to provide the data transfer services. If more than one channel has the same priority, the channel with a smaller channel number will have priority over one with a larger channel number after arbitration.

Note that the highest priority channel will not occupy the PDMA service all the time when other lower priority channel requests are pending. The highest priority channel will be skipped for one block transaction time duration after one block transaction is complete. Then a block transaction requested by the second priority channel will be performed. After a block transaction of the second priority channel is complete, the PDMA arbitration processor will re-check all of the requested channel priority with the exception of the second priority channel since the second priority channel will be excluded after the end of a block transaction. Therefore, a block data transaction of the higher priority channel will be serviced and this channel will be excluded from the priority arbitration at the end of the block transaction. The PDMA will keep transferring the data using the method described above until all of the requested channel data transfer is complete. Refer to the accompanying figure for an example which shows the PDMA channel arbitration and scheduling.

Channel 0: priority=very high, block count=2, block length=2 block count=3, block length=4

Channel 2: priority=low, block count=3, block length=6

Priority: CH0 > CH1 > CH2

Figure 175. PDMA Channel Arbitration and Scheduling Example

Transfer Request

For a peripheral-to-memory or memory-to-peripheral transfer, one peripheral hardware request will trigger one block transaction of the dedicated PDMA channel. However, a complete data transfer of the relevant dedicated PDMA channel will be triggered when a software request occurs. It is recommended that the PDMA channel is configured to have a lower priority level and a smaller block length which is requested by the software for memory-to-memory data copy applications.

Address Mode

The PDMA provides three kinds of address modes which are the linear address, circular address and fixed address modes. These different address modes are used to support different kinds of source and destination address arrangements. The following table shows the detailed address mode combinations.

Table 68. PDMA Address Modes

Source Address Mode	Destination Address Mode
Linear Increment / Decrement Address	Linear Increment / Decrement Address
Linear Increment / Decrement Address	Circular Increment / Decrement Address
Linear Increment / Decrement Address	Fixed Address
Circular Increment / Decrement Address	Linear Increment / Decrement Address
Circular Increment / Decrement Address	Circular Increment / Decrement Address
Fixed Address	Linear Increment / Decrement Address
Fixed Address	Fixed Address

Linear Address Mode

After data is transferred, the current address will be increased or decreased by 1, 2 or 4 depending upon the data bit width setting.

Circular Address Mode

After data is transferred, the current address will be increased or decreased by 1, 2 or 4 depending upon the data bit width setting. When a block transaction is complete, the current address is loaded with the configured start address.

Fixed Address Mode

After data is transferred, the current address remains unchanged.

Auto-Reload

When the auto-reload control bit, AUTORLn, in the PDMA channel n control register PDMACHnCR is set, both the channel n current address and the channel n current transfer size will be automatically reloaded with the corresponding start value after the current PDMA channel data transfer has totally completed. The channel n will still be activated and the next relative PDMA request can be serviced without any re-configuration using the application software.

Transfer Interrupt

There are five transfer events during which the interrupts can be asserted for each PDMA channel. These are the block transaction end (BE), half-transfer (HT), transfer complete (TC), transfer error (TE) and global transfer event (GE). Setting the corresponding control bits in the PDMA interrupt enable register PDMAIER will enable the relevant interrupt events. The global interrupt event, GE, will be generated if any of the four interrupt events including the BE, HT, TC or TE occurs. Clearing the BE, HT, TC or TE event flags will also clear the GE flag. Clearing the GE flag will automatically clear all other event flags. The TE interrupt event will occur when the PDMA accesses a system reserved address space or the PDMA receives a request but when the corresponding transfer size setting is equal to zero.

Register Map

The following table shows the PDMA registers and the reset values.

Table 69. PDMA Register Map

Register	Offset	Description	Reset Value			
PDMA Channel 0 R		•				
PDMACH0CR	0x000	PDMA Channel 0 Control Register	0x0000_0000			
PDMACH0SADR	0x004	PDMA Channel 0 Source Address Register	0x0000_0000			
PDMACH0DADR	0x008	PDMA Channel 0 Destination Address Register	0x0000 0000			
PDMACH0TSR	0x010	PDMA Channel 0 Transfer Size Register	0x0000_0000			
PDMACH0CTSR	0x014	PDMA Channel 0 Current Transfer Size Register	0x0000_0000			
PDMA Channel 1 R	egisters	-				
PDMACH1CR	0x018	PDMA Channel 1 Control Register	0x0000_0000			
PDMACH1SADR	0x01C	PDMA Channel 1 Source Address Register	0x0000_0000			
PDMACH1DADR	0x020	PDMA Channel 1 Destination Address Register	0x0000_0000			
PDMACH1TSR	0x028	PDMA Channel 1 Transfer Size Register	0x0000_0000			
PDMACH1CTSR	0x02C	PDMA Channel 1 Current Transfer Size Register	0x0000_0000			
PDMA Channel 2 R	egisters					
PDMACH2CR	0x030	PDMA Channel 2 Control Register	0x0000_0000			
PDMACH2SADR	0x034	PDMA Channel 2 Source Address Register	0x0000_0000			
PDMACH2DADR	0x038	PDMA Channel 2 Destination Address Register	0x0000_0000			
PDMACH2TSR	0x040	PDMA Channel 2 Transfer Size Register	0x0000_0000			
PDMACH2CTSR	0x044	PDMA Channel 2 Current Transfer Size Register	0x0000_0000			
PDMA Channel 3 R	egisters					
PDMACH3CR	0x048	PDMA Channel 3 Control Register	0x0000_0000			
PDMACH3SADR	0x04C	PDMA Channel 3 Source Address Register	0x0000_0000			
PDMACH3DADR	0x050	PDMA Channel 3 Destination Address Register	0x0000_0000			
PDMACH3TSR	0x058	PDMA Channel 3 Transfer Size Register	0x0000_0000			
PDMACH3CTSR	0x05C	PDMA Channel 3 Current Transfer Size Register	0x0000_0000			
PDMA Channel 4 R	egisters					
PDMACH4CR	0x060	PDMA Channel 4 Control Register	0x0000_0000			
PDMACH4SADR	0x064	PDMA Channel 4 Source Address Register	0x0000_0000			
PDMACH4DADR	0x068	PDMA Channel 4 Destination Address Register	0x0000_0000			
PDMACH4TSR	0x070	PDMA Channel 4 Transfer Size Register	0x0000_0000			
PDMACH4CTSR	0x074	PDMA Channel 4 Current Transfer Size Register	0x0000_0000			
PDMA Channel 5 R	egisters					
PDMACH5CR	0x078	PDMA Channel 5 Control Register	0x0000_0000			
PDMACH5SADR	0x07C	PDMA Channel 5 Source Address Register	0x0000_0000			
PDMACH5DADR	0x080	PDMA Channel 5 Destination Address Register	0x0000_0000			
PDMACH5TSR	0x088	PDMA Channel 5 Transfer Size Register	0x0000_0000			
PDMACH5CTSR	0x08C	PDMA Channel 5 Current Transfer Size Register	0x0000_0000			
PDMA Channel 6 R	egisters					
PDMACH6CR	0x090	PDMA Channel 6 Control Register	0x0000_0000			
PDMACH6SADR	0x094	PDMA Channel 6 Source Address Register	0x0000_0000			
PDMACH6DADR	0x098	PDMA Channel 6 Destination Address Register	0x0000_0000			
PDMACH6TSR	0x0A0	PDMA Channel 6 Transfer Size Register	0x0000_0000			

Register	Offset	Description	Reset Value
PDMACH6CTSR	0x0A4	PDMA Channel 6 Current Transfer Size Register	0x0000_0000
PDMA Channel 7 R	egisters	-	
PDMACH7CR	0x0A8	PDMA Channel 7 Control Register	0x0000_0000
PDMACH7SADR	0x0AC	PDMA Channel 7 Source Address Register	0x0000_0000
PDMACH7DADR	0x0B0	PDMA Channel 7 Destination Address Register	0x0000_0000
PDMACH7TSR	0x0B8	PDMA Channel 7 Transfer Size Register	0x0000_0000
PDMACH7CTSR	0x0BC	PDMA Channel 7 Current Transfer Size Register	0x0000_0000
PDMA Channel 8 R	egisters		
PDMACH8CR	0x0C0	PDMA Channel 8 Control Register	0x0000_0000
PDMACH8SADR	0x0C4	PDMA Channel 8 Source Address Register	0x0000_0000
PDMACH8DADR	0x0C8	PDMA Channel 8 Destination Address Register	0x0000_0000
PDMACH8TSR	0x0D0	PDMA Channel 8 Transfer Size Register	0x0000_0000
PDMACH8CTSR	0x0D4	PDMA Channel 8 Current Transfer Size Register	0x0000_0000
PDMA Channel 9 R	egisters		
PDMACH9CR	0x0D8	PDMA Channel 9 Control Register	0x0000_0000
PDMACH9SADR	0x0DC	PDMA Channel 9 Source Address Register	0x0000_0000
PDMACH9DADR	0x0E0	PDMA Channel 9 Destination Address Register	0x0000_0000
PDMACH9TSR	0x0E8	PDMA Channel 9 Transfer Size Register	0x0000_0000
PDMACH9CTSR	0x0EC	PDMA Channel 9 Current Transfer Size Register	0x0000_0000
PDMA Channel 10	Registers		
PDMACH10CR	0x0F0	PDMA Channel 10 Control Register	0x0000_0000
PDMACH10SADR	0x0F4	PDMA Channel 10 Source Address Register	0x0000_0000
PDMACH10DADR	0x0F8	PDMA Channel 10 Destination Address Register	0x0000_0000
PDMACH10TSR	0x100	PDMA Channel 10 Transfer Size Register	0x0000_0000
PDMACH10CTSR	0x104	PDMA Channel 10 Current Transfer Size Register	0x0000_0000
PDMA Channel 11	Registers		
PDMACH11CR	0x108	PDMA Channel 11 Control Register	0x0000_0000
PDMACH11SADR	0x10C	PDMA Channel 11 Source Address Register	0x0000_0000
PDMACH11DADR	0x110	PDMA Channel 11 Destination Address Register	0x0000_0000
PDMACH11TSR	0x118	PDMA Channel 11 Transfer Size Register	0x0000_0000
PDMACH11CTSR	0x11C	PDMA Channel 11 Current Transfer Size Register	0x0000_0000
PDMA Global Regis	ster		
PDMAISR0	0x120	PDMA Interrupt Status Register 0	0x0000_0000
PDMAISR1	0x124	PDMA Interrupt Status Register 1	0x0000_0000
PDMAICLR0	0x128	PDMA Interrupt Status Clear Register 0	0x0000_0000
PDMAICLR1	0x12C	PDMA Interrupt Status Clear Register 1	0x0000_0000
PDMAIER0	0x130	PDMA Interrupt Enable Register 0	0x0000_0000
PDMAIER1	0x134	PDMA Interrupt Enable Register 1	0x0000_0000

Register Descriptions

PDMA Channel n Control Register - PDMACHnCR (n = 0 ~ 11)

This register is used to specify the PDMA channel n data transfer configuration.

Offset: 0x000 (0), 0x018 (1), 0x030 (2), 0x048 (3), 0x060 (4), 0x078 (5), 0x090 (6), 0x0A8 (7), 0x0C0 (8), 0x0D8 (9),

0x0F0 (10), 0x108 (11)

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
		Reserved			AUTORLn	FIXAENn		CHnPRI
Type/Reset		'			RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
	SRCAMODn	SRCAINCn	DSTAMODn	DSTAINCn		DWIDTHn	SWTRIGn	CHnEN
Type/Reset	RW 0	RW 0	RW 0	RW 0				

Bits	Field	Descriptions

[11] AUTORLn

Channel n Auto Reload Enable Control

- 0: Disable Auto Reload function
- 1: Enable Auto Reload function

If this bit is set to 1 to enable the auto-reload function, the channel n current address and the channel n current transfer size will be reloaded with the relevant start value and the PDMA channel n will be activated when a transfer is complete. If this bit is cleared to 0, the channel n current address and the channel n current transfer size will remain unchanged and the PDMA channel n will be disabled after a transfer completion.

[10] FIXAENn

Channel n Fixed Address Enable control

- 0: Disable fixed address function in the circular address mode
- 1: Enable fixed address function in the circular address mode

Note that this bit is only available when the source or destination address mode is set to be in the circular address mode. For example, the source address mode is set as in the linear address mode and the destination address mode is set as in the circular mode. If this bit is set to enable the fixed address function, then the source address mode will still be in the linear address but the destination address mode will be in the fixed address mode.

[9:8] CHnPRI

Channel n Priority

00: Low 01: Medium 10: High

11: Very high

The CHnPRI field is used to configure the channel priority using the application program. If there are more than one channel which have the same software configured priority level, the channel with the smaller channel number will have priority to transfer one block of data after the arbitration.

Bits	Field	Descriptions
[7]	SRCAMODn	Channel n Source Address Mode selection 0: Linear address mode 1: Circular address mode In the linear address mode, the current source address value can be incremented or decremented, determined by the SRCAINCn bit value during a complete transfer. In the circular address mode, the current source address value can be incremented or decremented which is also determined by the SRCAINCn bit value during a block transfer and will be loaded with the lower 16-bit value of the PDMACHnSADR register, which will be regarded as the current source address when a block
[6]	SRCAINCn	transaction has completed. Channel n Source Address Increment control 0: Increment 1: Decrement This bit is used to determine whether the current source address is increased or decreased during a complete transfer in the linear address mode or a block transfer
[5]	DSTAMODn	in the circular address mode. Channel n Destination Address Mode selection 0: Linear address mode 1: Circular address mode In linear address mode, the current destination address value can be incremented or decremented, determined by the DSTAINCn bit value during a complete transfer. In the circular address mode, the current destination address value can be incremented or decremented which is also determined by the DSTAINCn bit value during a block transfer and will be loaded with the lower 16-bit value of the PDMACHnDADR register, which will be regarded as the current destination address when a block transfer has completed.
[4]	DSTAINCn	Channel n Destination Address Increment Control 0: Increment 1: Decrement This bit is used to determine if the current destination address is increased or decreased during a complete transfer in the linear address mode or a block transfer in the circular address mode.
[3:2]	DWIDTHn	Data Bit Width selection 00: 8-bit 01: 16-bit 10: 32-bit 11: Reserved The field is used to select the data bit width of the corresponding PDMA channel n.
[1]	SWTRIGn	Software Trigger control 0: No operation 1: Software triggered transfer request Setting this bit will generate a memory-to-memory software transfer request on the corresponding PDMA channel n. It is automatically cleared when a transfer has completely finished.
[0]	CHnEN	Channel n Enable control 0: Disable the PDMA channel n 1: Enable the PDMA channel n Setting this bit will enable a software or hardware transfer request on the PDMA channel n. It is automatically cleared by hardware when a transfer has completed with the auto-reload function being disabled. However, if the AUTORLn bit is set to 1 to enable the auto-reload function, this bit will be remain high to enable the PDMA channel n function for the next transfer request instead of automatically being cleared by hardware after a transfer has finished.

PDMA Channel n Source Address Register – PDMACHnSADR (n = 0 ~ 11)

This register specifies the source address of the PDMA channel n.

0x004 (0), 0x01C (1), 0x034 (2), 0x04C (3), 0x064 (4), 0x07C (5), 0x094 (6), 0x0AC (7), 0x0C4

(8), 0x0DC (9), 0x0F4 (10), 0x10C (11)

Reset value: 0x0000 0000

	31		30		29		28		27		26		25		24	
									SADR	'n						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									SADR	'n						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
	15		14		13		12		11 SADR	ln	10		9		8	
Type/Reset	15 RW	0	14	0	13 RW	0	12	0			10 RW	0	9 RW	0	8 RW	0
Type/Reset		0		0		0		0	SADR			0		0		0
Type/Reset		0	RW	0	RW	0	RW	0	SADR	0		0		0		0

Bits	Field	Descriptions	
[31:0]	SADRn	Channel n Source Address	

The register is used to specify the 32-bit source address of the PDMA channel n.

PDMA Channel n Destination Address Register – PDMACHnDADR (n = 0 ~ 11)

This register specifies the destination address of the PDMA channel n.

Offset: 0x008 (0), 0x020 (1), 0x038 (2), 0x050 (3), 0x068 (4), 0x080 (5), 0x098 (6), 0x0B0 (7), 0x0C8 (8),

0x0E0 (9), 0x0F8 (10), 0x110 (11)

	31		30		29		28		27		26		25		24	
									DADR	n						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									DADR	n						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
									DADR	n						
Type/Reset	RW	0	RW	0	RW	0	RW	0	DADR RW		RW	0	RW	0	RW	0
Type/Reset	RW 7	0	RW 6	0	RW 5	0	RW 4	0			RW 2	0	RW 1	0	RW 0	0
Type/Reset	RW 7	0	RW 6	0	RW 5	0	RW 4	0		0	RW 2	0	RW 1	0	RW 0	0

Bits	Field	Descriptions
[31:0]	DADRn	Channel n Destination Address
		The register is used to specify the 32-bit destination address of the PDMA channel n.

PDMA Channel n Transfer Size Register – PDMACHnTSR (n = 0 ~ 11)

This register is used to specify the block transaction count and block transaction length.

Offset: 0x010 (0), 0x028 (1), 0x040 (2), 0x058 (3), 0x070 (4), 0x088 (5), 0x0A0 (6), 0x0B8 (7), 0x0D0 (8),

0x0E8 (9), 0x100 (10), 0x118 (11)

	31		30		29		28		27		26		25		24	
									BLKCN	Tn						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									BLKCN	Tn						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
									Reserv	/d						
Type/Reset																
	7		6		5		4		3		2		1		0	
									BLKLE	Nn						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[31:16]	BLKCNTn	Channel n Block Transaction Count BLKCNTn represents the number of block transactions for a channel n complete transfer. The capacity of a complete transfer is the product of the BLKCNTn and BLKLENn values. The maximum BLKCNTn value is 65,535.
[7:0]	BLKLENn	Channel n Block Length The BLKLENn represents the length of a data block. The data width is defined by the DWIDTHn field in the PDMACHnCR register. The maximum BLKLENn value is 255.

PDMA Channel n Current Transfer Size Register – PDMACHnCTSR (n = 0 ~ 11)

This register is used to indicate the current block transaction count.

Offset: 0x014 (0), 0x02C (1), 0x044 (2), 0x05C (3), 0x074 (4), 0x08C (5), 0x0A4 (6), 0x0BC (7), 0x0D4

(8), 0x0EC (9), 0x104 (10), 0x11C (11)

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					CBLKCNTn			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO 0	RO (0 RO 0) RO 0
	23	22	21	20	19	18	17	16
					CBLKCNTn			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO 0	RO (O RO C) RO 0
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset					'			
	7	6	5	4	3	2	1	0
				· ·	Reserved			

Type/Reset

Bits	Field	Descriptions
[31:16]	CBLKCNTn	Channel n Current Block Count
		The CBLKCNTn field is a 16-bit read-only value indicating the num
		that remain to be transferred. After a data block has transferre

The CBLKCNTn field is a 16-bit read-only value indicating the number of data blocks that remain to be transferred. After a data block has transferred completely, the CBLKCNTn value will be decremented by 1. Writing a new value to the BLKCNTn field in the PDMACHnTSR register will update the CBLKCNTn field value.

PDMA Interrupt Status Register 0 – PDMAISR0

This register is used to indicate the corresponding interrupt status of the PDMA channel 0 \sim 5.

Offset: 0x120

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
		Reserved	TEISTA5	TCISTA5	HTISTA5	BEISTA5	GEISTA5	TEISTA4
Type/Reset			RO 0					
	23	22	21	20	19	18	17	16
	TCISTA4	HTISTA4	BEISTA4	GEISTA4	TEISTA3	TCISTA3	HTISTA3	BEISTA3
Type/Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8
	GEISTA3	TEISTA2	TCISTA2	HTISTA2	BEISTA2	GEISTA2	TEISTA1	TCISTA1
Type/Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	7	6	5	4	3	2	1	0
	HTISTA1	BEISTA1	GEISTA1	TEISTA0	TCISTA0	HTISTA0	BEISTA0	GEISTA0
Type/Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0

Bits	Field	Descriptions
[29], [24], [19], [14], [9], [4]		Channel n Transfer Error Interrupt Status (n = 0 ~ 5) 0: No Transfer Error occurs 1: Transfer Error occurs This bit is set by hardware and is cleared by writing a "1" into the corresponding interrupt status clear bit in the PDMAISR0 register. A Transfer error will occur when the PDMA accesses a system reserved address space or the PDMA receives a request but when the corresponding transfer capacity is equal to zero.
[28], [23], [18], [13], [8], [3]	TCISTAn	Channel n Transfer Complete Interrupt Status (n= 0 ~ 5) 0: No Transfer Completion Occurs 1: Transfer Completion Occurs This bit is set by hardware and is cleared by writing a "1" into the corresponding interrupt status clear bit in the PDMAISR0 register. The Transfer Completion event will occur when the PDMA has completed a data transfer task.
[27], [22], [17], [12], [7], [2]		Channel n Half Transfer Interrupt Status (n= 0 ~ 5) 0: No Half Transfer Event Occurs 1: Half Transfer Event Occurs This bit is set by hardware and is cleared by writing a "1" into the corresponding interrupt status clear bit in the PDMAISR0 register. A Half Transfer event will occur when the PDMA has completed half of the data transfer task.
[26], [21], [16], [11], [6], [1]	BEISTAn	Channel n Block Transaction End Interrupt Status (n= 0 ~ 5) 0: No Block Transaction End Event Occurs 1: Block Transaction End Event Occurs This bit is set by hardware and is cleared by writing a "1" into the corresponding interrupt status clear bit in the PDMAISR0 register. A Block Transaction End event will occur when the PDMA completes a data block transaction task.

Bits	Field	Descriptions
[25], [20] [15], [10] [5], [0]		Channel n Global Transfer Interrupt Status (n= 0 ~ 5) 0: No TE, TC, HT or BE event occurs 1: TE, TC, HT or BE event occurs This bit is set by hardware and is cleared by writing a "1" into the corresponding interrupt status clear bit, GEICLRn, in the PDMAISR0 register. A Global Transfer Event will occur if any of the BE, HT, TC or TE events occur. Also clearing any of the BE, HT, TC or TE event interrupt flags will clear the GE interrupt flag. Note that if a "1" is written into the GEICLRn bit in the PDMAISR0 register to clear the GE interrupt flag, the BE, HT, TC and TE event interrupt flags will also be cleared to 0 together with the GE interrupt status flag.

PDMA Interrupt Status Register 1 – PDMAISR1

This register is used to indicate the corresponding interrupt status of the PDMA channel 6 \sim 11.

Offset: 0x124
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
		Reserved	Reserved	TCISTA11	HTISTA11	BEISTA11	GEISTA11	TEISTA10
Type/Reset			RO 0					
	23	22	21	20	19	18	17	16
	TCISTA10	HTISTA10	BEISTA10	GEISTA10	TEISTA9	TCISTA9	HTISTA9	BEISTA9
Type/Reset	RO 0							
	15	14	13	12	11	10	9	8
	GEISTA9	TEISTA8	TCISTA8	HTISTA8	BEISTA8	GEISTA8	TEISTA7	TCISTA7
Type/Reset	RO 0							
	7	6	5	4	3	2	1	0
	HTISTA7	BEISTA7	GEISTA7	TEISTA6	TCISTA6	HTISTA6	BEISTA6	GEISTA6
Type/Reset	RO 0							

Bits	Field	Descriptions
[29], [24], [19], [14], [9], [4]		Channel n Transfer Error Interrupt Status (n = 6 ~ 11) 0: No Transfer Error occurs 1: Transfer Error occurs This bit is set by hardware and is cleared by writing a "1" into the corresponding interrupt status clear bit in the PDMAISR0 register. A Transfer error will occur when the PDMA accesses a system reserved address space or the PDMA receives a request but when the corresponding transfer capacity is equal to zero.
[28], [23], [18], [13], [8], [3]		Channel n Transfer Complete Interrupt Status (n = 6 ~ 11) 0: No Transfer Completion Occurs 1: Transfer Completion Occurs This bit is set by hardware and is cleared by writing a "1" into the corresponding interrupt status clear bit in the PDMAISR0 register. The Transfer Completion event will occur when the PDMA has completed a data transfer task.
[27], [22], [17], [12], [7], [2]		Channel n Half Transfer Interrupt Status (n = 6 ~ 11) 0: No Half Transfer Event Occurs 1: Half Transfer Event Occurs This bit is set by hardware and is cleared by writing a "1" into the corresponding interrupt status clear bit in the PDMAISR0 register. A Half Transfer event will occur when the PDMA has completed half of the data transfer task.

Bits	Field	Descriptions
[26], [21], [16], [11], [6], [1]		Channel n Block Transaction End Interrupt Status (n = 6 ~ 11) 0: No Block Transaction End Event Occurs 1: Block Transaction End Event Occurs This bit is set by hardware and is cleared by writing a "1" into the corresponding interrupt status clear bit in the PDMAISR0 register. A Block Transaction End event will occur when the PDMA completes a data block transaction task.
[25], [20], [15], [10], [5], [0]		Channel n Global Transfer Interrupt Status (n = 6 ~ 11) 0: No TE, TC, HT or BE event occurs 1: TE, TC, HT or BE event occurs This bit is set by hardware and is cleared by writing a "1" into the corresponding interrupt status clear bit, GEICLRn, in the PDMAISR0 register. A Global Transfer Event will occur if any of the BE, HT, TC or TE events occur. Also clearing any of the BE, HT, TC or TE event interrupt flags will clear the GE interrupt flag. Note that if a "1" is written into the GEICLRn bit in the PDMAISR0 register to clear the GE interrupt flag, the BE, HT, TC and TE event interrupt flags will also be cleared to 0 together with the GE interrupt status flag.

PDMA Interrupt Status Clear Register 0 – PDMAISCR0

This register is used to clear the corresponding interrupt status bits in the PDMAISR0 Register.

Offset: 0x128
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
		Reserved	TEICLR5	TCICLR5	HTICLR5	BEICLR5	GEICLR5	TEICLR4
Type/Reset			WC 0					
	23	22	21	20	19	18	17	16
	TCICLR4	HTICLR4	BEICLR4	GEICLR4	TEICLR3	TCICLR3	HTICLR3	BEICLR3
Type/Reset	WC 0							
	15	14	13	12	11	10	9	8
	GEICLR3	TEICLR2	TCICLR2	HTICLR2	BEICLR2	GEICLR2	TEICLR1	TCICLR1
Type/Reset	WC 0							
	7	6	5	4	3	2	1	0
	7 HTICLR1	6 BEICLR1	5 GEICLR1	4 TEICLR0	3 TCICLR0	2 HTICLR0	1 BEICLR0	0 GEICLR0

Bits	Field	Descriptions
[29], [24], [19], [14], [9], [4]		Channel n Transfer Error Interrupt Status Clear (n = 0 ~ 5) 0: No Operation 1: Clear the corresponding TEISTAn bit in the PDMAISR0 register Writing a "1" into the TEICLRn bit will clear the TEISTAn status bit in the PDMAISR0 register. This bit will be automatically cleared to 0 after a "1" is written.
[28], [23], [18], [13], [8], [3]		Channel n Transfer Complete Interrupt Status Clear (n = 0 ~ 5) 0: No Operation 1: Clear the corresponding TCISTAn bit in the PDMAISR0 register Writing a "1" into the TCICLRn bit will clear the TCISTAn status bit in the PDMAISR0 register. This bit will be automatically cleared to 0 after a "1" is written.

Bits	Field	Descriptions
[27], [22], [17], [12], [7], [2]		Channel n Half Transfer Interrupt Status Clear (n = 0 ~ 5) 0: No Operation 1: Clear the corresponding HTISTAn bit in the PDMAISR0 register Writing a "1" into the HTRICLRn bit will clear the HTISTAn status bit in the PDMAISR0 register. This bit will be automatically cleared to 0 after a "1" is written.
[26], [21], [16], [11], [6], [1]		Channel n Block Transaction End Interrupt Status Clear (n = 0 ~ 5) 0: No Operation 1: Clear the corresponding BEISTAn bit in the PDMAISR0 register Writing a "1" into the BEICLRn bit will clear the BEISTAn status bit in the PDMAISR0 register. This bit will automatically cleared to 0 after a data "1" is written.
[25], [20], [15], [10], [5], [0]		Channel n Global Transfer Event Interrupt Status Clear (n = 0 ~ 5) 0: No Operation 1: Clear the corresponding TEISTAn, TCISTAn, HTISTAn, BEISTAn, and GEISTAn bits in the PDMAISR0 register Writing a "1" into the GEICLRn bit will clear the GEISTAn status bit together with the TEISTAn, TCISTAn, HTISTAn, BEISTAn bits in the PDMAISR0 register. This bit will be automatically cleared to 0 after a "1" is written.

PDMA Interrupt Status Clear Register 1 – PDMAISCR1

This register is used to clear the corresponding interrupt status bits in the PDMAISR1 Register.

Offset: 0x12C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
		Reserved	TEICLR11	TCICLR11	HTICLR11	BEICLR11	GEICLR11	TEICLR10
Type/Reset			WC 0	WC 0	WC 0	WC 0	WC 0	WC 0
	23	22	21	20	19	18	17	16
	TCICLR10	HTICLR10	BEICLR10	GEICLR10	TEICLR9	TCICLR9	HTICLR9	BEICLR9
Type/Reset	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0
	15	14	13	12	11	10	9	8
	15 GEICLR9	14 TEICLR8	13 TCICLR8	12 HTICLR8	11 BEICLR8	10 GEICLR8	9 TEICLR7	8 TCICLR7
Type/Reset			TCICLR8			_		
Type/Reset	GEICLR9	TEICLR8	TCICLR8	HTICLR8	BEICLR8	GEICLR8	TEICLR7	TCICLR7
Type/Reset	GEICLR9	TEICLR8 WC 0	TCICLR8 WC 0	HTICLR8	BEICLR8	GEICLR8 WC 0	TEICLR7	TCICLR7

Bits	Field	Descriptions
[29], [24], [19], [14], [9], [4]		Channel n Transfer Error Interrupt Status Clear (n = 6 ~ 11) 0: No Operation 1: Clear the corresponding TEISTAn bit in the PDMAISR1 register Writing a "1" into the TEICLRn bit will clear the TEISTAn status bit in the PDMAISR1 register. This bit will be automatically cleared to 0 after a "1" is written.
[28], [23], [18], [13], [8], [3]		Channel n Transfer Complete Interrupt Status Clear (n = 6 ~ 11) 0: No Operation 1: Clear the corresponding TCISTAn bit in the PDMAISR1 register Writing a "1" into the TCICLRn bit will clear the TCISTAn status bit in the PDMAISR1 register. This bit will be automatically cleared to 0 after a "1" is written.

Bits	Field	Descriptions
[27], [22], [17], [12], [7], [2]		Channel n Half Transfer Interrupt Status Clear (n = 6 ~ 11) 0: No Operation 1: Clear the corresponding HTISTAn bit in the PDMAISR1 register Writing a "1" into the HTRICLRn bit will clear the HTISTAn status bit in the PDMAISR1 register. This bit will be automatically cleared to 0 after a "1" is written.
[26], [21], [16], [11], [6], [1]		Channel n Block Transaction End Interrupt Status Clear (n = 6 ~ 11) 0: No Operation 1: Clear the corresponding BEISTAn bit in the PDMAISR1 register Writing a "1" into the BEICLRn bit will clear the BEISTAn status bit in the PDMAISR1 register. This bit will automatically cleared to 0 after a data "1" is written.
[25], [20], [15], [10], [5], [0]		Channel n Global Transfer Event Interrupt Status Clear (n = 6 ~ 11) 0: No Operation 1: Clear the corresponding TEISTAn, TCISTAn, HTISTAn, BEISTAn, and GEISTAn bits in the PDMAISR1 register Writing a "1" into the GEICLRn bit will clear the GEISTAn status bit together with the TEISTAn, TCISTAn, HTISTAn, BEISTAn bits in the PDMAISR1 register. This bit will be automatically cleared to 0 after a "1" is written.

PDMA Interrupt Enable Register 0 – PDMAIER0

This register is used to enable or disable the related interrupts of the PDMA channel 0 \sim 5.

Offset: 0x130
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
		Reserved	TEIE5	TCIE5	HTIE5	BEIE5	GEIE5	TEIE4
Type/Reset			RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
	23	22	21	20	19	18	17	16
	TCIE4	HTIE4	BEIE4	GEIE4	TEIE3	TCIE3	HTIE3	BEIE3
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
	15	14	13	12	11	10	9	8
	GEIE3	TEIE2	TCIE2	HTIE2	BEIE2	GEIE2	TEIE1	TCIE1
T (D)						0		
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
Type/Reset	RW 0	RW 0	RW 0 5	RW 0	RW 0			
Type/Reset	RW 0 7 HTIE1					RW 0		RW 0

Bits	Field	Descriptions
[29], [24] [19], [14] [9], [4]	•	Channel n Transfer Error Interrupt Enable control (n = 0 ~ 5) 0: Transfer Error interrupt is disabled 1: Transfer Error interrupt is enabled This bit is set and cleared by software.
[28], [23] [18], [13] [8], [3]		Channel n Transfer Complete Interrupt Enable control (n = 0 ~ 5) 0: Transfer Completion interrupt is disabled 1: Transfer Completion interrupt is enabled This bit is set and cleared by software.
[27], [22] [17], [12] [7], [2]		Channel n Half Transfer Interrupt Enable control (n = 0 ~ 5) 0: Half Transfer interrupt is disabled 1: Half Transfer interrupt is enabled This bit is set and cleared by software.

Bits	Field	Descriptions
[26], [2 [16], [11], [1]	21], BEIEn [6],	Channel n Block Transaction End Interrupt Enable control (n = 0 ~ 5) 0: Block Transaction End interrupt is disabled 1: Block Transaction End interrupt is enabled This bit is set and cleared by software.
[25], [2 [15], [1 [5], [0]	20], GEIEn 0],	Channel n Global Transfer Event Interrupt Enable control (n = 0 ~ 5) 0: Global Transfer Event interrupt is disabled 1: Global Transfer Event interrupt is enabled This bit is set and cleared by software.

PDMA Interrupt Enable Register 1 – PDMAIER1

This register is used to enable or disable the related interrupts of the PDMA channel $6 \sim 11$.

Offset: 0x134
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
		Reserved	TEIE11	TCIE11	HTIE11	BEIE11	GEIE11	TEIE10
Type/Reset			RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
	23	22	21	20	19	18	17	16
	TCIE10	HTIE10	BEIE10	GEIE10	TEIE9	TCIE9	HTIE9	BEIE9
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
	15	14	13	12	11	10	9	8
	15 GEIE9	14 TEIE8	13 TCIE8	12 HTIE8	11 BEIE8	10 GEIE8	9 TEIE7	8 TCIE7
Type/Reset	GEIE9			HTIE8	BEIE8	GEIE8	TEIE7	
Type/Reset	GEIE9	TEIE8	TCIE8	HTIE8	BEIE8	GEIE8	TEIE7	TCIE7
Type/Reset	GEIE9	TEIE8 RW 0	TCIE8 RW 0	HTIE8 RW 0	BEIE8 RW 0	GEIE8 RW 0	TEIE7	TCIE7 RW 0

Bits	Field	Descriptions
[29], [24] [19], [14] [9], [4]		Channel n Transfer Error Interrupt Enable control (n = 6 ~ 11) 0: Transfer Error interrupt is disabled 1: Transfer Error interrupt is enabled This bit is set and cleared by software.
[28], [23] [18], [13] [8], [3]		Channel n Transfer Complete Interrupt Enable control (n = 6 ~ 11) 0: Transfer Completion interrupt is disabled 1: Transfer Completion interrupt is enabled This bit is set and cleared by software.
[27], [22] [17], [12] [7], [2]	•	Channel n Half Transfer Interrupt Enable control (n = 6 ~ 11) 0: Half Transfer interrupt is disabled 1: Half Transfer interrupt is enabled This bit is set and cleared by software.
[26], [21] [16], [11], [6] [1]		Channel n Block Transaction End Interrupt Enable control (n = 6 ~ 11) 0: Block Transaction End interrupt is disabled 1: Block Transaction End interrupt is enabled This bit is set and cleared by software.
[25], [20] [15], [10] [5], [0]		Channel n Global Transfer Event Interrupt Enable control (n = 6 ~ 11) 0: Global Transfer Event interrupt is disabled 1: Global Transfer Event interrupt is enabled This bit is set and cleared by software.

26 Extend Bus Interface (EBI)

Introduction

The external bus interface is able to access external parallel interface devices such as SRAM, Flash and LCD modules. The interface is memory mapped into the internal address bus of the Cortex-M3. The data and address lines can be multiplexed in order to reduce the number of pins required to connect to external devices. The bus read/write timing can be adjusted to meet the timing specifications of the external devices. Note that the interface only supports asynchronous 8 or 16-bit bus interfaces.

Features

- Programmable interface for various memory types
 - Asynchronous static random access memory SRAM
 - Read-only memory ROM
 - NOR Flash memory
 - 8-bit or 16-bit parallel bus CPU interface device
- Translates AHB transactions into appropriate external device protocol
- 4 memory bank regions and independent chip select control for each memory bank
- Programmable timings to support a wide range of devices
 - Programmable wait states or external asynchronous ready signal control
 - Programmable bus turnaround cycles
 - Programmable output enable and write enable cycles extension for each memory bank
 - Individual active high or low setting of interface control signal for each memory bank
- Supports page read mode
- Automatic translation when AHB transaction width and external memory interface width is different
- Write buffer to decrease stalling of the AHB write burst transactions
- Supports multiplexed and non-multiplexed address and data line configurations
 - Up to 25 address lines
 - Up to 16-bit data bus width

Functional Descriptions

An overview of the EBI module is shown in Figure 176. The EBI enables internal CPU and other bus matrix master peripherals to access external memories or devices. The EBI automatically translates the internal AHB transactions into the external device protocol. In particular, if the selected external memory is 16 or 8 bits width, then 32-bit wide transactions on the AHB are auto split into consecutive 16 or 8-bit accesses.

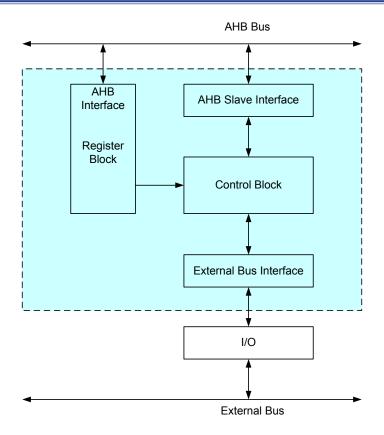


Figure 176. EBI Block Diagram

The EBI supports multiplexed and non-multiplexed addressing modes. The non-multiplexed addressing mode can be operated more efficiently and faster but it requires a higher number of pins. The multiplexed addressing modes are slower and require an external address latch device and a lower number of pins. The functionality of the 16 EBI_AD pins depends on what kind of the multiplexed addressing mode is used. They are used for both address and data in the multiplexed modes. Also for the non-multiplexed 8-bit address mode, both the address and data fit into these 16 EBI_AD pins. If more address bits or data bits are needed, an external latch can be used to support up to 24-bit addresses or 16-bit data in the multiplexed addressing modes using only the 16 EBI_AD pins. Furthermore, independent of the addressing mode, up to 25 non-multiplexed address lines can be enabled on the EBI_A pin connections. The detailed operation in the supported modes is presented in the following sections. The AHB clock (HCLK) is the reference clock for the EBI.

Non-multiplexed 8-bit Data 8-bit Address Mode

In this mode, 8-bit address and 8-bit data is supported. The address is located on the higher 8 bits of the EBI_AD lines and the data uses the lower 8 bits. This mode is set by programming the MODE field in the EBICR register to D8A8. Read and write timing in the 8-bit mode are shown in Figure 177 and Figure 178.

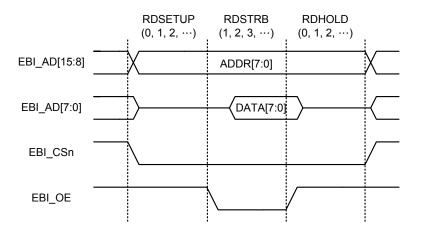


Figure 177. EBI Non-multiplexed 8-bit Data, 8-bit Address Read Operation

Figure 178. EBI Non-multiplexed 8-bit Data, 8-bit Address Write Operation

Non-multiplexed 16-bit Data N-bit Address Mode

In this non-multiplexed mode 16-bit data is provided on the 16 EBI_AD lines. The addresses are provided on the EBI_A lines. This mode is set by programming the MODE field in the EBICR register to D16. Read and write signals are shown in Figure 179 and Figure 180 for the case in which N address lines on EBI A have been enabled.

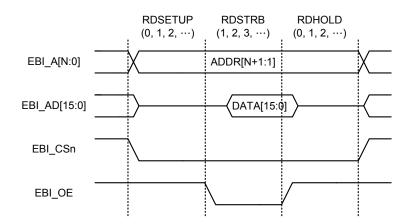


Figure 179. EBI Non-multiplexed 16-bit Data, N-bit Address Read Operation

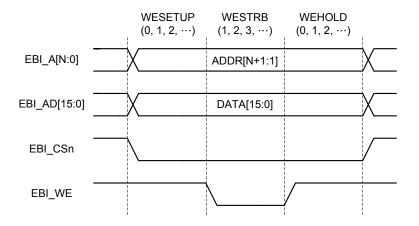


Figure 180. EBI Non-multiplexed 16-bit Data, N-bit Address Write Operation

Since the internal AHB address (HADDR) is a byte (8-bit) address whereas the 16-bit width of external device is addressed in words (16-bit), the address actually issued to the external device varies according to the data width as shown in the following table.

Memory width	Data address issued to the EBI
8-bit	$HADDR[N:0] \to EBI_A[N:0]$
16-bit	$HADDR[N+1:1] \to EBI_A[N:0]$

In case of a 16-bit external device width, the EBI will internally use HADDR[N+1:1] to generate the address EBI_A[N:0] for external device. Whatever the external memory width (16-bit or 8-bit), EBI_A[0] should be connected to external device address A[0].

Multiplexed 16-bit Data, 16-bit Address Mode

In this mode, 16-bit address and 16-bit data is supported, but the utilization of an external latch and an extra signal EBI_ALE is required. The 16-bit address and 16-bit data bits are multiplexed on the EBI_AD pins. An EBI address latch setup diagram is shown in Figure 181. This mode is set by programming the MODE field in the EBICR register to D16A16ALE.

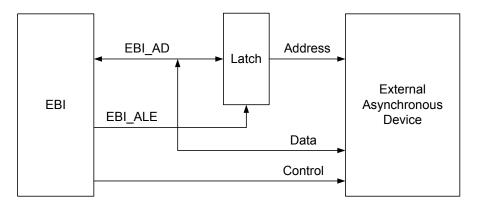


Figure 181. An EBI Address Latch Setup Diagram

At the start of the transaction the address is output on the EBI_AD lines. The external address latch is controlled by the EBI_ALE signal and stores the address. Then the data is read or written according to operation. Read and write signals are shown in Figure 182 and Figure 183.

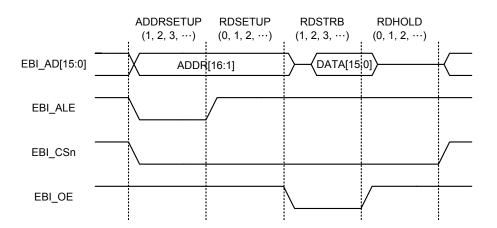


Figure 182. EBI Multiplexed 16-bit Data, 16-bit Address Read Operation

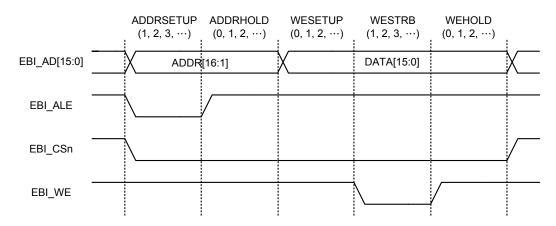


Figure 183. EBI Multiplexed 16-bit Data, 16-bit Address Write Operation

Multiplexed 8-bit Data, 24-bit Address Mode

This mode allows 24-bit address with 8-bit data multiplexed on the EBI_AD[15:0] lines to reduce the pins utilization and uses the EBI_ALE signal to decode 8-bit data and 24-bit address. The upper 8 bits of the EBI_AD lines (EBI_AD[15:8]) are consecutively used for the highest 8 bits and the lowest 8 bits of the address. The lower 8 bits of the EBI_AD lines (EBI_AD[7:0]) are used for the middle 8 address bits and 8-bit data. This mode is set by programming the MODE field in the EBICR register to D8A24ALE. Read and write signals are shown in Figure 184 and Figure 185 respectively.

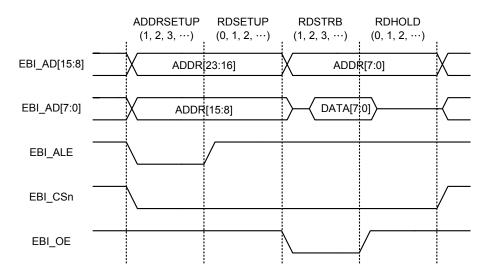


Figure 184. EBI Multiplexed 8-bit Data, 24-bit Address Read Operation

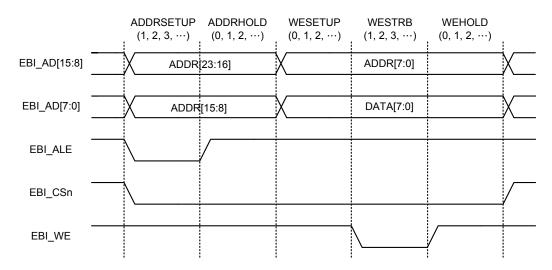


Figure 185. EBI Multiplexed 8-bit Data, 24-bit Address Write Operation

Page Read Operation

Page mode read operation is a performance-enhancing extension to the legacy asynchronous read transactions. In page-mode-capable devices, an initial asynchronous read access is preformed and then adjacent addresses can be read quickly by simply changing the low-order address. For example, Addresses A[3:0] are used to determine the members of the 16-address page mode device. Any change in addresses A[4] or higher will stop the page read and initiate a new asynchronous read access time. Page mode takes advantage of the fact that adjacent addresses can be read faster than random addresses.

Page mode operation is enabled by setting the PAGEMODE bit in the EBIRTRn register to 1. If enabled, the RDPG field in the EBIPCR register defines the duration of an intrapage access and the PAGELEN field in the EBIPCR register defines the number of addresses members in a page. The INCHIT bit of the EBIPCR register defines whether page hits occur on any addresses member in a page or only on incremental addresses. Page mode reads can be triggered by consecutive reads resulting from wide AHB reads which are automatically translated into multiple narrow external device reads. The following figures show typical page mode read sequences for all addressing modes.

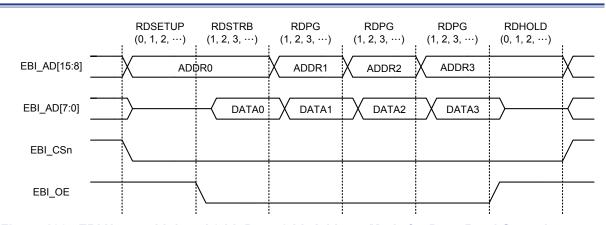


Figure 186. EBI Non-multiplexed 8-bit Data, 8-bit Address Mode for Page Read Operation

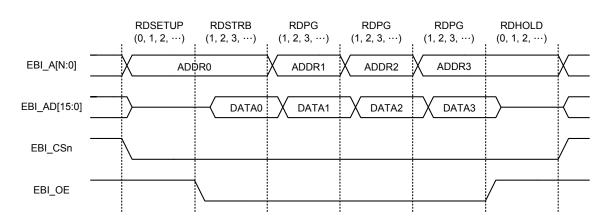


Figure 187. EBI Non-multiplexed 16-bit Data, N-bit Address Mode for Page Read Operation

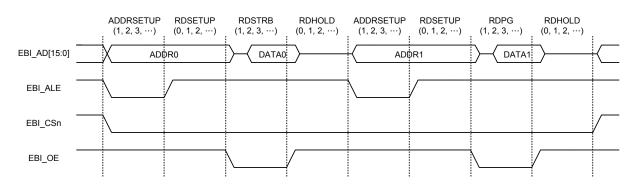
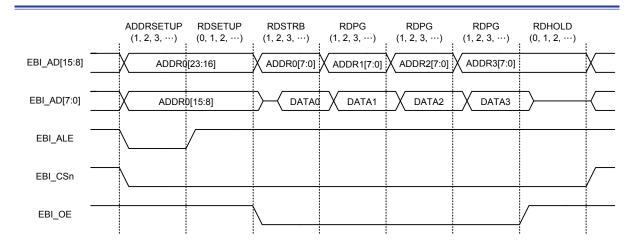
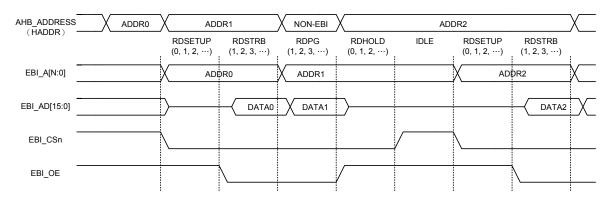


Figure 188. EBI Multiplexed 16-bit Data, 16-bit Address Mode for Page Read Operation




Figure 189. EBI Multiplexed 8-bit Data, 24-bit Address Mode for Page Read Operation

The PAGEOPEN field of the EBIPCR defines the maximum duration for which a page read is kept active. New read transactions which hit an open page are started with RDPG timing if the PAGEOPEN time has not been exceeded at the start of such a transaction. Page read transactions are allowed to close the page mode with the following conditions:

- The PAGEOPEN time is exceeded during the continuous read transactions
- The EBI transactions insert a write or a non-intrapage read
- The lack of a new EBI transaction

Figure 190 shows an example in which only ADDR1 benefits from intrapage timing because an unrelated address of AHB transfer is inserted and causes late arrival of ADDR2. The page is considered closed and ADDR2 can therefore not benefit from intrapage timing and it regards it as a normal read access.

Note1: HADDR is AHB bus address input.

Figure 190. EBI Page Close Example

Write Buffer and EBI Status

The EBI has a 32-bit wide write buffer. The write buffer can be used to limit stalling of an AHB write burst transaction which comes from the CPU or PDMA to a potentially slow external device.

The EBIBUSY status bit in the EBISR register indicates whether an AHB transaction is still active in the EBI or not. When performing an AHB read or write, the EBIBUSY bit stays 1 until the required transaction(s) with the external device has finished.

Bus Turn-around and Idle Cycles

The EBI_AD lines can be driven by either the EBI or the external device depending on the cycle state of EBI bus. The RDHOLD timing parameter is for the bus turn-around time and should be programmed to ensure enough time for the characteristics of an external device. The default setting for the EBI is to insert an IDLE cycle between EBI transactions to the same bank. The IDLE cycle insertion is shown for two back-to-back read transactions in Figure 191. For cases where the IDLE state can also provide the required bus turn-around time, the RDHOLD parameter can be programmed to 0. For increased EBI access performance, the automatic IDLE state insertion can be disabled by setting the NOIDLEn bits in the EBICR register to 1. This example is shown in Figure 192 for two back-to-back reads in a non-multiplexed address mode.

An IDLE cycle will automatically be inserted for the following cases:

- Between two external device transactions to the same bank when the NOIDLEn bit is 0.
- Between two external device transactions to different banks.
- Between a read and a subsequent write on the EBI_AD lines.
- When no request for an external transaction is available in the EBI.

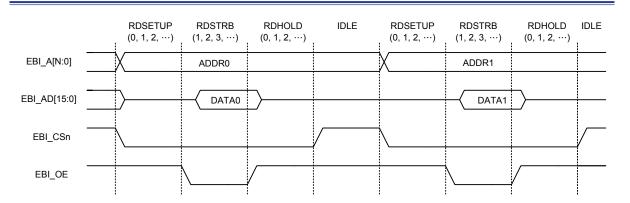


Figure 191. EBI Inserts an IDLE Cycle between Transactions in the Same Bank (NOIDLE = 0)

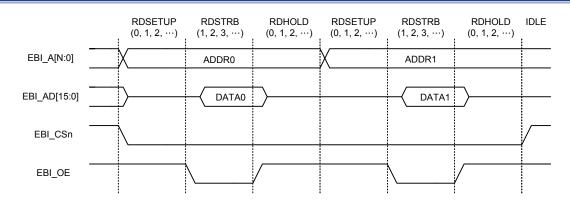


Figure 192. EBI De-asserts an IDLE Cycle between Transactions in the Same Bank (NOIDLE = 1)

AHB Transaction Width Conversion

The mapping of AHB transactions to an external device depends on the data width of the external device and whether the byte lanes of the external device are supported or not. The Table 70 shows the EBI mapping of AHB transactions to external device transactions. The EBI will automatically translate the different AHB transaction width to external device transactions which matches the external bus capabilities of the device.

- If the AHB master (CPU or PDMA) transaction width is larger than the external bus transaction width. The EBI will split and translate the AHB transaction into consecutive multiple external transactions which have consecutively incrementing the address and start with the least significant data from AHB transaction.
- If the AHB master (CPU or PDMA) transaction width is smaller than the external bus transaction width. The EBI behavior depends on whether the byte lanes are available or not. Reads either use byte lanes to select the required data when it is available, or read according to the full data bus width of the external device and ignore the superfluous data when a byte lane is not available. Writes either uses a byte lane to select the required data when it is available, or EBI automatically perform a read-modify-write sequence when a byte lane is not available.

Table 70. EBI Maps the AHB Transactions Width to External Device Transactions

AHB Transaction	8-bit External Device Transaction	16-bit External Device Transaction (with byte lanes)	16-bit External Device Transaction (without byte lanes)
8-bit read	1 × 8-bit read	1 × 8-bit read (using byte lane)	1 × 16-bit read (EBI ignore the superfluous data)
16-bit read	2 × 8-bit read	1 × 16-bit read	1 × 16-bit read
32-bit read	4 × 8-bit read	2 × 16-bit read	2 × 16-bit read
8-bit write	1 × 8-bit write	1 × 8-bit write (using byte lane)	1 × 16-bit read; 1 × 16-bit write (EBI read-modify-write)
16-bit write	2 × 8-bit write	1 × 16-bit write	1 × 16-bit write
32-bit write	4 × 8-bit write	2 × 16-bit write	2 × 16-bit write

Table 71. EBI Maps the AHB Transactions Width to External Device Transactions Width Using Byte Lane EBI_BL[1:0]

	Access fro	m AHB Master	Access to External Bus Interface (EBI)						
External Bus Width	Access type	Address HADDR[1:0] ^{Note}	Access split	Output value from EBI_A[1:0]	Valid data at EBI_AD[15:0]	Output value from EBI_BL[1:0]			
		0b00	No split	0b00					
	Byte (8-bit)	0b01	No split	0b01					
	Byte (6-bit)	0b10	No split	0b10					
		0b11	No split	0b11					
	Half-word	01.00	1/2 access	0b00		0b10			
8-bit	(16-bit)	0b00	2/2 access	0b01	EBI AD[7:0]				
	Half-word	0540	1/2 access	0b10	LBI_AD[7.0]				
	(16-bit)	0b10	2/2 access	0b11					
	Word (32-bit)		1/4 access	0b00					
		0b00	2/4 access	0b01					
		0000	3/4 access	0b10					
			4/4 access	0b11					
		0b00	No split	0bx0	EBI_AD[7:0]	0b10			
	Byte (8-bit)	0b01	No split	0bx0	EBI_AD[15:8]	0b01			
	byte (o-bit)	0b10	No split	0bx1	EBI_AD[7:0]	0b10			
16 hit		0b11	No split	0bx1	EBI_AD[15:8]	0b01			
16-bit	Half-word	0b00	No split	0bx0	EBI_AD[15:0]	0b00			
	(16-bit)	0b10	No split	0bx1	EBI_AD[15:0]	0b00			
	Word	0b00	1/2 access	0bx0	EBI_AD[15:0]	0b00			
	(32-bit)	UUUU	2/2 access	0bx1	EBI_AD[15:0]	0b00			

Notes: 1 HADDR is AHB bus address input.

2 Byte lane polarity is low active in this table.

EBI Bank Access

The EBI is split into 4 different address regions and each owns an individual EBI_CSn line. When accessing one of the memory regions, the corresponding EBI_CSn line is asserted. This way up to 4 separate devices can share the EBI lines and be identified by the EBI_CSn line. Each bank can individually be enabled or disabled in the EBICR register. And each bank can individually define the external device behavior, including for example data width, timing definitions, page mode operation, and pin polarities. The data space of each bank can be accessed up to 64MB and is shown as Figure 193. The EBI regions address starts at 0x60000000 in the memory map and can also be used for code execution. When running code via EBI regions starting at this address, the CPU uses the System bus interface to fetch instructions. This will result in reduced performance because the CPU accesses stack, SRAM and peripherals also use the System bus interface.

In order to enhance efficiently for running code via the EBI, bank 0 of the EBI is also mapped into the code space at address 0x1B000000. When running code from this space, the Cortex-M3 fetches instructions through the I/D-Code bus interface, leaving the system bus interface free for data access. The instructions fetched via the I/D-Code bus interface can increase performance.

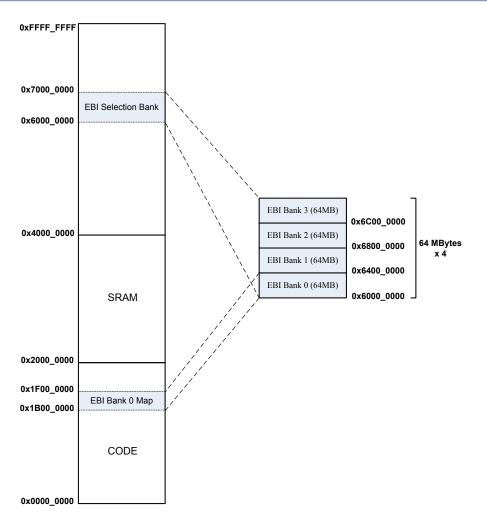


Figure 193. EBI Bank Memory Map

EBI Ready

Some external devices are able to indicate that they have not finished their write or read operations by asserting the wait signal. The EBI_ARDY input signal of the EBI is used to extend the read or write cycles for slow external devices when it is enabled by setting the ARDYEN bit in the EBICR register. EBI_ARDY can be configured by the polarity of this signal with the ARDYPOL bit in the EBIPR register. If the ARDYPOL bit is set to active low, then the read or write cycle is extended while the EBI_ARDY line is kept high. It also provides a timeout check to prevent a system lock up condition in case where the external device does not de-assert the EBI_ARDY signal. It will generate a bus asynchronous ready time-out interrupt if EBI_ARDY is not deasserted within the timeout period. This timeout period has a default value of 32 HLCK clock cycles. Its functionality can be disabled by setting the ARDYTDIS bit in the EBICR register. Note that each memory bank can individually set its wait behavior definition.

PDMA Request

The EBI only supports using a software trigger for active PDMA service.

Register Map

The following table shows the EBI register and reset value.

Table 72. EBI Register Map

Register	Offset	Description	Reset Value
EBICR	0x000	EBI Control Register	0x0000_0000
EBIPCR	0x004	EBI Page Control Register	0x0000_0F00
EBISR	0x008	EBI Status Register	0x0000_0010
EBIATR0	0x010	EBI Address Timing Register 0	0x0000_0F0F
EBIRTR0	0x014	EBI Read Timing Register 0	0x000F_3F0F
EBIWTR0	0x018	EBI Write Timing Register 0	0x000F_3F0F
EBIPR0	0x01C	EBI Parity Register 0	0x0000_0000
EBIATR1	0x020	EBI Address Timing Register 1	0x0000_0F0F
EBIRTR1	0x024	EBI Read Timing Register 1	0x000F_3F0F
EBIWTR1	0x028	EBI Write Timing Register 1	0x000F_3F0F
EBIPR1	0x02C	EBI Parity Register 1	0x0000_0000
EBIATR2	0x030	EBI Address Timing Register 2	0x0000_0F0F
EBIRTR2	0x034	EBI Read Timing Register 2	0x000F_3F0F
EBIWTR2	0x038	EBI Write Timing Register 2	0x000F_3F0F
EBIPR2	0x03C	EBI Parity Register 2	0x0000_0000
EBIATR3	0x040	EBI Address Timing Register 3	0x0000_0F0F
EBIRTR3	0x044	EBI Read Timing Register 3	0x000F_3F0F
EBIWTR3	0x048	EBI Write Timing Register 3	0x000F_3F0F
EBIPR3	0x04C	EBI Parity Register 3	0x0000_0000
EBIIENR	0x050	EBI Interrupt Enable Register	0x0000_0000
EBIIFR	0x054	EBI Interrupt Flag Register	0x0000_0000
EBIIFCR	0x058	EBI Interrupt Clear Register	0x0000_0000

Register Descriptions

EBI Control Register – EBICR

This register specifies the control setting for EBI bank.

Offset:	0x000
Reset value:	0x0000_0000

	31		30	1	2	9	2	8		27	26		2	5	24	
					IDL	ET.			BL	EN3	BLEN	12	BLE	N1	BLEN	0
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22	!	2	1	2	:0		19	18		1	7	16	
	ARDYTD	IS3	ARDY	EN3	ARDY	TDIS2	ARD'	YEN2	ARD	YTDIS1	ARDYE	N1	ARDY	TDIS0	ARDYE	N0
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		1	3	1	2		11	10		9)	8	
	NOIDLE	≣3	NOID	LE2	NOIE	LE1	NOI	DLE0	BAN	NKEN3	BANKE	N2	BAN	KEN1	BANKE	N0
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5	5	-	4		3	2		1	l	0	
			Mod	е3			Мо	de2			Mode	:1			Mode	0
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[31:28]	IDLET	IDLE Time Sets the number of cycles between EBI transactions. If set to 0, one cycle is inserted by the hardware. The cycle unit is based on the HCLK clock period.
[27]	BLEN3	Byte Lane Enable 3 0: Disable EBI byte lane functionality 1: Enable EBI byte lane functionality Enable or disable byte lane functionality for bank 3.
[26]	BLEN2	Byte Lane Enable 2 0: Disable EBI byte lane functionality 1: Enable EBI byte lane functionality Enable or disable byte lane functionality for bank 2.
[25]	BLEN1	Byte Lane Enable 1 0: Disable EBI byte lane functionality 1: Enable EBI byte lane functionality Enable or disable byte lane functionality for bank 1.
[24]	BLEN0	Byte Lane Enable 0 0: Disable EBI byte lane functionality 1: Enable EBI byte lane functionality Enable or disable byte lane functionality for bank 0.
[23]	ARDYTDIS3	Asynchronous Ready Timeout Disable 3 0: Enable EBI asynchronous ready timeout control functionality 1: Disable EBI asynchronous ready timeout control functionality Enable or disable the asynchronous ready timeout functionality for bank 3. The default asynchronous ready timeout period is 32 HCLK clock cycles and cannot be changed.
[22]	ARDYEN3	Asynchronous Ready Enable 3 0: Disable EBI asynchronous ready control functionality 1: Enable EBI asynchronous ready control functionality Enable or disable the asynchronous ready functionality for bank 3.

Bits	Field	Descriptions
[21]	ARDYTDIS2	Asynchronous Ready Timeout Disable 2 0: Enable EBI asynchronous ready timeout control functionality 1: Disable EBI asynchronous ready timeout control functionality Enable or disable the asynchronous ready timeout functionality for bank 2. The default asynchronous ready timeout period is 32 HCLK clock cycles and cannot be changed.
[20]	ARDYEN2	Asynchronous Ready Enable 2 0: Disable EBI asynchronous ready control functionality 1: Enable EBI asynchronous ready control functionality Enable or disable the asynchronous ready functionality for bank 2.
[19]	ARDYTDIS1	Asynchronous Ready Timeout Disable 1 0: Enable EBI asynchronous ready timeout control functionality 1: Disable EBI asynchronous ready timeout control functionality Enable or disable the asynchronous ready timeout functionality for bank 1. The default asynchronous ready timeout period is 32 HCLK clock cycles and cannot be changed.
[18]	ARDYEN1	Asynchronous Ready Enable 1 0: Disable EBI asynchronous ready control functionality 1: Enable EBI asynchronous ready control functionality Enable or disable the asynchronous ready functionality for bank 1.
[17]	ARDYTDIS0	Asynchronous Ready Timeout Disable 0 0: Enable EBI asynchronous ready timeout control functionality 1: Disable EBI asynchronous ready timeout control functionality Enable or disable the asynchronous ready timeout functionality for bank 0. The default asynchronous ready timeout period is 32 HCLK clock cycles and cannot be changed.
[16]	ARDYEN0	Asynchronous Ready Enable 0 0: Disable EBI asynchronous ready control functionality 1: Enable EBI asynchronous ready control functionality Enable or disable the asynchronous ready functionality for bank 0.
[15]	NOIDLE3	No IDLE 3 0: Enable IDLE state insertion 1: Disable IDLE state insertion Enable or disable the insertion of an idle state between transactions for bank 3.
[14]	NOIDLE2	No IDLE 2 0: Enable IDLE state insertion 1: Disable IDLE state insertion Enable or disable the insertion of an idle state between transactions for bank 2.
[13]	NOIDLE1	No IDLE 1 0: Enable IDLE state insertion 1: Disable IDLE state insertion Enable or disable the insertion of an idle state between transactions for bank 1.
[12]	NOIDLE0	No IDLE 0 0: Enable IDLE state insertion 1: Disable IDLE state insertion Enable or disable the insertion of an idle state between transactions for bank 0.
[11]	BANKEN3	Bank 3 Enable 0: Disable 1: Enable This bit enables or disables bank 3.

Bits	Field	Descriptions
[10]	BANKEN2	Bank 2 Enable 0: Disable 1: Enable This bit enables or disables bank 2.
[9]	BANKEN1	Bank 1 Enable 0: Disable 1: Enable This bit enables or disables bank 1.
[8]	BANKEN0	Bank 0 Enable 0: Disable 1: Enable This bit enables or disables bank 0.
[7:6]	MODE3	Set EBI bank 3 access mode 00: D8A8 01: D16A16ALE 10: D8A24ALE 11: D16
[5:4]	MODE2	Set EBI bank 2 access mode 00: D8A8 01: D16A16ALE 10: D8A24ALE 11: D16
[3:2]	MODE1	Set EBI bank 1 access mode 00: D8A8 01: D16A16ALE 10: D8A24ALE 11: D16
[1:0]	MODE0	Set EBI bank 0 access mode 00: D8A8 01: D16A16ALE 10: D8A24ALE 11: D16

EBI Page Control Register – EBIPCR

This register specifies the EBI page read configuration setting.

Offset: 0x004
Reset value: 0x0000_0F00

	31	30	29	28	27		26		25		24	
					Reser	ved						
Type/Reset		'			'							
	23	22	21	20	19		18		17		16	
				P/	AGEOPEN							
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0	RW	0 R\	Ν	0 RW	'	0
	15	14	13	12	11		10		9		8	
			Reserv	/ed					RDPG			
Type/Reset		,			RW	1	RW	1 R\	Ν	1 RW	'	1
	7	6	5	4	3		2		1		0	
		Reserv	red	INCH	IT	, and the second	Reserv	ed		PA	GELE	ΞN
Type/Reset		_		RW	0			R\	N	0 RW		0

Bits	Field	Descriptions
[23:16]	PAGEOPEN	Maximum Page Open Time Sets the maximum interval of consecutive cycles that a page can be considered open. The cycle unit is basic on an HCLK clock period. Note the PAGEOPEN field should not be set to 0 if the page read is enabled.
[11:8]	RDPG	Page Read Access Time 0000: 1 HCLK clock period 0001: 1 HCLK clock period 0010: 2 HCLK clock periods
		1111: 15 HCLK clock periods Sets the number of the cycles for an intrapage page read access time. The cycle unit is basic on an HCLK clock period.
[4]	INCHIT	Incremental Addresses Hit 0: Page hits that occurred on any member in a page 1: Page hits only on incremental addresses Sets the page hits that occurred on any member in a page or only on incremental addresses.
[1:0]	PAGELEN	Page Length 00: 4 members in a page 01: 8 members in a page 10: 16 members in a page 11: 32 members in a page Sets the amount of members in a page.

EBI Status Register – EBISR

This register indicates the EBI status.

Offset: 0x008
Reset value: 0x0000_0010

	31	30	29	28	27	26	25	24	ļ
					Reserved				
Type/Reset									
	23	22	21	20	19	18	17	16	;
					Reserved				
Type/Reset								'	
	15	14	13	12	11	10	9	8	
					Reserved			EBISM	IRST
Type/Reset								RW	0
	7	6	5	4	3	2	1	0	
				EBIARDY				EBIBU	JSY
Type/Reset				RO 1				RO	0

Bits	Field	Descriptions
[8]	EBISMRST	EBI State Machine Reset 0: Normal 1: Reset EBI state machine Write a "1" to reset the EBI internal state machine to its initial state and keep the original the register settings.
[4]	EBIARDY	EBI Asynchronous Ready Status 0: EBI_ARDY is inactive (Device is in busy state) 1: EBI_ARDY is active (Device is in ready state) This bit indicates the EBI_ARDY line status.
[0]	EBIBUSY	EBI BUSY 0: EBI is idle 1: EBI is busy This bit indicates the EBI is busy with an AHB transaction.

EBI Address Timing Register n – EBIATRn (n = $0 \sim 3$)

This register specifies the address timing setting for bank n. (n = $0 \sim 3$)

offset: 0x010 (n = 0), 0x20 (n = 1), 0x30 (n = 2), 0x40 (n = 3)

Reset value: 0x0000_0F0F

	31	30	29	28	27	26	25	24
					Reserv	ed	1	
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserv	red		
Type/Reset							,	
	15	14	13	12	11	10	9	8
			Reserved				ADDRH	OLD
Type/Reset			,		RW	1 RW	1 RW	1 RW 1
	7	6	5	4	3	2	1	0
			Reserved				ADDRSE	TUP
Type/Reset					RW	1 RW	1 RW	1 RW 1

Bits	Field	Descriptions
[11:8]	ADDRHOLD	Address Hold Time Sets the number of cycles the address is held the EBI_AD bus after EBI_ALE is asserted. This field allows setting to 0.
[3:0]	ADDRSETUP	Address Setup Time Sets the number of cycles the address is driven onto the EBI_AD bus before EBI_ ALE is asserted. If set to 0, one cycles is inserted by HW. The cycle unit is basic on HCLK clock period.

EBI Read Timing Register n – EBIRTRn (n = 0 ~ 3)

This register specifies the read timing setting for bank n. (n = $0 \sim 3$)

Offset: 0x014 (n = 0), 0x24 (n = 1), 0x34 (n = 2), 0x44 (n = 3)

Reset value: 0x000F_3F0F

	31	30	29		28	3		27		26			25		2	4
					Rese	rved									PG	EN
Type/Reset															RW	0
	23	22	21		20)		19		18			17		10	6
			Reserv	ed								RDI	HOL	D		
Type/Reset							RW		1	RW	1	RW		1	RW	1
	15	14	13		12	2		11		10			9		8	3
		Reserved						R	DS	TRB						
Type/Reset			RW	1	RW	1	RW		1	RW	1	RW		1	RW	1
	7	6	5		4			3		2			1		0)
			Reserv	ed						RDSET	UP					
Type/Reset							RW		1	RW	1	RW		1	RW	1

Bits	Field	Descriptions
[24]	PGEN	Page Enable 0: Page read disable 1: Page read enable This bit is used to enable the page read mode for the corresponding bank.
[19:16]	RDHOLD	Read Hold Time Sets the number of cycles that the EBI_CSn is held active for after EBI_OE is deasserted. This interval is used for bus turnaround.
[13:8]	RDSTRB	Read Strobe Time Sets the number of cycles that the EBI_OE is held active for. After the specified number of cycles, the data is read. If set to 0, one cycle is inserted by the hardware. The cycle unit is based on an HCLK clock period.
[3:0]	RDSETUP	Read Setup Time Sets the number of cycles for the address setup before EBI_OE is asserted. The cycle unit is basic on an HCLK clock period.

EBI Write Timing Register n – EBIWTRn (n = $0 \sim 3$)

This register specifies the write timing setting for bank n. (n = $0 \sim 3$)

Offset: 0x018 (n = 0), 0x28 (n = 1), 0x38 (n = 2), 0x48 (n = 3)

Reset value: 0x000F_3F0F

	31	30	29		28		27		26		25		24	1
							Reserv	ed						
Type/Reset														
	23	22	21		20		19		18		17		16	5
			Reserve	ed							WEHO	LD		
Type/Reset							RW	1	RW	1	RW	1	RW	1
	15	14	13		12		11		10		9		8	
		Reserved							V	VES	STRB			
Type/Reset			RW	1 R	RW.	1	RW	1	RW	1	RW	1	RW	1
	7	6	5		4		3		2		1		0	
			Reserve	ed					V	/ES	ETUP			
Type/Reset					•		RW	1	RW	1	RW	1	RW	1

Bits	Field	Descriptions
[19:16]	WEHOLD	Write Hold Time
		Sets the number of cycles that EBI_CSn is held active for after EBI_WE is deasserted.
[13:8]	WESTRB	Write Strobe Time
		Sets the number of cycles that EBI_WE is held active for. If set to 0, one cycle is inserted by the hardware. The cycle unit is basic on an HCLK clock period.
[3:0]	WESETUP	Write Setup Time
		Sets the number of cycles for the address setup before EBI_WE is asserted. The cycle unit is basic on an HCLK clock period.

EBI Parity Register n – EBIPR (n = $0 \sim 3$)

This register specifies the polarity of the EBI control signal for bank n. (n = $0 \sim 3$)

Offset: 0x01C (n = 0), 0x2C (n = 1), 0x3C (n = 2), 0x4C (n = 3)

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
		Reserved	BLPOL	ARDYPOL	ALEPOL	WEPOL	OEPOL	CSPOL
Type/Reset			RW 0	RW 0	RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[5]	BLPOL	Byte Lane Polarity 0: EBI_BL is active low 1: EBI_BL is active high Set the polarity of the EBI_BL line.
[4]	ARDYPOL	Asynchronous Ready Polarity 0: EBI_ARDY is active low 1: EBI_ARDY is active high Set the polarity of the EBI_ARDY line.
[3]	ALEPOL	Address Latch Polarity 0: EBI_ALE is active low 1: EBI_ALE is active high Set the polarity of the EBI_ALE line.
[2]	WEPOL	Write Enable Polarity 0: EBI_WE is active low 1: EBI_WE is active high Set the polarity of the EBI_WE line.
[1]	OEPOL	Output Enable Polarity 0: EBI_OE is active low 1: EBI_OE is active high Set the polarity of the EBI_OE line.
[0]	CSPOL	Chip Selection Polarity 0: EBI_CS is active low 1: EBI_CS is active high Set the polarity of the EBI_CSn line.

EBI Interrupt Enable Register – EBIIENR

This register specifies the EBI interrupt enable

Offset: 0x050
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset							'	
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								_
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								_
	7	6	5	4	3	2	1	0
			Reserved			ACCRSTIEN	ACCDISIEN	ARDYTOIEN
Type/Reset						RW 0	RW 0	RW 0

Bits	Field	Descriptions
[2]	ACCRSTIEN	Enable interrupt for issuing a transaction under an EBI state machine reset (EBISMRST bit is set as "1" in the EBISR register).
[1]	ACCDISIEN	Enable interrupt to access the disabled bank.
[0]	ARDYTOIEN	Enable interrupt for the EBI asynchronous ready time-out.

EBI Interrupt Flag Register – EBIIFR

This register specifies interrupt indication for EBI.

Offset: 0x054
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								_
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			·	Reserved			ACCERRIF	ARDYTOIF
Type/Reset							RO 0	RO 0

Bits	Field	Descriptions
[1]	ACCERRIF	Set "1" while EBI is accessing the disabled bank or under an EBI state machine reset.
[0]	ARDYTOIF	Set "1" when the EBI asynchronous ready time-out counter reaches a set value.

EBI Interrupt Clear Register – EBIIFCR

This register specifies interrupt clear for the EBI interrupt.

Offset: 0x058

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
				Reserved			ACCERR	C ARDYTOIC
Type/Reset							WO	0 WO 0

Bits	Field	Descriptions
[1]	ACCERRIC	Write a "1" to clear the interrupt flag of the accessed disabled bank or under an EBI
		state machine reset. If software intends to read this bit then only a "0" is returned.
[0]	ARDYTOIC	Write a "1" to clear the interrupt flag of the EBI asynchronous ready time-out
		interrupt. If software intends to read this bit then only a "0" is returned.

27 Inter-IC Sound (I²S)

Introduction

The I²S is a synchronous communication interface that can be used as a master or slave to exchange data with other audio peripherals, such as ADCs or DACs. The I²S supports a variety of data formats. In addition to the stereo I²S-justified, Left-justified and Right-justified modes, there are mono PCM modes with 8/16/24/32-bit sample size. When the I²S operates in the master mode, then when using the fractional divider, it can provide an accurate sampling frequency output and support the rate control function and fine-tuning of the output frequency to avoid system problems caused by the cumulative frequency error between different devices.

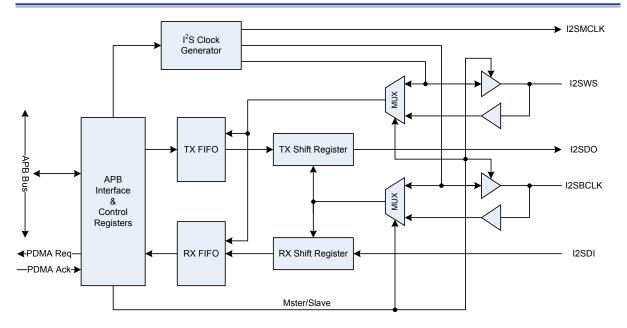


Figure 194. I²S Block Diagram

Features

- Master or slave mode
- Mono and stereo
- I²S-justified, Left-justified and Right-justified mode
- 8/16/24/32-bit sample size with 32-bit channel extended
- 8 × 32-bit TX & RX FIFO with PDMA supported
- 8-bit Fractional Clock Divider with rate control

Functional Description

I²S Master and Slave Mode

The I²S can operate in slave or master mode. Within the I²S module the difference between these modes lies in the word select (WS) signal which determines the timing of data transmissions.

- In the master mode, the word select signal is generated internally by a clock rate generator.
- In the slave mode, the word select signal is input on the I2S_WS pin.
- When an I²S bus is enabled, the word select, bit clock signals are sent continuously by the bus master.
- The mute control bit will place the transmit channel in a mute condition. When the mute mode is enabled, the transmit channel FIFO operates normally, but the output data stream is discarded and replaced by zeroes. This bit does not affect the receive channel so data reception can occur normally.

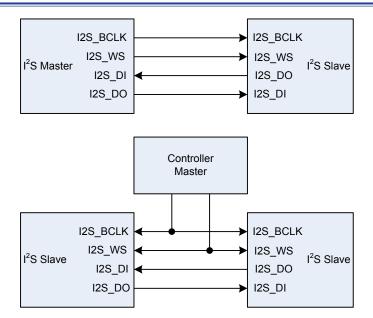


Figure 195. Simple I²S Master/Slave Configuration

I²S Clock Rate Generator

The main (I2S_MCLK) and bit clock (I2S_BCLK) rates for the I²S are determined by the values in the I2SCDR register. The required I²S bit clock rate setting depends on the desired audio sample rate desired, the format (stereo/mono) used, and the data size. The main clock rate (I2S_MCLK) is generated using a fractional rate divider which is a divided down PCLK frequency of the I²S. Values of the numerator (X) and the denominator (Y) must be chosen to produce a frequency twice that of the main clock (I2S_MCLK). The output frequency of the divider is divided by 2 in order to get the duty cycle of the output clock more even. The I²S clock generator block diagram is shown in Figure 196. The equation for the fractional rate divider is:

I2S_MCLK =
$$1/2 \times PCLK \times (X / Y)$$
, and $X/Y \le 1$, $X = 1 \sim 255$, $Y = 1 \sim 255$
I2S_BCLK = I2S_MCLK / (N+1), $N = 0 \sim 255$

Because the fractional rate divider is a fully digital implementation function, the divider output clock transitions are synchronous with the input source clock. Therefore, the fractional rate divider will generate some jitter with some divider settings. Users should make note of this phenomenon when choosing the X and Y setup values. It is possible to avoid jitter entirely by choosing fractions such that X divides evenly into Y, for example, 2/4, 2/6, 3/9, etc.

The tables below show the recommended setup values to reduce clock jitter for different source clocks and sample rates.

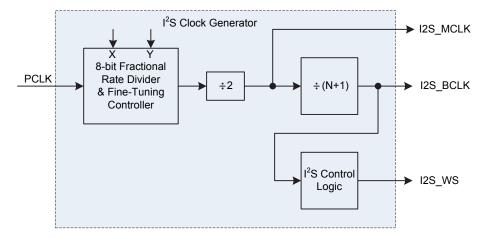


Figure 196. I²S Clock Generator Diagram

Table 73. Recommend F_S List @ 8 MHz PCLK

	512	2 F _s	384	4 F _s	256	6 F _s	192	2 F _s	128	3 F _s	64	Fs
F _s (Hz)	Х	Υ	Х	Υ	Х	Υ	Х	Υ	Х	Υ	Х	Y
8,000	_	_	96	125	64	125	48	125	32	125	16	125
11,025	_		_	_	170	241	118	223	90	255	42	238
12,000			_	_	96	125	72	125	48	125	24	125
16,000	_	_	_	_		_	96	125	64	125	32	125
22,050	_		_	_		_		_	170	241	90	255
24,000	_	_	_	_	_	_	_	_	96	125	48	125
32,000	_	_	_	_		_			_	_	64	125
44,100			_	_							170	241
48,000											96	125
96,000			_	_								_
192,000	_	_	_	_		_	_	_	_		_	_

Table 74. Recommend F_s List @ 48 MHz PCLK

	512	2 F _s	384	ŀ F _s	256	6 F _s	192	2 F _s	128	3 F _s	64	Fs
F _s (Hz)	Х	Υ	Х	Υ	Х	Υ	Х	Υ	Х	Υ	Х	Y
8,000	36	211	16	125	18	211	8	125	10	234	2	94
11,025	4	17	6	34	2	17	6	68	2	34	2	68
12,000	32	125	24	125	16	125	12	125	8	125	4	125
16,000	86	252	32	125	36	211	16	125	18	211	10	234
22,050	8	17	6	17	4	17	6	34	2	17	2	34
24,000	64	125	48	125	32	125	24	125	16	125	8	125
32,000	142	208	64	125	86	252	32	125	36	211	18	211
44,100	238	253	170	241	8	17	6	17	4	17	2	17
48,000	_	_	96	125	64	125	48	125	32	125	16	125
96,000	_	_	_	_	_	_	96	125	64	125	32	125
192,000	_	_	_	_	_	_	_	_	_	_	64	125

Table 75. Recommend F_s List @ 72 MHz PCLK

	512	2 F _s	384	1 F _s	256	6 F _s	192	2 F _s	128	3 F _s	64	Fs
F _s (Hz)	Х	Υ	Х	Υ	X	Υ	Х	Υ	X	Υ	Х	Υ
8,000	24	211	18	211	12	211	10	234	6	211	2	141
11,025	8	51	2	17	4	51	2	34	2	51	2	102
12,000	36	211	16	125	18	211	8	125	10	234	2	94
16,000	38	167	36	211	24	211	18	211	12	211	6	211
22,050	74	236	4	17	8	51	2	17	4	51	2	51
24,000	86	252	32	125	36	211	16	125	18	211	10	234
32,000	76	167	86	252	38	167	36	211	24	211	12	211
44,100	106	169	8	17	74	236	4	17	8	51	4	51
48,000	142	208	64	125	86	252	32	125	36	211	18	211
96,000	_			_	142	208	64	125	86	252	36	211
192,000	_								142	208	86	252

Table 76. Recommend Fs List @ 96 MHz PCLK

	512	2 F _s	384 F _s		256	6 F _s	192	2 F _s	128	3 F _s	64	Fs
F _s (Hz)	Х	Υ	Х	Υ	Х	Υ	Х	Υ	Х	Υ	Х	Υ
8,000	18	211	8	125	10	234	4	125	2	94	2	188
11,025	2	17	6	68	2	34	6	136	2	68	2	136
12,000	16	125	12	125	8	125	6	125	4	125	2	125
16,000	36	211	16	125	18	211	8	125	10	234	2	94
22,050	4	17	6	34	2	17	6	68	2	34	2	68
24,000	32	125	24	125	16	125	12	125	8	125	4	125
32,000	86	252	32	125	36	211	16	125	18	211	10	234
44,100	8	17	86	252	4	17	6	34	2	17	2	34
48,000	64	125	48	125	32	125	24	125	16	125	8	125
96,000			96	125	64	125	48	125	32	125	16	125
192,000	_	_	_	_	_	_	96	125	64	125	32	125

I²S Interface Format

I²S-justified Stereo Mode

The standard I²S-justified mode is where the Most Significant Bit (MSB) of the stereo audio sample data is available on the second rising edge of the BCLK clock following a WS signal transition. In the stereo mode, a low WS state indicates left channel data and a high state indicates right channel data. Figure 197 and Figure 198 show the standard I²S-justified stereo mode format.

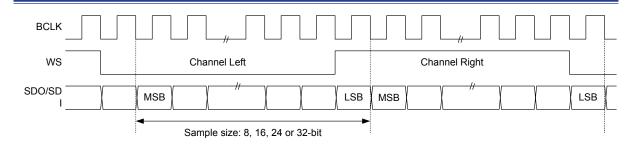


Figure 197. I²S-justified Stereo Mode Waveforms

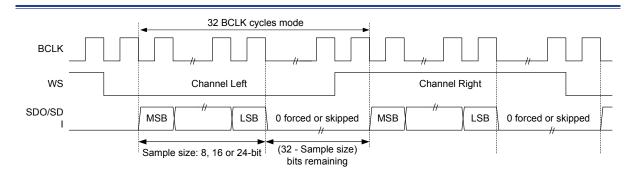


Figure 198. I²S-justified Stereo Mode Waveforms (32-bit Channel Enabled)

Left-justified Stereo Mode

Left-Justified mode is where the Most Significant Bit (MSB) of the stereo audio sample data is available on the first rising edge of BCLK following a WS transition. Figure 199 and Figure 200 are shown with a left I²S-justified stereo mode format.

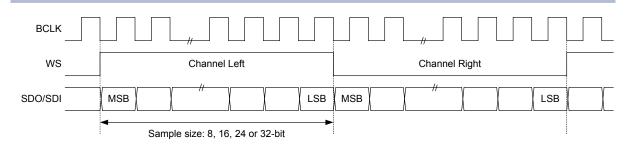


Figure 199. Left-justified Stereo Mode Waveforms

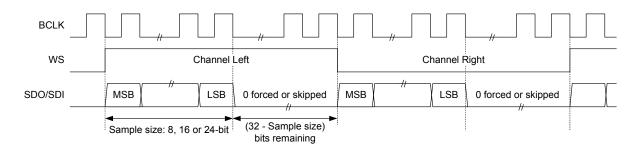


Figure 200. Left-justified Stereo Mode Waveforms (32-bit Channel Enabled)

Right-justified Stereo Mode

Right-Justified mode is where the Least Significant Bit (LSB) of the stereo audio sample data is available on the rising edge of BCLK preceding a WS transition and where the MSB is transmitted first. Figure 201 and Figure 202 show a right I²S-justified stereo mode format.

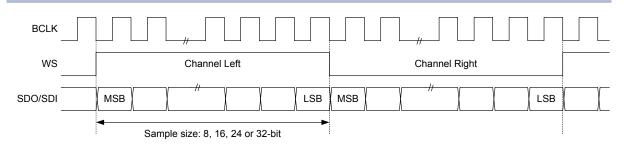


Figure 201. Right-justified Stereo Mode Waveforms

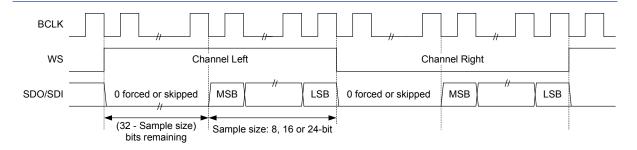


Figure 202. Right-justified Stereo Mode Waveforms (32-bit Channel Enabled)

I²S-justified Mono Mode

In the I²S-justified mono mode, the Most Significant Bit (MSB) of the mono audio sample data is available on the second rising edge of the BCLK clock following a falling edge on the WS signal. Figure 203 and Figure 204 show an I²S-justified mono mode format.

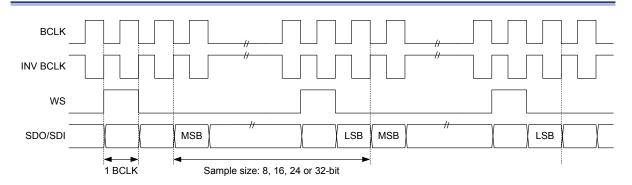


Figure 203. I²S-justified Mono Mode Waveforms

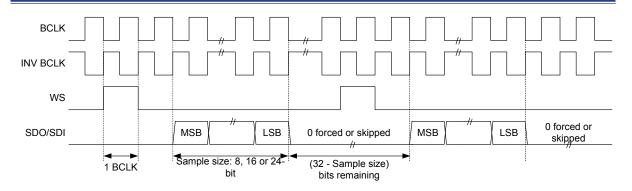


Figure 204. I²S-justified Mono Mode Waveforms (32-bit Channel Enabled)

Left-justified Mono Mode

In the left-justified mono mode, the Most Significant Bit (MSB) of the mono audio sample data is available on the first rising edge of the BCLK clock following a falling edge on the WS signal. Figure 205 and Figure 206 show a left-justified mono mode format.

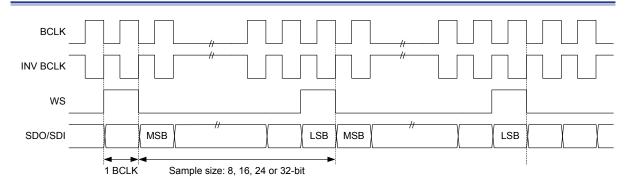


Figure 205. Left-justified Mono Mode Waveforms

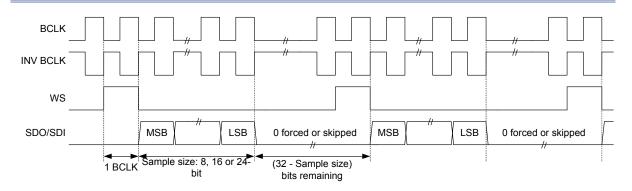


Figure 206. Left-justified Mono Mode Waveforms (32-bit Channel Enabled)

Right-justified Mono Mode

In the right-justified mono mode, the Least Significant Bit (LSB) of the mono audio sample data is available on the last rising edge of the BCLK clock preceding a rising edge on the WS signal. Figure 207 and Figure 208 show the right-justified mono mode format.

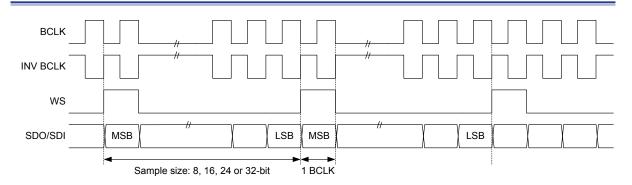


Figure 207. Right-justified Mono Mode Waveforms

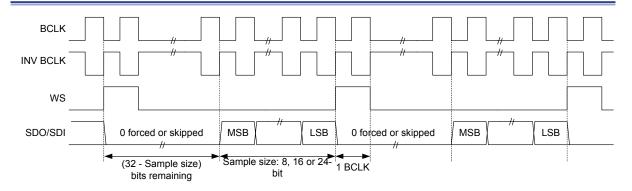


Figure 208. Right-justified Mono Mode Waveforms (32-bit Channel Enabled)

I²S-justified Repeat Mode

In the I²S-justified repeat mode, the Most Significant Bit (MSB) of the mono audio sample data is available on the second rising edge of the BCLK clock following a WS signal transition. In this mode the same data is transmitted twice, once when WS is low and again when WS is high. Figure 209 and Figure 210 show the I²S-justified repeat mode format.

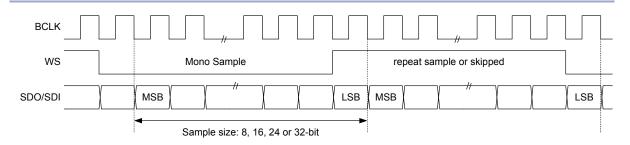


Figure 209. I²S-justified Repeat Mode Waveforms

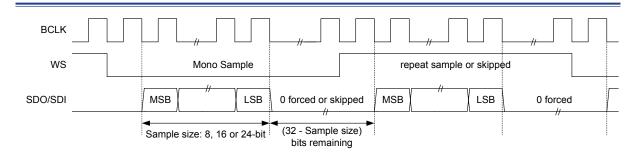


Figure 210. I²S-justified Repeat Mode Waveforms (32-bit Channel Enabled)

FIFO Control and Arrangement

The I^2S handles audio data for transmission and reception and is performed via the FIFO controller. Each transmitted or received FIFO has a depth of 8 words (8 \times 32-bit) and can buffer the data. The format is dependent upon the stereo/mono mode and sample size setting. The detailed FIFO data content format is shown in Figure 211. The FIFO controller consists of comparators which compare the current FIFO levels with configurable depth settings. The current level of the TX or RX FIFO status can be seen in the TXFS and RXFS fields of the I^2S status register (I2SSR).

Mon	no 8-bit D)ata										FIFO Pointer Address
7 N	N+3	0 7	N+2	0	7	N+1	0	7	N		0	M
Mone	o 16-bit I	Data										
15		N+1		0	15		N	l			0	M
Mond	o 24-bit [Data										
31		23				N					0	М
Mone	o 32-bit I	Data										
31				N							0	M
	eo 8-bit [FT+1		RIGHT+1	0 7	7	LEFT	0	7	RIGI		0	М
7 LE		0 7	RIGHT+1	0 7	7	LEFT	0	7	RIGI	НТ	0	М
7 LE	FT+1 eo 16-bit	0 7	RIGHT+1		7	LEFT		7 GHT		łТ	0	M M
7 LE Stere 15	FT+1 eo 16-bit	0 7 Data LEFT	RIGHT+1			LEFT				łT		
7 LE Stere 15	FT+1 eo 16-bit	0 7 Data LEFT	RIGHT+1			LEFT				-IT		
7 LE Stere 15	FT+1 eo 16-bit	0 7 Data LEFT Data	RIGHT+1				RI			HT	0	М
Stere 15 Stere 31	FT+1 eo 16-bit	Data LEFT Data 23	RIGHT+1			LEFT	RI			HT	0	M M
Stere 15 Stere 31	FT+1 eo 16-bit eo 24-bit	Data LEFT Data 23	RIGHT+1		15	LEFT	RI			HT	0	M M

Figure 211. FIFO Data Content Arrangement for Various Modes

PDMA and Interrupt

When the level of received data in the RX FIFO is equal to or greater than the level defined by the RXFTLS field in the I²S FIFO control register (I2SFCR), the relative RXFTL flag will be set and then an I²S RX PDMA request will be generated. An MCU interrupt will be generated if the enable bit of the I²S RX PDMA request or the RX FIFO trigger level interrupt is asserted. When the level of transmitted data in the TX FIFO is equal to or less than the level defined by the TXFTLS field in the I²S FIFO control register (I2SFCR), the relative TXFTL flag will be set and a I²S TX PDMA request will be generated. An MCU interrupt will be generated if the enable bit of the I²S TX PDMA request or TX FIFO trigger level interrupt is asserted.

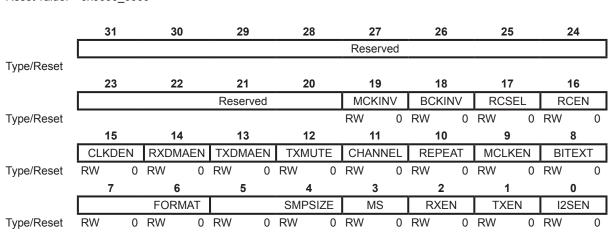
The I²S transmitter and receiver have separate PDMA requests and can be assigned to two different PDMA channels. When a PDMA request is enabled for the I²S transmitter (TXDMAEN = 1) then this will automatically request that data is transferred to the assigned I²S TX PDMA channel whenever TX FIFO space is available and TXFTL is active. When a PDMA request is enabled for the receiver (RXDMAEN = 1) then this will automatically request the data transfers to the I²S RX PDMA channel whenever data is present in the receive FIFO and when RXFTL is active.

Register Map

The following table shows the I²S registers and reset values.

Table 77. I²S Register Map

Register	Offset	Description	Reset Value
I2SCR	0x000	I ² S Control Register	0x0000_0000
I2SIER	0x004	I ² S Interrupt Enable Register	0x0000_0000
I2SCDR	0x008	I ² S Clock Divider Register	0x0000_0000
I2STXDR	0x00C	I ² S TX Data Register	0x0000_0000
I2SRXDR	0x010	I ² S RX Data Register	0x0000_0000
I2SFCR	0x014	I ² S FIFO Control Register	0x0000_0000
I2SSR	0x018	I ² S Status Register	0x0000_0809
I2SRCNTR	0x01C	I ² S Rate Counter Value Register	0x0000_0000


Register Descriptions

I²S Control Register – I2SCR

This register specifies the corresponding I^2S function enable control.

Offset: 0x000

Reset value: 0x0000_0000

Bits	Field	Descriptions
[19]	MCKINV	MCLK Inverse Enable 0: Disable 1: Enable
[18]	BCKINV	BCLK Inverse Enable 0: Disable 1: Enable
[17]	RCSEL	Rate Control Select (master only) 0: Slower 1: Faster
[16]	RCEN	Rate Control Enable (master only) 0: Disable 1: Enable
[15]	CLKDEN	Clock Divider Enable (master only) 0: Disable 1: Enable The clock divider can be used to generate the MCLK and BCLK clock of the I ² S interface for master mode.
[14]	RXDMAEN	RX PDMA Request Enable 0: Disable 1: Enable
[13]	TXDMAEN	TX PDMA Request Enable 0: Disable 1: Enable
[12]	TXMUTE	TX Mute Enable 0: Disable 1: Enable

Bits	Field	Descriptions
[11]	CHANNEL	Stereo or Mono 0: Stereo 1: Mono Note: This bit should be configured when I ² S is disabled.
[10]	REPEAT	Repeat Mode 0: Disable 1: Enable This mode is for I2S-justified stereo configuration only, transmitting the mono data on both channels and receiving just the left channel data and ignoring the right. Enabling the repeat mode will reset the CHANNEL bit automatically. Note: This bit should be configured when the I ² S is disabled.
[9]	MCLKEN	MCLK Output Enable (master only) 0: Disable 1: Enable Note: This bit should be configured when the I ² S is disabled.
[8]	BITEXT	32-bit Channel Enable 0: Disable 1: Enable Setting this bit will force the channel size to 32-bits. If the sample size is 8/16/24-bits, the remaining bits will be forced to 0 in the TX and ignored in the RX. Note: This bit should be configured when the I ² S is disabled.
[7:6]	FORMAT	Data Format 00: I2S-justified 01: Left-justified 10: Right-justified 11: reserved Note: This bit should be configured when the I ² S is disabled.
[5:4]	SMPSIZE	Sample Size 00: 8-bit 01: 16-bit 10: 24-bit 11: 32-bit Note: This bit should be configured when the I ² S is disabled.
[3]	MS	Master or Slave Mode 0: Master 1: Slave Note: This bit should be configured when the I ² S is disabled.
[2]	RXEN	RX Enable 0: Disable 1: Enable
[1]	TXEN	TX Enable 0: Disable 1: Enable
[0]	I2SEN	I ² S Enable 0: Disable 1: Enable

I²S Interrupt Enable Register – I2SIER

This register contains the corresponding I2S interrupt enable bits.

Offset: 0x004 Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	Reserved	RXOVIEN	RXUDIEN	RXFTLIEN	Reserved	TXOVIEN	TXUDIEN	TXFTLIEN
Type/Reset		RW 0	RW 0	RW 0		RW 0	RW 0	RW 0

Bits	Field	Descriptions
[6]	RXOVIEN	RX FIFO Overflow Interrupt Enable 0: Disable 1: Enable
[5]	RXUDIEN	RX FIFO Underflow Interrupt Enable 0: Disable 1: Enable
[4]	RXFTLIEN	RX FIFO Trigger Level Interrupt Enable 0: Disable 1: Enable
[2]	TXOVIEN	TX FIFO Overflow Interrupt Enable 0: Disable 1: Enable
[1]	TXUDIEN	TX FIFO Underflow Interrupt Enable 0: Disable 1: Enable
[0]	TXFTLIEN	TX FIFO Trigger Level Interrupt Enable 0: Disable 1: Enable

I²S Clock Divider Register – I2SCDR

This register specifics the I²S clock divider ratio.

Offset: 0x008

Reset value: 0x0000_0000

	31	3	0	29	28	27	26	25	24
						Reser	ved		
Type/Reset		'				'		'	
	23	2	2	21	20	19	18	17	16
						N_D	IV		
Type/Reset	RW	0 RW	0 R	RW C	RW	0 RW	0 RW	0 RW	0 RW 0
	15	1	4	13	12	11	10	9	8
						X_D	IV		
Type/Reset	RW	0 RW	0 R	RW C	RW	0 RW	0 RW	0 RW	0 RW 0
	7	6	5	5	4	3	2	1	0
						Y_D	IV		
Type/Reset	RW	0 RW	0 R	RW C	RW	0 RW	0 RW	0 RW	0 RW 0

Bits	Field	Descriptions
[23:16]	N_DIV	N divider for BCLK
		0x00: divide 1
		0x01: divide 2
		0xFF: divide 256
		Note: This bit should be configured when the I ² S is disabled.
[15:8]	X_DIV	X divider for MCLK
		$(X = 1 \sim 255) \&\& (X / Y \le 1)$
		Note: This bit should be configured when the I ² S is disabled.
[7:0]	Y DIV	Y divider for MCLK
	_	$(Y = 1 \sim 255) \&\& (X / Y \le 1)$
		Note: This bit should be configured when the I ² S is disabled.

I²S TX Data Register – I2STXDR

This register is used to specify the I2S transmitted data.

Offset: 0x00C Reset value: 0x0000_0000

	31		30	29)	28		27		26		25		24	
								TXDF	₹						
Type/Reset	WO	0 WO		0 WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	23		22	21		20		19		18		17		16	
								TXDF	₹						
Type/Reset	WO	0 WO		0 WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	15		14	13	3	12		11		10		9		8	
								TXDF	₹						
Type/Reset	WO	0 WO		0 WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	7		6	5		4		3		2		1		0	
								TXDF	₹						
Type/Reset										_					

Bits	Field	Descriptions
[31:0]	TXDR	TX Data Register

I²S RX Data Register – I2SRXDR

This register is used to store the I2S received data.

Offset: 0x010 Reset value: 0x0000_0000

	31	30	29		28	27	26	25	24
						RXDR			
Type/Reset	RO	0 RO	0 RO	0 RO	0	RO	0 RO	0 RO	0 RO 0
	23	22	21		20	19	18	17	16
						RXDR			
Type/Reset	RO	0 RO	0 RO	0 RO	0	RO	0 RO	0 RO	0 RO 0
	15	14	13		12	11	10	9	8
						RXDR			
Type/Reset	RO	0 RO	0 RO	0 RO	0	RO	0 RO	0 RO	0 RO 0
	7	6	5		4	3	2	1	0
						RXDR			
Type/Reset	RO	0 RO	0 RO	0 RO	0	RO	0 RO	0 RO	0 RO 0

Bits	Field	Descriptions
[31:0]	RXDR	RX Data Register

I²S FIFO Control Register – I2SFCR

This register contains the related I²S FIFO control bits.

Offset: 0x014
Reset value: 0x0000_0000

	31	30	29		28		27		26	:	25	24	
							Reserv	ed		'			
Type/Reset		'								'			
	23	22	21		20		19		18		17	16	
							Reserv	ed					
Type/Reset		'								'			
	15	14	13		12		11		10		9	8	
					Reserv	ed				RXI	FRST	TXFR	ST
Type/Reset										RW	0	RW	0
	7	6	5		4		3		2		1	0	
			RXFT	LS						TXI	FTLS		
Type/Reset	RW	0 RW	0 RW	0	RW	0	RW	0	RW	0 RW	0	RW	0

Bits	Field	Descriptions
[9]	RXFRST	RX FIFO Reset
		Set this bit to reset the RX FIFO.
[8]	TXFRST	TX FIFO Reset
		Set this bit to reset the TX FIFO.
[7:4]	RXFTLS	RX FIFO Trigger Level Select
		0000: Trigger level is 0
		0001: Trigger level is 1
		 0111: Trigger level in 7
		0111: Trigger level is 7 1xxx: Trigger level is 8
		When the data contained in the RX FIFO is equal to or greater than the level defined
		by the RXFTLS field, the RXFTL flag will be set.
[3:0]	TXFTLS	TX FIFO Trigger Level Select
		0000: Trigger level is 0
		0001: Trigger level is 1
		0111: Trigger level is 7 1xxx: Trigger level is 8
		When the data contained in the TX FIFO is equal to or less than the level defined by

the TXFTLS field, the TXFTL flag will be set.

I²S Status Register – I2SSR

This register contains the relevant I²S status.

Offset: 0x018
Reset value: 0x0000_0809

	31	30	29	28	27	26	25	24
			RXFS				TXFS	
Type/Reset	RO	0 RO	0 RO 0	RO 0				
	23	22	21	20	19	18	17	16
			Reserved			CLKRDY	TXBUSY	CHS
Type/Reset						RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8
		Reserve	d	RXFFUL	RXFEMT	RXFOV	RXFUD	RXFTL
Type/Reset				RO 0	RO 1	WC 0	WC 0	WC 0
	7	6	5	4	3	2	1	0
		Reserve	d	TXFFUL	TXFEMT	TXFOV	TXFUD	TXFTL
Type/Reset				RO 0	RO 1	WC 0	WC 0	WC 1

Bits	Field	Descriptions
[31:28]	RXFS	RX FIFO Status 0000: RX FIFO empty 0001: RX FIFO contains 1 data
		1000: RX FIFO contains 8 data Others: Reserved
[27:24]	TXFS	TX FIFO Status 0000: TX FIFO empty 0001: TX FIFO contains 1 data 1000: TX FIFO contains 8 data
		Others: Reserved
[18]	CLKRDY	Clock Divider Output Ready Flag 0: not ready 1: ready
[17]	TXBUSY	TX Busy Flag 0: not busy 1: busy
[16]	CHS	Channel Status 0: left channel 1: right channel
[12]	RXFFUL	RX FIFO Full Flag 0: RX FIFO not full 1: RX FIFO full
[11]	RXFEMT	RX FIFO Empty Flag 0: RX FIFO not empty 1: RX FIFO empty

Bits	Field	Descriptions
[10]	RXFOV	RX FIFO Overflow Flag 0: RX FIFO not overflow 1: RX FIFO overflow This bit is set by hardware and cleared by writing 1.
[9]	RXFUD	RX FIFO Underflow Flag 0: RX FIFO not underflow 1: RX FIFO underflow This bit is set by hardware and cleared by writing 1.
[8]	RXFTL	RX FIFO Trigger Level Flag 0: Data in the RX FIFO is less than the trigger level 1: Data in the RX FIFO is equal to or higher than the trigger level This bit is set by hardware and cleared by writing 1.
[4]	TXFFUL	TX FIFO Full Flag 0: TX FIFO not full 1: TX FIFO full
[3]	TXFEMT	TX FIFO Empty Flag 0: TX FIFO not empty 1: TX FIFO empty
[2]	TXFOV	TX FIFO Overflow Flag 0: TX FIFO not overflow 1: TX FIFO overflow This bit is set by hardware and cleared by writing 1.
[1]	TXFUD	TX FIFO Underflow Flag 0: TX FIFO not underflow 1: TX FIFO underflow This bit is set by hardware and cleared by writing 1.
[0]	TXFTL	TX FIFO Trigger Level Flag 0: Data in the TX FIFO is higher than the trigger level 1: Data in the TX FIFO is equal to or less than the trigger level This bit is set by hardware and cleared by writing 1.

I²S Rate Counter Value Register – I2SRCNTR

This register specifics the I²S rate control counter value.

Offset: 0x01C

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									Reserv	ed						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
					Reserv	ed							RCNT	R		
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
									RCNT	R						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
									RCNT	R						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[19:0]	RCNTR	Rate Counter Value

This value must be equal to or higher than Y_DIV for useful rate fine-tuning control.

28 Cyclic Redundancy Check (CRC)

Introduction

The CRC (Cyclic Redundancy Check) calculation unit is an error detection technique test algorithm and uses to verify data transmission or storage data correctness. A CRC calculation takes a data stream or a block of data as input and generates a 16- or 32-bit output remainder. Ordinarily, a data stream is suffixed by a CRC code and used as a checksum when being sent or stored. Therefore, the received or restored data stream is calculated by the same generator polynomial as described above. If the new CRC code result does not match the one calculated earlier, that means data stream contains a data error.

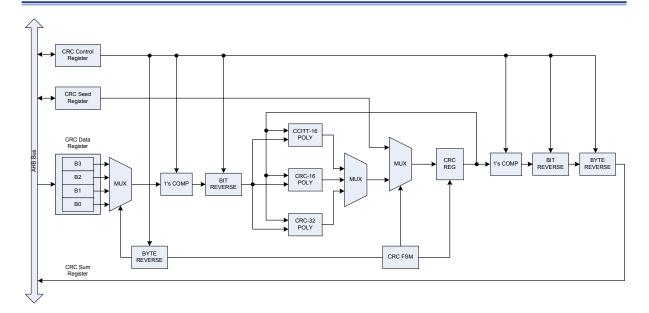


Figure 212. CRC Block Diagram

Features

- Support CRC16 polynomial: 0x8005, $X^{16}+X^{15}+X^2+1$
- Support CCITT CRC16 polynomial: 0x1021, X¹⁶+X¹²+X⁵+1
- Support IEEE-802.3 CRC32 polynomial: 0x04C11DB7, $X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1$
- Support 1's complement, byte reverse & bit reverse operation on data and checksum
- Support byte, half-word & word data size
- Programmable CRC initial seed value
- CRC computation done in 1 AHB clock cycle for 8-bit data and 4 AHB clock cycles for 32-bit data
- Support PDMA to complete a CRC computation of a block of memory

Function Descriptions

This unit only enables the calculation in the CRC16, CCITT CRC16 and IEEE-802.3 CRC32 polynomial. In this unit, the generator polynomial is fixed to the numeric values for those modes; therefore, the CRC value based on other generator polynomials cannot be calculated.

CRC Computation

The CRC calculation unit has 32-bit write CRC data register (CRCDR) and read CRC checksum register (CRCCSR). The CRCDR register is used to input new data (write access), and the CRCCSR register is used to hold the result of the previous CRC calculation (read access). Each write operation to the CRCDR register creates a combination of the previous CRC value (stored in CRCCSR) and the new one. The CRC block diagram is shown as Figure 212. The CRC unit calculates the CRC data register (CRCDR) value is basic on byte by byte and default byte and bit order is big-endian. The CRCDR register can be accessed write by word, right-aligned half-word and right-aligned byte. For the other registers only 32-bit access is allowed. The duration of the computation depends on data width:

- 4 AHB clock cycles for 32-bit data input
- 2 AHB clock cycles for 16-bit data input
- 1 AHB clock cycle for 8-bit data input

Byte and Bit Reversal for CRC Computation

The byte reordering and byte-level bit reversal operation can be occurred before the data is used in the CRC calculation or after the CRC checksum output. They are configurable using the corresponding setting field of the CRCCR register. These operations occur on word or half words write. The hardware ignores the DATBYRV bit of the CRCRCR register with any byte writes but the bit reversal setting DATBIRV are still applied to the byte. The Figure 213 is shown the byte and bit reversal operation example.

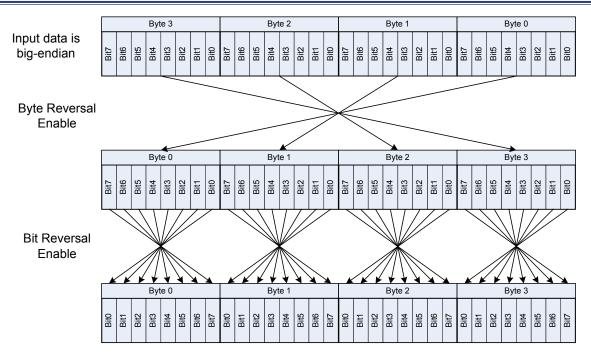


Figure 213. CRC Data Bit and Byte Reversal Example

CRC with PDMA

A PDMA channel with software trigger may be used to transfer data into the CRC unit. If a huge block data is needed to calculate. The recommended PDMA model is to use the PDMA to transfer all available words of data and uses software writes to transfer the other remaining bytes. To write data into the CRC unit, the PDMA should be accessed data write by word from the source location of memory to the CRC data register (CRCDR) in non-incrementing address mode. Then software can write any remaining bytes to the CRC data register (CRCDR) and read the CRC calculation result value from the CRC checksum register (CRCCSR).

Register Map

The following table shows the CRC registers and reset values.

Table 78. Register map of CRC

Register	Offset	Description	Reset Value
CRCCR	0x000	CRC Control Register	0x0000_0000
CRCSDR	0x004	CRC Seed Register	0x0000_0000
CRCCSR	0x008	CRC Checksum Register	0x0000_0000
CRCDR	0x00C	CRC Data Register	0x0000_0000

Register Descriptions

CRC Control Register – CRCCR

This register specifies the corresponding CRC function enable control.

Offset: 0x000
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	SUMCMPL	SUMBYRV	SUMBIRV	DATCMPL	DATBYRV	DATBIRV		POLY
Type/Reset	RW 0	RW 0	RW	0 RW 0				

Bits	Field	Descriptions
[7]	SUMCMPL	1's Complement operation on Checksum Output 0: Disable 1: Enable
[6]	SUMBYRV	Byte Reverse operation on Checksum Output 0: Disable 1: Enable
[5]	SUMBIRV	Bit Reverse operation on Checksum Output 0: Disable 1: Enable
[4]	DATCMPL	1's Complement operation on Data 0: Disable 1: Enable
[3]	DATBYRV	Byte Reverse operation on Data 0: Disable 1: Enable
[2]	DATBIRV	Bit Reverse operation on Data 0: Disable 1: Enable
[1:0]	POLY	CRC polynomial 00: CRC-CCITT (0x1021) 01: CRC-16 (0x8005) 1X: CRC-32 (0x04C11DB7)

CRC Seed Register – CRCSDR

This register is used to specify the CRC seed.

Offset: 0x004

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									SEE)						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	23		22		21		20		19		18		17		16	
									SEE)						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	15		14		13		12		11		10		9		8	
									SEE)						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0
	7		6		5		4		3		2		1		0	
									SEE)						
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0

Bits Field Descriptions

[31:0] SEED

CRC Seed Data

Put the 16/32-bit seed value in this register according to the polynomial setting in the CRCCR register.

CRC Checksum Register – CRCCSR

This register contains the CRC checksum output.

Offset: 0x008

Reset value: 0x0000_0000

	31	30		29	28		27	26		25	24	
						С	HKSUM					
Type/Reset	RO	0 RO	0 RO	0	RO	0 RC	0	RO	0 RO	C	RO	0
	23	22		21	20		19	18		17	16	
						С	HKSUM					
Type/Reset	RO	0 RO	0 RO	0	RO	0 RC	0 0	RO	0 RO	C	RO	0
	15	14		13	12		11	10		9	8	
						С	HKSUM					
Type/Reset	RO	0 RO	0 RO	0	RO	0 RC	0	RO	0 RO	О	RO	0
	7	6		5	4		3	2		1	0	
		'				С	HKSUM		'			

Bits Field Descriptions

[31:0] CHKSUM CRC Checksum Data

Get the CRC 16/32-bit checksum result through this register according to the polynomial setting in the CRCCR register after all data are written to the CRCDR register.

CRC Data Register – CRCDR

This register is used to specify the CRC input data.

Offset: 0x00C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24	
					CRCDATA				
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO 0	WO 0	WO	0 WO	0
	23	22	21	20	19	18	17	16	
					CRCDATA				
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO 0	WO 0	WO	0 WO	0
	15	14	13	12	11	10	9	8	
					CRCDATA				П
					0.102/11/1				
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO 0	WO 0	WO	0 WO	0
Type/Reset	WO 7	0 WO 6	0 WO 5	0 WO 4		WO 0	WO 1	0 WO 0	0
Type/Reset	WO 7				0 WO 0		WO 1	0 WO 0	0

Bits Field Descriptions
[31:0] CRCDATA CRC Input Data

Byte, half-word & word write are allowed. 1's complement, byte reverse and bit reverse operation can be applied.

29 AES Encrypt/Decrypt Interface (AES)

Introduction

The AES core supports both encryption and decryption functions and supports 128 bits input data. It should be noted that hardware does not pad out any input data bit, therefore if users need to do pad action by software at first.

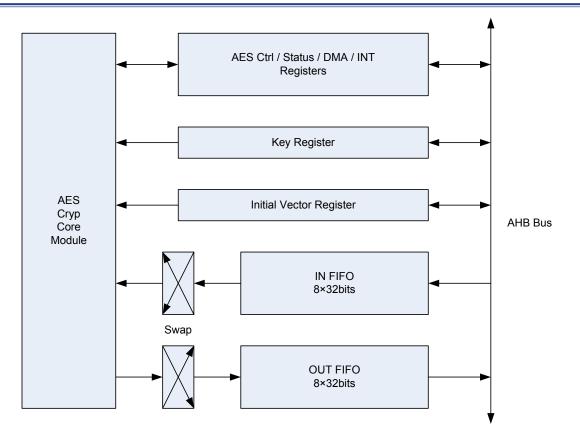


Figure 214. AES Block Diagram

Features

- Supports AES Encrypt / Decrypt functions
- Supports AES ECB / CBC / CTR modes
- Supports Key Sizes of 128, 192 and 256 bits
- Supports 4 words Initial Vector for CBC and CTR mode
- 8 × 32 bits (Each IN and OUT FIFO Capacity) for 2 AES Data blocks
- Supports Word Data Swap Function
- Supports PDMA Interface

Function Descriptions

AES Mode Description

AES Electronic Codebook (AES-ECB) Mode

The 128-bit plaintext data arrives from IN FIFO and will be sent into the AES core for encryption operation after passing through word swapping. The AES core uses an 128, 192 or 256 bit key to process the encryption. After encryption, the AES core generates the ciphertext, which will be written into the output FIFO after the word swapping operation.

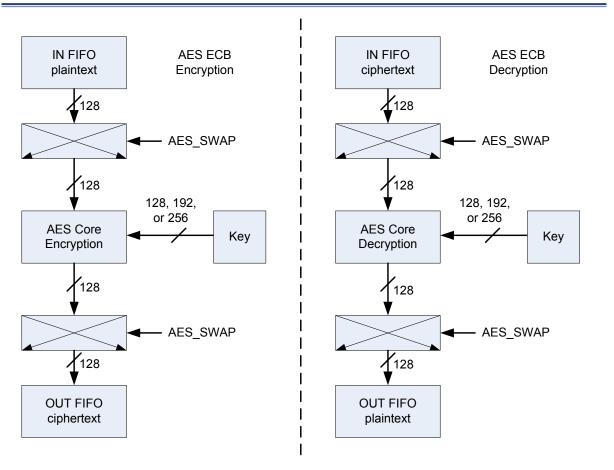


Figure 215. ECB Mode of AES

AES Cipher Block Chaining (AES-CBC) Mode

During encryption in the CBC mode, each block of plaintext performs an XOR operation with the previous ciphertext block before being encrypted. The first Initial Vectors are initialized in the 1st encryption operation. The plaintext, after going through word swapping, will perform a logical XOR operation with the Initial Vectors before encryption. When the encryption output data is pushed into OUT FIFO, the Initial Vectors are updated by the encryption output data at the same time.

During decryption in the CBC mode, each block of plaintext performs an XOR operation with the previous ciphertext block after being decrypted. The first Initial Vectors are initialized in the 1st decryption operation. The ciphertext, after going through word swapping and being decrypted, will perform a logical XOR operation with the Initial Vectors. When the XORed decryption output data is pushed into OUT FIFO, Initial Vectors are updated by ciphertext at the same time for the next round ciphertext.

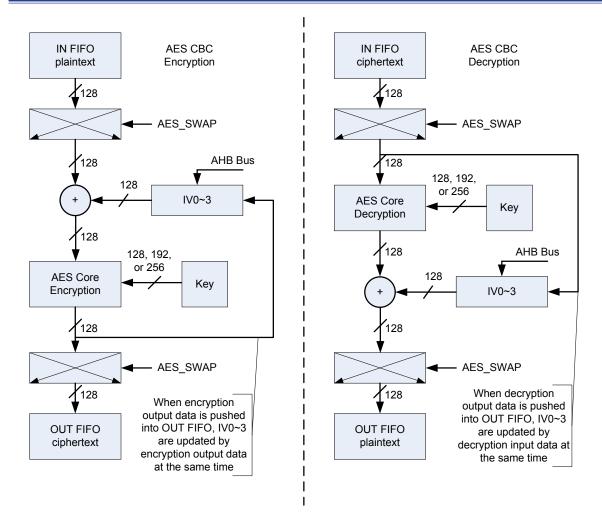


Figure 216. CBC Mode of AES

AES counter (AES-CTR) mode

In the CTR mode, the counter, after being incremented by one, will be sent to the AES core for encryption to generate the ciphertext. The AES core uses the same AES direction setting in encryption and decryption.

During encryption and decryption in the CTR mode, the input FIFO data, after word swapping, performs an XOR operation with the ciphertext. The XORed data is sent to the output FIFO after word swapping. The initial vector counter will be incremented by one at the same time for the next round ciphertext.

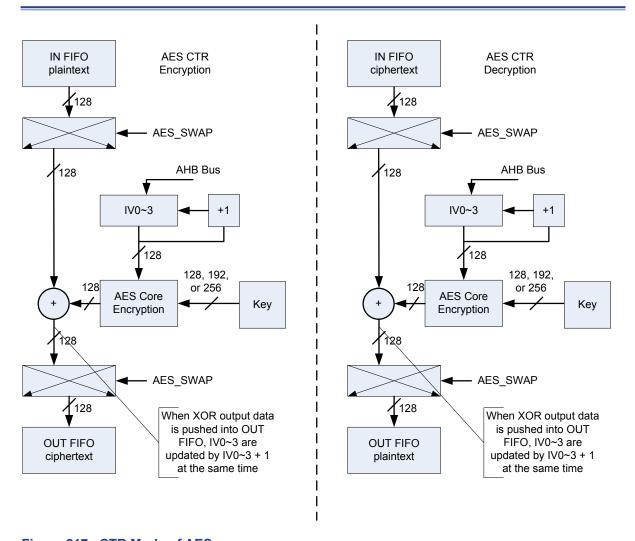


Figure 217. CTR Mode of AES

AES Status

There are five status conditions in the AES for the user to monitor the AES situation. Bit IFEMPTY will be set when the input FIFO is empty while bit IFNFULL will be set when the input FIFO is not full. Bit OFNEMPTY will be set when there is data in the output FIFO. Bit OFFULL will be set when the output FIFO is full. Bit BUSY will be set when the AES core is executing an encryption/decryption operation or the key is in expansion state.

AES PDMA Interface

The AES supports the PDMA Interface. When the input FIFO is not full and there is data in the output FIFO, the AES will send a PDMA request to the PDMA controller in PDMA enable state. The PDMA controller will set the block length which should be less than 4 words.

AES Interrupt

IFINT will be generated when the Input FIFO is less than 1 AES block (4×32bits). OFINT is generated when there is data in the output FIFO. When AES is enabled, an AES interrupt will be generated if bit IFINT is set with IFINT is enabled or if bit OFINT is set in OFINT enable state.

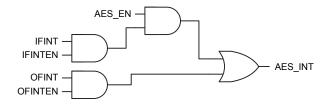


Figure 218. AES Interrupt

AES Initial Vector

The Initial Vectors (IV0 \sim 3) are not used in the ECB mode. The Initial Vectors will be initialized in the first block of the AES input data in the CBC and CTR mode. After the first AES block input data, the Initial Vector values will be updated by hardware automatically for the next block of the AES input data. The Initial Vectors in CTR mode contain nonce, Initial Vector and counter. The counter will be increased by 1 after every block AES data action.

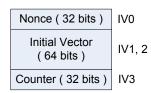


Figure 219. Initial Vector for CTR Mode

AES Word Swap

The AES supports a word swap function. The swap action is performed between IN FIFO and AES block data, it will also be executed between the AES block data and OUT_FIFO. If the word swap function is required, the AES_SWAP bit in the AES_CTRL register should be set.

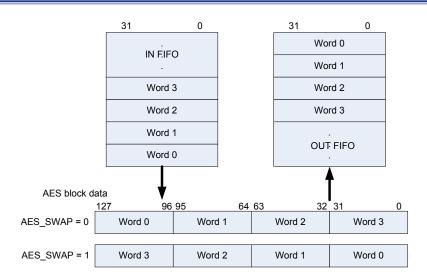


Figure 220. AES Word Swap Function

Register Map

The following table shows the AES registers and reset values.

Table 79. AES Register Map

Register	Offset	Description	Reset Value
AES_CTRL	0x000	AES Control Register	0x0000_0000
AES_STAT	0x004	AES Status Register	0x0000_0003
AES_DMA	0x008	AES DMA Register	0x0000_0000
AES_INTST	0x00C	AES Interrupt Status Register	0x0000_0000
AES_INTEN	0x010	AES Interrupt Enable Register	0x0000_0000
AES_DIN	0x014	AES Data Input Register	0x0000_0000
AES_DOUT	0x018	AES Data Output Register	0x0000_0000
AES_Key0	0x01C	AES Key Register 0	0x0000_0000
AES_Key1	0x020	AES Key Register 1	0x0000_0000
AES_Key2	0x024	AES Key Register 2	0x0000_0000
AES_Key3	0x028	AES Key Register 3	0x0000_0000
AES_Key4	0x02C	AES Key Register 4	0x0000_0000
AES_Key5	0x030	AES Key Register 5	0x0000_0000
AES_Key6	0x034	AES Key Register 6	0x0000_0000
AES_Key7	0x038	AES Key Register 7	0x0000_0000
AES_IV0	0x03C	AES Initial Vector Register 0	0x0000_0000
AES_IV1	0x040	AES Initial Vector Register 1	0x0000_0000
AES_IV2	0x044	AES Initial Vector Register 2	0x0000_0000
AES_IV3	0x048	AES Initial Vector Register 3	0x0000_0000

Register Descriptions

AES Enable Register – ASE_CTRL

This register specifies the AES control setting.

Address: Reset value:	0x400C_E00							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset						'		
	15	14	13	12	11	10	9	8
			Reserved			FFLUSH	Reserved	AES_SWAP
Type/Reset			'			RW 0		RW 0
	7	6	5	4	3	2	1	0
	Reserved		KEYSIZE	KEYSTART		AES_MODE	AES_DIR	AES_EN
Type/Reset		RW	0 RW	0 RW 0	RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[10]	FFLUSH	AES IN/OUT FIFO Flush 0: No action 1: Flush FIFO The bit is cleared to 0 by hardware automatically. The bit can be set only in AES disable mode.
[8]	AES_SWAP	AES Data Swap Function 0: No Swap 1: Word Swap
[6:5]	KEYSIZE	AES Key Size 00: 128 bits 01: 192 bits 1x: 256 bits
[4]	KEYSTART	AES Key Start 0: Key doesn't Start 1: Key Start It is cleared to 0 by hardware automatically. The bit works in AES enable mode.
[3:2]	AES_MODE	AES Function Mode 00: ECB mode 01: CBC mode 1x: CTR mode
[1]	AES_DIR	AES Direction 0: Encryption 1: Decryption
[0]	AES_EN	AES Enable 0: AES is disabled 1: AES is enabled

AES Status Register – AES_STAT

This register specifies the AES Status setting.

Address: 0x400C_E004 Reset value: 0x0000_0003

	31	30	29	28		27	26	25	24
						Reserved			
Type/Reset									
	23	22	21	20		19	18	17	16
						Reserved			
Type/Reset									
	15	14	13	12		11	10	9	8
						Reserved			
Type/Reset									
	7	6	5	4		3	2	1	0
		Reserved		BUSY		OFFULL	OFNEMPTY	IFNFULL	IFEMPTY
Type/Reset			·	R	0 F	₹ 0	R 0	R 1	R 1

Bits	Field	Descriptions
[5]	BUSY	Busy bit 0: AES is not busy 1: AES is busy AES is busy when AES is in encrypt / decryptaction and key expansion.
[4]	OFFULL	Output FIFO is Full 0: FIFO is not full 1: FIFO is full
[3]	OFNEMPTY	Output FIFO is not Empty 0: FIFO is empty 1: FIFO is not empty
[2]	IFNFULL	Input FIFO is not Full 0: FIFO is full 1: FIFO is not full
[0]	IFEMPTY	Input FIFO is Empty 0: FIFO is not empty 1: FIFO is empty

AES DMA Register – AES_DMA

This register specifies the DMA setting.

Address: 0x400C_E008
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset							'	
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset							,	
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset							,	
	7	6	5	4	3	2	1	0
				Reserved			OFDMAEN	IFDMAEN
Type/Reset			·				RW 0	RW 0

Bits	Field	Descriptions
[1]	OFDMAEN	Output FIFO DMA Enable 0: DMA is disabled 1: DMA is enabled
[0]	IFDMAEN	Input FIFO DMA Enable 0: DMA is disabled 1: DMA is enabled

AES Interrupt Status Register – AES_INTST

The register specifies the interrupt status setting.

Address: 0x400C_E00C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
				Reserved			OFINT	IFINT
Type/Reset			·			·	R 0	R 0

Bits	Field	Descriptions
[1]	OFINT	Output FIFO Interrupt Status 0: No Output FIFO Interrupt 1: Output FIFO Interrupt
[0]	IFINT	Input FIFO interrupt Status 0: No Input FIFO Interrupt 1: Input FIFO Interrupt

AES Interrupt Enable Register – AES_INTEN

The register specifies the interrupt enable setting.

Address: 0x400C_E010
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset							,	
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset							,	
	7	6	5	4	3	2	1	0
				Reserved			OFINTEN	IFINTEN
Type/Reset							RW 0	RW 0

Bits	Field	Descriptions
[1]	OFINTEN	Output FIFO Interrupt Enable bit 0: interrupt is disabled 1: interrupt is enabled
[0]	IFINTEN	Input FIFO Interrupt Enable bit 0: interrupt is disabled 1: interrupt is enabled

AES DATA IN Register – AES_DIN

The register specifies the data input setting.

Address: 0x400C_E014
Reset value: 0x0000_0000

	31		30		2	29			28		27		26			25			24	
											DIN									
Type/Reset	RW	0	RW	0	RW	(0	RW		0	RW	0	RW	0	RW		0	RW		0
	23		22		2	21			20		19		18			17			16	
											DIN									
Type/Reset	RW	0	RW	0	RW	(0	RW		0	RW	0	RW	0	RW		0	RW		0
	15		14		1	13			12		11		10			9			8	
											DIN									
Type/Reset	RW	0	RW	0	RW	(0	RW		0	RW	0	RW	0	RW		0	RW		0
	7		6		,	5			4		3		2			1			0	
											DIN									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW	0	RW		0	RW		0

Bits	Field	Descriptions
[31:0]	DIN	AES DATA Input
		0x0000_0000 ~ 0xFFFF_FFF

AES DATA OUT Register – AES_DOUT

The register specifies the data output setting.

Address: 0x400C_E018 Reset value: 0x0000_0000

		31			30			29			28			27			26			25			24	
														רטסכ	Γ									
Type/Reset	R		0	R		0	R		0	R		0	R		0	₹		0	R		0	R		0
		23			22			21			20			19			18			17			16	
														רטסכ										
Type/Reset	R		0	R		0	R		0	R		0	R		0	₹		0	R		0	R		0
		15			14			13			12			11			10			9			8	
														רטסכ										
Type/Reset	R		0	R		0	R		0	R		0	R		0	₹		0	R		0	R		0
		7			6			5			4			3			2			1			0	
														רטסכ	Γ		, and the second							
Type/Reset	R		0	R		0	R		0	R		0	R		0	₹		0	R		0	R		0

 Bits
 Field
 Descriptions

 [31:0]
 DOUT
 AES Data Output 0x0000_0000 ~ 0xFFFF_FFFF

AES Key Register n – AES_Keyn (n = $0 \sim 7$)

The register specifies the data of Key data n.

Address: 0x400C_E01C ~ 0x400C_E038

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									KeyDa	ata						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									KeyDa	ata						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
									KeyDa	ata						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	_		_		_				3		2		4		0	
	7		6		5		4		3				1		U	
	7		6		5		4		KeyDa	ata			1		U	

Bits	Field	Descriptions
[31:0]	KeyData	KeyData
		0x0000_0000 ~ 0xFFFF_FFF

AES Initial Vector Register n – AES_IVn (n = $0 \sim 3$)

The register specifies the data of Initial Vector data n.

Address: 0x400C_E03C ~ 0x400C_E048

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									IVDat	а						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									IVDat	а						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
	15		14		13		12		11 IVDat	<u></u> а	10		9		8	
Type/Reset	15 RW	0	14	0	13 RW	0	12	0	IVDat	a 0		0	9 RW	0		0
Type/Reset		0		0		0		0	IVDat			0		0		0
Type/Reset		0	RW	0	RW	0		0	IVDat	0		0		0		0

Bits	Field	Descriptions
[31:0]	IVData	Initial Vector Data
		0x0000_0000 ~ 0xFFFF_FFF

30 SDIO Host Controller (SDIO)

Introduction

The SDIO HOST Controller supports Multi-Media Cards (MMC), the SD Memory Cards and SD I/O cards. The SDIO communication is based on an advanced 6-pin interface composed of clock, command and $4 \times data$ lines.

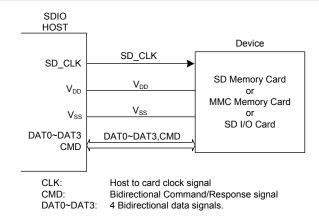


Figure 221. SDIO Bus Topology

Features

- Supports two different data bus modes: 1-bit (default) and 4-bit
- Supports two different speed modes: Normal speed (default) and High speed
- SD clock frequency of up to system frequency
- SPI mode and MMC stream mode not supported

Functional Description

The SDIO includes a command register, argument register, response registers, data buffer, timeout counter and error detection logic. The SDIO supports single block and multi-block data transfers and is compatible with the PDMA, minimizing processor intervention for large data transfers.

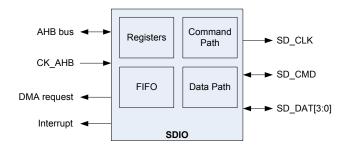


Figure 222. SDIO Block Diagram

SD Clock

The SD_CLK is a clock driven by the SDIO controller and transmitted to the card. When the CK_AHB is operating at 96 MHz, the maximum SD_CLK frequency is 48 MHz in the high speed mode and 24 MHz in the normal speed mode. In the normal speed mode, the CMD and DAT lines are changed at the SD_CLK falling edge and latched at the SD_CLK rising edge. In the high speed mode, the CMD and DAT lines are changed and latched at the SD_CLK rising edge.

SD CLK = CK AHB / (CLKPRE + 1), CLKPRE =
$$0 \sim 255$$

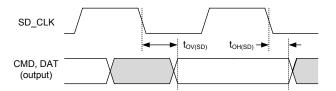


Figure 223. Normal Speed Timing

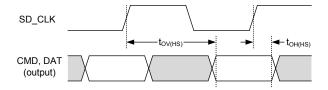


Figure 224. High Speed Timing

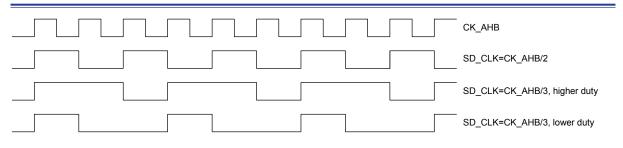


Figure 225. SDCLK Duty Cycle

SD Protocol

SD communication over the SD bus is based on command, response and data bit streams that are initiated by a start bit and terminated by a stop bit. On the CMD line the MSB bit is transmitted first.

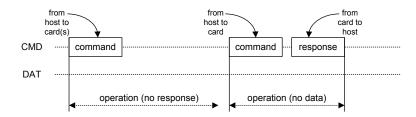


Figure 226. "No Response" and "No Data" Operations

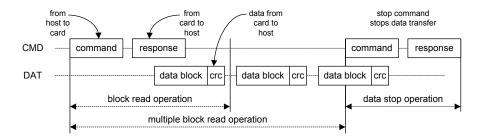


Figure 227. "Multiple" Block Read Operation

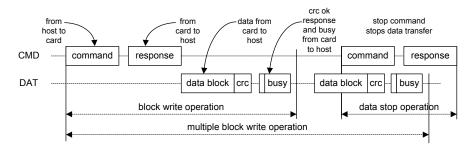


Figure 228. "Multiple" Block Write Operation

Command

The total length of a command is 48 bits. Each command is preceded by a start bit (0) and succeeded by an end bit (1). Each command is protected by CRC bits, so that transmission errors can be detected and the operation may be repeated.

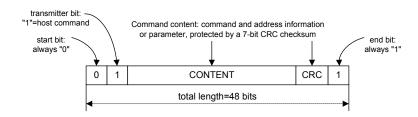


Figure 229. Command Format

Table 80. Command Format

Bit position	[47]	[46]	[45:40]	[39:8]	[7:1]	[0]
Width (bits)	1	1	6	32	7	1
Value	'0'	'1'	х	Х	Х	'1'
Description	Start bit	Transmission bit	Command Index	Argument	CRC7	End bit

Response

The total length of a response is either 48 or 136 bits depending on its content.

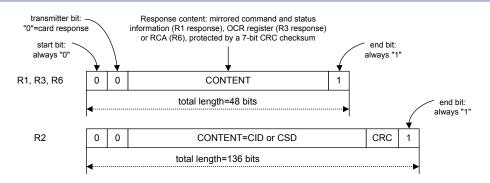


Figure 230. Response Format

Table 81. Response R1 Format

Bit position	[47]	[46]	[45:40]	[39:8]	[7:1]	[0]
Width (bits)	1	1	6	32	7	1
Value	'0'	'0	Х	Х	Х	'1'
Description	Start bit	Transmission bit	Command index	Card status	CRC7	End bit

Table 82. Response R2 Format

Bit position	[135]	[134]	[133:128]	[127:8]	[7:1]	[0]
Width (bits)	1	1	6	120	7	1
Value	·0'	'0'	'111111'	Х	Х	'1'
Description	Start bit	Transmission bit	Reserved	CID or CSD register	CRC7	End bit

Table 83. Response R3 Format

Bit position	[47]	[46]	[45:40]	[39:8]	[7:1]	[0]
Width (bits)	1	1	6	32	7	1
Value	'0'	ʻ0 ʻ111111' x		х	'111111'	'1'
Description	Start bit	Transmission bit	Reserved	OCR register	Reserved	End bit

Table 84. Response R6 Format

Bit position	[47]	[46]	[45:40]	[39:24] [23:8]		[7:1]	[0]
Width (bits)	1	1	6	16	16	7	1
Value	'0'	'0	'000011'	Х	Х	Х	'1'
Description	Start bit	Transmission bit	Command index	New RCA	Card status	CRC7	End bit

Table 85. Response R7 Format

Bit position	[47]	[47] [46]		[45:40] [39:20]		[15:8]	[7:1]	[0]
Width (bits) 1 1		6 20		4	8	7	1	
Value	'0'	'0	'001000' '00000' x		Х	х	х	'1'
Description	Start bit	Transmission bit	Command index	Reserved	Voltage accepted	Echo- back	CRC7	End bit

Data

There are two types of data format, usual data and wide width data. Usual data, with 8-bit width, is transmitted in LSB byte first format. However for individual bytes, the transmission format is MSB bit first. The CRC protection algorithm for block data is a 16-bit CCITT polynomial.

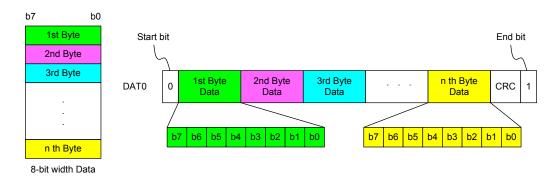


Figure 231. Usual Data Format for Standard Bus - only DAT0 used

The wide width data is shifted starting from the MSB bit. When the wide bus option is used, the data is transmitted 4 bits at a time. The start, end and CRC bits are transmitted for every one of the DAT lines. The CRC bits are calculated and checked for each DAT line individually. The CRC status response and the Busy indication will be sent from the SD device to the host on DAT0 only.

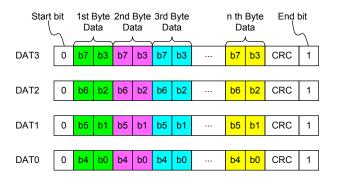


Figure 232. Usual Data Format for Wide Bus - DAT0~DAT3 used

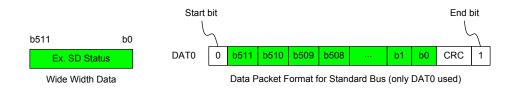


Figure 233. Wide Width Data Format for Standard Bus - Only DAT0 used

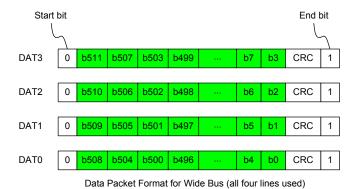


Figure 234. Wide Width Data Format for Wide Bus - DAT0~DAT3 used

Buffer Status

The SDIO contains an 8×32 -bit data buffer shared by both data read and write operations. The buffer level can be checked by reading the BLSTA field in the Present State Register and the data can be read from or written into the buffer by accessing the Data Port Register.

Once the buffer contains 4×32 -bit data in a read operation or the buffer has 4×32 -bit space in a write operation, the BHSTA bit in the Status Register will be set. When the FIFO is full or empty, the BFSTA or BESTA bit in the Status Register will be set. All the buffer status flags can be enabled by setting the corresponding bits in the Status Enable Register.

Interrupt

The SDIO can issue a buffer half full, buffer full or buffer empty interrupt to the NVIC if the corresponding enable bit in the Interrupt Enable Register is enabled.

The Card Interrupt Request sent from the device to the host can be checked by reading the CISTA bit in the Status Register if the corresponding bit in the Status Enable Register is enabled.

DMA Request

If the buffer is empty during a write operation or if the buffer contains more than 4×32 -bit data during a read operation, the SDIO will send a DMA request to the PDMA if the DMAEN bit in the Transfer Mode Register is set.

Table 86. SDIO Command Register Fields and Values

Command	Abbreviation	Fields and Values	Description			
CMD0	GO_IDLE_STATE	RESP_TYPE=0 DAT_PRESENT=0	No response operation			
CMD2	ALL_SEND_CID	DEOD TYPE 4				
CMD9	SEND_CSD	RESP_TYPE=1 DAT PRESENT=0	Long response operation			
CMD10	SEND_CID	DAI_I NEOLINI-0				
CMD1	SEND_OP_COND					
CMD3	SEND_RELATIVE_ADDR					
CMD5*	IO_SEND_OP_COND					
CMD7	SELECT/DESELECT_CARD					
CMD8	SEND_IF_COND					
CMD12	STOP_TRANSMISSION					
CMD13	SEND_STATUS					
CMD16	SET_BLOCKLEN	RESP_TYPE=2	Short response operation			
CMD32	ERASE_WR_BLK_START	DAT_PRESENT=0	Short response operation			
CMD33	ERASE_WR_BLK_END					
CMD38	ERASE					
CMD52*	IO_RW_DIRECT					
CMD55	APP_CMD					
ACMD6	SET_BUS_WIDTH					
ACMD23	SET_WR_BLK_ERASE_COUNT					
ACMD41	SD_SEND_OP_COND					

Command	Abbreviation	Fields and Values	Description		
CMD6	SWITCH_FUNC				
CMD17	READ_SINGLE_BLOCK				
CMD18	READ_MULTIPLE_BLOCK				
CMD24	WRITE_SINGLE_BLOCK	RESP_TYPE=2	Disale data apparation		
CMD25	WRITE_MULTIPLE_BLOCK	DAT_PRESENT=1	Block data operation		
CMD53 [*]	IO_RW_EXTEND				
ACMD13	SD_STATUS				
ACMD51	SEND_SCR				

^{*} SD I/O card specified commands.

Register Map

The following table shows the SDIO registers and reset values.

Table 87. SDIO Register Map

Register	Offset	Description	Reset Value
BLSIZE	0x000	Block Size Register	0x0000_0000
BLCNT	0x004	Block Count Register	0x0000_0000
ARG	0x008	Argument Register	0x0000_0000
TMR	0x00C	Transfer Mode Register	0x0000_0000
CMD	0x010	Command Register	0x0000_0000
RESP0	0x014	Response Register 0	0x0000_0000
RESP1	0x018	Response Register 1	0x0000_0000
RESP2	0x01C	Response Register 2	0x0000_0000
RESP3	0x020	Response Register 3	0x0000_0000
DR	0x024	Data Port Register	0xXXXX_XXXX
PSR	0x028	Present State Register	0x0000_0800
CR	0x02C	Control Register	0x0000_0000
CLKCR	0x038	Clock Control Register	0x0000_0000
TMOCR	0x03C	Timeout Control Register	0x00FF_FFFF
SWRST	0x040	Software Reset Register	0x0000_0000
SR	0x044	Status Register	0x0000_0000
SER	0x048	Status Enable Register	0x0000_0000
IER	0x04C	Interrupt Enable Register	0x0000_0000

Register Description

Block Size Register - BLSIZE

This register is used to configure the number of bytes in a data block.

Offset:	0x000	
Reset value:	0x0000	0000

	31		30		29	9		28		27		26			25		24	
										Reserv	/ed							
Type/Reset																		
	23		22		2	1		20		19		18			17		16	
										Reserv	ved							
Type/Reset																		
	15		14		13	3		12		11		10			9		8	
					Rese	rved								BL	SIZ	E		
Type/Reset										RW	0	RW	0	RW		0	RW	0
	7		6		5	5		4		3		2			1		0	
										BLSIZ	ZE							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0

Bits	Field	Descriptions	
[11:0]	BLSIZE	Transfer Block Size 000h: No data transfer 001h: 1 Byte 002h: 2 Bytes	
		1FFh: 511 Bytes 200h: 512 Bytes	

800h: 2048 Bytes
The BLSIZE represents the block size of data transfers for CMD17, CMD18, CMD24, CMD25 and CMD53.

Block Count Register – BLCNT

This register is used to configure the number of data blocks.

Offset: 0x004

Reset value: 0x0000_0000

	31		30		29		28		2	7	26		2	5		24	
									Rese	rved							
Type/Reset																	
	23		22		21		20		19	9	18		17	7		16	
									Rese	rved							
Type/Reset																	
	15		14		13		12		1	1	10		9)		8	
									BLC	NT							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	C	RW		0
	7		6		5		4		3	3	2		1			0	
									BLC	NT							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	C	RW		0

Bits Field Descriptions

[15:0] BLCNT Blocks Count for Current transfer

0000h: Stop Count 0001h: 1 block 0002h: 2 blocks

...

FFFFh: 65535 blocks

This register is enabled when Block Count Enable in the Transfer Mode register is set to 1 and is valid only for multiple block transfers.

Rev. 1.10 641 of 680 November 22, 2018

Argument Register – ARG

This register contains the SD command argument.

Offset: 0x008

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									ARG							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									ARG							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
									ARG							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	1 1 1 1	U	LVV	U	LAAA	U	LAAA	U	1 1 1 1	U	LAAA	U	1 1 1 1	U		•
	7	0	6	U	5	0	4	U	3	U	2	0	1	U	0	
	7	_				_		_	3 ARG	_		_	1	_	0	

DILS	rieiu	Descriptions
[31:0]	ARG	Command Argument

This register contains the command argument which will be sent to a SD device as part of a command message.

Transfer Mode Register – TMR

This register is used to control the date transfer operations.

Offset: 0x00C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset		'						
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset		,						
	15	14	13	12	11	10	9	8
				Reserved				DMAEN
Type/Reset								RW 0
	7	6	5	4	3	2	1	0
		Reserved	BLSEL	DTDIR		Reserved	BLCNTEN	Reserved
Type/Reset			RW 0	RW 0			RW 0	

Bits	Field	Descriptions
[8]	DMAEN	DMA Enable 0: Disable 1: Enable
[5]	BLSEL	Multiple / Single Block Select 0: Single Block 1: Multiple Block
[4]	DTDIR	Data Transfer Direction Select 0: Write – Host to Card 1: Read – Card to Host
[1]	BLCNTEN	Block Count Enable 0: Disable 1: Enable

BLSEL	BLCNTEN	BLCNT	Function
0	Don't Care	Don't Care	Single Transfer
1	0	Don't care	Infinite Transfer
1	1	Not Zero	Multiple Transfer
1	1	Zero	Stop Multiple Transfer

Command Register – CMD

Writing to this register triggers SD command generation.

Offset: Reset value: 0x0000_0000

	31		30		29		28			27		26		25		24	
					23					erved		20					\neg
Type/Reset																	—
	23		22		21		20		•	19		18		17		16	
									Res	erved							
Type/Reset																	
	15		14		13		12			11		10		9		8	
			Reserved								CM	IDIDX					
Type/Reset				R	.W	0	RW	0	RW	0	RW	0	RW		0	RW	0
	7		6		5		4			3		2		1		0	
			CMDTYP		DPSEL		CIDXC	ΕN	CCR	CCEN	Res	erved				RTSE	ĒL
Type/Reset	RW	0	RW 0	R	W	0	RW	0	RW	0			RW		0	RW	0

Bits	Field	Descriptions
[13:8]	CMDIDX	Command Index The CMDIDX should be set to the command number (CMD0~63, ACMD0~63) which will be sent to an SD device as part of a command message.
[7:6]	CMDTYP	Command Type 00b: Normal – Other Commands 01b: Suspend – CMD52 for writing "Bus Suspend" in CCCR 10b: Resume – CMD52 for writing "Function Select" in CCCR 11b: Abort – CMD12, CMD52 for writing "I/O Abort" in CCCR
[5]	DPSEL	Data Present Select 0: No Data Present 1: Data Present This bit is set to 1 to indicate that data is present and should be transferred using the DAT line.
[4]	CIDXCEN	Command Index Check Enable 0: Disable 1: Enable If this bit is set to 1, the SDIO Host Controller should check the index field in the response to determine if it has the same value as the command index.
[3]	CCRCCEN	Command CRC Check Enable 0: Disable 1: Enable If this bit is set to 1, the SDIO Host Controller should check the CRC field in the response.

Bits Field Descriptions

[1:0] RTSEL

Response Type Select

00b: No Response

01b: Response Length 136 10b: Response Length 48

11b: Response Length 48 - check busy after response

	0	, ,	
Response Type	Index Check Enable	CRC Check Enable	Name of Response Type
00	0	0	No response
01	0	1	R2
10	0	0	R3, R4
10	1	1	R1, R5, R6, R7
11	1	1	R1b, R5b

Response Register n – RESPn (n = $0 \sim 3$)

These registers are used to store responses from the SD device.

Offset: 0x014 (0), 0x18 (1), 0x1C (2), 0x20(3)

Reset value: 0x0000_0000

	31		30		29		28		27		26		:	25		2	4
									RESP	n							
Type/Reset	RO	0 R)	0 RO		0 RO	1	0	RO	0	RO	0	RO		0	RO	0
	23		22		21		20		19		18			17		1	6
									RESP	n							
Type/Reset	RO	0 R)	0 RO		0 RO		0	RO	0	RO	0	RO		0	RO	0
	15		14		13		12		11		10			9			3
									RESP	n							
Type/Reset	RO	0 R		0 RO		0 RO	1	0	RESP RO	n 0	RO	0	RO		0	RO	0
Type/Reset		0 R		0 RO	5	0 RO	4	0			RO 2	0	RO	1	0	RO	0
Type/Reset		0 R0)	0 RO	5	0 RO	4	0		0	RO 2	0	RO	1	0	RO	0

Bits Field Descriptions

[31:0] RESPn

Command Response

Register	Long Response	Short Response
RESP0	Command response [127:96]	Command response [31:0]
RESP1	Command response [95:64]	_
RESP2	Command response [63:32]	_
RESP3	Command response [31:0]	

Data Port Register – DR

This 32-bit data port register is used to access the internal buffer.

Offset: 0x024

Reset value: 0x0000_0000

	31		30		29			28		27		26		2	5		24	
										DR								
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW	C	RW		0
	23		22		21			20		19		18		1	7		16	
										DR								
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW	C	RW	•	0
	4.5				40			40		4.4		4.0		_			•	
	15		14		13			12		11		10		9)		8	
	15		14		13			12		DR		10		9)		8	
Type/Reset	RW	0	14 RW	0	RW	0	RW	12	0		0	RW	0	RW		RW		0
Type/Reset		0		0		0		4	0	DR	0		0			RW		0
Type/Reset		0	RW	0	RW	0			0	DR RW	0	RW	0			RW		0

Bits	Field	Description		
[31:0]	DR	Buffer Data		

The Host Controller buffer, which is 8×32 -bits, can be accessed through this 32-bit data port register.

Present State Register - PSR

This read only register contains the present host controller state

Offset: 0x028
Reset value: 0x0000_0800

	31	30	29	28		27		26	25	24
						Reserve	ed			
Type/Reset		'								
	23	22	21	20		19		18	17	16
			BLSTA			BURAV	٧	BORAW		Reserved
Type/Reset	RO	0 RO	0 RO 0	RO	0	RO	0	RO 0		
	15	14	13	12		11		10	9	8
			Reserved			BERAV	٧	BFRAW	RTASTA	WTASTA
Type/Reset		,				RO	1	RO 0	RO 0	RO 0
	7	6	5	4		3		2	1	0
			Reserved					DLASTA	CIDSTA	CICSTA
Type/Reset								RO 0	RO 0	RO 0

Bits	Field	Descriptions
[23:20]	BLSTA	Buffer Level State 0000: Buffer contains no data 0001: Buffer contains 1 × 32-bit data
		1000: Buffer contains 8 × 32-bit data Others: Reserved
[19]	BURAW	Buffer Underflow Raw State 0: Buffer not underflow 1: Buffer underflow If this status bit is set to 1, it indicates that the data buffer is underflow. A software reset for DPSM can clear this bit.
[18]	BORAW	Buffer Overflow Raw State 0: Buffer not overflow 1: Buffer overflow If this status bit is set to 1, it indicates that the data buffer is overflow. A software reset for DPSM can clear this bit.
[11]	BERAW	Buffer Empty Raw State 0: Buffer not empty 1: Buffer empty If this status bit is set to 1, it indicates that the data buffer is empty. In this case, any read operation will set the Buffer Underflow Flag.
[10]	BFRAW	Buffer Full Raw State 0: Buffer not empty 1: Buffer empty If this status bit is set to 1, it indicates that the data buffer is full. In this case, any write operation will set the Buffer Overflow Flag.
[9]	RTASTA	Read Transfer Active State 0: No valid data 1: Transferring data This status is used for detecting completion of a read transfer.

Bits	Field	Descriptions
[8]	WTASTA	Write Transfer Active State 0: No valid data 1: Transferring data This status indicates that a write transfer is active. If this bit is 0, it means no valid written data exists in the Host Controller.
[2]	DLASTA	DAT Line Active State 0: DAT Line Inactive 1: DAT Line Active This bit indicates whether one of the DAT lines on SD Bus is in use.
[1]	CIDSTA	Command Inhibit (DAT) State 0: Can issue a command which uses the DAT line 1: Cannot issue a command which uses the DAT line This status bit is generated if either the DAT Line Active or the Read Transfer Active is set to 1. If this bit is 0, it indicates that the Host Controller can issue the next SD Command.
[0]	CICSTA	Command Inhibit (CMD) State 0: Can issue a command using only the CMD line. 1: Cannot issue command If this bit is 0, it indicates that the CMD line is not in use and the Host Controller can issue an SD Command using the CMD line.

Control Register – CR

This register is used to specify the speed mode and data transfer width.

Offset: 0x02C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset					'			
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved			HSMEN	DATWID	Reserved
Type/Reset		·				RW 0	RW 0	

Bits	Field	Descriptions
[2]	HSMEN	High Speed Mode Enable 0: Normal Speed mode
		1: High Speed mode If this bit is set to 1, the Host Controller outputs the CMD line and DAT lines on the rising edge of the SD Clock.
[1]	DATWID	Data Transfer Width 0: 1-bit mode 1: 4-bit mode This bit selects the data width of the Host Controller.

Clock Control Register – CLKCR

This register is used to configure the SD clock frequency and enable control.

Descriptions

Offset: 0x038
Reset value: 0x0000_0000

Field

Bits

	31	30	29	28	27	26	25	24
					Reserve	d		
Type/Reset		'	'		'			
	23	22	21	20	19	18	17	16
					Reserve	d		
Type/Reset					''			
	15	14	13	12	11	10	9	8
					CLKPRE			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
			Reserv	ed	CLKDUT	Y CLKEN	CLKSPEN	CLKSPLV
Type/Reset					RW	0 RW 0	RW 0	RW 0

[15:8]	CLKPRE	SD Clock Prescaler 00h: SDCLK = CK_AHB 01h: SDCLK = CK_AHB / 2 02h: SDCLK = CK_AHB / 3
		FFh: SDCLK = CK_AHB / 256
[3]	CLKDUTY	SD Clock Duty Cycle 0: Higher 1: Lower If the SDCLK prescaler is not a multiple of 2, set this bit to 1 to obtain a lower duty
		cycle.
[2]	CLKEN	SD Clock Enable 0: Disable 1: Enable The Host Controller should stop the SDCLK when this bit is set to 0.
[1]	CLKSPEN	SD Clock Stop Enable 0: Disable 1: Enable If this bit is set to 1, the SDCLK will remain high or low level when the SD bus is idle.
[0]	CLKSPLV	SD Clock Stop Level 0: Low Level 1: High Level If the SD Clock Stop function is enabled, the SDCLK will remain at a high level when this bit is set to 1 and vice versa.

Timeout Control Register – TMOCR

This register is used to specify the data timeout counter value.

Offset: 0x03C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset		'			'		"	
	23	22	21	20	19	18	17	16
					TMOVAL			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW 0	RW C) RW 0
	15	14	13	12	11	10	9	8
					TMOVAL			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW 0	RW C) RW 0
	7	6	5	4	3	2	1	0
			_		TMOVAL			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW 0	RW C	RW 0

Bits	Field	Descriptions
------	-------	--------------

[23:0] TMOVAL

Data Timeout Counter Value

This value determines the interval depending upon which DAT line timeouts are detected.

Software Reset Register - SWRST

A reset pulse is generated when writing 1 to each bit of this register. Because it takes some time to complete a software reset, the SD Host Driver should confirm that these bits are 0.

Offset: 0x040
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved			RSTDAT	RSTCMD	RSTALL
Type/Reset		·				RW 0	RW 0	RW 0

Bits	Field	Descriptions
[2]	RSTDAT	Software Reset for the DAT Line 0: Do not request a reset 1: Request reset If this bit is set to 1, only part of the data circuit is reset.
[1]	RSTCMD	Software Reset for the CMD Line 0: Do not request a reset 1: Request reset If this bit is set to 1, only part of command circuit is reset.
[0]	RSTALL	Software Reset for All 0: Do not request a reset 1: Request reset This reset affects the entire Host Controller.

Status Register – SR

This register contains the host controller status bits.

Offset: 0x044

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
			Reserved			CICESTA	CIDESTA	CISTA
Type/Reset						WC 0	WC 0	RO 0
	23	22	21	20	19	18	17	16
	Reserved	DEESTA	DCESTA	DTESTA	CIESTA	CEESTA	CCESTA	CTESTA
Type/Reset		WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0
	15	14	13	12	11	10	9	8
	ERRSTA				Reserved			
Type/Reset	RO 0							
	7	6	5	4	3	2	1	0
	BESTA	BFSTA	BHSTA	BUSTA	BOSTA	Reserved	TCSTA	CCSTA
Type/Reset	WC 0	WC 0	WC 0	WC 0	WC 0		WC 0	WC 0

Bits	Field	Descriptions
[26]	CICESTA	Command Inhibit (CMD) Error Status 0: No Error 1: Error
		This bit is set to 1 when writing to the Command Register or Argument Register when Command Inhibit (CMD) is high.
[25]	CIDESTA	Command Inhibit (DAT) Error Status 0: No Error 1: Error
		This bit is set to 1 when writing to the Command Register (which uses the DAT line), Block Size Register and Transfer Mode Register when Command Inhibit (DAT) is high.
[24]	CISTA	Card Interrupt Status 0: No Card Interrupt 1: Generate Card Interrupt When the host controller is sampling, a card interrupt from the SD device will set this bit to 1.
[22]	DEESTA	Data End Bit Error Status 0: No Error 1: Error Occurs either when detecting 0 at the end bit position of the read data which uses the DAT line or at the end bit position of the CRC Status.
[21]	DCESTA	Data CRC Error Status 0: No Error 1: Error Occurs when detecting a CRC error during the transfer of read data which uses the DAT line or when detecting the Write CRC status having a value other than "010".

Bits	Field	Descriptions
[20]	DTESTA	Data Timeout Error Status 0: No Error 1: Time Out This bit is set when detecting one of the following timeout conditions. (1) Busy timeout for R1b, R5b type (2) Busy timeout after Write CRC status (3) Write CRC Status timeout (4) Read Data timeout
[19]	CIESTA	Command index Error Status 0: No Error 1: Error
[18]	CEESTA	This bit is set if a Command Index error occurs in the command response. Command End Bit Error Status 0: No Error 1: End Bit Error Generated This bit is set when it is detected that the end bit of a command response is 0.
[17]	CCESTA	Command CRC Error Status 0: No Error 1: CRC Error Generated This bit is set when detecting one of following timeout conditions. (1) Detecting a CRC error in the command response (2) A CMD line conflict occurs when a command is issued
[16]	CTESTA	Command Timeout Error Status 0: No Error 1: Time out This bit is set to 1 only if no response is returned within 64 SDCLK cycles from the end bit of the command.
[15]	ERRSTA	Error Status 0: No Error 1: Error If any of the error bits in the Status Register are set, then this bit is set.
[7]	BESTA	Buffer Empty Status 0: Buffer ont empty 1: Buffer empty Writing 1 to this bit will clear it.
[6]	BFSTA	Buffer Full Status 0: Buffet not full 1: Buffer full Writing 1 to this bit will result in the bit being cleared.
[5]	BHSTA	Buffer Half Status 0: Buffet not half full/empty 1: Buffer half full/empty Writing 1 to this bit will result in the bit being cleared.
[4]	BUSTA	Buffer Underflow Status 0: Buffet not underflow 1: Buffer underflow
[3]	BOSTA	Writing 1 to this bit will result in the bit being cleared. Buffer Overflow Status 0: Buffer not overflow 1: Buffer overflow Writing 1 to this bit will result in the bit being cleared.

Bits	Field	Descriptions
[1]	TCSTA	Transfer Complete Status 0: Not Complete 1: Command execution is completed This bit is set to 1 when a read/write transfer and a command with busy have completed. Writing 1 to this bit will result in the bit being cleared.
[0]	CCSTA	Command Complete Status 0: No Command Complete 1: Command Complete This bit is set to 1 when the end bit of the command response has been obtained. Writing 1 to this bit will result in the bit being cleared. The Command Timeout Error has a higher priority than the Command Complete.

Status Enable Register – SER

This register is used to enable the status bits defined in the Status Register.

Offset: 0x048
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
			Reserved			CICESEN	CIDESEN	CISEN
Type/Reset						RW 0	RW 0	RW 0
	23	22	21	20	19	18	17	16
	Reserved	DEESEN	DCESEN	DTESEN	CIESEN	CEESEN	CCESEN	CTESEN
Type/Reset		RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	BESEN	BFSEN	BHSEN	BUSEN	BOSEN	Reserved	TCSEN	CCSEN
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0		RW 0	RW 0

Bits	Field	Descriptions
[26]	CICESEN	Command Inhibit (CMD) Error Status Enable 0: Masked 1: Enable
[25]	CIDESEN	Command Inhibit (DAT) Error Status Enable 0: Masked 1: Enable
[24]	CISEN	Card Interrupt Status Enable 0: Masked 1: Enable
[22]	DEESEN	Data End Bit Error Status Enable 0: Masked 1: Enable
[21]	DCESEN	Data CRC Error Status Enable 0: Masked 1: Enable
[20]	DTESEN	Data Timeout Error Status Enable 0: Masked 1: Enable

Bits	Field	Descriptions
[19]	CIESEN	Command Index Error Status Enable 0: Masked 1: Enable
[18]	CEESEN	Command End Bit Error Status Enable 0: Masked 1: Enable
[17]	CCESEN	Command CRC Error Status Enable 0: Masked 1: Enable
[16]	CTESEN	Command Timeout Error Status Enable 0: Masked 1: Enable
[7]	BESEN	Buffer Empty Status Enable 0: Masked 1: Enable
[6]	BFSEN	Buffer Full Status Enable 0: Masked 1: Enable
[5]	BHSEN	Buffer Half Status Enable 0: Masked 1: Enable
[4]	BUSEN	Buffer Underflow Status Enable 0: Masked 1: Enable
[3]	BOSEN	Buffer Overflow Status Enable 0: Masked 1: Enable
[1]	TCSEN	Transfer Complete Status Enable 0: Masked 1: Enable
[0]	CCSEN	Command Complete Status Enable 0: Masked 1: Enable

Interrupt Enable Register – IER

These status bits all share the same 1-bit interrupt line. Setting any of these bits to 1 enables interrupt generation.

Offset: 0x04C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
			Reserved			CICEIEN	CIDEIEN	CIIEN
Type/Reset						RW 0	RW 0	RW 0
	23	22	21	20	19	18	17	16
	Reserved	DEEIEN	DCEIEN	DTEIEN	CIEIEN	CEEIEN	CCEIEN	CTEIEN
Type/Reset		RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	BEIEN	BFIEN	BHIEN	BUIEN	BOIEN	Reserved	TCIEN	CCIEN
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0		RW 0	RW 0

Bits	Field	Descriptions
[26]	CIEIEN	Command Inhibit (CMD) Error Interrupt Enable 0: Masked 1: Enable
[25]	CIDEIEN	Command Inhibit (DAT) Error Interrupt Enable 0: Masked 1: Enable
[24]	CIIEN	Card Interrupt Status Interrupt Enable 0: Masked 1: Enable
[22]	DEEIEN	Data End Bit Error Interrupt Enable 0: Masked 1: Enable
[21]	DCEIEN	Data CRC Error Interrupt Enable 0: Masked 1: Enable
[20]	DTEIEN	Data Timeout Error Interrupt Enable 0: Masked 1: Enable
[19]	CIEIEN	Command Index Error Interrupt Enable 0: Masked 1: Enable
[18]	CEEIEN	Command End Bit Error Interrupt Enable 0: Masked 1: Enable
[17]	CCEIEN	Command CRC Error Interrupt Enable 0: Masked 1: Enable
[16]	CTEIEN	Command Timeout Error Interrupt Enable 0: Masked 1: Enable

Bits	Field	Descriptions
[7]	BEIEN	Buffer Empty Interrupt Enable 0: Masked 1: Enable
[6]	BFIEN	Buffer Full Interrupt Enable 0: Masked 1: Enable
[5]	BHIEN	Buffer Half Interrupt Enable 0: Masked 1: Enable
[4]	BUIEN	Buffer Underflow Interrupt Enable 0: Masked 1: Enable
[3]	BOIEN	Buffer Overflow Interrupt Enable 0: Masked 1: Enable
[1]	TCIEN	Transfer Complete Interrupt Enable 0: Masked 1: Enable
[0]	CCIEN	Command Complete Interrupt Enable 0: Masked 1: Enable

31 CMOS Sensor Interface (CSIF) for HT32F22366 Only

Introduction

The CMOS Sensor Interface, otherwise known as the CSIF, provides an interface for image capture from CMOS sensors. The device can be connected to the CMOS sensor directly using its CMOS Sensor Interface. The CSIF supports both Vertical SYNC and Horizontal SYNC modes for image capture implementation. The CSIF consists of window capture and sub-sampling functions together with dual FIFOs, each with a capacity of 8×32 bits, to store data which can be moved to the internal SRAM via the Peripheral Direct Memory Access circuitry, PDMA or CPU. The CSIF does not support image data conversion or decode but rather transfer the image data received from the CMOS sensor to the internal SRAM transparently.

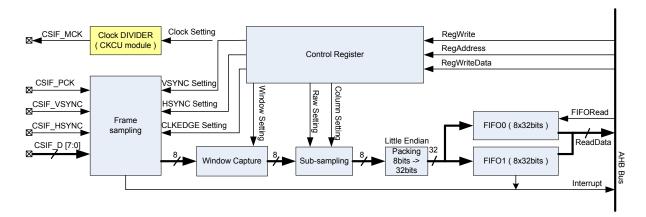


Figure 235. CSIF Block Diagram

Features

- Up to 2048×2048 input resolution
- Supports 8-bit YUV422 and Raw RGB formats
- Up to 32 MHz input pixel clock frequency @ HCLK = 96 MHz
- VSYNC and HSYNC various settings for image capture
- Hardware window capture function
- Fractional hardware sub-sample function
- \blacksquare Dual FIFOs each with a capacity of 8 \times 32 bits which can be read by PDMA or CPU

Rev. 1.10 658 of 680 November 22, 2018

Functional Descriptions

CSIF Signal

There are five CSIF signal types The CSIF has different internal settings to capture the image in different formats.

Table 88. CSIF Signals

Signal	Direction	Description
CSIF_MCK	Output	Output clock to CMOS sensor
CSIF_PCK	Input	Pixel clock from CMOS sensor
CSIF_VSYNC	Input	Vertical SYNC signal from CMOS sensor
CSIF_HSYNC	Input	Horizontal SYNC signal from CMOS sensor
CSIF_D [7:0]	Input	Pixel Data from CMOS sensor

In order to obtain different image frame rates, the application software can setup the CSIFMPRE field in the GCFGR register in the Clock Control Unit, CKCU, to generate different clocks for the CMOS sensor. The CSIF_MCK prescaler is located in the CKCU due to power consumption considerations and other design issues. Refer to the CKCU Chapter for detailed CSIF_MCK prescaler setting information.

Table 89. CSIF_MCK Output Setup – Refer to the CKCU Chapter

Register name	Register field	CSIF_MCK output		
GCFGR	CSIFMPRE [4:0]	CK_PLL / (CSIFMPRE + 1) / 2		

CSIF Frame Timing

The module provides various settings for the Vertical SYNC mode, VSYNC, and the Horizontal SYNC mode, HSYNC. There are two types of VSYNC signal, one is short pulse active (no overlap with the HSYNC signal) and the other is active when the frame is valid (overlap with the HSYNC signal). The required type is selected using the VSYNCTYP bit. There are also two types of HSYNC signal, one is continuously active and the other is active when the frame is valid. The required type is selected using the HSYNCTYP bit. The VSYNCPOL and HSYNCPOL bits are used to determine the corresponding VSYNC and HSYNC signal polarity. The data can be sampled on the CSIF_PCK falling or rising edge determined by the CLKEDGE bit. The IMG_SFD field defines the number of pixels to be skipped. Users can use the IMG_SLD and the IMG_SLD field sto discard pixels and lines to obtain the actual valid image data. The image vertical height is equal to the IMG_HGH value incremented by one and the image horizontal width is equal to the IMG_WID field value incremented by one. Therefore, users can select different settings to match the CMOS sensor output timing to capture the image.

If the CSIF enable bit, CSIF_EN, is set to 1, the CSIF can start to capture the image data when the image frame starts and both the EOF_FLG and the CAP_STS flags are cleared. When the EOF_FLG bit is set or the CAP_STS bit is set, the CSIF will not capture the image data even though the image frame starts. There are two methods to capture the next image data. One is to clear the EOF_FLG and CAP_STS flags to zero, the other is to disable the CSIF function by clearing the CSIF_EN bit and then enable the CSIF function again by setting the CSIF_EN bit.

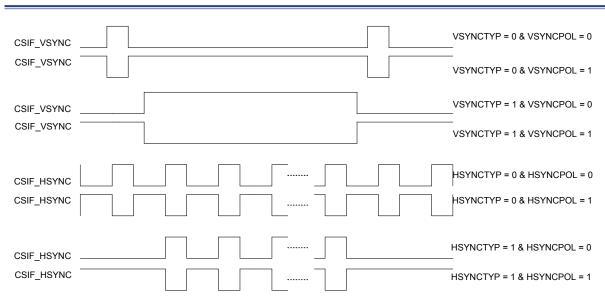


Figure 236. VSYNC & HSYNC Timing

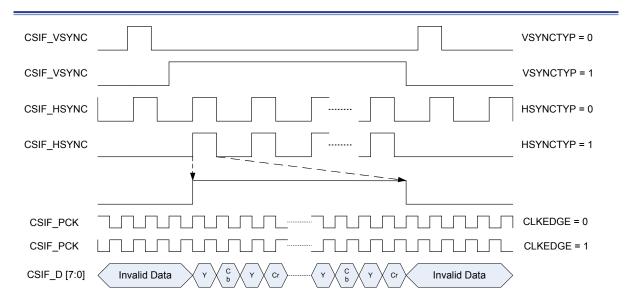


Figure 237. CSIF Frame Timing

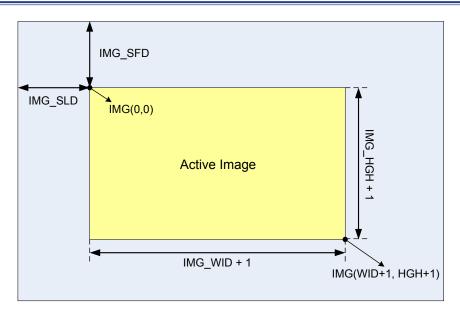


Figure 238. Image Structure

Pixel Data Format

The CSIF provides two pixel data format settings, the Raw RGB format and the YUV422 format. The Raw RGB format is one byte data per pixel while the YUV422 format is two bytes data per pixel. The pixel data bit is sampled on the CSIF_PCK clock falling or rising edge determined by the CLKEDGE bit. Each pixel data byte is considered as a data pack and every four bytes of data are packed in Little Endian mode (P3P2P1P0) to be stored in the FIFO. Software can use this setting to match the CMOS sensor data format.

Table 90. Pixel Data Format – Without Window-capturing and Sub-sampling

MODE	BYTE3	BYTE2	BYTE1	BYTE0
Raw RGB	R1	G1	R0	G0
1 byte / pixel	R3	G3	R2	G2
YUV422	V0	Y1	U0	Y0
2 bytes / pixel	V1	Y3	U1	Y2

Rev. 1.10 661 of 680 November 22, 2018

Window Capture

The CSIF provides a window capture function to scale down the image size to decrease memory utilization. There are five registers to be configured to complete the window capture function. The location, defined by the WIN_HSTR and WIN_VSTR fields, is the start point in the active image region. The WIN_WID and WIN_HGH fields define the image capture region. Note that the window region defined by the WIN_WID and the WIN_HGH fields based on the window start point should be in the active image region defined by the IMG_WID and IMG_HGH fields respectively. If the specified window region is partially out of the active image region defined by the IMG_WID and IMG_HGH fields, the pixel data from the specified active image region will be discarded.

Table 91. Window Capture Setting

Setting	Register	Description
WIN_EN	CSIFWCR0[31]	Window Capture Enable
WIN_HSTR	CSIFWCR0[10:0]	Window Horizontal Start Point
WIN_VSTR	CSIFWCR0[26:16]	Window Vertical Start Point
WIN_WID	CSIFWCR1[10:0]	Window Width
WIN_HGH	CSIFWCR1[26:16]	Window Height

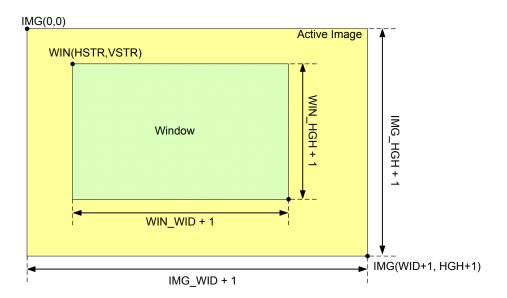



Figure 239. Proper Window Capture

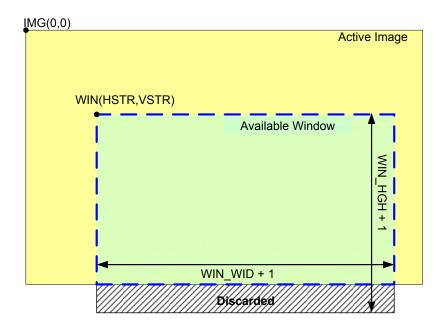


Figure 240. Improper Window Capture

Row & Column Sub-Sampling

The CSIF provides a fractional row and column sub-sampling function in the captured window. This function can be used to obtain fractional image samples according to the application algorithm. The CSML and RSML fields are used to define the sub-sampled column and row length. The CSM and RSM fields are used to control the sub-sampled column and row sample function. The CSIF will continuously sample the data according to the CSM and RSM enable bit and the sub-region defined by the CSML and RSML fields. When the CSM or RSM sample enable control bit is cleared, the CSIF will discard the corresponding data.

Table 92. Row & Column Sub-sampling Setting

Register Setting	Descriptions	Note
SMP_EN	Row & Column sub-sampling enable	CSIFSMP [31]
CSML [4:0]	Column Sub-sampled Length	Column Sub-sampled Length = CSML + 1
CSM [31:0]	Column Sample Enable Control	Column n Sample Enable control: CSM [n], n=0~31 1: Enable sample 0: Disable sample
RSML [4:0]	Row Sub-sampled Length	Row Sub-sampled Length = RSML + 1
RSM [31:0]	Row Sample Enable Control	Row n Sample Enable control: RSM [n], n=0~31 1: Enable sample 0: Disable sample

Rev. 1.10 664 of 680 November 22, 2018

RC	0	1	2	3	4	5	6	7
0	G1	R	G1	R	G1	R	G1	R
1	В	G2	В	G2	В	G2	В	G2
2	G1	R	G1	R	G1	R	G1	R
3	В	G2	В	G2	В	G2	В	G2
4	G1	R	G1	R	G1	R	G1	R
5	В	G2	В	G2	В	G2	В	G2
6	G1	R	G1	R	G1	R	G1	R
7	В	G2	В	G2	В	G2	В	G2

Column Sample Length CSML [4:0] = 0x07 Column Sample CSM [7:0] = 0011_1111 C[7]......C[0]

Row Sample Length
RSML [4:0] = 0x07
Row Sample
RSM [7:0] = 0011_1111
R[7].....R[0]

RC	0	1	2	3	4	5	6	7	8	9
0	G1	R								
1	В	G2								
2	G1	R								
3	В	G2								
4	G1	R								
5	В	G2								
6	G1	R								
7	В	G2								
8	G1	R								
9	В	G2								

Column Sample Length CSML [4:0] = 0x09 Column Sample CSM [9:0] = 00_1100_1111 C[9]C[0]

Row Sample Length RSML [4:0] = 0x09 Row Sample RSM [9:0] = 00_1100_1111 R[9] \cdots R[0]

RC	0	1	2	3	4	5	6	7
0	Υ	Cb	Υ	Cr	Υ	Cb	Υ	Cr
1	Υ	Cb	Υ	Cr	Υ	Cb	Υ	Cr
2	Υ	Cb	Υ	Cr	Υ	Cb	Υ	Cr
3	Υ	Cb	Υ	Cr	Υ	Cb	Υ	Cr
4	Υ	Cb	Υ	Cr	Υ	Cb	Υ	Cr
5	Υ	Cb	Υ	Cr	Υ	Cb	Υ	Cr
6	Υ	Cb	Υ	Cr	Υ	Cb	Υ	Cr
7	Υ	Cb	Υ	Cr	Υ	Cb	Υ	Cr

Column Sample Length
CSML [4:0] = 0x01
Column Sample
CSM [1:0] = 01
C[1]C[0]

Row Sample Length RSML [4:0] = 0x00Row Sample RSM [0] = 1R[0]

Figure 241. Row and Column Sub-sampling Example

PDMA Data Transmission - Trigger PDMA by RX

The CSIF contains dual FIFOs where each FIFO has an 8 word capacity, i.e., 8x32 bits. When one FIFO is full, the CSIF will send a request to the PDMA to request servicing. The CSIF always sends 8 data words each time through the PDMA to the SRAM to decrease the PDMA latency time. If the available data in the FIFO is less than 8 words, the CSIF will automatically fill the rest of the FIFO words with 0x0000.

Interrupts and Status

The device includes several interrupts and relevant status registers which are used to identify the present CSIF status and to subsequently allow decision making and actions to be taken. The CSIF interrupts include the Start of Frame interrupt, End of Frame interrupt, Capture Start interrupt, Capture Status interrupt, Bad Frame interrupt, FIFO overrun interrupt, FIFO Empty interrupt and the FIFO Full interrupt. The Start of Frame interrupt, if enabled, will be generated when the available CSIF_VSYNC signal determined by the VSYNCPOL and VSYNCTYP bits is received. The End of Frame interrupt will be generated when the total active image data bits determined by the IMG WID, IMG HGH and IMG FMT setting are received by the CSIF if the corresponding interrupt is enabled. The Capture Start interrupt is generated when the relevant interrupt is enabled and the first active image data is received. The Capture Status interrupt is generated when the total pixel data to be captured has been received and transferred to the SRAM by the PDMA or CPU interface. The Bad Frame interrupt is generated when the CSIF detects abnormal VSYNC and HSYNC signals. The FIFO Overrun interrupt request will occur when the two FIFOs are both full and additional data continues to be written into the FIFO. The FIFO Empty interrupt request status is set to 1 when the dual FIFOs are empty and is cleared to 0 when one FIFO is full. The FIFO Full interrupt request flag is asserted when one FIFO is filled with the image data and is cleared to 0 when the data is read from the full FIFO.

Table 93. Interrupts and Status

Interrupt Status	Register	Description
SOF_FLG	CSIFSR[0]	Start of frame
EOF_FLG	CSIFSR[1]	End of frame
CAP_STA	CSIFSR[2]	Capture Start
CAP_STS	CSIFSR[3]	Capture Status: End or not End
BAD_FRM	CSIFSR[4]	Bad Frame
FIFO_OVR	CSIFSR[8]	FIFO Overrun
FIFO_EMP	CSIFSR[9]	FIFO Empty
FIFO_FUL	CSIFSR[10]	FIFO Full

Rev. 1.10 666 of 680 November 22, 2018

Table 94. Interrupts Status

Interrupt Status	Description	Setting Criteria	Clearing Criteria
SOF_FLG	Start of frame	CSIF_EN = 1, EOF_FLG = 0, CAP_STS = 0 and an available VSYNC signal starts	write 1 to clear
EOF_FLG	End of frame	CSIF_EN = 1 and all the active image data has been received.	write 1 to clear
CAP_STA	Capture Start	CSIF_EN = 1, EOF_FLG = 0, CAP_STS = 0 and the first data at the start point of the active Image (after discarding IMG_SLD and IMG_SFD) is being captured	write 1 to clear
CAP_STS	Capture Status	CSIF_EN = 1, all captured data has been received and been transferred by the PDMA	write 1 to clear
BAD_FRM	Bad Frame	Bad frame acceptance	write 1 to clear
FIFO_OVR	FIFO Overrun	CSIF_EN = 1, dual FIFOs are full and New data word is written into the FIFO	CSIF_EN bit falling edge
FIFO_EMP	FIFO Empty	CSIF_EN = 1 and dual FIFOs are empty	One FIFO is full
FIFO_FUL	FIFO Full	CSIF_EN = 1 and one FIFO is full	Read one word of data from the full FIFO

Register Map

The following table shows the CSIF registers and their reset values.

Table 95. CSIF Register Map

Register	Offset	Description	Reset Value
		•	
CSIFENR	0x000	CSIF Enable Register	0x0000_0000
CSIFCR	0x004	CSIF Control Register	0x0000_0004
CSIFIMGWH	0x008	CSIF Image Width and Height Register	0x0000_0000
CSIFWCR0	0x00C	CSIF Window Capture Register 0	0x0000_0000
CSIFWCR1	0x010	CSIF Window Capture Register 1	0x0000_0000
CSIFSMP	0x014	CSIF Sub-Sample Register	0x0000_0000
CSIFSMPCOL	0x018	CSIF Column Sub-Sample Register	0x0000_0000
CSIFSMPROW	0x01C	CSIF Row Sub-Sample Register	0x0000_0000
CSIFFIFO0	0x020	CSIF FIFO Register 0	0x0000_0000
CSIFFIFO1	0x024	CSIF FIFO Register 1	0x0000_0000
CSIFFIFO2	0x028	CSIF FIFO Register 2	0x0000_0000
CSIFFIFO3	0x02C	CSIF FIFO Register 3	0x0000_0000
CSIFFIFO4	0x030	CSIF FIFO Register 4	0x0000_0000
CSIFFIFO5	0x034	CSIF FIFO Register 5	0x0000_0000
CSIFFIFO6	0x038	CSIF FIFO Register 6	0x0000_0000
CSIFFIFO7	0x03C	CSIF FIFO Register 7	0x0000_0000
CSIFIER	0x040	CSIF Interrupt Enable Register	0x0000_0000
CSIFSR	0x044	CSIF Status Register	0x0000_0000

Rev. 1.10 667 of 680 November 22, 2018

Register Descriptions

CSIF Enable Register – CSIFENR

This register specifies the CSIF enable control.

Offset:	0x000	
Reset value:	0x0000	0000

	31	30	29	28	27	26	25	24
	CSIF_EN				Reserved			
Type/Reset	RW 0							
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								_
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset					-			
	7	6	5	4	3	2	1	0
					Reserved			

Type/Reset

Bits	Field	Descriptions
[31]	CSIF_EN	CSIF Enable Control
		0. CSIF is disabled

1: CSIF is enabled

CSIF Control Register – CSIFCR

This register contains various types of the CSIF control bits including the image format, image frame and line delay, sampling clock edge selection, synchronisation polarity and types, etc.

Offset: 0x004
Reset value: 0x0000_0004

		31			30			29			28		2	27		26			25		2	24
													Rese	erved								
Type/Reset																						
		23			22			21			20		1	9		18			17		1	16
													IMG _.	_SFD								
Type/Reset	RW		0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0	RW	0
		15			14			13			12		1	11		10			9			8
													IMG	_SLD								
Type/Reset	RW		0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0	RW	0
		7			6			5			4		;	3		2			1			0
	HSY	NCP	OL	VSY	NCP	OL	PDN	1A_C	IS	IMC	FIV	1T	CLK	EDGE	HSY	NCT	ΥP	VSY	NCT	ΥP	Res	erved
Type/Reset	RW		0	RW		0	RW		0	RW		0	RW	0	RW		1	RW		0		

Bits	Field	Descriptions
[23:16]	IMG_SFD	Image Frame Delay Frame Delay = $0x00 \sim 0xFF$ The IMG_SFD field defines the number of lines to be skipped to specify the active image start point.
[15:8]	IMG_SLD	Image Line Delay Line Delay = $0x00 \sim 0xFF$ The IMG_SLD field defines the number of pixels to be skipped to specify the active image start point.
[7]	HSYNCPOL	HSYNC Polarity 0: HSYNC polarity high 1: HSYNC polarity low
[6]	VSYNCPOL	VSYNC Polarity 0: VSYNC polarity high 1: VSYNC polarity low
[5]	PDMA_DIS	PDMA Disable 0: PDMA mode 1: CPU mode
[4]	IMG_FMT	Image Format 0: Raw RGB 1: YUV422
[3]	CLKEDGE	Pixel Clock Sample Edge 0: Falling edge to sample data 1: Rising edge to sample data
[2]	HSYNCTYP	HSYNC Type 0: Continuous 1: Active during frame valid
[1]	VSYNCTYP	VSYNC Type 0: Pulse (no overlap with HSYNC) 1: Active during frame valid (overlap with HSYNC)

CSIF Image Width and Height Register – CSIFIMGWH

This register specifies the active image width and height settings.

Offset: 0x008

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
					Reserv	ed							IMG_H	ЭH		
Type/Reset											RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									IMG_H	ЭН						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
	15		14		13 Reserve	ed	12		11		10		9 IMG_W	'ID	8	
Type/Reset	15		14	_		ed	12		11		10 RW	0	IMG_W	ID 0	8 RW	0
Type/Reset	15 7		6			ed	12		3			0	IMG_W			0
Type/Reset	7				Reserve	ed	4		3 IMG_W	ID		0	IMG_W			0

Bits	Field	Descriptions
[26:16]	IMG_HGH	Image Height
		The active image height field contents can be in the range from 0x0000 to 0x07FF and the relevant specified image height will be actually in the range from 0x0001 to 0x0800.
[10:0]	IMG_WID	Image Width The active image width field contents can be in the range from 0x0000 to 0x07FF and the relevant specified image width will be actually in the range from 0x0001 to 0x0800.

Rev. 1.10 670 of 680 November 22, 2018

CSIF Window Capture Register 0 – CSIFWCR0

The register contains the window capture function enable control and specifies the window capture start point.

Offset: 0x00C

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
	WIN_EN		Reserve	ed			WIN_VS	ΓR
Type/Reset	RW 0				'	RW	0 RW	0 RW 0
	23	22	21	20	19	18	17	16
					WIN_VSTR			
Type/Reset	RW 0	RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0
	15	14	13	12	11	10	9	8
			Reserve	ed			WIN_HS	ΓR
Type/Reset						RW	0 RW	0 RW 0
	7	6	5	4	3	2	1	0
					WIN_HSTR			
Type/Reset	RW 0	RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0

Bits	Field	Descriptions
[31]	WIN_EN	Window Capture Enable Control 0: Window capture is disabled 1: Window capture is enabled
[26:16]	WIN_VSTR	Capture Window Vertical Start Point The WIN_VSTR field contents can be from 0x0000 to 0x07FF based on the active image start point within the specified image dimension.
[10:0]	WIN_HSTR	Capture Window Horizontal Start Point The WIN_HSTR field contents can be from 0x0000 to 0x07FF based on the active image start point within the specified image dimension.

Rev. 1.10 671 of 680 November 22, 2018

CSIF Window Capture Register 1 – CSIFWCR1

The register specifies the window capture height and width settings.

Offset: 0x010

Reset value: 0x0000_0000

	31		30		29		28	3	27		26		25		24	
					Reserv	/ed							WIN_H	GH		
Type/Reset											RW	0	RW	0	RW	0
	23		22		21		20)	19		18		17		16	
								WIN	HGH							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12	2	11		10		9		8	
					Reserv	/ed							WIN_W	/ID		
Type/Reset											RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
								WIN	_WID							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[26:16]	WIN_HGH	Window Height The WIN_HGH field contents can be in the range from 0x0000 to 0x07FF and the relevant window height will be from 0x0001 to 0x0800. The actual window height should be within the active image dimension.
[10:0]	WIN_WID	Window Width The WIN_WID field contents can be in the range from 0x0000 to 0x07FF and the relevant window width will be from 0x0001 to 0x0800. The actual window width should be within the active image dimension.

Rev. 1.10 672 of 680 November 22, 2018

CSIF Sub-Sample Register – CSIFSMP

The register specifies the row and column sub-sampled length together with the sub-sampling function enable control.

Offset: 0x014
Reset value: 0x0000_0000

	31	30	29	28		27		26		25		24	
	SMP_EN					Reserve	ed						
Type/Reset	RW 0												
	23	22	21	20		19		18		17		16	
		Reserved						RSML					
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0
	15	14	13	12		11		10		9		8	
		Reserved						CSML					
Type/Reset				RW	0	RW	0	RW	0	RW	0	RW	0
	7	6	5	4		3		2		1		0	
				Reserv	ed								

Type/Reset

Bits	Field	Descriptions
[31]	SMP_EN	CSIF Row & Column Sub-Sample Enable control 0: Sub-sample function is disabled (default) 1: Sub-sample function is enabled
[20:16]	RSML	Row Sub-sampled Length 0: 1bit 1: 2 bits
[40.0]	0014	31: 32 bits
[12:8]	CSML	Column Sub-sampled Length 0: 1bit 1: 2 bits
		 31: 32 bits

Rev. 1.10 673 of 680 November 22, 2018

CSIF Column Sub-Sample Register – CSIFSMPCOL

The register specifies the column sample enable control.

Offset: 0x018

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									CSM							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									CSM							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
									CSM							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
									CSM							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions

[31:0] CSM

Column Sample Enable Control

- 0: Disable sample
- 1: Enable sample

The column n sample enable control bit, CSM[n], determines whether the corresponding column data is sampled or discarded.

Rev. 1.10 674 of 680 November 22, 2018

CSIF Row Sub-Sample Register – CSIFSMPROW

The register specifies the row sample enable control.

Offset: 0x01C

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									RSM							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
									RSM							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
									RSM							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
									RSM							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions

[31:0] RSM

Row Sample Enable Control

- 0: Disable sample
- 1: Enable sample

The row n sample enable control bit, RSM[n], determines whether the corresponding row data is sampled or discarded.

Rev. 1.10 675 of 680 November 22, 2018

CSIF FIFO Register n – CSIFFIFOn (n = $0 \sim 7$)

The register stores the nth FIFO data word.

Offset: 0x020 ~ 0x03C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24	
					FIFOData				
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO 0	RO (RO	0 RO 0	
	23	22	21	20	19	18	17	16	
					FIFOData				
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO 0	RO (RO	0 RO 0	
	15	14	13	12	11	10	9	8	
					FIFOData				
Type/Reset	RO	0 RO	0 RO	0 RO		RO () RO	0 RO 0	
Type/Reset	RO 7	0 RO 6	0 RO 5	0 RO 4		RO () RO 1	0 RO 0 0	
Type/Reset	RO 7			_	0 RO 0) RO 1		

Bits	Field	Descriptions
[31:0]	FIFOData	FIFO Data
		The FIFO Data is read by the PDMA or the CPU interface.

Rev. 1.10 676 of 680 November 22, 2018

CSIF Interrupt Enable Register – CSIFIER

The register specifies the CSIF interrupt enable control bits.

Offset: 0x040
Reset value: 0x0000_0200

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
			Reserved			FIFOFULE	FIFOEMPE	FIFOOVRE
Type/Reset						RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
		Reserved		BADFRME	CAPSTSE	CAPSTAE	EOFFLGE	SOFFLGE
Type/Reset				RW 0	RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[10]	FIFOFULE	FIFO Full Interrupt Enable Bit 0: Interrupt is disabled 1: Interrupt is enabled
[9]	FIFOEMPE	FIFO Empty Interrupt Enable Bit 0: Interrupt is disabled 1: Interrupt is enabled
[8]	FIFOOVRE	FIFO Overrun Interrupt Enable Bit 0: Interrupt is disabled 1: Interrupt is enabled
[4]	BADFRME	Bad Frame Interrupt Enable Bit 0: Interrupt is disabled 1: Interrupt is enabled
[3]	CAPSTSE	Capture Status Interrupt Enable Bit 0: Interrupt is disabled 1: Interrupt is enabled
[2]	CAPSTAE	Capture Start Interrupt Enable Bit 0: Interrupt is disabled 1: Interrupt is enabled
[1]	EOFFLGE	End of Frame Interrupt Enable Bit 0: Interrupt is disabled 1: Interrupt is enabled
[0]	SOFFLGE	Start of Frame Interrupt Enable Bit 0: Interrupt is disabled 1: Interrupt is enabled

Rev. 1.10 677 of 680 November 22, 2018

CSIF Status Register – CSIFSR

The register contains the CSIF status.

Offset: 0x044
Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								_
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								_
	15	14	13	12	11	10	9	8
			Reserved			FIFO_FUL	FIFO_EMP	FIFO_OVR
Type/Reset						RO 0	RO 0	RO 0
	7	6	5	4	3	2	1	0
		Reserved		BAD_FRM	CAP_STS	CAP_STA	EOF_FLG	SOF_FLG
Type/Reset		_		WC 0	WC 0	WC 0	WC 0	WC 0

Bits	Field	Descriptions
[10]	FIFO_FUL	FIFO Full Flag 0: FIFO is not full 1: One FIFO is full Once the data word is read from the full FIFO, the FIFO Full flag will be cleared to 0.
[9]	FIFO_EMP	FIFO Empty Flag 0: FIFO is not empty 1: Dual FIFOs are empty When one FIFO is completely filled with data words, the FIFO Empty flag will be cleared to 0.
[8]	FIFO_OVR	FIFO Overrun Flag 0: FIFO has not overrun 1: FIFO has overrun If the two FIFOs are full and a new data word is written into the FIFO, the FIFO Overrun flag will be set to 1. The FIFO Overrun flag is cleared to 0 by clearing the CSIF_EN bit to 0.
[4]	BAD_FRM	Bad Frame Flag 0: The received frame size is correct 1: The received frame size is incorrect When the received frame size is smaller than the active image size as defined by the CSIF, the Bad Frame flag will be set to 1 and the corresponding image data should be discarded. This bit is cleared to 0 by writing 1 into it.
[3]	CAP_STS	Capture Status Flag 0: Capture operation in progress 1: Capture operation finished When all the image data to be captured has been received and transferred to the SRAM by the PDMA, the Capture Status flag will be set to 1. This bit is cleared to 0 by writing 1 into it.

Bits	Field	Descriptions
[2]	CAP_STA	Capture Start Flag 0: Capture does not start 1: Capture starts When the first active image data is received as the relevant CSIF VSYNC and HSYNC signals are active, the Capture Start flag will be set to 1. This bit is cleared to 0 by writing 1 into it.
[1]	EOF_FLG	End of Frame Flag 0: Frame has not ended 1: Frame ends When all the active image data has been received, the End of Frame flag will be set to 1. This bit is cleared to 0 by writing 1 into it.
[0]	SOF_FLG	Start of Frame Flag 0: Frame does not start 1: Frame starts When the CSIF receives an available VSYNC signal, the Start of Frame flag will be set to 1 which means that the frame data reception will start. This bit is cleared to 0 by writing 1 into it.

Rev. 1.10 679 of 680 November 22, 2018

Copyright[®] 2018 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com/en/.