Preferred Devices

Surface Mount Ultrafast Power Rectifiers

... employing state-of-the-art epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes, in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- Low Forward Voltage Drop (0.71 to 1.05 Volts Max @ 3.0 A, T_J = 150°C)

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 217 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 16 mm Tape and Reel, 2500 units per reel
- Polarity: Notch in Plastic Body Indicates Cathode Lead
- Marking: U3D, U3G, U3J

MAXIMUM RATINGS

Please See the Table on the Following Page

http://onsemi.com

ULTRAFAST RECTIFIERS 3.0 AMPERES 200-600 VOLTS

SMC CASE 403 PLASTIC

MARKING DIAGRAM

U3x = Specific Device Code

x = D, G, or JY = Year

WW= Work Week

ORDERING INFORMATION

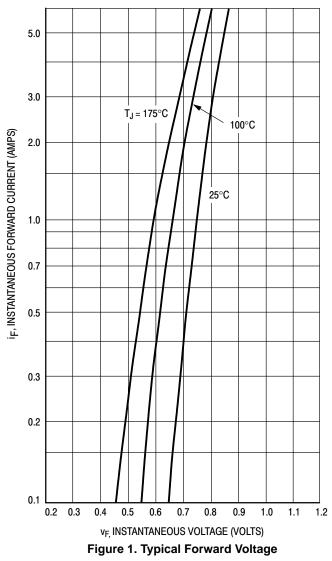
Device	Package	Shipping
MURS320T3	SMC	2500/Tape & Reel
MURS340T3 SMC 250		2500/Tape & Reel
MURS360T3	SMC	2500/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS

Rating	Symbol	MURS320T3	MURS340T3	MURS360T3	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	400	600	Volts
Average Rectified Forward Current	I _{F(AV)}	3.0 @ T _L = 140°C 4.0 @ T _L = 130°C	3.0 @ T _L = 130°C 4.0 @ T _L = 115°C	3.0 @ T _L = 130°C 4.0 @ T _L = 115°C	Amps
Non–Repetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	75		Amps	
Operating Junction Temperature	TJ	- 65 to +175		°C	

THERMAL CHARACTERISTICS


Thermal Resistance, Junction to Lead	$R_{\theta JL}$	11	°C/W	l
--------------------------------------	-----------------	----	------	---

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 1) $ \begin{aligned} &(i_F=3.0 \text{ A, } T_J=25^{\circ}\text{C}) \\ &(i_F=4.0 \text{ A, } T_J=25^{\circ}\text{C}) \\ &(i_F=3.0 \text{ A, } T_J=150^{\circ}\text{C}) \end{aligned} $	VF	0.875 0.89 0.71	1.25 1.28 1.05	1.25 1.28 1.05	Volts
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, T _J = 25°C) (Rated dc Voltage, T _J = 150°C)	İR	5.0 150	10 250	10 250	μА
Maximum Reverse Recovery Time $ \begin{aligned} &(i_F=1.0 \text{ A, di/dt}=50 \text{ A/}\mu\text{s}) \\ &(i_F=0.5 \text{ A, }i_R=1.0 \text{ A, }I_{REC} \text{ to }0.25 \text{ A}) \end{aligned} $	t _{rr}	35 25	75 50	75 50	ns
Maximum Forward Recovery Time (i _F = 1.0 A, di/dt = 100 A/μs, Recovery to 1.0 V)	t _{fr}	25	50	50	ns

^{1.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MURS320T3

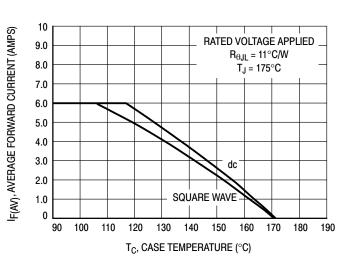


Figure 4. Current Derating, Case

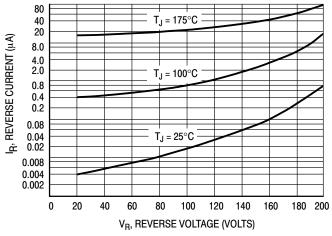


Figure 2. Typical Reverse Current*

* The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently below rated V_R .

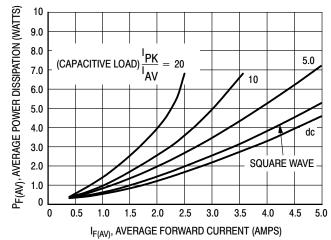


Figure 3. Power Dissipation

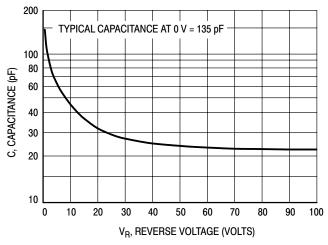


Figure 5. Typical Capacitance

MURS340T3, MURS360T3

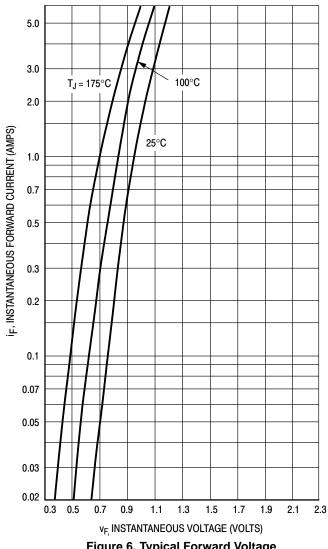


Figure 6. Typical Forward Voltage

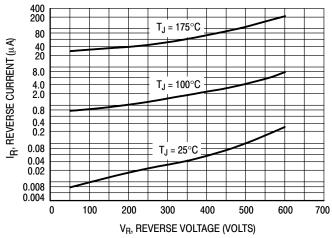


Figure 7. Typical Reverse Current*

* The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently below rated V_R.

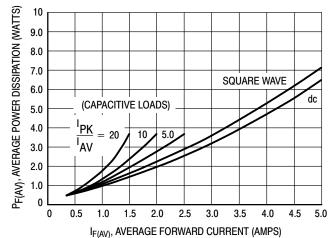


Figure 8. Power Dissipation

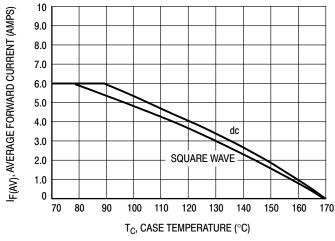
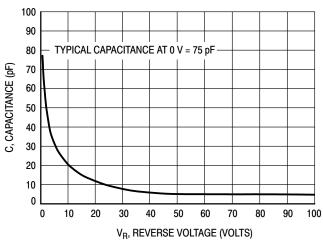
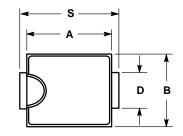
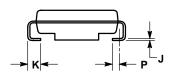
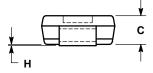


Figure 9. Current Derating, Case


Figure 10. Typical Capacitance

PACKAGE DIMENSIONS

SMC CASE 403-03 ISSUE D

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. D DIMENSION SHALL BE MEASURED WITHIN DIMENSION P.
 4. 403-01 THRU -02 OBSOLETE, NEW STANDARD 403-03.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.260	0.280	6.60	7.11	
В	0.220	0.240	5.59	6.10	
С	0.075	0.095	1.90	2.41	
D	0.115	0.121	2.92	3.07	
Н	0.0020	0.0060	0.051	0.152	
J	0.006	0.012	0.15	0.30	
K	0.030	0.050	0.76	1.27	
Р	0.020 REF		0.51	REF	
S	0.305	0.320	7.75	8.13	

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051

Phone: 81–3–5773–3850 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.