
 

Version 1.0
Copyright © 2017

ESP32 AT Instruction Set
and Examples

About This Guide
This document introduces the ESP32 AT commands, explains how to use them and provides
examples of several common AT commands. The document is structured as follows:

Release Notes

Chapter Title Content

Chapter 1 Overview Provides instructions on user-defined AT commands
and downloading of AT firmware.

Chapter 2 Command Description Gives a basic description of AT commands.

Chapter 3 Basic AT Commands Lists AT commands of basic functions.

Chapter 4 Wi-Fi AT Commands Lists Wi-Fi-related AT commands.

Chapter 5 TCP/IP-Related AT Commands Lists TCP/IP-related AT commands.

Chapter 6 BLE-Related AT Commands Lists BLE-related AT commands.

Chapter 7 AT Commands with Configuration
Saved in the NVS Area

Lists the AT commands whose configuration is
saved in the NVS area.

Chapter 8 AT Messages Lists messages of ESP32 AT Commands.

Chapter 9 AT Commands Examples Gives examples of using ESP32 AT Commands.

Chapter 10 OTA Update Introduces how to create a device on iot.espressif.cn
and update the OTA BIN on it.

Chapter 11 Q & A Provides information on where and how to consult
questions about ESP32 AT commands.

Date Version Release notes

2017.11 V1.0 Initial release.

http://iot.espressif.cn

Table of Contents
1. Overview 1 ..

1.1. User-Defined AT Commands	 1
..
1.2. Downloading AT Firmware into Flash	 1
...

2. Command Description 3 ..

3. Basic AT Commands 4 ...

3.1. Overview	 4
...
3.2. Commands	 4
...

3.2.1. AT—Tests AT Startup	 4
...
3.2.2. AT+RST—Restarts the Module	 4
...
3.2.3. AT+GMR—Checks Version Information	 5
..

3.2.4. AT+GSLP—Enters Deep-sleep Mode	 5
...
3.2.5. ATE—AT Commands Echoing	 5
...
3.2.6. AT+RESTORE—Restores the Factory Default Settings	 5
..
3.2.7. AT+UART—UART Configuration	 6
...
3.2.8. AT+UART_CUR—Current UART Configuration, Not Saved in Flash	 7
...
3.2.9. AT+UART_DEF—Default UART Configuration, Saved in Flash	 8
...

3.2.10. AT+SLEEP—Sets the Sleep Mode	 9
..
3.2.11. AT+SYSRAM—Checks the Remaining Space of RAM	 9
...
3.2.12. AT+FS—Filesystem Operations *	 9
..

4. Wi-Fi AT Commands 11 ...
4.1. Overview	 11
...
4.2. Commands	 12
...

4.2.1. AT+CWMODE—Sets the Wi-Fi Mode (Station/SoftAP/Station+SoftAP)	 12
.....................................

4.2.2. AT+CWJAP—Connects to an AP	 13
..
4.2.3. AT+CWLAPOPT—Sets the Configuration for the Command AT+CWLAP	 14
..................................
4.2.4. AT+CWLAP—Lists the Available APs	 15
..
4.2.5. AT+CWQAP—Disconnects from the AP	 15
...
4.2.6. AT+CWSAP—Configuration of the ESP32 SoftAP	 16
..
4.2.7. AT+CWLIF—IP of Stations to Which the ESP32 SoftAP is Connected	 17
.......................................

4.2.8. AT+CWDHCP—Enables/Disables DHCP	 17
..

4.2.9. AT+CWDHCPS—Sets the IP Address Allocated by ESP32 SoftAP DHCP (The configuration is
saved in Flash.)	 18
...

4.2.10. AT+CWAUTOCONN—Auto-Connects to the AP or Not	 18
...
4.2.11. AT+CWSTARTSMART—Starts SmartConfig	 19
...
4.2.12. AT+CWSTOPSMART—Stops SmartConfig	 19
..
4.2.13. AT+WPS—Enables the WPS Function	 20
..

4.2.14. AT+CWHOSTNAME—Configures the Host Name of ESP32 Station	 20
..
4.2.15. AT+MDNS—Configures the MDNS Function *	 20
..

5. TCP/IP-Related AT Commands 22 ..
5.1. Overview	 22
...
5.2. Commands	 23
...

5.2.1. AT+CIPSTATUS—Gets the Connection Status	 23
...
5.2.2. AT+CIPDOMAIN—DNS Function	 23
..
5.2.3. AT+CIPDNS—Sets User-defined DNS Servers; Configuration Saved in the Flash	 23
.....................

5.2.4. AT+CIPSTAMAC—Sets the MAC Address of the ESP32 Station	 24
...
5.2.5. AT+CIPAPMAC—Sets the MAC Address of the ESP32 SoftAP	 24
..
5.2.6. AT+CIPSTA—Sets the IP Address of the ESP32 Station	 25
..
5.2.7. AT+CIPAP—Sets the IP Address of the ESP32 SoftAP	 25
..
5.2.8. AT+CIPSTART—Establishes TCP Connection, UDP Transmission or SSL Connection	 26
.............
5.2.9. AT+CIPSEND—Sends Data	 28
...

5.2.10. AT+CIPSENDEX—Sends Data	 29
..
5.2.11. AT+CIPCLOSE—Closes TCP/UDP/SSL Connection	 29
..
5.2.12. AT+CIFSR—Gets the Local IP Address	 30
..
5.2.13. AT+CIPMUX—Enables/Disables Multiple Connections	 30
..
5.2.14. AT+CIPSERVER—Deletes/Creates TCP or SSL Server *	 31
..

5.2.15. AT+CIPSERVERMAXCONN—Set the Maximum Connections Allowed by Server *	 31
...................
5.2.16. AT+CIPMODE—Configures the Transmission Mode	 32
...
5.2.17. AT+SAVETRANSLINK—Saves the Transparent Transmission Link in Flash	 33
...............................
5.2.18. AT+CIPSTO—Sets the TCP Server Timeout	 34
...
5.2.19. AT+CIPSNTPCFG—Sets the Time Zone and the SNTP Server	 34
..
5.2.20. AT+CIPSNTPTIME—Queries the SNTP Time	 35
..

5.2.21. AT+CIUPDATE—Updates the Software Through Wi-Fi	 35
...
5.2.22. AT+CIPDINFO—Shows the Remote IP and Port with "+IPD"	 36
...

5.2.23. +IPD—Receives Network Data	 36
...

5.2.24. AT+PING—Ping Packets	 37
...

6. BLE-Related AT Commands 38 ...

6.1. Overview	 38
...
6.2. Commands	 40
...

6.2.1. AT+BLEINIT—BLE Initialization	 40
...
6.2.2. AT+BLEADDR—Sets BLE Device's Address	 40
..
6.2.3. AT+BLENAME—Sets BLE Device's Name	 41
..
6.2.4. AT+BLESCANPARAM—Sets Parameters of BLE Scanning	 41
...

6.2.5. AT+BLESCAN—Enables BLE Scanning	 42
..
6.2.6. AT+BLESCANRSPDATA—Sets BLE Scan Response	 43
...
6.2.7. AT+BLEADVPARAM—Sets Parameters of Advertising	 43
...
6.2.8. AT+BLEADVDATA—Sets Advertising Data	 44
..
6.2.9. AT+BLEADVSTART—Starts Advertising	 45
..
6.2.10. AT+BLEADVSTOP—Stops Advertising	 45
...

6.2.11. AT+BLECONN—Establishes BLE connection	 45
...
6.2.12. AT+BLECONNPARAM—Updates parameters of BLE connection	 46
..
6.2.13. AT+BLEDISCONN—Ends BLE connection	 46
...
6.2.14. AT+BLEDATALEN—Sets BLE Data Packet Length	 47
...
6.2.15. AT+BLECFGMTU—Sets GATT MTU Length	 47
...
6.2.16. AT+BLEGATTSSRVCRE—GATTS Creates Services	 48
...

6.2.17. AT+BLEGATTSSRVSTART—GATTS Starts Services	 48
...
6.2.18. AT+BLEGATTSSRVSTOP—GATTS Stops Services	 48
..
6.2.19. AT+BLEGATTSSRV—GATTS Discovers Services	 49
...
6.2.20. AT+BLEGATTSCHAR—GATTS Discovers Characteristics	 49
..
6.2.21. AT+BLEGATTSNTFY—GATTS Notifies of Characteristics	 50
..

6.2.22. AT+BLEGATTSIND—GATTS Indicates Characteristics	 50
...
6.2.23. AT+BLEGATTSSETATTR—GATTS Sets Characteristic	 51
...
6.2.24. AT+BLEGATTCPRIMSRV—GATTC Discovers Primary Services	 52
...
6.2.25. AT+BLEGATTCINCLSRV—GATTC Discovers Included Services	 52
..
6.2.26. AT+BLEGATTCCHAR—GATTC Discovers Characteristics	 53
...
6.2.27. AT+BLEGATTCRD—GATTC Reads a Characteristic	 54
...

6.2.28. AT+BLEGATTCWR—GATTC Writes Characteristic	 55
...

7. AT Commands with Configuration Saved in the NVS Area 56 ...

8. AT Messages 57 ...

9. AT Commands Examples 58 ..
9.1. ESP32 as a TCP Client in Single Connection	 58
...
9.2. UDP Transmission	 59
...

9.2.1. UDP (with Fixed Remote IP and Port)	 59
...

9.2.2. UDP (with Changeable Remote IP and Port)	 60
...
9.3. Transparent Transmission	 61
...

9.3.1. ESP32 as a TCP Client in UART-Wi-Fi Passthrough (Single Connection Mode)	 62
........................
9.3.2. UDP Transmission (UART-Wi-Fi PassthroughTransmission)	 63
...

9.4. ESP32 as a TCP Server in Multiple Connections	 64
...
9.5. BLE AT Examples 	 67
...

9.5.1. iBeacon Examples	 67
...
9.5.2. BLE Communication Examples	 69
...

10.OTA Update 76 ...

11.Q & A 82...

!

1. Overview

1. Overview
This document introduces the ESP32 AT commands, and explains how to use them.
The AT command set is divided into different categories: Basic AT commands, Wi-Fi AT commands,
TCP/IP AT commands, etc.

• AT commands marked with * are beta version commandes, have not been through full test.

1.1. User-Defined AT Commands
Please use only English letters or an underscore (_), when naming user-defined AT commands. The AT
command name must NOT contain characters or numbers.
AT firmware is based on the Espressif IoT Development Framework (ESP-IDF). Espressif Systems' AT
commands are provided in libat_core.a, which is included in the AT BIN firmware. Examples of
customized, user-defined AT commands are provided in esp-at.
The structure, at_cmd_struct, is used to define four types of a command. Examples of implementing
user-defined AT commands are provided for the users in /esp-at/main/at_task.c.
To compile the AT firmware, users need to configure the environment variable IDF_PATH in the file
esp-at, which is accessed through the terminal.
export	IDF_PATH=/path_of_your_esp32-at/esp-idf

1.2. Downloading AT Firmware into Flash
Please use Espressif's official Flash Download Tools to download the firmware. Make sure you select
the corresponding flash size.
Espressif's official Flash Download Tools:  
http://espressif.com/en/support/download/other-tools?keys=&field_type_tid%5B%5D=13.

Download ESP32_AT_BIN:
http://www.espressif.com/en/support/download/at.
The flashing addresses are in /ESP32_AT_BIN/download.config.

Please note that there are several binaries for some specific functions, they are listed as below:
• ble_data.bin is to provide BLE services when the ESP32 works as a BLE server;
• server_cert.bin, server_key.bin and server_ca.bin are examples of SSL server‘s certificate;
• at_customize.bin is to provide user partition table for the ble_data.bin and SSL certificate

mentioned above, and also for the command AT+FS.
So if a function is not used, then the corresponding binary needs not to be downloaded into flash.

📖 Note:

For codes related to ESP32 AT instruction set, please refer to https://github.com/espressif/esp32-at.

Espressif ! /!1 83 2017.11

http://espressif.com/en/support/download/other-tools?keys=&field_type_tid%5B%5D=13
https://github.com/espressif/esp32-at

!

1. Overview

If those functions are needed, then those binaries have to be downloaded into flash. In this case, there
is a CombineBin button on the ESP Flash Download Tool to combine multiple binaries into one, to
make the downloading easier. Please note that the downloading addresses of binaries and other flash
configurations have to be set correctly while combining.

If users compile esp32-at by themselves, they can call command 'make	print_flash_cmd'	and print
the download addresses, following the steps below:
• Call rm	sdkconfig to remove the old configuration.
• Call make	defconfig to set the latest default configuration.
• Call make	print_flash_cmd	to print the download addresses.

⚠ Notice:

If the ESP32-AT bin fails to boot, and prints log "ota data partition invalid", please erase all flash or download the blank.bin
into the address labeled as "ota data" in esp32-at/partitions_at.csv.

⚠ Notice:

The ESP32 Board sends AT commands through UART1 by default.

• GPIO16 is RXD

• GPIO17 is TXD

• GPIO14 is RTS

• GPIO15 is CTS

The debug log will output through UART0 by default, but users can disable it in menuconfig, if needed.

• 	make menuconfig --> Component config --> ESP32-specific --> UART for console output

Espressif ! /!2 83 2017.11

https://github.com/espressif/esp32-at/blob/master/partitions_at.csv

!

2. Command Description

2. Command Description
Each command set contains four types of AT commands.

Type Command Format Description

Test Command AT+<x>=? Queries the Set Commands' internal parameters and their range of
values.

Query Command AT+<x>? Returns the current value of parameters.

Set Command AT+<x>=<…> Sets the value of user-defined parameters in commands, and runs these
commands.

Execute Command AT+<x> Runs commands with no user-defined parameters.

⚠ Notice:

• Not all AT commands support all four variations mentioned above.

• Square brackets [] designate the default value; it is either not required or may not appear.

• String values need to be included in double quotation marks, for example: AT+CWSAP="ESP756290","21030826",
1,4.

• The default baud rate of AT command is 115200.

• AT commands are ended with a new-line (CR-LF), so the serial tool should be set into "New Line Mode".

• Definitions of AT command error codes are in esp32-at/components/at/include/esp_at.h.

Espressif ! /!3 83 2017.11

https://github.com/espressif/esp32-at/blob/master/components/at/include/esp_at.h

!

3. Basic AT Commands

3. Basic AT Commands
3.1. Overview

3.2. Commands
3.2.1. AT—Tests AT Startup

3.2.2. AT+RST—Restarts the Module

Commands Description

AT Tests AT startup.

AT+RST Restarts a module.

AT+GMR Checks version information.

AT+GSLP Enters Deep-sleep mode.

ATE Configures echoing of AT commands.

AT+RESTORE Restores the factory default settings of the module.

AT+UART UART configuration.

AT+UART_CUR Current UART configuration.

AT+UART_DEF Default UART configuration, saved in flash.

AT+SLEEP Sets the sleep mode.

AT+SYSRAM Checks the remaining space of RAM.

AT+FS File systems operations

Execute Command AT

Response OK

Parameters -

Execute Command AT+RST

Response OK

Parameters -

Espressif ! /!4 83 2017.11

!

3. Basic AT Commands

3.2.3. AT+GMR—Checks Version Information

3.2.4. AT+GSLP—Enters Deep-sleep Mode

3.2.5. ATE—AT Commands Echoing

3.2.6. AT+RESTORE—Restores the Factory Default Settings

Note
When the command is capitalized, it can be used to force restart.

When system is in a "busy" state, user can call "AT+RST" to force restart. The system will
prompt message "will force to restart!!!" before restarts.

Execute Command AT+GMR

Response

<AT	version	info>

<SDK	version	info>

<compile	time>

OK

Parameters
• <AT	version	info>:	information about the AT version.

• <SDK	version	info>:	information about the SDK version.

• <compile	time>: the duration of time for compiling the BIN.

Set Command AT+GSLP=<time>

Response
<time>

OK

Parameters
<time>: the duration of ESP32's sleep. Unit: ms.

ESP32 will wake up after Deep-sleep for as many milliseconds (ms) as <time> indicates.

Execute Command ATE

Response OK

Parameters
• ATE0: Switches echo off.

• ATE1: Switches echo on.

Execute Command AT+RESTORE

Response OK

Espressif ! /!5 83 2017.11

!

3. Basic AT Commands

3.2.7. AT+UART—UART Configuration

[@deprecated] This command is deprecated. Please use AT+UART_CUR or AT+UART_DEF instead.

Note
The execution of this command will reset all parameters saved in flash, and restore the
factory default settings of the module. The chip will be restarted when this command is
executed.

Command
Query Command:

AT+UART?

Set Command:

AT+UART=<baudrate>,<databits>,<stopbits>,<p
arity>,<flow	control>

Response

+UART:<baudrate>,<databits>,<stopbits>,<par
ity>,<flow	control>

OK

Command AT+UART? will return the actual value of
UART configuration parameters, which may have
allowable errors compared with the set value
because of the clock division.

OK

Parameters

• <baudrate>: UART baud rate
• <databits>: data bits

‣ 5: 5-bit data
‣ 6: 6-bit data
‣ 7: 7-bit data
‣ 8: 8-bit data

• <stopbits>: stop bits

‣ 1: 1-bit stop bit
‣ 2: 1.5-bit stop bit
‣ 3: 2-bit stop bit

• <parity>: parity bit

‣ 0: None
‣ 1: Odd
‣ 2: Even

• <flow	control>: flow control

‣ 0: flow control is not enabled
‣ 1: enable RTS
‣ 2: enable CTS
‣ 3: enable both RTS and CTS

Notes

1. The configuration changes will be saved in the NVS area, and will still be valid when the chip is
powered on again.

2. The use of flow control requires the support of hardware:
‣ IO15 is UART0 CTS
‣ IO14 is UART0 RTS

3. The range of baud rates supported: 80 ~ 5000000.

Example AT+UART=115200,8,1,0,3

Espressif ! /!6 83 2017.11

!

3. Basic AT Commands

3.2.8. AT+UART_CUR—Current UART Configuration, Not Saved in Flash

Command
Query Command:

AT+UART_CUR?

Set Command:

AT+UART_CUR=<baudrate>,<databits>,<stopbits
>,<parity>,<flow	control>

Response

+UART_CUR:<baudrate>,<databits>,<stopbits>,
<parity>,<flow	control>

OK

Command AT+UART_CUR? will return the actual
value of UART configuration parameters, which
may have allowable errors compared with the set
value because of the clock division.

OK

Parameters

• <baudrate>: UART baud rate

• <databits>: data bits

‣ 5: 5-bit data
‣ 6: 6-bit data
‣ 7: 7-bit data
‣ 8: 8-bit data

• <stopbits>: stop bits

‣ 1: 1-bit stop bit
‣ 2: 1.5-bit stop bit
‣ 3: 2-bit stop bit

• <parity>: parity bit

‣ 0: None
‣ 1: Odd
‣ 2: Even

• <flow	control>: flow control

‣ 0: flow control is not enabled
‣ 1: enable RTS
‣ 2: enable CTS
‣ 3: enable both RTS and CTS

Notes

1. The configuration changes will NOT be saved in flash.

2. The use of flow control requires the support of hardware:
‣ IO15 is UART0 CTS
‣ IO14 is UART0 RTS

3. The range of baud rates supported: 80 ~ 5000000.

Example AT+UART_CUR=115200,8,1,0,3

Espressif ! /!7 83 2017.11

!

3. Basic AT Commands

3.2.9. AT+UART_DEF—Default UART Configuration, Saved in Flash

Command

Query Command:

AT+UART_DEF?

Function:

Read the UART configuration from flash.

Set Command:

AT+UART_DEF=<baudrate>,<databits>,<stopbits
>,<parity>,<flow	control>

Response
+UART_DEF:<baudrate>,<databits>,<stopbits>,
<parity>,<flow	control>

OK

OK

Parameters

• <baudrate>: UART baud rate

• <databits>: data bits

‣ 5: 5-bit data
‣ 6: 6-bit data
‣ 7: 7-bit data
‣ 8: 8-bit data

• <stopbits>: stop bits

‣ 1: 1-bit stop bit
‣ 2: 1.5-bit stop bit
‣ 3: 2-bit stop bit

• <parity>: parity bit

‣ 0: None
‣ 1: Odd
‣ 2: Even

• <flow	control>: flow control

‣ 0: flow control is not enabled
‣ 1: enable RTS
‣ 2: enable CTS
‣ 3: enable both RTS and CTS

Notes

1. The configuration changes will be saved in the NVS area, and will still be valid when the chip is
powered on again.

2. The use of flow control requires the support of hardware:
‣ IO15 is UART0 CTS
‣ IO14 is UART0 RTS

3. The range of baud rates supported: 80 ~ 5000000.

Example AT+UART_DEF=115200,8,1,0,3

Espressif ! /!8 83 2017.11

!

3. Basic AT Commands

3.2.10. AT+SLEEP—Sets the Sleep Mode

3.2.11. AT+SYSRAM—Checks the Remaining Space of RAM

3.2.12. AT+FS—Filesystem Operations *

Set Command AT+SLEEP=<sleep	mode>

Response OK

Parameters
<sleep	mode>:

‣ 0: disable the sleep mode.
‣ 1: Modem-sleep mode.

Example AT+SLEEP=0

Query Command AT+SYSRAM?

Response
+SYSRAM:<remaining	RAM	size>

OK

Parameters <remaining	RAM	size>: remaining space of RAM, unit: byte

Example
AT+SYSRAM?

+SYSRAM:148408

OK

Command
Set Command:

AT+FS=<type>,<operation>,<filename>,<offset>,<length>

Response OK

Parameters

<type>: only FATFS is currently supported

‣ 0: FATFS

<operation>:

‣ 0: delete file
‣ 1: write file
‣ 2: read file
‣ 3: query the size of the file
‣ 4: list files in a specific directory, only root directory is currently supported

<offset>: offset, for writing and reading operations only

<length>: data length, for writing and reading operations only

Notes

• This function is disabled by default. User needs to set configuration by "make menuconfig" to enable
it, and re-compile the ESP32 AT firmware.

• at_customize.bin has to be downloaded, so that the relevant commands can be used. The
definitions of user partitions are in esp32-at/at_customize.csv. Please refer to the
ESP32_Customize_Partitions for more details.

Espressif ! /!9 83 2017.11

https://github.com/espressif/esp32-at/blob/master/at_customize.csv
https://github.com/espressif/esp32-at/blob/master/docs/ESP32_Customize_Partitions.md

!

3. Basic AT Commands

Example

// delete a file.

AT+FS=0,0,"filename"

// write 10 bytes to offset 100 of a file.

AT+FS=0,1,"filename",100,10

// read 100 bytes from offset 0 of a file.

AT+FS=0,2,"filename",0,100

// list all files in the root directory.

AT+FS=0,4,"."

Espressif ! /!10 83 2017.11

!

4. Wi-Fi AT Commands

4. Wi-Fi AT Commands
4.1. Overview

Commands Description

AT+CWMODE Sets the Wi-Fi mode (STA/AP/STA+AP).

AT+CWJAP Connects to an AP.

AT+CWLAPOPT Sets the configuration of command AT+CWLAP.

AT+CWLAP Lists available APs.

AT+CWQAP Disconnects from the AP.

AT+CWSAP Sets the configuration of the ESP32 SoftAP.

AT+CWLIF Gets the Station IP to which the ESP32 SoftAP is connected.

AT+CWDHCP Enables/disables DHCP.

AT+CWDHCPS
Sets the IP range of the ESP32 SoftAP DHCP server.

Saves the setting in flash.

AT+CWAUTOCONN Connects to the AP automatically on power-up.

AT+CWSTARTSMART Starts SmartConfig.

AT+CWSTOPSMART Stops SmartConfig.

AT+WPS Enables the WPS function.

AT+CWHOSTNAME Configure the host name of ESP32 station.

AT+MDNS MDNS function

Espressif ! /!11 83 2017.11

!

4. Wi-Fi AT Commands

4.2. Commands
4.2.1. AT+CWMODE—Sets the Wi-Fi Mode (Station/SoftAP/Station+SoftAP)

Commands
Test Command:

AT+CWMODE=?

Query Command:

AT+CWMODE?

Function: to query the Wi-Fi mode of
ESP32.

Set Command:

AT+CWMODE=<mode>

Function: to set the Wi-Fi mode of
ESP32.

Response
+CWMODE:<mode>

OK

+CWMODE:<mode>

OK
OK

Parameters

<mode>:

‣ 0: Null mode, WiFi RF will be disabled
‣ 1: Station mode
‣ 2: SoftAP mode
‣ 3: SoftAP+Station mode

Note The configuration changes will be saved in the NVS area.

Example AT+CWMODE=3

Espressif ! /!12 83 2017.11

!

4. Wi-Fi AT Commands

4.2.2. AT+CWJAP—Connects to an AP

Commands

Query Command:

AT+CWJAP?

Function: to query the AP to which the ESP32
Station is already connected.

Set Command:

AT+CWJAP=<ssid>,<pwd>[,<bssid>]

Function: to set the AP to which the ESP32 Station
needs to be connected.

Response
+CWJAP:<ssid>,<bssid>,<channel>,<rssi>

OK

OK

or

+CWJAP:<error	code>

ERROR

Parameters

• <ssid>:	a string parameter showing the
SSID of the AP.

• <bssid>: the AP's MAC address.

• <channel>: channel

• <rssi>: signal strength

• <ssid>: the SSID of the target AP.

• <pwd>: password, MAX: 64-byte ASCII.

• [<bssid>](optional parameter): the target AP's
MAC address, used when multiple APs have the
same SSID.

• <error	code>: (for reference only)
‣ 1: connection timeout.
‣ 2: wrong password.
‣ 3: cannot find the target AP.
‣ 4: connection failed.
‣ others: unknown error occurred.

Escape character syntax is needed if SSID or
password contains any special characters, such as, or
" or \.

Messages

// If ESP32 station connects to an AP, it will prompt messages:

WIFI CONNECTED

WIFI GOT IP

// If the WiFi connection ends, it will prompt messages:

WIFI DISCONNECT

Note
• The configuration changes will be saved in the NVS area.

• This command requires Station mode to be active.

Examples

AT+CWJAP="abc","0123456789"

For example, if the target AP's SSID is "ab\,c" and the password is "0123456789"\", the command is	
as follows:

AT+CWJAP="ab\\\,c","0123456789\"\\"

If multiple APs have the same SSID as "abc", the target AP can be found by BSSID:

AT+CWJAP="abc","0123456789","ca:d7:19:d8:a6:44"

Espressif ! /!13 83 2017.11

!

4. Wi-Fi AT Commands

4.2.3. AT+CWLAPOPT—Sets the Configuration for the Command AT+CWLAP

Set Command AT+CWLAPOPT=<sort_enable>,<mask>

Response OK

Parameters

• <sort_enable>: determines whether the result of command AT+CWLAP will be listed according to
RSSI:

‣ 0: the result is ordered according to RSSI.
‣ 1: the result is not ordered according to RSSI.

• <mask>: determines the parameters shown in the result of AT+CWLAP; 0 means not showing the
parameter corresponding to the bit, and 1 means showing it.

‣ bit	0: determines whether <ecn> will be shown in the result of AT+CWLAP.
‣ bit	1: determines whether <ssid> will be shown in the result of AT+CWLAP.
‣ bit	2: determines whether <rssi> will be shown in the result of AT+CWLAP.
‣ bit	3: determines whether <mac> will be shown in the result of AT+CWLAP.
‣ bit	4: determines whether <channel> will be shown in the result of AT+CWLAP.

Example

AT+CWLAPOPT=1,31

The first parameter is 1, meaning that the result of the command AT+CWLAP will be ordered
according to RSSI;

The second parameter is 31, namely 0x1F, meaning that the corresponding bits of <mask> are set to
1. All parameters will be shown in the result of AT+CWLAP.

Espressif ! /!14 83 2017.11

!

4. Wi-Fi AT Commands

4.2.4. AT+CWLAP—Lists the Available APs

4.2.5. AT+CWQAP—Disconnects from the AP

Commands

Set Command:

AT+CWLAP=<ssid>[,<mac>,<channel>]

Function: to query the APs with specific SSID and
MAC on a specific channel.

Execute Command:

AT+CWLAP

Function: to list all available APs.

Response
+CWLAP:<ecn>,<ssid>,<rssi>,<mac>,<channel>

OK

+CWLAP:<ecn>,<ssid>,<rssi>,<mac>,<channel>

OK

Parameters

• <ecn>: encryption method.

‣ 0: OPEN
‣ 1: WEP
‣ 2: WPA_PSK
‣ 3: WPA2_PSK
‣ 4: WPA_WPA2_PSK
‣ 5: WPA2_Enterprise (AT can NOT connect to WPA2_Enterprise AP for now.)

• <ssid>: string parameter, SSID of the AP.

• <rssi>: signal strength.

• <mac>: string parameter, MAC address of the AP.

Examples
AT+CWLAP="Wi-Fi","ca:d7:19:d8:a6:44",6

or search for APs with a designated SSID:

AT+CWLAP="Wi-Fi"

Execute Command AT+CWQAP

Response OK

Parameters -

Espressif ! /!15 83 2017.11

!

4. Wi-Fi AT Commands

4.2.6. AT+CWSAP—Configuration of the ESP32 SoftAP

Commands

Query Command:

AT+CWSAP?

Function: to obtain the configuration parameters of the
ESP32 SoftAP.

Set Command:

AT+CWSAP=<ssid>,<pwd>,<chl>,<ecn>[,<max	
conn>][,<ssid	hidden>]

Function: to set the configuration of the
ESP32 SoftAP.

Response
+CWSAP:<ssid>,<pwd>,<channel>,<ecn>,<max	
conn>,<ssid	hidden>

OK

OK

Parameters

• <ssid>: string parameter, SSID of AP.

• <pwd>: string parameter, length of password: 8 ~ 64
bytes ASCII.

• <channel>: channel ID.

• <ecn>: encryption method; WEP is not supported.

‣ 0: OPEN
‣ 2: WPA_PSK
‣ 3: WPA2_PSK
‣ 4: WPA_WPA2_PSK

• [<max	conn>](optional parameter): maximum number
of Stations to which ESP32 SoftAP can be
connected; within the range of [1, 10].

• [<ssid	hidden>](optional parameter):

‣ 0: SSID is broadcast. (the default setting)
‣ 1: SSID is not broadcast.

The same as above.

⚠ Notice:

This command is only available when SoftAP
is active.

Note The configuration changes will be saved in the NVS area.

Example AT+CWSAP="ESP32","1234567890",5,3

Espressif ! /!16 83 2017.11

!

4. Wi-Fi AT Commands

4.2.7. AT+CWLIF—IP of Stations to Which the ESP32 SoftAP is Connected

4.2.8. AT+CWDHCP—Enables/Disables DHCP

Execute
Command AT+CWLIF

Response
+CWLIF:<ip	addr>,<mac>

OK

Parameters
• <ip	addr>: IP address of Stations to which ESP32 SoftAP is connected.

• <mac>: MAC address of Stations to which ESP32 SoftAP is connected.

Note This command cannot get a static IP. It only works when both DHCPs of the ESP32 SoftAP, and of
the Station to which ESP32 is connected, are enabled.

Commands
Query Command:

AT+CWDHCP?

Set Command:

AT+CWDHCP=<operate>,<mode>

Function: to enable/disable DHCP.

Response
+CWDHCP:<enable>

OK
OK

Parameters

<enable>: DHCP disabled or enabled now?

• Bit0:

‣ 0: Station DHCP is disabled.
‣ 1: Station DHCP is enabled.

• Bit1:

‣ 0: SoftAP DHCP is disabled.
‣ 1: SoftAP DHCP is enabled.

• <operate>:

‣ 0: disable
‣ 1: enable

• <mode>:

‣ Bit0: Station DHCP
‣ Bit1: SoftAP DHCP

Notes

• The configuration changes will be stored in the NVS area.

• This set command interacts with static-IP-related AT commands (AT+CIPSTA-related	and
AT+CIPAP-related commands):

‣ If DHCP is enabled, static IP will be disabled;
‣ If static IP is enabled, DHCP will be disabled;
‣ Whether it is DHCP or static IP that is enabled depends on the last configuration.

Examples

AT+CWDHCP=1,1

Enable Station DHCP. If the last DHCP mode is 2, then the current DHCP mode will be 3.

AT+CWDHCP=0,2

Disable SoftAP DHCP. If the last DHCP mode is 3, then the current DHCP mode will be 1.

Espressif ! /!17 83 2017.11

!

4. Wi-Fi AT Commands

4.2.9. AT+CWDHCPS—Sets the IP Address Allocated by ESP32 SoftAP DHCP (The configuration is
saved in Flash.)

4.2.10. AT+CWAUTOCONN—Auto-Connects to the AP or Not

Commands
Query Command:

AT+CWDHCPS?

Set Command:

AT+CWDHCPS=<enable>,<lease	time>,<start	IP>,<end	IP>

Function: sets the IP address range of the ESP32 SoftAP
DHCP server.

Response
+CWDHCPS:<lease	time>,<start	
IP>,<end	IP>

OK

OK

Parameters

• <enable>:

‣ 0: Disable the settings and use the default IP range.
‣ 1: Enable setting the IP range, and the parameters below have to be set.

• <lease	time>: lease time, unit: minute, range [1, 2880].

• <start	IP>: start IP of the IP range that can be obtained from ESP32 SoftAP DHCP server.

• <end	IP>: end IP of the IP range that can be obtained from ESP32 SoftAP DHCP server.

Notes
• The configuration changes will be saved in the NVS area.

• This AT command is enabled when ESP8266 runs as SoftAP, and when DHCP is enabled. The IP
address should be in the same network segment as the IP address of ESP32 SoftAP.

Examples

AT+CWDHCPS=1,3,"192.168.4.10","192.168.4.15"

or

AT+CWDHCPS=0	//Disable	the	settings	and	use	the	default	IP	range.

Set Command AT+CWAUTOCONN=<enable>

Response OK

Parameters

<enable>:

‣ 0: does NOT auto-connect to AP on power-up.
‣ 1: connects to AP automatically on power-up.

The ESP32 Station connects to the AP automatically on power-up by default.

Note The configuration changes will be saved in the NVS area.

Example AT+CWAUTOCONN=1

Espressif ! /!18 83 2017.11

!

4. Wi-Fi AT Commands

4.2.11. AT+CWSTARTSMART—Starts SmartConfig

4.2.12. AT+CWSTOPSMART—Stops SmartConfig

Commands

Set Command:

AT+CWSTARTSMART=<type>

Function: to start SmartConfig of a designated
type.

Set Command:

AT+CWSTARTSMART

Function: enable ESP-TOUCH+AirKiss SmartConfig.

Response OK OK

Parameters

<type>:

‣ 1: ESP-TOUCH
‣ 2: AirKiss
‣ 3: ESP-TOUCH+AirKiss

none

Messages

When smartconfig starts, it will prompt messages as below:

smartconfig type: <type> // AIRKISS, ESPTOUCH or UNKNOWN

Smart get wifi info 					 // got SSID and password

ssid:<AP's SSID>

password:<AP's password>

// ESP32 will try to connect to the AP

WIFI CONNECTED

WIFI GOT IP

smartconfig connected wifi // if the connection failed, it will prompt "smartconfig connect fail"

Notes

• For details on SmartConfig please see ESP-TOUCH User Guide.
• SmartConfig is only available in the ESP32 Station mode.
• The message Smart	get	wifi	info means that SmartConfig has successfully acquired the AP

information. ESP32 will try to connect to the target AP.
• Message smartconfig	connected	wifi is printed if the connection is successful.
• Use command AT+CWSTOPSMART to stop SmartConfig before running other commands. Please make

sure that you do not execute other commands during SmartConfig.

Example
AT+CWMODE=1

AT+CWSTARTSMART=3

Execute Command AT+CWSTOPSMART

Response OK

Parameters -

Note Irrespective of whether SmartConfig succeeds or not, before executing any other AT commands,
please always call AT+CWSTOPSMART to release the internal memory taken up by SmartConfig.

Example AT+CWSTOPSMART

Espressif ! /!19 83 2017.11

http://espressif.com/en/support/download/documents?keys=ESP-TOUCH+User+Guide&field_technology_tid%5B%5D=20

!

4. Wi-Fi AT Commands

4.2.13. AT+WPS—Enables the WPS Function

4.2.14. AT+CWHOSTNAME—Configures the Host Name of ESP32 Station

4.2.15. AT+MDNS—Configures the MDNS Function *

Set Command AT+WPS=<enable>

Response
OK

or

ERROR

Parameters
<enable>:

‣ 1: enable WPS/Wi-Fi Protected Setup (implemented by PBC/Push Button Configuration).
‣ 0: disable WPS (implemented by PBC).

Notes
• WPS must be used when the ESP32 Station is enabled.

• WPS does not support WEP/Wired-Equivalent Privacy encryption.

Example AT+CWMODE=1

AT+WPS=1

Commands
Query Command:

AT+CWHOSTNAME?

Function: Checks the host name of ESP32 Station.

Set Command:

AT+CWHOSTNAME=<hostname>

Function: Sets the host name of ESP32 Station.

Response

+CWHOSTNAME:<host	name>

OK

If the station mode is not enabled, the command will
return:

+CWHOSTNAME:<null>

OK

OK

If the station mode is not enabled, the command
will return:

ERROR

Parameters <hostname>: the host name of the ESP32 Station, maximum length: 32 bytes

Notes
• The configuration changes are not saved in the flash.

• The default host name of the ESP32 Station is ESP_XXXXXX; XXXXXX is the lower 3 bytes of the MAC
address, for example, +CWHOSTNAME:<ESP_A378DA>.

Example
AT+CWMODE=3

AT+CWHOSTNAME="my_test"

Set Command AT+MDNS=<enable>,<interface>,<hostname>,<service_name>,<port>

Response OK

Espressif ! /!20 83 2017.11

!

4. Wi-Fi AT Commands

Parameters

• <enable>:

‣ 1: enables the MDNS function; the following three parameters need to be set.

‣ 0: disables the MDNS function; the following three parameters need not to be set.

• <interface>:

‣ 1：station;

‣ 2：softAP.

• <hostname>: MDNS host name

• <service_name>: MDNS service name, it should start with "_"

• <port>: MDNS port

Notes • Please do not use other special characters (such as	.) for <hostname> and <service_name>.

Example
AT+MDNS=1,1,"espressif","_iot",8080

Or

AT+MDNS=0,1

Espressif ! /!21 83 2017.11

!

5. TCP/IP-Related AT Commands

5. TCP/IP-Related AT Commands
5.1. Overview

Commands Description

AT+CIPSTATUS Gets the connection status.

AT+CIPDOMAIN DNS function.

AT+CIPDNS Sets user-defined DNS server.

AT+CIPSTAMAC Sets the MAC address of ESP32 Station.

AT+CIPAPMAC Sets the MAC address of ESP32 SoftAP.

AT+CIPSTA Sets the IP address of ESP32 Station.

AT+CIPAP Sets the IP address of ESP32 SoftAP.

AT+CIPSTART Establishes TCP connection, UDP transmission or SSL connection.

AT+CIPSEND Sends data.

AT+CIPSENDEX Sends data when length of data is <length>, or when \0 appears in the data.

AT+CIPCLOSE Closes TCP/UDP/SSL connection.

AT+CIFSR Gets the local IP address.

AT+CIPMUX Configures the multiple connections mode.

AT+CIPSERVER Deletes/Creates TCP or SSL server.

AT+CIPSERVERMAXCONN Set the maximum connections that server allows

AT+CIPMODE Configures the transmission mode.

AT+SAVETRANSLINK Saves the transparent transmission link in flash.

AT+CIPSTO Sets timeout when ESP32 runs as a TCP server.

AT+CIUPDATE Updates the software through Wi-Fi.

AT+CIPDINFO Shows remote IP and remote port with +IPD.

AT+CIPSNTPCFG Configures the time domain and SNTP server.

AT+CIPSNTPTIME Queries the SNTP time.

AT+PING Ping packets

Espressif ! /!22 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2. Commands
5.2.1. AT+CIPSTATUS—Gets the Connection Status

5.2.2. AT+CIPDOMAIN—DNS Function

5.2.3. AT+CIPDNS—Sets User-defined DNS Servers; Configuration Saved in the Flash

Execute Command AT+CIPSTATUS

Response
STATUS:<stat>

+CIPSTATUS:<link	ID>,<type>,<remote	IP>,<remote	port>,<local	port>,<tetype>

Parameters

• <stat>: status of the ESP32 Station interface.

‣ 2: The ESP32 Station is connected to an AP and its IP is obtained.
‣ 3: The ESP32 Station has created a TCP or UDP transmission.
‣ 4: The TCP or UDP transmission of ESP32 Station is disconnected.
‣ 5: The ESP32 Station does NOT connect to an AP.

• <link	ID>: ID of the connection (0~4), used for multiple connections.

• <type>: string parameter, "TCP" or "UDP".

• <remote	IP>: string parameter indicating the remote IP address.

• <remote	port>: the remote port number.

• <local	port>: ESP32 local port number.

• <tetype>:

‣ 0: ESP32 runs as a client.
‣ 1: ESP32 runs as a server.

Execute Command AT+CIPDOMAIN=<domain	name>

Response +CIPDOMAIN:<IP	address>

Parameter <domain	name>: the domain name.

Example
AT+CWMODE=1																							//	set	Station	mode

AT+CWJAP="SSID","password"								//	access	to	the	internet

AT+CIPDOMAIN="iot.espressif.cn"			//	DNS	function

Commands

Query Command:

AT+CIPDNS?

Function: Get the user-defined DNS
servers which saved in flash.

Set Command:

AT+CIPDNS=<enable>[,<DNS	server0>,<DNS	server1>]

Function: Set user-defined DNS servers.

Response

+CIPDNS:<DNS	server0>

[+CIPDNS:<DNS	server1>]

OK

OK

Espressif ! /!23 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2.4. AT+CIPSTAMAC—Sets the MAC Address of the ESP32 Station

5.2.5. AT+CIPAPMAC—Sets the MAC Address of the ESP32 SoftAP

Parameters

• <enable>:	

‣ 0: disable to use a user-defined DNS server;

‣ 1: enable to use a user-defined DNS server.

• <DNS	server0>: optional parameter indicating the first DNS server;

• <DNS	server1>: optional parameter indicating the second DNS serve.

Example AT+CIPDNS=1,"208.67.220.220"

Note

• This configuration will be saved in flash.

• For command: AT+CIPDNS=0 (disable to use user-defined DNS servers), "208.67.222.222" will be used
as DNS server by default. And the DNS server may change according to the configuration of the router
which the chip connected to.

• For command: AT+CIPDNS=1 (enable to use user-defined DNS servers, but the <DNS server>
parameters are not set), servers "208.67.222.222"	will be used as DNS server by default.

Commands

Query Command:

AT+CIPSTAMAC?

Function: to obtain the MAC address of the
ESP32 Station.

Set Command:

AT+CIPSTAMAC=<mac>

Function: to set the MAC address of the ESP32 Station.

Response
+CIPSTAMAC:<mac>

OK
OK

Parameters <mac>: string parameter, MAC address of the ESP8266 Station.

Notes

• The configuration changes will be saved in the NVS area.

• The MAC address of ESP32 SoftAP is different from that of the ESP32 Station. Please make sure that
you do not set the same MAC address for both of them.

• Bit 0 of the ESP32 MAC address CANNOT be 1. For example, a MAC address can be "1a:…" but not
"15:…".

• FF:FF:FF:FF:FF:FF and 00:00:00:00:00:00 are invalid MAC and cannot be set.

Example AT+CIPSTAMAC="1a:fe:35:98:d3:7b"

Commands

Query Command:

AT+CIPAPMAC?

Function: to obtain the MAC address of the ESP32
SoftAP.

Set Command:

AT+CIPAPMAC=<mac>

Function: to set the MAC address of the ESP32
SoftAP.

Response
+CIPAPMAC:<mac>

OK
OK

Parameters <mac>: string parameter, MAC address of ESP32 SoftAP.

Espressif ! /!24 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2.6. AT+CIPSTA—Sets the IP Address of the ESP32 Station

5.2.7. AT+CIPAP—Sets the IP Address of the ESP32 SoftAP

Notes

• The configuration changes will be saved in the NVS area.

• The MAC address of ESP32 SoftAP is different from that of the ESP32 Station. Please make sure you
do not set the same MAC address for both of them.

• Bit 0 of the ESP32 MAC address CANNOT be 1. For example, a MAC address can be "18:…" but not
"15:…".

• FF:FF:FF:FF:FF:FF and 00:00:00:00:00:00 are invalid MAC and cannot be set.

Example AT+CIPAPMAC="18:fe:36:97:d5:7b"

Commands

Query Command:

AT+CIPSTA?

Function: to obtain the IP address of the ESP32
Station.

Set Command:

AT+CIPSTA=<ip>[,<gateway>,<netmask>]

Function: to set the IP address of the ESP32
Station.

Response
+CIPSTA:<ip>

OK
OK

Parameters
⚠ Notice:

Only when the ESP32 Station is connected to an AP
can its IP address be queried.

• <ip>: string parameter, the IP address of the
ESP32 Station.

• [<gateway>]: gateway.

• [<netmask>]: netmask.

Notes

• The configuration changes will be saved in the NVS area.
• The set command interacts with DHCP-related AT commands (AT+CWDHCP-related	commands):

‣ If static IP is enabled, DHCP will be disabled;
‣ If DHCP is enabled, static IP will be disabled;
‣ Whether it is DHCP or static IP that is enabled depends on the last configuration.

Example AT+CIPSTA="192.168.6.100","192.168.6.1","255.255.255.0"

Commands

Query Command:

AT+CIPAP?

Function: to obtain the IP address of the ESP32
SoftAP.

Set Command:

AT+CIPAP=<ip>[,<gateway>,<netmask>]

Function: to set the IP address of the ESP32
SoftAP.

Response
+CIPAP:<ip>,<gateway>,<netmask>

OK
OK

Parameters

• <ip>: string parameter, the IP address of the ESP32 SoftAP.

• [<gateway>]: gateway.

• [<netmask>]: netmask.

Espressif ! /!25 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2.8. AT+CIPSTART—Establishes TCP Connection, UDP Transmission or SSL Connection

Notes

• The configuration changes will be saved in the NVS area.

• Currently, ESP32 only supports class C IP addresses.

• The set command interacts with DHCP-related AT commands (AT+CWDHCP-related	commands):

‣ If static IP is enabled, DHCP will be disabled;
‣ If DHCP is enabled, static IP will be disabled;
‣ Whether it is DHCP or static IP that is enabled depends on the last configuration.

Example AT+CIPAP="192.168.5.1","192.168.5.1","255.255.255.0"

Establish TCP Connection

Set
Command

Single TCP connection (AT+CIPMUX=0):

AT+CIPSTART=<type>,<remote	IP>,<remote	
port>[,<TCP	keep	alive>]

Multiple TCP Connections (AT+CIPMUX=1):

AT+CIPSTART=<link	ID>,<type>,<remote	
IP>,<remote	port>[,<TCP	keep	alive>]

Response OK

Parameters

• <link	ID>: ID of network connection (0~4), used for multiple connections.

• <type>: string parameter indicating the connection type: "TCP", "UDP"	or "SSL".

• <remote	IP>: string parameter indicating the remote IP address.

• <remote	port>: the remote port number.

• [<TCP	keep	alive>]: detection time interval when TCP is kept alive; this function is disabled by
default, but it should be enabled by user.

‣ 0: disable TCP keep-alive.
‣ 1	~	7200: detection time interval; unit: second (s).

Messages

// If the TCP connection is established, it will prompt message as below

[<link ID>,] CONNECT

// If the TCP connection ends, it will prompt message as below

[<link ID>,] CLOSED

Note The keep-alive should be enabled when establishing a TCP connection.

Examples
AT+CIPSTART="TCP","iot.espressif.cn",8000

AT+CIPSTART="TCP","192.168.101.110",1000

For more information please see Chapter 9: AT Command Examples.

Establish UDP Transmission

Set
Command

Single connection (AT+CIPMUX=0):

AT+CIPSTART=<type>,<remote	IP>,<remote	
port>[,<UDP	local	port>,<UDP	mode>]

Multiple connections (AT+CIPMUX=1):

AT+CIPSTART=<link	ID>,<type>,<remote	
IP>,<remote	port>[,<UDP	local	port>,<UDP	
mode>]

Response OK

Espressif ! /!26 83 2017.11

!

5. TCP/IP-Related AT Commands

Parameters

• <link	ID>: ID of network connection (0~4), used for multiple connections.

• <type>: string parameter indicating the connection type: "TCP", "UDP"	or "SSL".

• <remote	IP>: string parameter indicating the remote IP address.

• <remote	port>: remote port number.

• [<UDP	local	port>](optional parameter): UDP port of ESP32.

• [<UDP	mode>](optional parameter): In the UDP transparent transmission, the value of this parameter
has to be 0.

‣ 0: the destination peer entity of UDP will not change; this is the default setting.
‣ 1: the destination peer entity of UDP can change once.
‣ 2: the destination peer entity of UDP is allowed to change.

⚠ Notice:

To use <UDP	mode> , <UDP	local	port> must be set first.

Messages

// If the UDP transmission is established, it will prompt message as below

[<link ID>,] CONNECT

// If the UDP transmission ends, it will prompt message as below

[<link ID>,] CLOSED

Example
AT+CIPSTART="UDP","192.168.101.110",1000,1002,2

For more information please see Chapter 9: AT Command Examples.

Establish SSL Connection

Set
Command AT+CIPSTART=[<link	ID>,]<type>,<remote	IP>,<remote	port>[,<TCP	keep	alive>]

Response OK

Parameters

• <link	ID>: ID of network connection (0~4), used for multiple connections.

• <type>: string parameter indicating the connection type: "TCP", "UDP"	or "SSL".

• <remote	IP>: string parameter indicating the remote IP address.

• <remote	port>: the remote port number.

• [<TCP	keep	alive>]: detection time interval when TCP is kept alive; this function is disabled by
default, but it should be enabled by user

‣ 0: disable the TCP keep-alive function.
‣ 1	~	7200: detection time interval, unit: second (s).

Messages

// If the SSL connection is established, it will prompt message as below

[<link ID>,] CONNECT

// If the SSL connection ends, it will prompt message as below

[<link ID>,] CLOSED

Notes
• SSL connection needs a large amount of memory; otherwise, it may cause system reboot.

• The keep-alive should be enabled when establishing a SSL connection.

Example AT+CIPSTART="SSL","iot.espressif.cn",8443

Espressif ! /!27 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2.9. AT+CIPSEND—Sends Data

Commands

Set Command:

1. Single connection: (+CIPMUX=0)
AT+CIPSEND=<length>

2. Multiple connections: (+CIPMUX=1)

AT+CIPSEND=<link	ID>,<length>

3. Remote IP and ports can be set in UDP
transmission:

AT+CIPSEND=[<link	ID>,]<length>	
[,<remote	IP>,<remote	port>]

Function: to configure the data length in normal
transmission mode.

Execute Command:

AT+CIPSEND

Function: to start sending data in transparent
transmission mode.

Response

Send data of designated length.

Wrap return > after the set command. Begin
receiving serial data. When the requirement of data
length is met, the transmission of data starts.

If the connection cannot be established or gets
disrupted during data transmission, the system
returns:

ERROR

If data is transmitted successfully, the system
returns:

SEND	OK

Otherwise, the system returns:

SEND	FAIL

Wrap return > after executing this command.

Enter transparent transmission, with a 20-ms
interval between each packet, and a maximum of
2048 bytes per packet.

When a single packet containing +++ is received,
ESP32 returns to normal command mode.
Please wait for at least one second before
sending the next AT command.

This command can only be used in transparent
transmission mode which requires single
connection.

For UDP transparent transmission, the value of
<UDP	mode>	has to be 0 when using
AT+CIPSTART.

Parameters

• <link	ID>: ID of the connection (0~4), for multiple
connections.

• <length>: data length, MAX: 2048 bytes.

• [<remote	IP>]: remote IP can be set in UDP
transmission.

• [<remote	port>]: remote port can be set in UDP
transmission.

-

Example For more information please see Chapter 9: AT Command Examples.

Espressif ! /!28 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2.10. AT+CIPSENDEX—Sends Data

5.2.11. AT+CIPCLOSE—Closes TCP/UDP/SSL Connection

Commands

Set Command:

1. Single connection: (+CIPMUX=0)
AT+CIPSENDEX=<length>

2. Multiple connections: (+CIPMUX=1)

AT+CIPSENDEX=<link	ID>,<length>

3. Remote IP and ports can be set in UDP transmission:

AT+CIPSENDEX=[<link	ID>,]<length>[,<remote	IP>,<remote	port>]

Function: to configure the data length in normal transmission mode.

Response

Send data of designated length.

Wrap return > after the set command. Begin receiving serial data. When the requirement of data length,
determined by <length>, is met, or when \0	appears in the data, the transmission starts.

If connection cannot be established or gets disconnected during transmission, the system returns:

ERROR

If data are successfully transmitted, the system returns:

SEND	OK

Otherwise, the system returns:

SEND	FAIL

Parameters

• <link	ID>: ID of the connection (0~4), for multiple connections.

• <length>: data length, MAX: 2048 bytes.

• When the requirement of data length, determined by <length>, is met, or when \0 appears, the
transmission of data starts. Go back to the normal command mode and wait for the next AT
command.

• When sending \0, please send it as \\0.

Commands
Set Command (for multiple connections):

AT+CIPCLOSE=<link	ID>

Function: to close TCP/UDP connection.

Execute Command (for single
connection):

AT+CIPCLOSE

Response OK

Parameters <link	ID>: ID number of connections to be closed; when ID=5, all
connections will be closed. -

Messages
// When connection ends, it will prompt message as below

[<link ID>,] CLOSED

Espressif ! /!29 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2.12. AT+CIFSR—Gets the Local IP Address

5.2.13. AT+CIPMUX—Enables/Disables Multiple Connections

Execute
Command AT+CIFSR

Response

+CIFSR:APIP,<SoftAP	IP	address>

+CIFSR:APMAC,<SoftAP	MAC	address>

+CIFSR:STAIP,<Station	IP	address>

+CIFSR:STAMAC,<Station	MAC	address>

OK

Parameters

<IP	address>:

IP address of the ESP32 SoftAP;

IP address of the ESP32 Station.

<MAC	address>:

MAC address of the ESP32 SoftAP;

MAC address of the ESP32 Station.

Notes Only when the ESP32 Station is connected to an AP can the Station IP can be queried.

Commands
Query Command:

AT+CIPMUX?

Set Command:

AT+CIPMUX=<mode>

Function: to set the connection type.

Response
+CIPMUX:<mode>

OK
OK

Parameters
<mode>:

‣ 0: single connection
‣ 1: multiple connections

Notes

• The default mode is single connection mode.

• Multiple connections can only be set when transparent transmission is disabled (AT+CIPMODE=0).

• This mode can only be changed after all connections are disconnected.

• If the TCP server is running, it must be deleted (AT+CIPSERVER=0) before the single connection mode is
activated.

Example AT+CIPMUX=1

Espressif ! /!30 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2.14. AT+CIPSERVER—Deletes/Creates TCP or SSL Server *

5.2.15. AT+CIPSERVERMAXCONN—Set the Maximum Connections Allowed by Server *

Command
Query Command:

AT+CIPSERVER?

Function: to query information about the server mode.

Set Command:

AT+CIPSERVER=<mode>[,<port>][,<SSL>,<SSL	
CA	enable>]

Function: to set a TCP or SSL server.

Response
+CIPSERVER:<mode>,<port>,<SSL>,<SSL	CA	enable>

OK
OK

Parameters

<mode>:

‣ 0: delete server.
‣ 1: create server.

<port>: port number; 333 by default.

[<SSL>](optional parameter): string "SSL", to set a SSL server

[<SSL	CA	enable>](optional parameter):

‣ 0: disable CA.
‣ 1: enable CA.

Notes
• A server can only be created when multiple connections are activated (AT+CIPMUX=1).

• A server monitor will automatically be created when the server is created.

• When a client is connected to the server, it will take up one connection and be assigned an ID.

Messages

// If a connection is established, it will prompt message as below

[<link ID>,] CONNECT

// If a connection ends, it will prompt message as below

[<link ID>,] CLOSED

Example

• To create a TCP server
AT+CIPMUX=1

AT+CIPSERVER=1,80

• To create a SSL server
AT+CIPMUX=1

AT+CIPSERVER=1,443,"SSL",1

Commands

Query Command:

AT+CIPSERVERMAXCONN?

Function: obtain the maximum number of clients
allowed to connect to the TCP or SSL server.

Set Command:

AT+CIPSERVERMAXCONN=<num>

Function: set the maximum number of clients
allowed to connect to the TCP or SSL server.

Response
+CIPSERVERMAXCONN:<num>

OK
OK

Parameters <num>: the maximum number of clients allowed to connect to the TCP or SSL server, range: [1, 5]

Espressif ! /!31 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2.16. AT+CIPMODE—Configures the Transmission Mode

Notes To set this configuration, you should call the command AT+CIPSERVERMAXCONN=<num>	before creating a
server.

Example
AT+CIPMUX=1

AT+CIPSERVERMAXCONN=2

AT+CIPSERVER=1,80

Commands

Query Command:

AT+CIPMODE?

Function: to obtain information about transmission
mode.

Set Command:

AT+CIPMODE=<mode>

Function: to set the transmission mode.

Response
+CIPMODE:<mode>

OK
OK

Parameters

<mode>:

‣ 0: normal transmission mode.
‣ 1: UART-Wi-Fi passthrough mode (transparent transmission), which can only be enabled in TCP/

SSL single connection mode or in UDP mode when the remote IP and port do not change.

Notes

• The configuration changes will NOT be saved in flash.

• During the UART-Wi-Fi passthrough transmission, if the TCP connection breaks, ESP32 will keep
trying to reconnect until +++ is input to exit the transmission. If it is a normal TCP transmission and the
TCP connection breaks, ESP32 will give a prompt and will not attempt to reconnect.

• The UART-Wi-Fi passthrough mode and the BLE commands cannot be used together, so before
enabling UART-WiFi passthrough mode, please ensure that the BLE commands are not enabled
(AT+BLEINIT=0).

Example AT+CIPMODE=1

Espressif ! /!32 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2.17. AT+SAVETRANSLINK—Saves the Transparent Transmission Link in Flash

Save TCP Single Connection in Flash

Set Command AT+SAVETRANSLINK=<mode>,<remote	IP	or	domain	name>,<remote	port>[,<type>,<TCP	keep	
alive>]

Response OK

Parameters

• <mode>:

‣ 0: normal mode, ESP32 will NOT enter UART-Wi-Fi passthrough mode on power-up.
‣ 1: ESP32 will enter UART-Wi-Fi passthrough mode on power-up.

• <remote	IP>: remote IP or domain name.

• <remote	port>: remote port.

• [<type>]	(optional): TCP, SSL or UDP,	TCP	by default.
• [<TCP	keep	alive>]	(optional): TCP is kept alive. This function is disabled by default.

‣ 0: disables the TCP keep-alive function.
‣ 1	~	7200: keep-alive detection time interval; unit: second (s).

Notes

• This command will save the UART-Wi-Fi passthrough mode and its link in the NVS area. ESP32 will
enter the UART-Wi-Fi passthrough mode on any subsequent power cycles.

• As long as the remote IP (or domain name) and port are valid, the configuration will be saved in
flash.

Example AT+SAVETRANSLINK=1,"192.168.6.110",1002,"TCP"

Save UDP Transmission in Flash

Set Command AT+SAVETRANSLINK=<mode>,<remote	IP>,<remote	port>,<type>[,<UDP	local	port>]

Response OK

Parameters

• <mode>:

‣ 0: normal mode; ESP32 will NOT enter UART-Wi-Fi passthrough mode on power-up.
‣ 1: ESP32 enters UART-Wi-Fi passthrough mode on power-up.

• <remote	IP>: remote IP or domain name.

• <remote	port>: remote port.

• [<type>]	(optional): UDP, TCP	by default.
• [<UDP	local	port>] (optional): local port when UDP transparent transmission is enabled on

power-up.

Notes

• This command will save the UART-Wi-Fi passthrough mode and its link in the NVS area. ESP32 will
enter the UART-Wi-Fi passthrough mode on any subsequent power cycles.

• As long as the remote IP (or domain name) and port are valid, the configuration will be saved in
flash.

Example AT+SAVETRANSLINK=1,"192.168.6.110",1002,"UDP",1005

Espressif ! /!33 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2.18. AT+CIPSTO—Sets the TCP Server Timeout

5.2.19. AT+CIPSNTPCFG—Sets the Time Zone and the SNTP Server

Save SSL Single Connection in Flash

Set Command AT+SAVETRANSLINK=<mode>,<remote	IP	or	domain	name>,<remote	port>[,<type>,<TCP	keep	
alive>]

Response OK

Parameters

• <mode>:

‣ 0: normal mode, ESP32 will NOT enter UART-Wi-Fi passthrough mode on power-up.
‣ 1: ESP32 will enter UART-Wi-Fi passthrough mode on power-up.

• <remote	IP>: remote IP or domain name.

• <remote	port>: remote port.

• [<type>]	(optional): SSL,	TCP	by default.
• [<TCP	keep	alive>]	(optional): TCP is kept alive. This function is disabled by default.

‣ 0: disables the TCP keep-alive function.
‣ 1	~	7200: keep-alive detection time interval; unit: second (s).

Notes

• This command will save the UART-Wi-Fi passthrough mode and its link in the NVS area. ESP32 will
enter the UART-Wi-Fi passthrough mode on any subsequent power cycles.

• As long as the remote IP (or domain name) and port are valid, the configuration will be saved in
flash.

Example AT+SAVETRANSLINK=1,"192.168.6.110",443,"SSL"

Commands
Query Command:

AT+CIPSTO?

Function: to check the TCP server timeout.

Set Command:

AT+CIPSTO=<time>

Function: to set the TCP server timeout.

Response
+CIPSTO:<time>

OK
OK

Parameter <time>: TCP server timeout within the range of 0 ~ 7200s.

Notes
• ESP32 configured as a TCP server will disconnect from the TCP client that does not communicate

with it until timeout.

• If AT+CIPSTO=0, the connection will never time out. This configuration is not recommended.

Example
AT+CIPMUX=1

AT+CIPSERVER=1,1001

AT+CIPSTO=10

Commands
Query Command:

AT+CIPSNTPCFG?

Set Command:

AT+CIPSNTPCFG=<enable>[,<timezone>][,<SNTP	
server0>,<SNTP	server1>,<SNTP	server2>]

Espressif ! /!34 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2.20. AT+CIPSNTPTIME—Queries the SNTP Time

5.2.21. AT+CIUPDATE—Updates the Software Through Wi-Fi

Response
+CIPSNTPCFG:<enable>,<timezone>,<SNTP	
server1>[,<SNTP	server2>,<SNTP	server3>]

OK

OK

Parameters

• <enable>:	

‣ 0: SNTP is disabled;

‣ 1: SNTP is enabled.

• <timezone>: time zone; range: [-11,13]; if SNTP is enabled, the <timezone> has to be set;

• <SNTP	server0>: optional parameter indicating the first SNTP server;

• <SNTP	server1>: optional parameter indicating the second SNTP server;

• <SNTP	server2>: optional parameter indicating the third SNTP server.

Example AT+CIPSNTPCFG=1,8,"cn.ntp.org.cn","ntp.sjtu.edu.cn","us.pool.ntp.org"

Note If the <SNTP server> parameters are not set, servers "cn.ntp.org.cn","ntp.sjtu.edu.cn",	
"us.pool.ntp.org" will be used by default.

Query
Command AT+CIPSNTPTIME?

Response
+CIPSNTPTIME:SNTP	time

OK

Parameters -

Example

AT+CIPSNTPCFG=1,8,"cn.ntp.org.cn","ntp.sjtu.edu.cn"

OK

AT+CIPSNTPTIME?

+CIPSNTPTIME:Mon	Dec	12	02:33:32	2016

OK

Command
Execute Command:

AT+CIUPDATE

Function: normal FOTA.

Set Command:

AT+CIUPDATE=<ota_mode>[,<version>]

Function: set FOTA mode and upgrade to a specific
version.

Response

+CIPUPDATE:<n>

OK

//<n> means the FOTA steps:

‣ 1: find the server.
‣ 2: check software version from server, this step will be skipped if upgrading to a specific version
‣ 3: get the software version, this step will be skipped if upgrading to a specific version
‣ 4: start updating.

Espressif ! /!35 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2.22. AT+CIPDINFO—Shows the Remote IP and Port with "+IPD"

5.2.23. +IPD—Receives Network Data

Parameters none

<ota_mode>：

‣ 0：normal FOTA
‣ 1：SSL FOTA

[<version>]：optional parameter, to set a specific
version for upgrading. If it is not set, the default
version will be downloaded for upgrading.

Notes
• The speed of the upgrade is susceptible to the connectivity of the network.

• ERROR will be returned if the upgrade fails due to unfavourable network conditions. Please wait
for some time before retrying.

Notice

• If using Espressif's AT BIN (/esp-idf/bin/at), AT+CIUPDATE will download a new AT BIN from the
Espressif Cloud.

• If using a user-compiled AT BIN, users need to make their own AT+CIUPDATE upgrade. Espressif
provides a demo as a reference for local upgrade (/esp-idf/example/at).

• User can enable SSL OTA in the menuconfig, more details are in the Chapter OTA Function.

• It is suggested that users call AT+RESTORE to restore the factory default settings after upgrading
the AT firmware.

Set Command AT+CIPDINFO=<mode>

Response OK

Parameters
<mode>:

‣ 0: does not show the remote IP and port with "+IPD".
‣ 1: shows the remote IP and port with "+IPD".

Example AT+CIPDINFO=1

Command
Single connection:

(+CIPMUX=0)+IPD,<len>[,<remote	
IP>,<remote	port>]:<data>

multiple connections:

(+CIPMUX=1)+IPD,<link	ID>,<len>[,<remote	
IP>,<remote	port>]:<data>

Parameters

The command is valid in normal command mode. When the module receives network data, it will
send the data through the serial port using the +IPD command.

• [<remote	IP>]: remote IP, enabled by command AT+CIPDINFO=1.

• [<remote	port>]: remote port, enabled by command AT+CIPDINFO=1.

• <link	ID>: ID number of connection.

• <len>: data length.

• <data>: data received.

Espressif ! /!36 83 2017.11

!

5. TCP/IP-Related AT Commands

5.2.24. AT+PING—Ping Packets

Set Command
AT+PING=<IP>

Function: Ping packets.

Response

+PING:<time>

OK

or

+PING:TIMEOUT

ERROR

Parameters
• <IP>: string; host IP or domain name

• <time>: the response time of ping

Notes AT+PING="192.168.1.1"

AT+PING="www.baidu.com"

Espressif ! /!37 83 2017.11

!

6. BLE-Related AT Commands

6. BLE-Related AT Commands
6.1. Overview

Commands Description

AT+BLEINIT Bluetooth Low Energy (BLE) initialization

AT+BLEADDR Sets BLE device's address

AT+BLENAME Sets BLE device's name

AT+BLESCANPARAM Sets parameters of BLE scanning

AT+BLESCAN Enables BLE scanning

AT+BLESCANRSPDATA Sets BLE scan response

AT+BLEADVPARAM Sets parameters of BLE advertising

AT+BLEADVDATA Sets BLE advertising data

AT+BLEADVSTART Starts BLE advertising

AT+BLEADVSTOP Stops BLE advertising

AT+BLECONN Establishes BLE connection

AT+BLECONNPARAM Updates parameters of BLE connection

AT+BLEDISCONN Ends BLE connection

AT+BLEDATALEN Sets BLE data length

AT+BLECFGMTU Sets BLE MTU length

AT+BLEGATTSSRVCRE Generic Attributes Server (GATTS) creates services

AT+BLEGATTSSRVSTART GATTS starts services

AT+BLEGATTSSRVSTOP GATTS stops services

AT+BLEGATTSSRV GATTS discovers services

AT+BLEGATTSCHAR GATTS discovers characteristics

AT+BLEGATTSNTFY GATTS notifies of characteristics

AT+BLEGATTSIND GATTS indicates characteristics

AT+BLEGATTSSETATTR GATTS sets attributes

AT+BLEGATTCPRIMSRV Generic Attributes Client (GATTC) discovers primary services

AT+BLEGATTCINCLSRV GATTC discovers included services

AT+BLEGATTCCHAR GATTC discovers characteristics

AT+BLEGATTCRD GATTC reads characteristics

Espressif ! /!38 83 2017.11

!

6. BLE-Related AT Commands

AT+BLEGATTCWR GATTC writes characteristics

⚠ Notice:
• Download BLE Spec (ESP32 supports Core Version 4.2): https://www.bluetooth.com/specifications/adopted-

specifications

• The BLE commands and the UART-Wi-Fi passthrough mode cannot be used together, so before BLE initialization,
please ensure that the UART-Wi-Fi passthrough mode is not enabled (AT+CIPMODE=0).

Espressif ! /!39 83 2017.11

!

6. BLE-Related AT Commands

6.2. Commands
6.2.1. AT+BLEINIT—BLE Initialization

6.2.2. AT+BLEADDR—Sets BLE Device's Address

Commands
Query Command:

AT+BLEINIT?

Function: to check the initialization status of BLE.

Set Command:

AT+BLEINIT=<init>

Function: to initialize the role of BLE.

Response

If BLE is not initialized, it will return

+BLEINIT:0

OK

If BLE is initialized, it will return

+BLEINIT:<role>

OK

OK

Parameter
<init>:

‣ 1: client role
‣ 2: server role

Notes

• at_customize.bin has to be downloaded, so that the relevant commands can be used. Please refer
to the ESP32_Customize_Partitions for more details.

• Before using BLE AT commands, this command has to be called first to trigger the initialization
process.

• After being initialized, the BLE role cannot be changed directly. If the user wants to change the BLE
role, AT+RST needs to be called to restart first.

• If using ESP32 as a BLE server, a service bin should be downloaded into Flash.

‣ To learn how to generate a service bin, please refer to esp32-at/tools/readme.md.

‣ The download address of the service bin is the "ble_data" address in esp32-at/
at_customize.csv.

Example AT+BLEINIT=1

Commands
Query Command:

AT+BLEADDR?

Function: to get the BLE public address.

Set Command:

AT+BLEADDR=<addr_type>,<random_addr>

Function: to set the BLE random address.

Response
+BLEADDR:<BLE_public_addr>

OK
OK

Parameter
<addr_type>:

‣ 0: public address
‣ 1: random address

Espressif ! /!40 83 2017.11

https://github.com/espressif/esp32-at/blob/master/docs/ESP32_Customize_Partitions.md

!

6. BLE-Related AT Commands

6.2.3. AT+BLENAME—Sets BLE Device's Name

6.2.4. AT+BLESCANPARAM—Sets Parameters of BLE Scanning

Notes

• For the time being, only two actions are supported: getting the public address and setting the BLE
random address.

• The two most significant bits of the random address shall be equal to 1. More details are in the BLE
spec.

Example AT+BLEADDR=1,"08:7f:24:87:1c:f7"

Commands
Query Command:

AT+BLENAME?

Function: to get the BLE device name.

Set Command:

AT+BLENAME=<device_name>

Function: to set the BLE device name.

Response
+BLENAME:<device_name>

OK
OK

Parameter <device_name>: the BLE device name

Notes

• The default BLE device name is "BLE_AT".

• This configuration sets the device name characteristic of GAP service, it is the device name we can
get after BLE connection is established, more details are in BLE core v4.2 vol.3 part C 12.1.

• If user wants to set the device name while advertising, it is the command AT+BLEADVDATA that
should be used.

Example AT+BLENAME="esp_demo"

Commands

Query Command:

AT+BLESCANPARAM?

Function: to get the parameters of BLE
scanning.

Set Command:

AT+BLESCANPARAM=<scan_type>,<own_addr_type>,	
<filter_policy>,<scan_interval>,<scan_window>

Function: to set the parameters of BLE scanning.

Response

+BLESCANPARAM:<scan_type>,<own_addr_type>
,<filter_policy>,<scan_interval>,<scan_	
window>

OK

OK

Espressif ! /!41 83 2017.11

!

6. BLE-Related AT Commands

6.2.5. AT+BLESCAN—Enables BLE Scanning

Parameters

<scan_type>:

‣ 0: passive scan
‣ 1: active scan

<own_addr_type>:

‣ 0: public address
‣ 1: random address
‣ 2: RPA public address
‣ 3: RPA random address

<filter_policy>:

‣ 0: BLE_SCAN_FILTER_ALLOW_ALL
‣ 1: BLE_SCAN_FILTER_ALLOW_ONLY_WLST
‣ 2: BLE_SCAN_FILTER_ALLOW_UND_RPA_DIR
‣ 3: BLE_SCAN_FILTER_ALLOW_WLIST_PRA_DIR

<scan_interval>: scan interval

<scan_window>: scan window

Notes <scan_window> CANNOT be larger than <scan_interval>

Example
AT+BLEINIT=1			// role: client

AT+BLESCANPARAM=0,0,0,100,50	

Commands
Set Command:

AT+BLESCAN=<enable>[,<interval>]

Function: to enable/disable scanning.

Response
+BLESCAN:<addr>,<rssi>,<adv_data>,<scan_rsp_data>

OK

Parameters

<enable>:

‣ 0: disable scanning
‣ 1: enable scanning

[<interval>]: optional parameter, unit: second

‣ When disabling the scanning, this parameter should be omitted
‣ When enabling the scanning,

- if the <interval> is 0 or omitted, it means that scanning is continuous
- if the <interval> is NOT 0, for example, command AT+BLESCAN=1,3 , it means that

scanning should last for 3 seconds and then stop automatically, so that the scanning results
be returned.

<addr>: BLE address

<rssi>: signal strength

<adv_data>: advertising data

<scan_rsp_data>: scan response data

Espressif ! /!42 83 2017.11

!

6. BLE-Related AT Commands

6.2.6. AT+BLESCANRSPDATA—Sets BLE Scan Response

6.2.7. AT+BLEADVPARAM—Sets Parameters of Advertising

Example

AT+BLEINIT=1			// role: client

AT+BLESCAN=1	 // start scanning

AT+BLESCAN=0 // stop scanning

Commands
Set Command:

AT+BLESCANRSPDATA=<scan_rsp_data>

Function: to set scan response.

Response OK

Parameter <scan_rsp_data>: scan response data is a HEX string. For example, to set the response data as
"0x11 0x22 0x33 0x44 0x55", the command should be AT+BLESCANRSPDATA="1122334455".

Note The maximum length of the scan response is 31 bytes.

Example
AT+BLEINIT=2			// role: server

AT+BLESCANRSPDATA="1122334455"

Commands

Query Command:

AT+BLEADVPARAM?

Function: to query the parameters of
advertising.

Set Command:

AT+BLEADVPARAM=<adv_int_min>,<adv_int_max>,	
<adv_type>,<own_addr_type>,<channel_map>	
[,<adv_filter_policy>,<peer_addr_type>,<peer_a
ddr>]

Function: to set the parameters of advertising.

Response

+BLEADVPARAM:<adv_int_min>,<adv_int_max>
,<adv_type>,<own_addr_type>,<channel_map
>,<adv_filter_policy>,<peer_addr_type>,<
peer_addr>

OK

OK

Espressif ! /!43 83 2017.11

!

6. BLE-Related AT Commands

6.2.8. AT+BLEADVDATA—Sets Advertising Data

Parameters

<adv_int_min>:	minimum value of advertising interval; range: 0x0020 ~ 0x4000

<adv_int_max>:	maximum value of advertising interval; range: 0x0020 ~ 0x4000

<adv_type>:

‣ 0: ADV_TYPE_IND
‣ 1: ADV_TYPE_DIRECT_IND_HIGH

‣ 2: ADV_TYPE_SCAN_IND

‣ 3: ADV_TYPE_NONCONN_IND

<own_addr_type>: own BLE address type

‣ 0: BLE_ADDR_TYPE_PUBLIC

‣ 1: BLE_ADDR_TYPE_RANDOM

<channel_map>: channel of advertising

‣ 1: ADV_CHNL_37

‣ 2: ADV_CHNL_38

‣ 4: ADV_CHNL_39

‣ 7: ADV_CHNL_ALL

[<adv_filter_policy>](optional parameter): filter policy of advertising

‣ 0: ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY

‣ 1: ADV_FILTER_ALLOW_SCAN_WLST_CON_ANY

‣ 2: ADV_FILTER_ALLOW_SCAN_ANY_CON_WLST

‣ 3: ADV_FILTER_ALLOW_SCAN_WLST_CON_WLST

[<peer_addr_type>](optional parameter): remote BLE address type

‣ 0: PUBLIC

‣ 1: RANDOM

[<peer_addr>](optional parameter): remote BLE address

Note <adv_filter_policy>,<peer_addr_type>,<peer_addr> these three parameters should be set
together, or be omitted together.

Example
AT+BLEINIT=2			// role: server

AT+BLEADVPARAM=50,50,0,0,4,0,0,"12:34:45:78:66:88"

Commands
Set Command:

AT+BLEADVDATA=<adv_data>

Function: to set advertising data.

Response OK

Parameters <adv_data>: advertising data; this is a HEX string. For example, to set the advertising data as "0x11
0x22 0x33 0x44 0x55", the command should be AT+BLEADVDATA="1122334455".

Note The maximum length of the advertising data is 31 bytes.

Example
AT+BLEINIT=2			// role: server

AT+BLEADVDATA="1122334455"

Espressif ! /!44 83 2017.11

!

6. BLE-Related AT Commands

6.2.9. AT+BLEADVSTART—Starts Advertising

6.2.10. AT+BLEADVSTOP—Stops Advertising

6.2.11. AT+BLECONN—Establishes BLE connection

Commands
Execute Command:

AT+BLEADVSTART

Function: to start advertising.

Response OK

Parameter None

Notes

• If advertising parameters are NOT set by command AT+BLEADVPARAM=<adv_parameter>, the default
parameters will be used.

• If advertising data is NOT set by command AT+BLEADVDATA=<adv_data>, the all zeros data will be
sent.

Example
AT+BLEINIT=2			// role: server

AT+BLEADVSTART

Commands
Execute Command:

AT+BLEADVSTOP

Function: to stop advertising.

Response OK

Parameter None

Notes After having started advertising, if the BLE connection is established successfully, it will stop
advertising automatically. In such a case, this command does NOT need to be called.

Example
AT+BLEINIT=2			// role: server

AT+BLEADVSTART

AT+BLEADVSTOP

Commands
Query Command:

AT+BLECONN?

Function: to query the BLE connection.

Set Command:

AT+BLECONN=<conn_index>,<remote_address>

Function: to establish the BLE connection.

Response

+BLECONN:<conn_index>,<remote_address>

OK

If the connection has not been established,
there will NOT be <conn_index>	and	
<remote_address>

OK

If the connection established successfully, it will
prompt message

+BLECONN:<conn_index>,<remote_address>

It will prompt the message below, if NOT:

+BLECONN:<conn_index>,fail

Espressif ! /!45 83 2017.11

!

6. BLE-Related AT Commands

6.2.12. AT+BLECONNPARAM—Updates parameters of BLE connection

6.2.13. AT+BLEDISCONN—Ends BLE connection

Parameters
<conn_index>: index of BLE connection; only 0 is supported for the single connection right now, but
multiple BLE connections will be supported in the future.

<remote_address>: remote BLE address

Example
AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:0a:c4:09:34:23"

Commands
Query Command:

AT+BLECONNPARAM?

Function: to query the parameters of BLE connection.

Set Command:

AT+BLECONNPARAM=<conn_index>,<min_interval
>,<max_interval>,<latency>,<timeout>

Function: to update the parameters of BLE
connection.

Response +BLECONNPARAM:<conn_index>,<min_interval>,<max
_interval>,<cur_interval>,<latency>,<timeout>

OK

OK	// command received

If the setting failed, it will prompt message below:

+BLECONNPARAM：<conn_index>,-1

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right now, but
multiple BLE connections will be supported in the future.

<min_interval>: minimum value of connecting interval; range: 0x0006 ~ 0x0C80

<max_interval>: maximum value of connecting interval; range: 0x0006 ~ 0x0C80

<cur_interval>: current connecting interval value

<latency>:	latency; range: 0x0000 ~ 0x01F3

<timeout>: timeout; range: 0x000A ~ 0x0C80

Note This commands supports the client only when updating its connection parameters. Of course, the
connection has to be established first.

Example
AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:0a:c4:09:34:23"

AT+BLECONNPARAM=0,12,14,1,500

Commands
Execute Command:

AT+BLEDISCONN=<conn_index>

Function: to end a BLE connection.

Response
OK

If the connection ends, it will prompt message

+BLEDISCONN:<conn_index>,<remote_address>

Espressif ! /!46 83 2017.11

!

6. BLE-Related AT Commands

6.2.14. AT+BLEDATALEN—Sets BLE Data Packet Length

6.2.15. AT+BLECFGMTU—Sets GATT MTU Length

Parameter
<conn_index>: index of BLE connection; only 0 is supported for the single connection right now, but
multiple BLE connections will be supported in the future.

<remote_address>: remote BLE address

Example
AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:0a:c4:09:34:23"

AT+BLEDISCONN=0

Commands
Set Command:

AT+BLEDATALEN=<conn_index>,<pkt_data_len>

Function: to set the length of BLE data packet.

Response OK	

Parameter
<conn_index>: index of BLE connection; only 0 is supported for the single connection right now, but
multiple BLE connections will be supported in the future.

<pkt_data_len>: data packet's length; range: 0x001b ~ 0x00fb

Notes The BLE connection has to be established before setting the packet length.

Example
AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:0a:c4:09:34:23"

AT+BLEDATALEN=0,30

Commands

Query Command:

AT+BLECFGMTU?

Function: to query the length of the maximum
transmission unit (MTU).

Set Command:

AT+BLECFGMTU=<conn_index>,<mtu_size>

Function: to set the length of the maximum
transmission unit (MTU).

Response
+BLECFGMTU:<conn_index>,<mtu_size>

OK
OK		// the command is received

Parameter
<conn_index>: index of BLE connection; only 0 is supported for the single connection right now, but
multiple BLE connections will be supported in the future.

<mtu_size>: MTU length

Notes

• Only the client can call this command to set the length of MTU. However, the BLE connection has to be
established first.

• The actual length of MTU needs to be negotiated. The "OK" response only means that the MTU length
must be set. So, the user should use command AT+BLECFGMTU? to query the actual MTU length.

Example
AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:0a:c4:09:34:23"

AT+BLECFGMTU=0,300

Espressif ! /!47 83 2017.11

!

6. BLE-Related AT Commands

6.2.16. AT+BLEGATTSSRVCRE—GATTS Creates Services

6.2.17. AT+BLEGATTSSRVSTART—GATTS Starts Services

6.2.18. AT+BLEGATTSSRVSTOP—GATTS Stops Services

Commands
Execute Command:

AT+BLEGATTSSRVCRE

Function: The Generic Attributes Server (GATTS) creates BLE services.

Response OK

Parameter None

Notes

• If using ESP32 as a BLE server, a service bin should be downloaded into Flash in order to provide
services.

‣ To learn how to generate a service bin, please refer to esp32-at/tools/readme.md.

‣ The download address of the service bin is the "ble_data" address in esp32-at/
at_customize.csv.

• This command should be called immediately to create services, right after the BLE server is
initialized. If a BLE connection is established first, the service creation will fail.

Example
AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

Commands
Execute Command:

AT+BLEGATTSSTART

Function: GATTS starts all services.

Set Command:

AT+BLEGATTSSRVSTART=<srv_index>

Function: GATTS starts a specific service.

Response OK

Parameter None <srv_index>: service's index starting from 1

Example
AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

Commands
Execute Command:

AT+BLEGATTSSTOP

Function: GATTS stops all services.

Set Command:

AT+BLEGATTSSRVSTOP=<srv_index>

Function: GATTS stops a specific service.

Response OK

Parameter None <srv_index>: service's index starting from 1

Example

AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEGATTSSRVSTOP

Espressif ! /!48 83 2017.11

!

6. BLE-Related AT Commands

6.2.19. AT+BLEGATTSSRV—GATTS Discovers Services

6.2.20. AT+BLEGATTSCHAR—GATTS Discovers Characteristics

Commands
Query Command:

AT+BLEGATTSSRV?

Function: GATTS services discovery.

Response
+BLEGATTSSRV:<srv_index>,<start>,<srv_uuid>,<srv_type>

OK

Parameters

<srv_index>:	service's index starting from 1

<start>:

‣ 0: the service has not started

‣ 1: the service has already started

<srv_uuid>:	service's UUID

<srv_type>:	service's type

‣ 0: is not a primary service

‣ 1: is a primary service

Example
AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRV?

Commands
Query Command:

AT+BLEGATTSCHAR?

Function: GATTS characteristics discovery.

Response

// when showing a characteristic, it will be as:

+BLEGATTSCHAR:"char",<srv_index>,<char_index>,<char_uuid>,<char_prop>

// when showing a descriptor, it will be as:

+BLEGATTSCHAR:"desc",<srv_index>,<char_index>,<desc_index>

OK

Parameters

<srv_index>:	service's index starting from 1

<char_index>:	characteristic's index starting from 1

<char_uuid>:	characteristic's UUID

<char_prop>:	characteristic's properties

<desc_index>:	descriptor's index

Example

AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEGATTSCHAR?

Espressif ! /!49 83 2017.11

!

6. BLE-Related AT Commands

6.2.21. AT+BLEGATTSNTFY—GATTS Notifies of Characteristics

6.2.22. AT+BLEGATTSIND—GATTS Indicates Characteristics

Commands
Set Command:

AT+BLEGATTSNTFY=<conn_index>,<srv_index>,<char_index>,<length>

Function: GATTS notifies of its characteristics.

Response

wrap return > after the command. Begin receiving serial data. When the requirement of data length,
determined by <length>, is met, the notification starts.

If the data transmission is successful, the system returns:

OK

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right now, but
multiple BLE connections will be supported in the future.

<srv_index>:	service's index; it can be fetched with command AT+BLEGATTSCHAR?

<char_index>:	characteristic's index; it can be fetched with command AT+BLEGATTSCHAR?

<length>: data length

Example

A simple workflow is shown below. Users can refer to Section 9.5 BLE AT Examples for more details.

AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEADVSTART	// starts advertising. After the client is connected, it must be configured to receive
notifications.

AT+BLEGATTSCHAR?		// check which characteristic the client will be notified of

// for example, to notify of 4 bytes of data using the 6th characteristic in the 3rd service, use the
following command:

AT+BLEGATTSNTFY=0,3,6,4

// after > shows, inputs 4 bytes of data, such as "1234"; then, the data will be transmitted automatically

Commands
Set Command:

AT+BLEGATTSIND=<conn_index>,<srv_index>,<char_index>,<length>

Function: GATTS indicates its characteristics.

Response

wrap return > after the command. Begin receiving serial data. When the requirement of data length,
determined by <length>, is met, the indication starts.

If the data transmission is successful, the system returns:

OK

Espressif ! /!50 83 2017.11

!

6. BLE-Related AT Commands

6.2.23. AT+BLEGATTSSETATTR—GATTS Sets Characteristic

Parameters

<conn_index>:	index of BLE connection; only 0 is supported for the single connection right now, but
multiple BLE connections will be supported in the future.

<srv_index>:	service's index; it can be fetched with command AT+BLEGATTSCHAR?

<char_index>:	characteristic's index; it can be fetched with command AT+BLEGATTSCHAR?

<length>: data length

Example

A simple workflow is shown below. Users can refer to Section 9.5 BLE AT Examples for more details.

AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEADVSTART	// starts advertising. After the client is connected, it must be configured to receive
indications.

AT+BLEGATTSCHAR?		// check for which characteristic the client can receive indications

// for example, to indicate 4 bytes of data using the 7th characteristic in the 3rd service, use the
following command:

AT+BLEGATTSIND=0,3,7,4

// after > shows, inputs 4 bytes of data, such as "1234"; then, the data will be transmitted
automatically

Commands
Set Command:

AT+BLEGATTSSETATTR=<srv_index>,<char_index>[,<desc_index>],<length>

Function: GATTS sets its characteristic (descriptor).

Response

wrap return > after the command. Begin receiving serial data. When the requirement of data length,
determined by <length>, is met, the setting starts.

If the setting is successful, the system returns:

OK

Parameters

<srv_index>:	service's index; it can be fetched with command AT+BLEGATTSCHAR?

<char_index>:	characteristic's index; it can be fetched with command AT+BLEGATTSCHAR?

[<desc_index>](Optional parameter): descriptor's index. If it is set, this command is used to set the
value of the descriptor; if it is not, this command is used to set the value of the characteristic.

<length>:	data length

Note If the <length> is larger than the maximum length allowed, the setting will fail.

Espressif ! /!51 83 2017.11

!

6. BLE-Related AT Commands

6.2.24. AT+BLEGATTCPRIMSRV—GATTC Discovers Primary Services

6.2.25. AT+BLEGATTCINCLSRV—GATTC Discovers Included Services

Example

A simple workflow is shown below. Users can refer to Section 9.5 BLE AT Examples for more details.

AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEGATTSCHAR?	

// for example, to set 4 bytes of data of the 1st characteristic in the 1st service, use the following
command:

AT+BLEGATTSSETATTR=1,1,,4

// after > shows, inputs 4 bytes of data, such as "1234"; then, the setting starts

Commands
Query Command:

AT+BLEGATTCPRIMSRV=<conn_index>

Function: GATTC discovers primary services.

Response
+BLEGATTCPRIMSRV:<conn_index>,<srv_index>,<srv_uuid>,<srv_type>

OK

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right now, but
multiple BLE connections will be supported in the future.

<srv_index>:	service's index starting from 1

<srv_uuid>:	service's UUID

<srv_type>:	service's type

‣ 0: is not a primary service

‣ 1: is a primary service

Note The BLE connection has to be established first.

Example
AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

Commands
Set Command:

AT+BLEGATTCINCLSRV=<conn_index>,<srv_index>

Function: GATTC discovers included services.

Response
+BLEGATTCINCLSRV:<conn_index>,<srv_index>,<srv_uuid>,<srv_type>,<included_srv_uuid>,<inc
luded_srv_type>

OK

Espressif ! /!52 83 2017.11

!

6. BLE-Related AT Commands

6.2.26. AT+BLEGATTCCHAR—GATTC Discovers Characteristics

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right now, but
multiple BLE connections will be supported in the future.

<srv_index>:	service's index; it can be fetched with command AT+BLEGATTCPRIMSRV=<conn_index>

<srv_uuid>:	service's UUID

<srv_type>:	service's type

‣ 0: is not a primary service

‣ 1: is a primary service

<included_srv_uuid>: included service's UUID

<included_srv_type>: included service's type

‣ 0: is not a primary service

‣ 1: is a primary service

Note The BLE connection has to be established first.

Example

AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCINCLSRV=0,1		// set a specific index according to the result of the previous command

Commands
Set Command:

AT+BLEGATTCCHAR=<conn_index>,<srv_index>

Function: GATTC discovers characteristics.

Response

// when showing a characteristic, it will be as:

+BLEGATTCCHAR:"char",<conn_index>,<srv_index>,<char_index>,<char_uuid>,<char_prop>

// when showing a descriptor, it will be as:

+BLEGATTCCHAR:"desc",<conn_index>,<srv_index>,<char_index>,<desc_index>,<desc_uuid>

OK

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right now, but
multiple BLE connections will be supported in the future.

<srv_index>:	service's index; it can be fetched with command AT+BLEGATTCPRIMSRV=<conn_index>

<char_index>:	characteristic's index starting from 1

<char_uuid>:	characteristic's UUID

<char_prop>:	characteristic's properties

<desc_index>:	descriptor's index

<desc_uuid>:	descriptor's UUID

Note The BLE connection has to be established first.

Espressif ! /!53 83 2017.11

!

6. BLE-Related AT Commands

6.2.27. AT+BLEGATTCRD—GATTC Reads a Characteristic

Example

AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCCHAR=0,1	// set a specific index, according to the result of the previous command

Commands
Set Command:

AT+BLEGATTCRD=<conn_index>,<srv_index>,<char_index>[,<desc_index>]

Function: GATTC to read a characteristic or descriptor.

Response
+BLEGATTCRD:<conn_index>,<len>,<value>

OK

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right now, but
multiple BLE connections will be supported in the future.

<srv_index>:	service's index; it can be fetched with command AT+BLEGATTCPRIMSRV=<conn_index>

<char_index>:	characteristic's index; it can be fetched with command
AT+BLEGATTCCHAR=<conn_index>,<srv_index>

[<desc_index>](Optional parameter): descriptor's index. If it is set, the value of the target descriptor
will be read; if it is not set, the value of the target characteristic will be read.

<len>:	data length

<value>:	HEX string

‣ Characteristic's value, read by command AT+BLEGATTCRD=<conn_index>,<srv_index>,	
<char_index>. For example, if the response is "+BLEGATTCRD:0,1,30", it means that the value
length is 1, and the content is "0x30".

‣ Descriptor's value, read by command AT+BLEGATTCRD=<conn_index>,<srv_index>,	
<char_index>,<desc_index>. For example, if the response is "+BLEGATTCRD:0,4,30313233", it
means that the value length is 4, and the content is "0x30 0x31 0x32 0x33".

Note
• The BLE connection has to be established first.

• If the target characteristic cannot be read, it will return "ERROR".

Example

AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCCHAR=0,3	// set a specific index, according to the result of the previous command

// for example, to read 1st descriptor of the 2nd characteristic in the 3rd service, use the following
command:

AT+BLEGATTCRD=0,3,2,1

Espressif ! /!54 83 2017.11

!

6. BLE-Related AT Commands

6.2.28. AT+BLEGATTCWR—GATTC Writes Characteristic

Commands
Set Command:

AT+BLEGATTCWR=<conn_index>,<srv_index>,<char_index>[,<desc_index>],<length>

Function: GATTC writes characteristics or descriptor.

Response

wrap return > after the command. Begin receiving serial data. When the requirement of data length,
determined by <length>, is met, the writting starts.

If the setting is successful, the system returns:

OK

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right now, but
multiple BLE connections will be supported in the future.

<srv_index>:	service's index; it can be fetched with command AT+BLEGATTCPRIMSRV=<conn_index>

<char_index>:	characteristic's index; it can be fetched with command
AT+BLEGATTCCHAR=<conn_index>,<srv_index>

[<desc_index>](Optional parameter): descriptor's index. If it is set, the value of the target descriptor
will be written; if it is not set, the value of the target characteristic will be written.

<length>:	data length

Note
• The BLE connection has to be established first.

• If the target characteristic cannot be written, it will return "ERROR".

Example

AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCCHAR=0,3	// set a specific index, according to the result of the previous command

// for example, to write 6 bytes of data to the 4th characteristic in the 3rd service, use the following
command:

AT+BLEGATTCWR=0,3,4,,6	

// after > shows, inputs 6 bytes of data, such as "123456"; then, the writing starts

Espressif ! /!55 83 2017.11

!

7. AT Commands with Configuration Saved in the NVS Area

7. AT Commands with Configuration
Saved in the NVS Area

Commands Examples

AT+UART AT+UART=115200,8,1,0,3

AT+UART_DEF AT+UART_DEF=115200,8,1,0,3

AT+CWDHCP AT+CWDHCP=1,1

AT+CIPSTAMAC AT+CIPSTAMAC="18:fe:35:98:d3:7b"

AT+CIPAPMAC AT+CIPAPMAC="1a:fe:36:97:d5:7b"

AT+CIPSTA AT+CIPSTA="192.168.6.100"

AT+CIPAP AT+CIPAP="192.168.5.1"

AT+CWDHCPS AT+CWDHCPS=1,3,"192.168.4.10","192.168.4.15"

AT+SAVETRANSLINK AT+SAVETRANSLINK=1,"192.168.6.10",1001

AT+CWMODE AT+CWMODE=3

AT+CWJAP AT+CWJAP="abc","0123456789"

AT+CWSAP AT+CWSAP="ESP32","12345678",5,3

AT+CWAUTOCONN AT+CWAUTOCONN=1

⚠ Notice:

NVS parameter area is 0xFA000 ~ 0x110000, and it is 88 KB in size.

Espressif ! /!56 83 2017.11

!

8. AT Messages

8. AT Messages
Messages of ESP32 AT are as below:

Messages Description

ready The AT firmware is ready.

ERROR AT command error, or error occurred during execution.

WIFI	CONNECTED ESP8266 station connected to an AP.

WIFI	GOT	IP ESP8266 station got IP address.

WIFI	DISCONNECT ESP8266 station disconnected from an AP.

busy	p...
Busy processing. The system is in process of handling the previous command,
cannot accept the newly input.

<conn_id>,CONNECT A network connection of which ID is <conn_id> is established.

<conn_id>,CLOSED A network connection of which ID is <conn_id> ends.

+IPD Received network data.

+BLECONN Established a BLE connection

+BLEDISCONN Ended a BLE connection

+READ A read operation from BLE connection

+WRITE A write operation from BLE connection

+NOTIFY A notification from BLE connection

+INDICATE An indication from BLE connection

Espressif ! /!57 83 2017.11

!

9. AT Commands Examples

9. AT Commands Examples
Herein we introduce some examples of how to use Espressif's AT Commands.

9.1. ESP32 as a TCP Client in Single Connection
1. Set the Wi-Fi mode:
AT+CWMODE=3																														//	SoftAP+Station	mode

Response:

OK

2. Connect to the router:
AT+CWJAP="SSID","password"															//	SSID	and	password	of	router

Response:

OK

3. Query the device's IP:
AT+CIFSR

Response:

192.168.3.106																												//	device	got	an	IP	from	router

4. Connect the PC to the same router which ESP32 is connected to. Use a network tool on the PC to
create a TCP server.

- For example, the TCP server on PC is 192.168.3.116, port 8080.
5. ESP32 is connected to the TCP server as a client:
AT+CIPSTART="TCP","192.168.3.116",8080			//	protocol、server	IP	&	port

6. Send data:
AT+CIPSEND=4																													//	set	date	length	which	will	be	sent,		such	as	4	bytes

>TEST																																				//	enter	the	data,	no	CR

Response:

SEND	OK

⚠ Notice:

• If the number of bytes inputted are more than the size defined (n):

- the system will reply busy, and send the first n bytes.

- and after sending the first n bytes, the system will reply SEND	OK.

Espressif ! /!58 83 2017.11

!

9. AT Commands Examples

7. Receive data:

+IPD,n:xxxxxxxxxx																								//	received	n	bytes,	data=xxxxxxxxxxx

9.2. UDP Transmission
UDP transmission is established via AT+CIPSTART. There is no such distinction between UDP server
and UDP client.
1. Set the Wi-Fi mode:

AT+CWMODE=3																														//	SoftAP+Station	mode

Response:

OK

2. Connect to the router:

AT+CWJAP="SSID","password"															//	SSID	and	password	of	router

Response:

OK

3. Query the device's IP:

AT+CIFSR

Response:

+CIFSR:STAIP,"192.168.101.104"											//	IP	address	of	ESP32	Station

4. Connect the PC to the same router which ESP32 is connected to. Use a network tool on the PC to
create UDP transmission.
- For example, the PC's IP address is 192.168.101.116 and the port is 8080.

5. Below are two examples of UDP transmission:

9.2.1. UDP (with Fixed Remote IP and Port)

In UDP transmission, whether the remote IP and port are fixed or not is determined by the last
parameter of AT+CIPSTART, namely 0. 0 means that the remote IP and port are fixed and cannot be
changed. A specific ID is given to such a connection, ensuring that the data sender and receiver will
not be replaced by other devices.
1. Enable multiple connections:

AT+CIPMUX=1

Response:

OK

2. Create a UDP transmission, with the ID being 4, for example.

AT+CIPSTART=4,"UDP","192.168.101.110",8080,1112,0

Response:

Espressif ! /!59 83 2017.11

!

9. AT Commands Examples

4,CONNECT

OK

3. Send data:
AT+CIPSEND=4,7														//	send	7	bytes	to	transmission	NO.4

>UDPtest																						//	enter	the	data,	no	CR

Response:

SEND	OK

4. Receive data:
+IPD,4,n:xxxxxxxxxx										//	received	n	bytes,	data=xxxxxxxxxxx

5. Close UDP transmission No.4:
AT+CIPCLOSE=4

Response:

4,CLOSED

OK

9.2.2. UDP (with Changeable Remote IP and Port)

1. Create a UDP transmission with the last parameter being 2.
AT+CIPSTART="UDP","192.168.101.110",8080,1112,2

Response:

CONNECT

OK

📖 Notes:

• "192.168.101.110" and 8080 are the remote IP and port of UDP transmission on the remote side, i.e., the UDP
configuration set by PC.

• 1112 is the local port number of ESP32. Users can define this port number. The value of this parameter will be random if
it is not defined beforehand.

• 0 means that the remote IP and port are fixed and cannot be changed. For example, if another PC also creates a UDP
entity and sends data to ESP32 port 1112, ESP32 can receive the data sent from UDP port 1112. But when data are
sent using AT command AT+CIPSEND=4,X, it will still be sent to the first PC end. If parameter 0	is not used, the data will
be sent to the new PC.

⚠ Notice:

• If the number of bytes inputted are more than the size defined (n):

- the system will reply busy, and send the first n bytes.

- and after sending the first n bytes, the system will reply SEND	OK.

Espressif ! /!60 83 2017.11

!

9. AT Commands Examples

2. Send data:
AT+CIPSEND=7																			//	send	7	bytes

>UDPtest																							//	enter	the	data,	no	CR

Response:

SEND	OK

3. If you want to send data to any other UDP terminals, please designate the IP and port of the target
terminal in the command.

AT+CIPSEND=6,"192.168.101.111",1000												//	send	six	bytes

>abcdef																																										//	enter	the	data,	no	CR

Response:

SEND	OK

4. Receive data:
+IPD,n:xxxxxxxxxx																																//	received	n	bytes,	data=xxxxxxxxxxx

5. Close UDP transmission:

AT+CIPCLOSE

Response:

CLOSED

OK

9.3. Transparent Transmission
AT Demo supports transparent transmission only when ESP32 works as a TCP client in single
connection or UDP transmission.

📖 Notes:

• "192.168.101.110" and 8080 here refer to the IP and port of the remote UDP transmission terminal which is created on
a PC in Section 9.2.1.

• 1112 is the local port of ESP32. Users can define this port. The value of this parameter will be random if it is not defined
beforehand.

• 2 means the means the opposite terminal of UDP transmission can be changed. The remote IP and port will be
automatically changed to those of the last UDP connection to ESP32.

⚠ Notice:

• If the number of bytes inputted are more than the size defined (n):

- the system will reply busy, and send the first n bytes.

- and after sending the first n bytes, the system will reply SEND	OK.

Espressif ! /!61 83 2017.11

!

9. AT Commands Examples

9.3.1. ESP32 as a TCP Client in UART-Wi-Fi Passthrough (Single Connection Mode)

Here is an example of the ESP32 Station working as a TCP client in single connection mode of
transparent transmission.
1. Set the Wi-Fi mode:
AT+CWMODE=3																														//	SoftAP+Station	mode

Response:

OK

2. Connect to the router:
AT+CWJAP="SSID","password"															//	SSID	and	password	of	router

Response:

OK

3. Query the device's IP:
AT+CIFSR

Response:
192.168.101.105																										//	device's	IP	that	got	from	router

4. Connect the PC to the same router to which ESP32 is connected. Use a network tool on the PC to
create a TCP server.
- For example, the PC's IP address is 192.168.101.110 and the port is 8080.

5. Connect the device to the TCP server as a TCP client:

AT+CIPSTART="TCP","192.168.101.110",8080					//	protocol,	server	IP	&	port

Response:

OK

6. Enable the transparent transmission mode:

AT+CIPMODE=1

Response:

OK

7. Send data:

AT+CIPSEND

Response:

>																				//	From	now	on,	data	received	from	UART	will	be	transparent	transmitted	to	server

8. Stop sending data:

When receiving a packet that contains only “+++”, the UART-WiFi passthrough transmission process
will be stopped. Then please wait at least 1 second before sending next AT command.

Espressif ! /!62 83 2017.11

!

9. AT Commands Examples

Please be noted that if you input “+++” directly by typing, the “+++”, may not be recognised as three
consecutive “+” because of the Prolonged time when typing.

9. Exit the transparent transmission mode:
AT+CIPMODE=0

Response:

OK

10.Close the TCP connection:
AT+CIPCLOSE

Response:

CLOSED

OK

9.3.2. UDP Transmission (UART-Wi-Fi PassthroughTransmission)

Here is an example of the ESP32 working as a SoftAP in UDP transparent transmission.
1. Set the Wi-Fi mode:

AT+CWMODE=3																														//	SoftAP+Station	mode

Response:

OK

2. Connect the PC to the ESP32 SoftAP:

!
3. Use a network tool on PC to create a UDP.

- For example, the PC's IP address is 192.168.4.2 and the port is 1001.
4. Create a UDP transmission between ESP32 and the PC with a fixed remote IP and port.
AT+CIPSTART="UDP","192.168.4.2",1001,2233,0

Response:

⚠ Notice:

The aim of ending the packet with +++ is to exit transparent transmission and to accept normal AT commands, while TCP
still remains connected. However, users can also deploy command AT+CIPSEND to go back into transparent transmission.

Espressif ! /!63 83 2017.11

!

9. AT Commands Examples

OK

5. Enable the transparent transmission mode:

AT+CIPMODE=1

Response:

OK

6. Send data:

AT+CIPSEND

Response:

>																				//	from	now	on,	data	received	from	UART	will	be	transparent	transmitted	to	server

7. Stop sending data:

When receiving a packet that contains only “+++”, the UART-WiFi passthrough transmission process
will be stopped. Then please wait at least 1 second before sending next AT command.
Please be noted that if you input “+++” directly by typing, the “+++”, may not be recognized as three
consecutive “+” because of the Prolonged time when typing.

9. Exit the transparent transmission mode:
AT+CIPMODE=0

Response:

OK

10.Close the UDP transmission:
AT+CIPCLOSE

Response:

CLOSED

OK

9.4. ESP32 as a TCP Server in Multiple Connections
When ESP32 works as a TCP server, multiple connections should be enabled; that is to say, there
should be more than one client connecting to ESP32.
Below is an example showing how a TCP server is established when ESP32 works in the SoftAP
mode. If ESP32 works as a Station, set up a server in the same way after connecting ESP32 to the
router.
1. Set the Wi-Fi mode:

⚠ Notice:

The aim of ending the packet with +++ is to exit transparent transmission and to accept normal AT commands, while TCP
still remains connected. However, users can also use command AT+CIPSEND to go back into transparent transmission.

Espressif ! /!64 83 2017.11

!

9. AT Commands Examples

AT+CWMODE=3																														//	SoftAP+Station	mode

Response:

OK

2. Enable multiple connections:

AT+CIPMUX=1

Response:

OK

3. Set up a TCP server:

AT+CIPSERVER=1																											//	default	port	=	333

Response:

OK

4. Connect the PC to the ESP32 SoftAP:

!
5. Using a network tool on PC to create a TCP client and connect to the TCP server that ESP8266

created.

6. Send data:

																											//	ID	number	of	connection	is	defaulted	to	be	0

AT+CIPSEND=0,4													//	send	4	bytes	to	connection	NO.0

>TEST																						//	enter	the	data,	no	CR

Response:

SEND	OK

⚠ Notice:

When ESP32 works as a TCP server, there is a timeout mechanism. If the TCP client is connected to the ESP32 TCP
server, while there is no data transmission for a period of time, the server will disconnect from the client. To avoid such a
problem, please set up a data transmission cycle every two seconds.

Espressif ! /!65 83 2017.11

!

9. AT Commands Examples

7. Receive data:
+IPD,0,n:xxxxxxxxxx								//	received	n	bytes,	data	=	xxxxxxxxxx

8. Close the TCP connection:
AT+CIPCLOSE=0													//	delete	NO.0	connection

Response:

0,CLOSED

OK

⚠ Notice:

• If the number of bytes inputted are more than the size defined (n):

- the system will reply busy, and send the first n bytes.

- and after sending the first n bytes, the system will reply SEND OK.

Espressif ! /!66 83 2017.11

!

9. AT Commands Examples

9.5. BLE AT Examples
9.5.1. iBeacon Examples

The following demonstrates two examples of iBeacon:
• ESP32 advertising iBeacons, which can be discovered by the “Shake Nearby” function of

WeChat.
• ESP32 scanning iBeacons.

9.5.1.1. ESP32 Device Advertising iBeacons

1. Initialize the role of the ESP32 device as a BLE server:
AT+BLEINIT=2																														//	server	role

Response：

OK

2. Start advertising.

Configure the parameters of the advertisement as Table 9-2 shows:

The AT command should be as below:
AT+BLEADVDATA="0201061aff4c000215fda50693a4e24fb1afcfc6eb0764782527b7f206c5"

Response:

Table 9-1. iBeacon Frame

Type Length (byte) Description

iBeacon prefix 9 02 01 06 1A FF 4C 00 02 15

Proximity UUID 16 Used to identify vendor

Major 2 Used to identify store

Minor 2 Used to identify the location of a specific Beacon within a store

TX power 1 Used to calculate the distance between the ESP32 device and the phone

Table 9-2. iBeacon Advertisement Example

Type Content

iBeacon prefix 02 01 06 1A FF 4C 00 02 15

Proximity UUID FDA50693-A4E2-4FB1-AFCF-C6EB07647825

Major 27 B7

Minor F2 06

TX power C5

Espressif ! /!67 83 2017.11

!

9. AT Commands Examples

OK

Start advertising:

AT+BLEADVSTART

Response:

OK

Open WeChat on your mobile phone and then select “Shake Nearby” to discover the ESP32 device
that is advertising, as shown in Figure 9-1.

!
Figure 9-1. “Shake Nearby” on WeChat

9.5.1.2. ESP32 Device Scanning for iBeacons
Not only can the ESP32 device transmits iBeacons, but it can also work as a BLE client that scans for
iBeacons and gets the advertisement data which can then be parsed by the host MCU.

1. Initialize the role of the ESP32 device as a BLE client:

AT+BLEINIT=1																														//	client	role

Response:

OK

⚠ Notice:

If the ESP32 device has already been initialized as a BLE server, you need to call AT+BLEINIT=0 to de-init it first, and then
re-init it as a BLE client.

Espressif ! /!68 83 2017.11

!

9. AT Commands Examples

2. Enable a scanning for three seconds:

AT+BLESCAN=1,3

Response:

OK

You will get a scanning result that looks like:

+BLESCAN:24:0a:c4:02:10:0e,-33,0201061aff4c000215fda50693a4e24fb1afcfc6eb0764782527b7f206c5,

+BLESCAN:24:0a:c4:01:4d:fe,-74,02010207097a4f68664b43020aeb051220004000,

+BLESCAN:24:0a:c4:02:10:0e,-33,0201061aff4c000215fda50693a4e24fb1afcfc6eb0764782527b7f206c5,

The result shows the advertisement that has been configured in Section 9.5.1.1. Then, the host MCU
can parse the data whose frame is shown in Table 9-1.

9.5.2. BLE Communication Examples

9.5.2.1. Basic Communication
Below is an example of using two ESP32 modules, one as a BLE server (hereafter named "ESP32
Server") and the other one as a BLE client (hereafter named "ESP32 Client"). The example shows how
to use BLE functions with AT commands.

1. BLE initialization:
• ESP32 Server:

AT+BLEINIT=2																														//	server	role

Response:

OK

- Create services.

AT+BLEGATTSSRVCRE

Response:

OK

- Start services.

AT+BLEGATTSSRVSTART

Response:

OK

⚠ Notice:

The ESP32 Server needs to download a "service bin" into Flash to provide BLE services.

• To learn how to generate a "service bin", please refer to esp32-at/tools/readme.md.

• The download address of the "service bin" is the address of "ble_data" in esp32-at/partitions_at.csv.

Espressif ! /!69 83 2017.11

!

9. AT Commands Examples

• ESP32 Client:

AT+BLEINIT=1																														//	client	role

Response:

OK

2. Establish BLE connection:
• ESP32 Server:

- Query the BLE address. For example, if the address is "24:0a:c4:03:f4:d6".

AT+BLEADDR?																														//	get	server's	BLE	address

Response:

+BLEADDR:24:0a:c4:03:f4:d6

OK

- Configure parameters of advertisements. This is optional, though. If you do not configure the
parameters of advertisements, default parameters will be applied.

AT+BLEADVPARAM=32,64,0,0,7

Response:

OK

- Configure advertisement data:
AT+BLEADVDATA="0201060B09457370726573736966030302A0"

/*		The	adv	data	is	

	*		02	01	06		//<length>,<type>,<data>

	*		0A	09	457370726573736966	//<length>,<type>,<data>	

	*		03	03	02A0		//<length>,<type>,<data>	

*/

Response:

OK

If you do not configure the advertisement data, then the payload will be empty when scanned.
You can also configure the response data of the scanning (ScanRspData):

AT+BLESCANRSPDATA="0201060B09457370726573736966030302A0"

OK

The ScanRspData can be discovered in an active scan.
- Start advertising.

AT+BLEADDR?																														//	get	server's	BLE	address

Espressif ! /!70 83 2017.11

!

9. AT Commands Examples

Response:

+BLEADDR:24:0a:c4:03:f4:d6

OK

• ESP32 Client:
- Configure the scanning parameters. This is optional, though. For example, in the active-scan

mode, the command is as follows:

AT+BLESCANPARAM=1,0,0,100,50

Response:

OK

- Start scanning.

AT+BLESCAN=1,3

Response:

+BLESCAN:<BLE	address>,<rssi>,<adv_data>,<scan_rsp_data>

OK

- Establish the BLE connection, when the server is scanned successfully.

AT+BLECONN=0,"24:0a:c4:03:f4:d6"

Response:

OK

+BLECONN:0,"24:0a:c4:03:f4:d6"

- Update the connection parameters:

AT+BLECONNPARAM=0,30,30,0,600

OK

You can also query the result:

AT+BLECONNPARAM?

+BLECONNPARAM:0,30,30,30,0,600

OK

- Set the Maximum Transmission Unit (MTU)
The client can initiate an Exchange MTU Request after the connection has been established:

📖 Notes:

• If the BLE connection is established successfully, it will prompt +BLECONN:<conn_index>,<remote_BLE_address>

• If the BLE connection is broken, it will prompt +BLEDISCONN:<conn_index>,<remote_BLE_address>

Espressif ! /!71 83 2017.11

!

9. AT Commands Examples

AT+BLECFGMTU=0,200

OK

You can also query the result:

AT+BLECFGMTU?

+BLECFGMTU:0,200

OK

3. Read/Write a characteristic:
• ESP32 Server:

- Discover local services.

AT+BLEGATTSSRV?										

Response:

+BLEGATTSSRV:1,1,0xA002,1

OK

- Discover characteristics.

AT+BLEGATTSCHAR?										

Response:

+BLEGATTSCHAR:"char",1,1,0xC300

+BLEGATTSCHAR:"desc",1,1,1

+BLEGATTSCHAR:"char",1,2,0xC301

+BLEGATTSCHAR:"desc",1,2,1

+BLEGATTSCHAR:"char",1,3,0xC302

+BLEGATTSCHAR:"desc",1,3,1

OK

• ESP32 Client:
- Discover services.

AT+BLEGATTCPRIMSRV=0			

Response:

+BLEGATTCPRIMSRV:0,1,0x1801,1

+BLEGATTCPRIMSRV:0,2,0x1800,1

+BLEGATTCPRIMSRV:0,3,0xA002,1

OK

Espressif ! /!72 83 2017.11

!

9. AT Commands Examples

- Discover characteristics.
AT+BLEGATTCCHAR=0,3

Response:

+BLEGATTCCHAR:"char",0,3,1,0xC300,2

+BLEGATTCCHAR:"desc",0,3,1,1,0x2901

+BLEGATTCCHAR:"char",0,3,2,0xC301,2

+BLEGATTCCHAR:"desc",0,3,2,1,0x2901

+BLEGATTCCHAR:"char",0,3,3,0xC302,8

+BLEGATTCCHAR:"desc",0,3,3,1,0x2901

+BLEGATTCCHAR:"char",0,3,4,0xC303,4

+BLEGATTCCHAR:"desc",0,3,4,1,0x2901

+BLEGATTCCHAR:"char",0,3,5,0xC304,8

+BLEGATTCCHAR:"char",0,3,6,0xC305,16

+BLEGATTCCHAR:"desc",0,3,6,1,0x2902

+BLEGATTCCHAR:"char",0,3,7,0xC306,32

+BLEGATTCCHAR:"desc",0,3,7,1,0x2902

OK

- Read a characteristic. Please note that the target characteristic's properties have to include the
read operation.

AT+BLEGATTCRD=0,3,1

Response:

+BLEGATTCRD:0,1,30

OK

- Write a characteristic. Please note that the target characteristic's properties have to include the
write operation.

AT+BLEGATTCWR=0,3,3,,2

Response:

⚠ Notice:

When discovering services, the ESP32 Client will get two more default services (UUID:0x1800 and 0x1801) than what the
ESP32 Server will get.

So, for the same service, the <srv_index> received by the ESP32 Client equals the <srv_index> received by ESP32 Server
+ 2.

For example, the <srv_index> of the above-mentioned service, 0xA002, is 3 when the ESP32 Client is in the process of
discovering services. But if the ESP32 Server tries to discover it with command AT+BLEGATTSSRV?, the <srv_index> will be
1.

📖 Note:

If the ESP32 Client reads the characteristic successfully, message +READ:<conn_index>,<remote	BLE	address> will be
prompted on the ESP32 Server side.

Espressif ! /!73 83 2017.11

!

9. AT Commands Examples

>		 	 //	waiting	for	data

OK

4. Notify of a characteristic:
• ESP32 Client:

- Configure the characteristic's descriptor. Please note that the target characteristic's properties
have to include notifications.

AT+BLEGATTCWR=0,3,6,1,2						

Response:

>		 	 //	waiting	for	data,	should	input	HEX	string	"01"	here

OK

• ESP32 Server:

- Notify of a characteristic. Please note that the target characteristic's properties have to include
notifications.

AT+BLEGATTSNTFY=0,1,6,3

Response:

>		 	 //	waiting	for	data

OK

5. Indicate a characteristic:
• ESP32 Client:

- Configure the characteristic's descriptor. Please note that the target characteristic's property has
to support the indicate operation.

AT+BLEGATTCWR=0,3,7,1,2					

📖 Note:

If the ESP32 Client writes the characteristic successfully, message +WRITE:<conn_index>,<srv_index>,<char_index>,
[<desc_index>],<len>,<value> will be prompted on the ESP32 Server side.

📖 Note:

If the ESP32 Client writes the descriptor successfully, message +WRITE:<conn_index>,<srv_index>,<char_index>,	
<desc_index>,<len>,<value> will be prompted on the ESP32 Server side.

📖 Note:

If the ESP32 Client receives the notification, it will prompt message +NOTIFY:<conn_index>,<srv_index>,<char_index>,	
<len>,<value>.

For the same service, the <srv_index> on the ESP32 Client side equals the <srv_index> on the ESP32 Server side + 2.

Espressif ! /!74 83 2017.11

!

9. AT Commands Examples

Response:

>		 	 //	waiting	for	serial	data,	should	input	HEX	string	"02"	here

OK

• ESP32 Server:

- Indicate characteristic. Please note that the target characteristic's property has to support the
indicate operation.

AT+BLEGATTSIND=0,1,7,3	

Response:

>		 	 //	waiting	for	serial	data

OK

9.5.2.2. Usage Scenarios
1. Bluetooth networking
BLE can be used to transfer the Wi-Fi SSID and Password in a Bluetooth network.
• Use AT+BLEGATTCWR for the client to pass on the SSID and password to the server.
• Use AT+BLEGATTSNTFY for the server to pass on the SSID and password to the client.
Details can be found in Section 9.5.2.1.
2. Transparent data transmission
The ESP32 AT does not support transparent data transmission over BLE for the time being. However,
users can use that basic data-transmission method to simulate the transparent data transmission
process where Host MCU can filter the data information.
• Call AT+BLEGATTCWR continuously for the client to transfer data to the server.
• Call AT+BLEGATTSNTFY continuously for the server to transfer data to the client.
Details can be found in Section 9.5.2.1.
3. OTA firmware upgrade
OTA firmware upgrade can also be implemented over BLE.

📖 Note:

If the ESP32 Client writes the descriptor successfully, message +WRITE:<conn_index>,<srv_index>,<char_index>,	
<desc_index>,<len>,<value> will be prompted on the ESP32 Server side.

📖 Note:

If the ESP32 Client receives the indication, it will prompt message +INDICATE:<conn_index>,<srv_index>,<char_index>,	
<len>,<value>

For the same service, the <srv_index> on the ESP32 Client side equals the <srv_index> on the ESP32 Server side + 2.

Espressif ! /!75 83 2017.11

!

9. OTA Update

4. OTA Update
The following steps guide the users in creating a device on iot.espressif.cn and updating the OTA BIN
on it.
1. Open the website iot.espressif.cn. If using SSL OTA, it should be https://iot.espressif.cn.

!

2. Click "Join" in the upper right corner of the webpage, and enter your name, email address, and
password.

!
3. Click on "Device" in the upper right corner of the webpage, and click on "Create" to create a

device.

Espressif ! /!76 83 2017.11

http://iot.espressif.cn
http://iot.espressif.cn
https://iot.espressif.cn

!

9. OTA Update

!

!
4. A key is generated when the device is successfully created, as the figure below shows.

Espressif ! /!77 83 2017.11

!

9. OTA Update

!

5. Use the key to compile your own OTA BIN. The process of configuring the AT OTA token key is as
follows:

!

Espressif ! /!78 83 2017.11

!

9. OTA Update

!

!

6. Click on "Product" to enter the webpage, as shown below. Click on the device created. Enter
version and corename under "ROM Deploy". Rename the BIN compiled in Step 5 as "ota.bin" and
save the configuration.

⚠ Notice:

If using SSL OTA, the option "OTA based upon ssl" should be selected.

Espressif ! /!79 83 2017.11

!

9. OTA Update

!

!

7. Click on the ota.bin to save it as the current version.

Espressif ! /!80 83 2017.11

!

9. OTA Update

!
8. Run the command AT+CIUPDATE. If the network is connected, OTA update w. 

Espressif ! /!81 83 2017.11

!

10. Q & A

5. Q & A
If you have any questions about the execution of AT commands, please contact us via Espressif
Technical Inquiries. Please describe the issues that you might encounter, including any relevant details,
as follows:

• AT Version information or AT Command: You can use command AT+GMR to acquire information
on your current AT command version.

• Hardware Module information: for example, ESP-WROOM-32.
• Screenshot of the test steps, for example:

!
• If possible, please provide the printed log information, such as:

Guru	Meditation	Error	of	type	StoreProhibited	occurred	on	core			0.	Exception	was	unhandled.

Register	dump:

PC					:		40135735		PS					:		00060f30		A0					:		800f913b		A1					:		3ffd66c0		

A2					:		00000000		A3					:		3ffd6828		A4					:		00000b68		A5					:		b33f0000		

A6					:		b33fffff		A7					:		3ffb004c		A8					:		00000003		A9					:		3ffd66a0		

A10				:		3ffd6828		A11				:		00000b69		A12				:		00060020		A13				:		3ffc2d30		

A14				:		00000003		A15				:		00060023		SAR				:		00000000		EXCCAUSE:		0000001d		

EXCVADDR:		00000038		LBEG			:		00000000		LEND			:		00000000		LCOUNT	:		00000000		

Rebooting...

Espressif ! /!82 83 2017.11

http://espressif.com/en/company/contact/after-sale-questions
http://espressif.com/en/company/contact/after-sale-questions

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without
notice.
THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT
OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.
All liability, including liability for infringement of any proprietary rights, relating to the use of
information in this document, is disclaimed. No licenses express or implied, by estoppel or
otherwise, to any intellectual property rights are granted herein.
The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is
a registered trademark of Bluetooth SIG.
All trade names, trademarks and registered trademarks mentioned in this document are
property of their respective owners, and are hereby acknowledged.
Copyright © 2017 Espressif Inc. All rights reserved.

Espressif IOT Team

www.espressif.com

�

http://www.espressif.com

